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Author Summary 

The speed at which we make perceptual decisions varies. This translation of sensory 

information into behavioral decisions hinges on dynamic changes in neural oscillatory 

activity. However, the large-scale neural network embodiment supporting perceptual 

decision-making is unclear. Alavash et al. address this question by experimenting two 

auditory perceptual decision-making situations. Using graph-theoretical network discovery, 

they trace the large-scale network dynamics of coupled neural oscillations to uncover brain 

network states supporting the speed of auditory perceptual decisions. They find that higher 

network segregation of coupled beta-band oscillations supports faster auditory perceptual 

decisions over trials. Moreover, when auditory perceptual decisions are relatively difficult, 

the decision speed benefits from higher segregation of frontal cortical areas, but lower 

segregation and integration of auditory cortical areas.  
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Abstract 

Perceptual decisions vary in the speed at which we make them. Evidence suggests that 

translating sensory information into behavioral decisions relies on distributed interacting 

neural populations, with decision speed hinging on power modulations of neural oscillations. 

Yet, the dependence of perceptual decisions on the large-scale network organization of 

coupled neural oscillations has remained elusive. We measured magnetoencephalography 

signals in human listeners who judged acoustic stimuli made of carefully titrated clouds of tone 

sweeps. These stimuli were used under two task contexts where the participants judged the 

overall pitch or direction of the tone sweeps. We traced the large-scale network dynamics of 

source-projected neural oscillations on a trial-by-trial basis using power envelope correlations 

and graph-theoretical network discovery. Under both tasks, faster decisions were predicted by 

higher segregation and lower integration of coupled beta-band (~16–28 Hz) oscillations. We 

also uncovered brain network states that promoted faster decisions and emerged from lower-

order auditory and higher-order control brain areas. Specifically, decision speed in judging 

tone-sweep direction critically relied on nodal network configurations of anterior temporal, 

cingulate and middle frontal cortices. Our findings suggest that global network communication 

during perceptual decision-making is implemented in the human brain by large-scale 

couplings between beta-band neural oscillations.  
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Introduction 

Contemporary neuroscience is departing from a focus on regional brain activations towards 

emphasizing the network organization of brain function. This view recognizes the large-scale 

interactions between distributed cortical areas as the biological basis of behavior and cognition 

(Sporns, 2014; Misic and Sporns, 2016). A more mechanistic view holds frequency-specific 

neural oscillations to be relevant to behavior and cognition (Buzsaki and Draguhn, 2004; Engel 

et al., 2013). How the large-scale network organization of interacting neural oscillations (Palva 

and Palva, 2012; Siegel et al., 2012), in particular their temporal network dynamics (Kopell et al., 

2014; Shine et al., 2016), relate to perception and cognition is poorly understood. Here, we 

investigate the dependence of auditory perceptual decision-making in humans on spectrally-, 

temporally- and topologically-resolved large-scale brain networks. 

Accumulating evidence suggests that frequency-specific neural oscillations are key to 

processing sensory information (Palva et al., 2010; Hanslmayr et al., 2011; de Pesters et al., 2016). 

For example, previous studies indicate that attentional modulation of cortical excitability in 

sensory regions is reflected in oscillatory alpha power (~8–10 Hz) under visual (Jensen and 

Mazaheri, 2010; Lange et al., 2013; Lou et al., 2014) or auditory tasks (Müller and Weisz, 2012; 

Strauß et al., 2014; Weisz et al., 2014a; Wöstmann et al., 2016). Additionally, it has been shown 

that audiovisual perception relies on synchronized cortical networks within beta (~20 Hz) and 

gamma (~80 Hz) bands (Hipp et al., 2011). Recently, studies have begun to explore more 

specifically whether modulations in neural oscillations arise from lower-order sensory or higher-

order control areas (Park et al., 2015; Friese et al., 2016; Kayser et al., 2016; Sadaghiani and 

Kleinschmidt, 2016). Here, based on localization of neurophysiological sources (Hillebrand et 

al., 2005), we explore the large-scale network organization of interacting neural oscillations 

during auditory processing. 

Specifically, we ask how the network topology of coupled neural oscillations (Bassett et al., 

2009) relates to the listeners’ perceptual decisions. In a previous magnetoencephalography 

(MEG) study, Nicol and colleagues measured synchronization of brain gamma-band (33–64 Hz) 

responses in an auditory mismatch-negativity paradigm (Nicol et al., 2012). They found that 

deviant stimuli were associated with increase in local network clustering in left temporal 

sensors within the immediate response period. Building upon pre-stimulus hemodynamic 

responses, Sadaghiani et al. (2015) recently suggested higher modularity of brain networks as 

a proxy for perceiving near-threshold auditory tones. Moreover, it has been shown that higher 

global integration of brain networks measured from pre-stimulus high-alpha band MEG 
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responses precede the detection of near-threshold stimuli (Weisz et al., 2014b; Leske et al., 

2015). In sum, brain network correlates of auditory perception have been observed on different 

topological scales. 

Naturally, cortical networks involved in processing sensory information require context-

sensitive configurations, and also moment-to-moment reconfigurations to fulfill dynamic task 

adjustments (Bassett et al., 2006). This leads the neural co-activations, which shape the brain 

functional connectivity, to diverge from their underlying structural connectivity (Park and 

Friston, 2013; Marrelec et al., 2016; Misic et al., 2016). As such, estimation of functional 

connectivity, when collapsed over time, overemphasizes structural connectivity (Honey et al., 

2007; Shen et al., 2015) and disregards the temporal dynamics of large-scale brain network 

topology (Zalesky et al., 2014; Kringelbach et al., 2015). It is these dynamics that have been 

found relevant to behavior during challenging motor or cognitive tasks (Bassett et al., 2013; 

Braun et al., 2015; Alavash et al., 2016; Chai et al., 2016). 

Therefore, to find the neural network substrate of auditory perceptual decision-making, we 

adopt the framework of dynamic brain networks (Calhoun et al., 2014; Deco et al., 2015) and 

merge this with neural oscillations to uncover frequency-specific brain network states. Our 

method is based on a previously established technique to estimate large-scale neural 

interactions in source space (Hipp et al., 2012) and graph-theoretical network analysis (Bullmore 

and Sporns, 2009). 

We apply this approach to MEG signals measured from human listeners who made perceptual 

decisions on brief acoustic textures under two distinct task sets. The acoustic textures consisted 

of densely layered tone sweeps which varied in their overall pitch (high or low), as well as the 

proportion of coherent tones in terms of sweep direction (up or down; Figure 1A). Using the 

identical set of stimuli, two auditory paradigms with distinct decision contexts were designed 

to deliver challenging perceptual decision-making tasks (Figure 1B). As such, the individuals’ 

perceptual decision accuracy and speed fluctuated on a trial-by-trial basis (Figure 1C). This 

allowed us to investigate the relation between frequency-specific brain network states and trial-

by-trial decision-making performance (Figure 2). Since, under each of the two perceptual 

decision-making tasks, subjects focused on a different acoustic feature of an identical set of 

auditory stimuli, two dynamic network profiles were expected. First, we anticipated brain 

network states responsible for the cortico-cortical communication (mainly fronto-temporal) 

involved in common for both tasks to predict the decision-making performance. Second, we 
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expected task-specific brain network states emerging from auditory association or higher-order 

decision areas to differentially predict the performance in either of the tasks.  
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Figure 1 Experimental stimuli and tasks. (A) Auditory stimuli used to design the tasks. Each cell 
represents an acoustic texture which can be viewed as a pattern of sound sweeps whose frequency 
increases or decreases over time. A texture stimulus had a duration of 400 ms, and consisted of 72 
frequency modulated (FM) sweeps of 100 ms duration. The stimuli where titrated along two dimensions: 
overall coherence and spectral center. For a given stimulus, a variable proportion (25–100%) of the 
sweeps were assigned the same frequency slope (coherence), i.e. their frequency was going up or down 
at the same rate over time. The rest of the sweeps had a randomly assigned slope. In addition, each 
stimulus had one of eight spectral centers relative to a mean center frequency. (B) Two auditory 
perceptual decision-making tasks, namely pitch and direction, were designed using the identical acoustic 
stimuli. During the pitch task, the subjects judged the overall pitch of the stimuli (low or high). In the 
direction task, they were asked to report the overall direction (up or down) in which the frequency of 
the stimuli was changing (increasing or decreasing) over time. Subjects had 3 seconds at maximum to 
press one of two response buttons to report their perceptual decision. In each task, the decision labels 
for the left hand and right hand buttons (indicated by 1/2) were randomized across trials, and were 
shown after stimulus presentation within the response window. There were eight blocks per task, and 
the order of the tasks alternated from one block to another. (C) Exemplary trial-by-trial auditory 
perceptual decision accuracy (moving average of four trials applied to correct/incorrect responses) and 
decision speed ([response time]-1). Before the actual tasks, an adaptive perceptual tracking was used to 
tailor the two tasks per participant, so that their overall accuracy converged at ~70%. This led the 
individuals’ decision accuracy and speed to fluctuate over trials. Note that for the purpose of the 
regression analysis (see ‘Materials and Methods’), the trial-wise estimates of accuracy and speed were 
first rank-transformed and then normalized (i.e., z-scored). Exemplary data are shown for a 
representative participant; pitch task, second block.  
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Figure 2 Trial-by-trial dynamics of brain functional connectivity and network topology. To investigate 
the relation between the frequency-specific brain network states and decision-making performance, all-
to-all power envelope correlations (source connectivity matrix) and whole-brain graph-theoretical 
network metrics were estimated at 10% of network density (see ‘Materials and Methods’). This analysis 
was done at each frequency within 1–32 Hz, and per trial in the course of each pitch and direction task. 
The temporal graph-theoretical metrics captured brain network states on the local (local efficiency), 
intermediate (modularity) and global (global efficiency) scales of network topology. The yellow shaded 
ovals illustrate the topological scale at which a network metric is measured. Global efficiency (bottom 
graph) is inversely related to the sum of shortest path lengths (e.g. orange path) between every pair of 
nodes. Mean local efficiency (top graph) is equivalent to global efficiency computed on the direct 
neighbors of each node (e.g. orange node) which is then averaged over all nodes. Modularity (middle 
graph) describes the segregation of partner nodes into relatively dense groups (here, the orange nodes 
forming four modules) which are sparsely interconnected. For the purpose of the regression analysis 
(see ‘Materials and Methods’), the trial-wise estimates of network metrics were first rank-transformed 
and then normalized (i.e., z-scored). Exemplary data are shown for a representative subject as in Figure 
1C.  
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Results 

Auditory perceptual decision-making performance 

The participants judged the overall pitch or sweep direction of the acoustic texture stimuli, and 

showed accuracies around 70% as it had been intended with the adaptive tracking procedure 

(average accuracy[%]±SEM: pitch task=76% ±1.1, direction task=70% ±2.1; mean of decision 

speed [𝑠𝑠−1]±SEM: pitch task=1.8±0.1, direction task=1.7±0.1). The bootstrap Kolmogorov-

Smirnov test revealed that the distributions of the behavioral measures did not significantly 

deviate from a normal distribution (accuracy: pitch task p=0.8; direction task p=0.1; decision 

speed: pitch task p=0.8; direction task p=0.5). Despite our experimental efforts to equate the 

difficulty in both tasks, analysis of variance (ANOVA) revealed a main effect of task for both 

accuracy (F(1,19)=6, 𝜂𝜂𝐺𝐺2 =0.05, p<0.05) and decision speed (F(1,19)=9.9, 𝜂𝜂𝐺𝐺2 =0.01, p<0.01). 

Participants showed significantly lower accuracy in the direction task as compared to the pitch 

task (exact permutation test for a paired test; p<0.05). In addition, decision speed in the 

direction task was significantly lower as compared to the pitch task (p<0.01). The experimental 

manipulation of the pitch of the acoustic textures yielded significant effects of stimulus spectral 

center on both accuracy (F(3,57)=64, 𝜂𝜂𝐺𝐺2 =0.18, p<0.001) and decision speed (F(3,57)=30, 

𝜂𝜂𝐺𝐺2 =0.02, p<0.05). However, stimulus coherence had a significant effect only on accuracy 

(F(3,57)=45.3, 𝜂𝜂𝐺𝐺2 =0.12, p<0.001). Across participants, there was a significant positive 

correlation between decision speed in the pitch task and decision speed in the direction task 

(Spearman’s 𝜌𝜌 =0.9; p<0.01). However, the correlation between accuracies in the two tasks was 

not significant (𝜌𝜌 =0.2; p=0.47). 

The correlation between trial-by-trial estimates of decision accuracy or speed with trial-by-trial 

acoustic features of the stimuli was tested using a two-level regression analysis (see ‘Materials 

and Methods’). We found a significant positive correlation between decision speed and 

stimulus coherence in the direction task (average regression weights±SEM: 0.045±0.012; one-

sample exact permutation test: p<0.01). Additionally, trial-by-trial estimates of decision 

accuracy in the direction task showed a significant positive correlation with the coherence of 

the stimuli (average regression weights±SEM: 0.087±0.01; p<0.01). There was also a significant 

negative correlation between decision accuracy in the pitch task and stimulus coherence 

(average regression weight±SEM: −0.022±0.01; p<0.05). 
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Neural oscillatory power during auditory perceptual decision-making 

We investigated power perturbations in the MEG oscillatory signal while subjects listened to 

the acoustic textures, and judged their overall pitch or sweep direction. As it is illustrated in 

Figure 3, MEG oscillatory alpha (~8–13 Hz) power was increased relative to the baseline interval 

(–0.5 to 0 s) just after stimulus presentation. In addition, during and after stimulus presentation 

but before the response prompt (0 to 1s), we observed a left-lateralized decrease in the MEG 

oscillatory power in the low- and mid-beta band (~14–24 Hz) relative to the baseline interval. 

The above perturbations in alpha and beta bands were similarly observed in both pitch and 

direction tasks (Figure 3A and B, first two panels) and are well in line with previous studies on 

the neural substrates of perceptual decision-making (Donner et al., 2009; Haegens et al., 2011; 

O'Connell et al., 2012; Kelly and O'Connell, 2015). Finally, as expected, there was a strong, motor-

related suppression in the MEG oscillatory power relative to baseline within the time interval 

when the subjects manually reported their perceptual decision following the response prompt 

(Pfurtscheller and Lopes da Silva, 1999). This perturbation was widely-distributed within alpha 

and beta bands (8–32 Hz; Figure 3A and B, first panel). 

Since the aim of this study was to find the relation between frequency-specific brain network 

states and auditory perceptual decision-making on a trial-by-trial basis, we next focused on the 

trial-by-trial fluctuations in the power of the source-projected signals. To this end, we 

implemented a general linear model (GLM) per participant whereby time series estimates of 

trial-by-trial decision accuracy or speed (Figure 1C) were predicted by the baseline-corrected 

power of the whole-brain source-projected signals. We found significant negative correlations 

between decision speed during pitch or direction task and the ongoing neural oscillatory power 

within alpha and beta bands (8-32 Hz; Figure 3A and B, third panels). These results indicate that, 

during both pitch and direction tasks, a stronger decrease in the neural oscillatory power 

relative to the baseline interval correlated with faster perceptual decisions. However, we found 

no significant correlation between decision accuracy and the ongoing oscillatory power of 

source-projected signals.  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/095356doi: bioRxiv preprint first posted online Dec. 19, 2016; 

http://dx.doi.org/10.1101/095356
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brain network states and auditory perceptual decision-making 

10 
 

 
Figure 3 Dynamics of neural oscillatory power under each auditory task and their relation to the speed 
of perceptual decisions. Spectrotemporal representations of the epoched signals during (A) the pitch 
task and (B) the direction task were estimated and averaged over trials, 102 combined gradiometer 
sensors and all subjects (N=20). While an increase in oscillatory alpha (8–13 Hz) power was observed 
time-locked to the auditory stimulation relative to the baseline interval (–0.5 to 0s), there was a decrease 
in the oscillatory power within low- and mid-beta bands (14–24 Hz) during the time window when the 
participants listened to the stimuli (0 to 1s). The topographical maps show the broad-band baseline-
corrected oscillatory power (8–32 Hz) from stimulus onset to the onset of the response prompt (0–1s). 
Note that within this time period, the subjects were not yet aware of the mapping between the decision 
labels (pitch task: high/low; direction task: up/down) and left/right hand response buttons, since the 
mapping was randomized across trials. Regression analysis. The relation between the ongoing power of 
neural oscillations and decision speed was investigated by means of linear regression where trial-by-trial 
decision speed was predicted by the oscillatory power of source signals. In the course of both auditory 
tasks, faster perceptual decisions negatively correlated with the ongoing oscillatory power of source 
signals within alpha and beta bands. Black circles. The normalized regression weights averaged over 
subjects at each frequency. Horizontal shades. 95% confidence interval of the null mean regression 
weights generated by circularly shifting the behavioral responses across trials (corrected for multiple 
comparisons across frequency bins using false-coverage statement rate (FCR; p<0.05)). For visualization 
purposes, the smooth curves were estimated using local polynomial regression fitting.  
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Whole-brain network dynamics of beta-band oscillations predict decision speed 

The aim of this study was to find frequency-specific brain network states underlying individuals’ 

perceptual decision-making in the course of judging auditory stimuli. The auditory stimuli were 

identical, but presented in two distinct task sets, i.e. either judging the overall pitch or the 

overall direction of frequency-modulated (FM) tone sweeps. To predict trial-by-trial decision-

making performance from the ongoing brain network states, we implemented a linear 

regression model where time series estimates of trial-by-trial decision accuracy or speed (Figure 

1C) were predicted by the temporal graph-theoretical network metrics (Figure 2). 

On the whole-brain level, and for both pitch and direction tasks, we found significant 

correlations between decision speed on the one hand, and the functional connectivity and the 

topology of dynamic brain networks on the other hand (Figure 4). These correlations peaked 

within the beta band range (Figure 4, solid points). The significant correlations indicate that, for 

both pitch and direction task, higher local efficiency but lower global efficiency of large-scale 

brain networks supported faster perceptual decisions (Figure 4, second and last columns, 

respectively). In addition, higher segregation of brain network modules predicted faster 

perceptual decisions in both tasks (Figure 4, third column). 

More specifically, we found positive correlations between mean functional connectivity of 

dynamic brain networks and decision speed in both pitch and direction task within the 

frequency range of 16 to 28 Hz (Figure 4, first column). In both tasks, faster perceptual decisions 

about the acoustic textures were accompanied by increase in mean functional connectivity of 

dynamic brain networks over trials. This effect was not limited to functional connectivity, and 

was also reflected in the topology of dynamic brain networks. On the local scale of network 

topology, higher mean local efficiency of dynamic brain networks within the frequency range 

of 16 to 28 Hz predicted faster decisions in both tasks over trials (Figure 4, second column). 

Moreover, on the intermediate level of network topology, higher modularity of dynamic brain 

networks at the same frequencies predicted faster decisions in both tasks (Figure 4, third 

column). Finally, on the global scale of network topology, faster decisions were predicted by 

decrease in global network efficiency at frequencies ranging from 18 to 21 Hz (Figure 4, second 

column). Note that we did not observe any significant correlation between trial-by-trial 

estimates of decision accuracy and brain network metrics in neither of the tasks. 

The analysis of neurobehavioral correlations was based on estimating all-to-all source 

connectivity per trial, which covered the time points from −0.5 to 1.5 s in step of 0.05 s. To 

further investigate the possible prediction from pre- or post-stimulus dynamic network states, 
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we applied the same analyses to the data measured during the pre-stimulus interval (−0.85 to 

0 s) or post-stimulus interval (0 to +1 s) separately. In addition, to examine the extent to which 

our results might merely reflect neural processes involved in giving manual responses after the 

response prompt (see Figure 3), we also analyzed mid-beta band (16–28 Hz) power correlations 

using only the data measured during the response window (+1 s to +1.5 s). None of these 

analyses revealed consistent significant correlations with the speed of auditory perceptual 

decisions (Supplementary Figure S1). 

To test the task-specificity of the correlations between a given network diagnostic and trial-by-

trial decision accuracy or speed, we also computed the mean difference of the regression 

weights. We found no significant difference between the two tasks in predicting decision 

accuracy or speed from the ongoing dynamics of network topology on the whole-brain level. 

Finally, to investigate the possible lead/lag relationship between brain network states and trial-

by-trial decision-making performance, we computed the cross-correlation between behavioral 

time series on the one hand and the dynamics of brain networks on the other hand. This analysis 

replicated the significant neurobehavioral correlations which peaked at zero trial lag 

(Supplementary Figure S2). 

We also considered the possible effect of graph thresholding at 10% of network density on 

dynamic functional connectivity. To this aim, we derived the power-envelope coupling strength 

without thresholding the temporal graphs, and subsequently used raw trial-by-trial measures 

of functional connectivity in the linear regression analysis. The results were consistent with our 

main finding: faster perceptual decisions were positively correlated with power-envelope 

coupling between beta-band neural oscillations (Supplementary Figure S4). This finding 

suggests that functional connectivity dynamics of beta-band oscillations are not diminished by 

fixing the connection density of the temporal brain graphs at 10 %. Moreover, our results were 

also present when brain graphs were thresholded at 5% of network density (Supplementary 

Figure S8). Finally, In order to dissociate network from power effects, we implemented a linear 

regression analysis by adding the trial-by-trial estimates of source power as an additional 

regressor in the model. This analysis revealed that network dynamics of beta-band oscillations 

predicted trial-by-trial decision speed over and above the oscillatory source power 

(Supplementary Figure S5). 

In an additional analysis, we investigated the dependence of trial-by-trial network metrics on 

the trial-by-trial acoustic features (i.e., spectral center and stimulus coherence) by means of 

separate linear regression models (consistent with the main analysis). In each model, we treated 
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the trial-by-trial acoustic features as the dependent variable, and tested the significance of the 

mean regression weights averaged over subjects. On the whole-brain level, we did not observe 

any consistent significant correlation between brain network metrics and acoustic features in 

neither of the tasks (Supplementary Figure S7). In addition, our main finding – the brain-

behavior relation observed on the whole-brain level – was still present when we did not control 

for the acoustic features of the trial-by-trial stimuli in our regression model. These together 

suggest that large-scale network organization of coupled beta-band oscillations during 

auditory perceptual decision-making is not globally altered by the external perturbation 

induced by the stimuli. The global configuration of brain networks is rather organized according 

to the decision goal based on which the auditory stimuli need to be evaluated.Overall, our 

findings show that the dynamics of brain functional connectivity predict trial-by-trial 

fluctuations in the speed at which auditory perceptual decisions are made and executed. More 

importantly, faster decisions positively correlated with the ongoing local clustering and 

modular segregation of large-scale brain networks over trials. At the same time, faster decisions 

were also predictable from a decrease in the global integration of dynamic brain networks. The 

brain network correlates of auditory perceptual decision-making were found only for decision 

speed, and were similar across both task sets. Additionally, our findings were specific to the mid-

beta band (~20 Hz) of neural oscillations, and only observed when the neural oscillatory 

responses within both pre- and post-stimulus intervals were used to estimate trial-by-trial brain 

network states.  
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Figure 4 Whole-brain network dynamics of beta-band oscillations predict decision speed. The relation 
between the ongoing dynamics of large-scale brain networks and perceptual decisions on the auditory 
stimuli was investigated by means of linear regression where trial-by-trial decision speed was predicted 
by the temporal graph-theoretical network metrics. This analysis was done separately for each (A) pitch 
and (B) direction task, at frequencies ranging from 1 to 32 Hz. In the course of both auditory tasks, faster 
perceptual decisions positively correlated with the ongoing local efficiency (second column) and 
modular segregation (third column) of brain networks built upon beta-band oscillations. However, 
higher global integration showed the opposite effect (last column). Black circles. The mean regression 
weights averaged over subjects at each frequency. Horizontal shades. 95% confidence interval of the null 
mean regression weights generated by circularly shifting the behavioral responses across trials 
(corrected for multiple comparisons across frequency bins using false-coverage statement rate (FCR); 
p<0.05). For visualization purposes, the smooth curves were estimated using local polynomial 
regression fitting. Toy graphs. The temporal graph-theoretical metrics captured brain network states on 
local (local efficiency), intermediate (modularity) and global (global efficiency) scales of network 
topology. The yellow shaded ovals illustrate the topological scale at which a network metric is measured.  
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Regional network states of beta-band oscillations predict decision speed 

The participants judged identical acoustic stimuli under two distinct task sets. Therefore, we 

expected not only similar network states to correlate with auditory perceptual decision-making 

in both tasks (mainly associated with fronto-temporal cortical communication), but also we 

anticipated task-specific network states (potentially emerging from auditory association or 

higher-order decision areas). On the whole-brain level, we found no significant difference 

between the two tasks in predicting trial-by-trial speed or accuracy of the auditory perceptual 

decisions from the ongoing dynamics of brain networks. 

However, regional properties of large-scale brain networks could still predict decision speed 

specifically in either pitch or direction task, or in both but in different directions. Thus, we aimed 

at investigating the regional network states which would differentially predict the speed of 

auditory perceptual decisions during the pitch versus the direction task. 

Figure 5 gives a comprehensive overview of all differential network effects found at the regional 

level of large-scale brain networks. These maps show significant differential correlations at 

cortical source locations. Four regional network properties were analyzed (see Supplemental 

Information): (A) nodal connectivity (also known as nodal strength), (B) local efficiency, (C) 

modular segregation (also known as within-module 𝑧𝑧 score), and (D) nodal efficiency. 

First, connectivity of two network nodes (i.e. MEG source locations) located within left and right 

temporal gyri showed significant differential correlations with decision speed during the pitch 

task in contrast to the direction task (Figure 5A, first and second row). Lower connectivity at 

these locations – overlapping with middle and superior divisions of left and right temporal 

cortices, respectively – predicted faster auditory perceptual decisions specifically during the 

direction task. Also, lower connectivity of a network node in right inferior frontal gyrus 

predicted faster decisions during the direction task (Figure 5A, third row), whereas lower 

connectivity of a node overlapping with left posterior cingulate cortex predicted faster 

perceptual decisions during the pitch task (Figure 5A, last row). 

Second, lower local efficiency of left middle/inferior temporal gyri specifically predicted faster 

decisions during the direction task (Figure 5B, first row). These faster decisions, however, were 

concurrent with increase in local efficiency of left middle and right medial frontal cortices 

(Figure 5B, last two rows). 

Third, modular segregation of certain network nodes within left and right auditory and frontal 

cortices showed correlations with the decision speed specifically during the direction task 

(Figure 5C). More precisely, when subjects judged the overall direction of the FM tone sweeps 
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faster, two source locations within bilateral auditory cortices showed decrease in their modular 

segregation (Figure 5C, first two rows). Notably, higher modular segregation of a source 

location within right anterior cingulate predicted faster decisions during the direction task 

(Figure 5C; last row). 

Finally, we found strong correlations between decision speed during the direction task and 

integration of three nodes within left auditory cortex into the whole-brain network (Figure 5D). 

This result emerged from lower nodal efficiency of three source locations overlapping with left 

inferior, middle and superior temporal gyri, and was specific to the direction task (p<0.05). The 

correlation between decision speed during the direction task and nodal efficiency of brain 

networks was not limited to the regions within the auditory cortex: Higher nodal efficiency of a 

source location in right anterior cingulate cortex also predicted faster decisions during the 

direction task (Figure 5D, last row). In contrast, faster perceptual decisions during the pitch task 

correlated with higher nodal efficiency of right superior temporal gyrus and insula (Figure 5D, 

second row). 

We also investigated the contribution of regional network states to the results observed on the 

whole-brain level shown in Figure 4. To this end, we implemented the same analysis as it was 

done on the whole-brain level, but used a regional network metric extracted per source location 

over trials as a predictor. This analysis was conducted independently per pitch and direction 

task. We found significant correlations between the ongoing dynamics of brain regional 

network metrics and trial-by-trial speed of auditory perceptual decisions in both pitch and 

direction tasks (non-differential effects; Supplementary Figure S3). 

These results were in good agreement with the direction of the correlations observed on the 

whole-brain level (Figure 4). In brief, higher local network efficiency, modular segregation and 

nodal network efficiency of the source locations predominantly within bilateral sensorimotor 

and parietal cortices predicted faster decisions in both tasks. However, decrease in all of the 

regional network metrics in source locations predominantly within auditory cortex supported 

faster decisions, which was more evident in the case of the direction task. 

Taken together, the results obtained at the regional level of whole-brain networks point to 

stronger correlations between brain network states and the speed of perceptual decisions 

during the direction task as compared to the pitch task. These predictions emerged from 

auditory and frontal cortices. Among these predictions, the stronger ones (significance level of 

p<0.01) converged towards decrease in nodal connectivity, local network efficiency, modular 

segregation and nodal network efficiency of regions within the auditory cortex. Within the 
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frontal cortex, however, faster decisions during the direction task were predicted by increase in 

local network efficiency and modular segregation.  
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Figure 5 Cortical regions where network states of beta-band oscillations differentially predict decision 
speed during the pitch as compared to the direction task. At the regional level of large-scale brain 
networks, we aimed at finding task-specific correlations between the ongoing dynamics of regional 
network metrics and trial-by-trial decision speed. The analysis was focused on four regional network 
properties: (A) nodal connectivity, (B) local efficiency, (C) modular segregation (within-module 𝑧𝑧 score) 
and (D) nodal efficiency. The direction task (green bars), as compared to the pitch task (rose bars), 
showed stronger correlations with network properties of the sources within temporal and frontal 
cortices. Within the auditory cortex, decrease in local network efficiency (B, first row), modular 
segregation (C, first two rows) and nodal efficiency (D, first row) supported faster decisions during the 
direction task. Within the frontal cortex, increase in local efficiency (B, last two rows) and module 
segregation (C, last row) correlated with faster decisions during the direction task. Color maps. For each 
network metric and source location, the mean regression weight obtained from the direction task data 
was subtracted from the mean regression weight obtained from the pitch task data. The difference was 
considered significant if it did not cover 95% confidence interval of the null distribution generated from 
shifting the behavioral responses (corrected for the number of source locations using false coverage-
statement rate (FCR); p<0.05). Bar plots. Task-specific mean regression weights (r) whose significance 
was tested against zero by means of one sample permutation test with 10,000 repetitions (error bars: 
SEM). Anatomical labels. I/M/STG: inferior/middle/superior temporal gyrus; A/PCC: anterior/posterior 
cingulate cortex; I/mid./med. FG: inferior/middle/medial frontal gyrus; IPL: inferior parietal lobule. L and 
R abbreviate the left and right brain hemispheres respectively. [x,y,z] indicate MNI coordinates (mm).  
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Discussion 

Time- and frequency-resolved analysis of large-scale brain networks during auditory perceptual 

decision-making unveiled two main results: For both pitch and direction task and on the whole-brain 

level, faster decisions were predicted by higher local efficiency and modular segregation, but lower 

global integration of coupled beta-band oscillations. On the regional level, the results of our task-

differential analysis revealed that the relatively more difficult direction task relied critically on specific 

network configurations of temporal and frontal regions. We discuss these results in terms of neural 

oscillations and complex brain networks. Further elaboration is provided in Supplementary Discussion. 

Network dynamics of beta-band oscillations predict decision speed 

Oscillations are key to neural communication (Adrian, 1944; Buzsaki and Draguhn, 2004; Schroeder and 

Lakatos, 2009; Fries, 2015). While most studies on neural oscillations aim to uncover mechanisms for 

dynamic excitation, inhibition, and synchrony (Singer and Gray, 1995; Womelsdorf et al., 2007; Jensen 

and Mazaheri, 2010; Engel et al., 2016), fewer studies have focused on long-range synchronizations 

between distributed cortical areas (e.g. Varela et al., 2001; Doesburg et al., 2009; Donner and Siegel, 2011; 

Hanslmayr et al., 2016). Here, we measured the coupling between power envelopes of MEG source 

signals which has been shown to underlie global network communication across cortex (Siegel et al., 

2012). The temporal network dynamics of these large-scale interactions predicted the speed of auditory 

perceptual decisions, which was specific to brain networks tuned at mid-beta band of neural oscillations, 

centered around 20 Hz. 

Beta-band oscillations have classically been associated with sensorimotor functions (Crone et al., 1998; 

Brovelli et al., 2004; Aumann and Prut, 2015) and are attenuated during voluntary movements or motor 

imagery (Pfurtscheller and Lopes da Silva, 1999; Pfurtscheller, 2001; Turella et al., 2016). In our study, 

faster decisions negatively correlated with the power of neural oscillations within alpha and beta band. 

However, the network effect was specific to mid-beta band. We argue that this network effect is a 

manifestation of large-scale neural couplings underlying auditory processing and manual responding. 

The results of our control analysis suggest that motor actions per se cannot explain all of the correlations 

we found on the whole-brain level. In this analysis, we used the mid-beta band data within the period 

when subjects manually reported their judgment. We observed positive correlations between decision 

speed and only local network efficiency (Figure S1). Knowing that local network efficiency is related to 

nodal clustering (Rubinov and Sporns, 2010), this effect might be due to local beta-band 

desynchronization coherently occurring within sensorimotor cortex, thereby forming dense clusters 

with high local efficiency. Beside our control analysis, we also investigated pre- and post-stimulus effects 

(Figure S1) which did not reveal consistent significant effects. These together highlight one very 

important question: What neural dynamics account for predicting decision speed from brain network 

states? 
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We here used the correlation between band-limited power envelopes as a functional connectivity 

measure, and had to choose a certain length for the trial-wise time windows, which is a key parameter 

in dynamic network analysis (Hutchison et al., 2013) and is related to the frequency content of the 

underlying signal. Perhaps the length of the above-mentioned time windows was not long enough to 

estimate correlations between beta-band power envelopes per trial. Power envelopes evolve within 

longer time windows as compared to their underlying carrier frequency (Siegel et al., 2012). Beta-band 

power envelopes fluctuate slowly at frequencies below 0.3 Hz (Engel et al., 2013) and therefore their 

dynamic coupling is better estimated when a time window of ~3 s (in our case one trial) is used. 

Accordingly, our control analysis cannot entirely preclude the effect of sensorimotor beta-band 

desynchronzation in our main findings. Within the last 500-ms of a trial concurrent with planning and 

executing a manual response, the power envelope of a ~20 Hz oscillation can be moderately modulated 

due to the suppression in its underlying carrier. Thus, the trial-wise power envelope correlations likely 

reflect the neural couplings underlying perceptual decision-making (–0.5 to +1s) and the neural 

underpinning of manual responses given after the response prompt (+1 to 1.5s). Indeed, the effects we 

found on the regional level support the involvement of auditory, sensorimotor and frontal cortices in 

predicting decision speed (Figure S2). However, the sluggish dynamics of beta-band power envelopes 

makes it difficult to dissociate network states arising from perceptual decision processes from those of 

manual responses. 

Moreover, previous work on the timing of perceptual decision-making suggests that, in sensory-motor 

tasks, a decision is already represented in motor areas before a behavioral response is generated (Gold 

and Shadlen, 2007; de Lange et al., 2013; Kelly and O'Connell, 2015). Specifically, a decision variable 

undergoes a dynamic active process through which the accumulated sensory evidence is integrated 

over time until the action is executed (Schroeder et al., 2010; Wyart et al., 2012). Several studies across 

different sensory modalities have associated modulations in beta-band activity with the temporal 

evolution of perceptual decisions (Senkowski et al., 2006). For example, Donner et al. (2007 and 2009) 

reported a fronto-parietal beta-band activity which was predictive of accuracy during a visual motion 

detection task, and only occurred during the decision period of the trials. Accordingly, in Siegel et al. 

(2011) the authors provided two possible interpretations for these observations: the maintenance and 

accumulation of sensory evidence during the decision formation, or the maintenance of the 

sensorimotor mapping rule between accumulated sensory evidence and action (see Engel and Fries 

(2010) for an elaboration). Additionally, a study by O'Connell et al. (2012) demonstrates that, during 

target detection tasks in different sensory modalities, left-hemisphere beta power was modulated by a 

reduction in the stimulus contrast, and this gradual modulation predicted trial-by-trial reaction times. 

Lastly, the role of beta-band oscillations in decision-making is supported by animal studies (Heekeren et 

al., 2008; Haegens et al., 2011) and computational modeling (Mostert et al., 2015; Sherman et al., 2016). 
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In sum, and in good agreement with previous accounts (Donner and Siegel, 2011; Hipp et al., 2011), we 

found that large-scale network interactions mediated by the power of beta-band oscillations are crucial 

for perceptual decision-making. Our findings draw a direct link between the dynamic network 

organization of coupled neural oscillations at ~20 Hz and trial-by-trial speed of auditory perceptual 

decisions built up from early perception to executing manual responses. 

Network states of fronto-temporal regions supporting auditory perceptual decisions 

Our task-differential analyses at the regional level suggest that the arguably more difficult direction task 

versus the pitch task relied critically on specific network configurations of beta-band oscillations. The 

differences we found in nodal network topology across the two tasks were specific to MEG sources 

located within temporal and frontal cortices. Within the vicinity of auditory cortex, effects in support of 

faster decisions during the direction task converged towards a decrease in (i) nodal connectivity, (ii) local 

efficiency, (iii) modular segregation, and (iv) nodal efficiency of source locations mostly overlapping with 

the anterior division of left superior temporal cortex. Within frontal cortex, however, increase in (i) local 

efficiency of left middle and medial frontal gyri, and (ii) modular segregation of right anterior cingulate, 

predicted faster decisions during the direction task. 

One pattern forged of these results is that faster decisions during a particularly challenging auditory 

perceptual task are accompanied by an increase in network segregation of frontal regions, and that this 

segregation supports higher-order decision-related processes. Theoretically, high local clustering of 

neighbor nodes is associated with high efficiency in local information transfer and fault tolerance 

(Achard and Bullmore, 2007), indicating how well neighbor nodes can still communicate when the target 

node (in our case a frontal region) is removed. As such, when making a perceptual decision is relatively 

difficult (i.e. the direction task), the decision process benefits from a more autonomous network 

configuration of frontal regions. 

The critical involvement of frontal regions in perceptual decision-making is supported by previous 

animal studies on local field potentials (LFP) where frontal cortex responses were found to selectively 

encode auditory stimulus features (Fritz et al., 2010) or to show higher synchrony at beta band (19–40 

Hz) as the cortical representation of task rules (Buschman et al., 2012; Antzoulatos and Miller, 2016). 

Additionally, in the visual domain it has been shown that top-down control of attention is mediated by 

higher coherence between frontal and parietal LFPs at beta band (22–34 Hz) (Buschman and Miller, 

2007). Recently, Stanley et al. (2016) found that higher local synchrony between LFPs over lateral 

prefrontal cortex within 16-20 Hz predicted stimulus categorization. Finally, a casual role for frontal 

cortex in perceptual decision-making was recently proposed by Rahnev et al. (2016). 

In contrast to what we observed in frontal regions, network states concurrent with less clustered and 

less segregated auditory regions were found to speed up the decisions during the direction task. One 

possibility is that during these states brain networks were more integrated (the opposite pole of 

segregation). However, we did not find significant correlations between decision speed and the so-
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called module participation (Guimera and Amaral, 2005), a well-established nodal metric which is 

quantified based on inter-modular connectivity, and attributed to network integration and hubs 

(Sporns, 2007, 2013; van den Heuvel and Sporns, 2013). Accordingly, decrease in the clustering and 

segregation of auditory regions are likely due to pruning of some short-range (intra-modular) 

connections. This local network reconfiguration might be necessary to remove direct connections, and 

instead establish longer paths through intermediate critical nodes, thereby supporting the decision 

process. 

We also note that faster decisions during the direction task were predicted by decrease in nodal 

efficiency of left auditory regions. This is perhaps due to emergence of longer paths between these 

regions and other network nodes, and pruning of long-range shortcuts. This globally less-efficient and 

more distributed information routing might be necessary to support the perceptual decisions under the 

more difficult direction task. Indeed, a study by Siegel et al. (2015) suggests that, during a sensorimotor 

decision task, information was not bounded to specific cortical regions, but instead was distributed 

across graded specialized cortical regions. In addition, and relevant to frequency-specific distributed 

information routing, the study by Weisz et al. (2014b) demonstrates that, during conscious perception, 

brain networks tuned at 17 Hz get more globally integrated through shorter communication paths. 

To conclude, the present study suggests that large-scale network organization of coupled neural 

oscillations at ~20Hz (beta band) underlies how fast momentary auditory perceptual decisions are made 

and executed. Thus, global communication in brain networks during perceptual decision-making is 

likely implemented by neural oscillations at around 20 Hz. During auditory perceptual decision-making, 

this dynamic global communication appears as complex network interactions between beta band 

neural oscillations evolving within lower-order auditory and higher-order control areas.  
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Materials and Methods 

Participants 

Twenty healthy, right-handed volunteers (15 females, age range 20–32 years, mean±SD age=26.2±3.35 

years) participated in the study. None of the participants reported any neurological diseases or hearing 

problems. Ethical approval was obtained from the local ethics committee of the University of Leipzig. All 

procedures were carried out with written informed consent of the participants and in accordance with 

the principles of the Declaration of Helsinki. Volunteers received a monetary compensation for 

participating in the study. 

Stimuli 

Two auditory task sets were designed that used identical stimuli consisting of variable acoustic textures 

(see e.g. Overath et al., (2010); “cloud of tones” in Znamenskiy and Zador (2013)) of 400 ms duration 

(Figure 1A). Each stimulus consisted of 72 frequency modulated (FM) sine tone ramps, or sweeps, of 100 

ms duration. The starting time points and frequencies of the individual sweeps were uniformly 

distributed across time and log frequency. Their frequency slopes spanned ±3.3 octaves per second. 

For manipulation of spectral center (low vs. high), the acoustic textures had one of eight spectral centers 

relative to a mean center frequency of 707.1 Hz. More specifically, they could deviate ±2, 1, 0.5 or 0.25 

semitones from the center frequency. Their spectral centers were approximately 630, 667, 687, 697, 717, 

728, 749 and 794 Hz. 

For the manipulation of the spectral coherence, a variable proportion (25, 50, 75 or 100%) of the sweeps 

were assigned the same frequency slope, i.e. they were “coherent” with one another. The rest of the 

sweeps had a randomly assigned slope. 

Tasks 

The participants had to judge one feature of the auditory stimuli under two distinct task sets (Figure 1B). 

The feature was either the overall spectral center of the sweeps in the acoustic texture (the “pitch” 

feature: high or low), or the overall direction of the individual sweeps (the “direction” feature: up or 

down). 

Trials started with a white fixation cross which appeared on a black background at the center of a back 

projection screen. After a pre-stimulus interval of one second (with no time jitter), an acoustic texture 

was presented. Then, the participants gave a delayed response to the auditory stimulus. This means, 0.6 

s after the offset of the acoustic texture, the participants were visually prompted by the decision labels 

for the left and right hand response buttons (see Figure 1B). During the response window, the fixation 

cross was replaced by a question mark, asking for the subject’s perceptual decision. The response to the 

previous trial was immediately followed (with no time jitter) by the presentation of the fixation cross of 

the subsequent trial. 

To prevent systematic effects of motor preparation, mapping of the high/low and up/down labels on 

the two response buttons was randomized across trials. Participants had 3 s time at maximum to 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/095356doi: bioRxiv preprint first posted online Dec. 19, 2016; 

http://dx.doi.org/10.1101/095356
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brain network states and auditory perceptual decision-making 

24 
 

respond before the experiment would automatically proceed to the next trial. As in all MEG studies from 

Leipzig Max Planck center (e.g. Wöstmann et al. (2016)) the auditory stimuli were presented via a non-

magnetic, echo-free stimulus delivery system with almost linear frequency characteristic in the critical 

range of 200–4000 Hz. 

On a separate session before MEG recording, an adaptive perceptual tracking was conducted with 

feedback so that each participant’s average accuracy converged at ~70% in each task. This was done to 

avoid ceiling or floor effects, and to assure that the two tasks were challenging enough. 

On the recording session, the participants completed eight task blocks, each consisting of 128 trials 

(~8min). The two auditory paradigms, namely the pitch task and the direction task, alternated from block 

to block, and the initial task was randomized across the participants. Each block contained two trials of 

each possible combination of direction (2 levels), coherence (4 levels) and spectral center (8 levels). 

There were two blocks at the beginning to familiarize the participants with the stimuli and the tasks. The 

last six blocks were used for data acquisition, resulting in a total of 384 trials per task for each subject. 

Between the blocks, participants were given self-paced breaks. 

Analysis of behavioral data 

Performance of the subjects was measured using the average proportion of correct responses (i.e. 

accuracy) and decision speed (defined as [response time]-1). Decision speeds were calculated relative to 

the onset of the response prompt (see Figure 1B) and were used as a proxy for the difficulty of perceptual 

decision-making during each task. Trials on which no response was given were discarded from the 

analysis. 

To estimate the dynamic pattern of decision accuracy over trials, a moving average procedure was 

applied to the trial-by-trial binary responses (i.e. correct: 1, incorrect: 0; rectangular window with unit 

height and length of four trials). The choice of the window size was guided by a recent study by Alavash 

et al. (2016) where the authors found the strongest dynamic coupling of hemodynamic brain networks 

and behavioral accuracy within time windows of ~16 s (four trials in our case). To capture trial-by-trial 

fluctuations in decision speed, we used inverse response times on trials where a decision (correct or 

incorrect) was given. The above procedures gave us time series estimates of decision accuracy or speed 

over trials per subject (Figure 1C). 

To test the correlation between trial-by-trial estimates of decision accuracy or speed with trial-by-trial 

acoustic features (i.e. spectral center and %coherence) of the auditory stimuli, we used a two-level 

general linear model (GLM). In this model, time series estimates of decision accuracy or speed were 

predicted by an acoustic feature. Since positively-skewed distribution of response times can violate the 

normality assumption underlying the general linear model (Baayen and Milin, 2010), the dependent 

variable and the regressors were first rank-transformed, and then normalized (i.e., z-scored) before 

estimating the regression models (Cohen and Cavanagh, 2011). 

MEG data acquisition and preprocessing 
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MEG responses were recorded using a 306-channel Neuromag Vectorview system (Elekta, Helsinki, 

Finland) in an electromagnetically shielded room (Vacuumschmelze, Hanau, Germany) at a sampling 

rate of 1,000 Hz with a bandwidth of DC–330 Hz. Movement of each participant’s head relative to the 

MEG sensors was monitored by means of five head-position measurement coils. The 

electroencephalogram from 64 scalp electrodes (Ag/Ag-Cl) was recorded but not analyzed in this study. 

The raw MEG data were first subjected to Maxfilter software to suppress disturbing magnetic 

interferences using the signal space separation method (Taulu et al., 2004). Next, the data were corrected 

for head movements and scanned for intervals where channels were static or flat. Subsequently, signals 

recorded from 204 planar gradiometer sensors at 102 locations were fed into the following steps which 

were implemented in Matlab (version 2015a; MathWorks, MA, USA) using Fieldtrip toolbox (Oostenveld 

et al., 2011) and other custom scripts. 

The signals were high-pass filtered at 0.5 Hz (finite impulse response (FIR) filter, sinc window, order 6000, 

zero-phase filtering) and low-pass filtered at 140 Hz (FIR filter, sinc window, order 44, zero-phase filtering 

filtering). Next, epochs from −1 to +2 s around the onset of the acoustic textures were extracted and 

down-sampled to 500 Hz. 

Independent component analysis was employed to exclude artifactual components containing heart, 

eye or muscle activity. Then, single-trial sensor data were visually inspected to exclude the trials still 

containing eye blinks or movements, muscle activity, static or flat intervals, signal jumps, drifts, or having 

a range larger than 300 pT/m (mean number of rejected trials±SEM: 29.4±4). 

Time-frequency analysis of MEG sensor data 

To analyze the induced perturbation of the MEG signal power during trials, spectrotemporal estimates 

of the sensor signals were obtained within −0.5 to 1.5 s (relative to the onset of the acoustic textures), 

at frequencies ranging from 8 to 32 Hz on a logarithmic scale (Morlet’s wavelets; number of cycles=6). 

The logarithm of the squared magnitude of the wavelet coefficients were then baseline-corrected 

relative to the power of the signals within −0.5 to 0 s. 

Source projection of MEG sensor data 

Individual forward head models were created based on each participant’s T1-weighted MRI image (3T 

Magnetom Trio, Siemens, Germany). The anatomical images were segmented using Freesurfer and co-

registered to the MEG coordinates using MNE software (http://martinos.org/mne). The fit of 

approximately 200 digitized head surface points (Polhemus Fastrak 3D digitizer) to the reconstructed 

head surface was optimized using the iterative closest point algorithm after manual identification of 

anatomical landmarks (nasion, left, and right pre-auricular points). Individual segmented and co-

registered anatomical images were spatially normalized to the standard stereotaxic MNI space. The 

inverse of these operations were applied to a 12-mm grid created in the template brain to obtain 

subject-specific grids in the standard space (1,781 inside-brain source locations with 12 mm distance). 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/095356doi: bioRxiv preprint first posted online Dec. 19, 2016; 

http://dx.doi.org/10.1101/095356
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brain network states and auditory perceptual decision-making 

26 
 

To obtain the physical relation between sources and sensors for all grid points, single shell volume 

conduction models (Nolte, 2003) were constructed using the individual segmented anatomical images. 

The weakest of three dipole orientations per grid point was removed. Next, a linearly constrained 

minimum variance (LCMV) beamforming approach (Van Veen et al., 1997) was implemented. The spatial 

adaptive filters were generated by first concatenating all single-trial signals into one time series per 

subject, and then computing the covariance matrices using these time series. The regularization 

parameter was set to 7% and the singular value decomposition approach was used to estimate the 

dominant dipole orientation independently per grid point. Finally, the single-trial sensor data from −1 

to +2 s around the onset of the acoustic textures were multiplied with the spatial filters, and the results 

were treated as trial-wise source-projected signals in the subsequent analyses. 

Time-frequency analysis of source-projected signals 

Time-frequency representations of the source-projected signals were derived using Morlet’s wavelets 

based on multiplication in the frequency domain. As in Hipp et al. (2012), the spectral band-width of the 

wavelets was set to 0.5 octaves (number of cycles=6). The center frequencies were spaced 

logarithmically using base 2 with exponents ranging from 3 to 5 in steps of 0.25. In addition, we included 

three lower frequencies at 1, 2 and 4 Hz to thoroughly investigate the neurobehavioral correlations 

within the range 1–32 Hz. Note that since our analysis was done at each trial (see below), to capture low-

frequency oscillations per trial the time-frequency estimations at 1, 2 and 4 Hz were accomplished by 

mirror-symmetric extension of the source signals to the left and right. 

For the main analysis, time points from −0.5 to 1.5 s (relative to the onset of the acoustic textures) in 

steps of 0.05 s were used to extract complex-valued spectrotemporal estimates of the source-projected 

signals per trial (41 data points). For the analysis of pre-stimulus interval, time points from −0.85 s to 0 

(relative to the onset of the acoustic textures) were used. For the analysis of post-stimulus interval, we 

analyzed the time points from the onset of the acoustic textures up to +1 s, during which the 

participants listened to the auditory stimuli but did not manually give their responses. Additionally, since 

the power of beta-band oscillations is known to be related to preparation and execution of movements 

(Crone et al., 1998; Brovelli et al., 2004; Aumann and Prut, 2015), we performed one control analysis. That 

is, we analyzed the data within the response window (+1 s to +1.5 s relative to the onset of the acoustic 

textures) at frequencies within beta band (16-28 Hz). This analysis was aimed at investigating the 

possible effects arising from the neural processes involved in button press rather than auditory 

perceptual decision-making. The results of these analyses are summarized in the supplementary Figure 

S1. 

Correlation between ongoing neural oscillatory power and auditory perceptual decision-making 

On the trial-by-trial basis, and in order to predict the individuals’ decision-making performance from the 

ongoing power of the source-projected signals over trials, we implemented a two-level GLM approach. 

First, at the single-subject level, time series estimates of trial-by-trial decision accuracy or speed (Figure 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/095356doi: bioRxiv preprint first posted online Dec. 19, 2016; 

http://dx.doi.org/10.1101/095356
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brain network states and auditory perceptual decision-making 

27 
 

1C) were predicted by the baseline-corrected power of the whole-brain source-projected signals over 

trials, controlling for the effects of the acoustic features (i.e., spectral center and %coherence). For this 

analysis, the time points from −0.5 to 1.5 s (relative to the onset of the acoustic textures) in steps of 0.05 

s were used to extract complex-valued spectrotemporal estimates of the source-projected signals per 

trial. Subsequently, for each pitch and direction task, separate GLMs were constructed. This procedure 

was applied to the data obtained from each participant, at each frequency of the neural oscillatory 

power (1–32 Hz). To account for the normality assumption underlying the general linear model (Baayen 

and Milin, 2010), the dependent variable and the predictors were first rank-transformed, and then 

normalized (i.e. z-scored) before estimating the regression models (Cohen and Cavanagh, 2011). Finally, 

the regression weights obtained from the fit of each GLM per task were averaged over participants at 

each frequency, and statistically compared with a null distribution of mean regression weights. 

Power envelope correlations and functional connectivity analysis 

The power envelope of a band-limited oscillatory signal is the squared magnitude of the time-frequency 

signal following wavelet decomposition. To assess frequency-specific neural interactions, we computed 

Pearson’s correlations between the log-transformed powers of all pairs of sources per trial (Figure 2). 

This analysis was done at each frequency within the range 1–32 Hz. 

Prior to this analysis and to eliminate the trivial common co-variation in power measured from the same 

sources, we used the orthogonalization approach proposed by Hipp et al., (2012) prior to computing the 

power correlations (see Supplementary Information). This approach has been suggested and used to 

circumvent overestimation of instantaneous short-distance correlations, which can otherwise occur due 

to magnetic field propagation (Mehrkanoon et al., 2014; Siems et al., 2016). 

The above procedure gave us frequency-specific 𝑁𝑁-by-𝑁𝑁 functional connectivity matrices (𝑁𝑁 denotes 

number of source locations) per subject and trial, for each pitch and direction task (Figure 2). 

Building dynamic brain networks 

To construct brain graphs from functional connectivity matrices, different approaches have been 

suggested and used (van Wijk et al., 2010; Fornito et al., 2013; Garrison et al., 2015). One way is to 

construct brain graphs over different network densities by including links in the graph according to the 

rank of their absolute correlation values (Alexander-Bloch et al., 2010; Ginestet et al., 2011). In our study, 

and in order to make the brain graphs comparable in terms of size across subjects and trials, the number 

of links in each brain graph per trial was fixed at 10% of network density. The choice of the density 

threshold was based on previous work demonstrating that the brain network correlates of behavior are 

observed within a low-density range of network connections (Achard and Bullmore, 2007; Giessing et 

al., 2013; Alavash et al., 2015; Godwin et al., 2015; Alavash et al., 2016). However, to assure that the results 

are not specific to one network density, we repeated our analysis at 5% of network density, and 

summarized the results in Supplemental Figure S8. 
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Subsequently, binary undirected brain graphs were built, from which graph-theoretical network metrics 

were extracted per trial (Figure 2). The mean functional connectivity was estimated as the mean of the 

upper-diagonal correlation values within the sparse temporal connectivity matrices. 

Network diagnostics 

Three key topological properties were estimated per trial: mean local efficiency, network modularity, 

and global network efficiency. These graph-theoretical metrics were used to capture dynamic patterns 

of functional integration and segregation on the local, intermediate, and global scales of network 

topology respectively (Figure 2). For each graph-theoretical metric, we computed a global network 

diagnostic which collapses the metric into a single measure on the whole-brain level, and a regional 

diagnostic characterizing the same metric but for a certain cortical source location (see Supplementary 

Information). 

 

Correlation between brain network dynamics and auditory perceptual decision-making 

To predict trial-by-trial perceptual decision-making performance from the ongoing brain network states, 

we employed the same regression approach as we used for predicting the performance from the brain 

ongoing oscillatory power. That is, we implemented a GLM where time series estimates of trial-by-trial 

decision accuracy or speed (Figure 1C) were predicted by the graph-theoretical network metrics over 

trials (Figure 2), controlling for the effects of the acoustic features (i.e. spectral center and %coherence). 

For each network diagnostic, a separate GLM was constructed. Thus, each model consisted of three 

regressors, together with a constant term. Since the statistical distribution of the temporal brain network 

metrics is not necessarily normal, the dependent variable and the predictors were first rank-transformed, 

and then normalized (i.e. z-scored) before estimating the regression model (Cohen and Cavanagh, 2011). 

This procedure was separately applied to the data obtained from each pitch and direction task, subject, 

and each frequency of the neural oscillatory power. Finally, the normalized regression weights obtained 

from the fit of each GLM per task were averaged over participants at each frequency, and statistically 

compared with a null distribution of mean regression weights. 

To measure the task-specificity of the correlations between a given network diagnostic and trial-by-trial 

decision accuracy or speed, we also computed the mean difference of the regression weights 𝛽𝛽 obtained 

from each GLM model, i.e. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ − 𝛽𝛽𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑). 

Statistical analysis 

Behavioral data. Mean decision speeds and average accuracies were compared between the different 

task and stimulus conditions by means of an analysis of variance (ANOVA) for repeated measures, using 

“task” (pitch, direction), “coherence” (4 levels), and “spectral center” (4 levels) as within-subject factors. 

We used generalized eta squared (𝜂𝜂𝐺𝐺2 ; Bakeman (2005)) as the effect size statistic. Prior to the ANOVA, 

the distributions of the behavioral measures across participants were statistically analyzed by means of 

bootstrap Kolmogorov-Smirnov test with 10,000 repetitions to ensure that the data derive from a 
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normally distributed population. The bootstrap Kolmogorov-Smirnov test, unlike the traditional 

Kolmogorov-Smirnov test, allows the presence of ties in the data (Sekhon, 2007). The behavioral 

measures (i.e. mean decision speed and average accuracies) were compared between the pitch and 

direction task using exact permutation tests for paired samples. The correlations between each of the 

behavioral measures across the two tasks were tested using rank-based non-parametric Spearman's 𝜌𝜌 

correlation (Spearman, 1904) with 10,000 permutations applied to the correlation coefficients (Pesarin 

and Salmaso, 2010). To test the correlation between trial-by-trial estimates of decision accuracy or speed 

with trial-by-trial acoustic features of the stimuli, a two-level GLM was separately applied to each pitch 

and direction task per subject. The regression weights obtained from the fit of each GLM were averaged 

over participants, and statistically tested against zero using one sample exact permutation tests. 

Neurobehavioral correlations. To predict trial-by-trial perceptual decision accuracy or speed from the 

ongoing brain oscillatory power or network states, we implemented a two-level GLM approach. The 

regression weights obtained from the fit of each GLM were averaged over participants at each 

frequency, and statistically compared with a null distribution. The null distribution was generated using 

a randomization procedure where trial-by-trial binary responses or decision speed were circularly 

shifted 350 times (number of trials remained after preprocessing in every subject) over trials, per task 

and per subject. Circular shifting preserves the autocorrelation structure inherent to the time series (e.g. 

the trial-by-trial sequential correlation in response times (Baayen and Milin, 2010)), and thus is 

advantageous over random shuffling. For the circularly shifted behavioral responses, we conducted the 

same analysis steps as it was done for the empirical behavioral data. To statistically test the significance 

of the neurobehavioral correlations, the observed mean regression weight was compared with the null 

distribution generated from the randomization procedure at each frequency. The observed mean 

regression weight was considered significant if it was higher than 97.5th percentile or lower than 2.5th 

percentile of the null distribution (upper or lower bounds of the horizontal shades in Figure 3 or 4). 

Regional analysis. At the regional level of the brain networks, it was tested whether the time series 

estimates of decision-making performance under each pitch and direction task differentially correlate 

with the regional diagnostics of brain networks (see Supplemental Information). To this end, the mean 

regression weights obtained from the direction task data were subtracted from the mean regression 

weights obtained from the pitch task data. The significance of the difference in correlations was 

statistically tested using a null distribution of the difference in mean regression weights generated from 

circularly shifting the behavioral responses. We also investigated the regional network states per pitch 

and direction task separately. To this end, we implemented the same analysis as it was done on the 

whole-brain level, but used a regional network property estimated per source location over trials. The 

results of this analysis is summarized in Supplementary Figure S2. 

Significance thresholds. For all statistical tests (i.e. the inference on the behavioral and the brain network 

effects) we used p<0.05 (two-sided) as the threshold of significance. For the analysis on the whole-brain 
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level, and in order to correct for multiple comparisons entailed by the number of frequency bins (14), we 

implemented a correction method suggested by Benjamini and Yekutieli (2005) and used in Obleser et 

al. (2010); Obleser and Weisz (2012). In this method, called ‘‘false coverage-statement rate’’ (FCR), we first 

selected those frequencies where the observed mean regression weight did not cover the null 

distribution at the confidence level of 95%. In a second correction pass, we (re-)constructed FCR-

corrected confidence intervals for these selected frequencies at a level of 1 − 𝐹𝐹𝑠𝑠 × 𝑞𝑞
𝐹𝐹𝑡𝑡

, where 𝐹𝐹𝑠𝑠 is the 

number of selected frequencies at the first pass, 𝐹𝐹𝑝𝑝 is the total number of frequency bins tested, and 𝑞𝑞 is 

the tolerated rate for false coverage statements, here 0.05. The FCR-correction procedure yields inflated, 

and thus more conservative confidence limits (bounds of the horizontal shades in Figure 3). To correct 

for multiple comparisons entailed by the regional analysis, we used the same procedure to adjust the 

confidence limits according to the number of source locations (1,781).  
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