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Analysis of vertex-varying spectral content of signals on graphs challenges the assumption of vertex invariance and requires the
introduction of vertex-frequency representations as a new tool for graph signal analysis. Local smoothness, an important parameter
of vertex-varying graph signals, is introduced and defined in this paper. Basic properties of this parameter are given. By using
the local smoothness, an ideal vertex-frequency distribution is introduced. The local smoothness estimation is performed based
on several forms of the vertex-frequency distributions, including the graph spectrogram, the graph Rihaczek distribution, and a
vertex-frequency distribution with reduced interferences. The presented theory is illustrated through numerical examples.

1. Introduction

Graph signal processing is a new and quickly developing field.
Many practical signals can be considered as graph signals.
The theory and methods for processing the graph signals are
introduced and presented in [1–5]. Graph signal processing
applications in biomedical systems [6, 7] and analysis of big
data [8] provide insight into the graph framework advantages
and real-world potential.

In the case of large graphs, we may not be interested in
the analysis of the entire graph signal, but rather interested in
its local behavior. Signals with varying local vertex behaviors
are a class of signals called nonstationary graph signals. One
approach to the analysis of nonstationary graph signals is
vertex-frequency analysis [7, 9–15], which is a counterpart of
time-frequency analysis [16–18] in classic signal processing.

The main representatives of the vertex-frequency repre-
sentations are local vertex spectrum and its energetic version,
graph spectrogram. Window functions are used to localize
graph signals in a neighborhood of the considered vertex
[9, 12, 15].

Another important class of vertex-frequency representa-
tions, called the vertex-frequency energy distributions, were
recently introduced in [13, 14]. This class is a counterpart to
the class of quadratic time-frequency distributions in classic
signal analysis. It has been shown that the graph version
of the Rihaczek distribution is of special interest for graph

signals since it does not require a localization window. The
reduced interference distributions can be derived from the
Rihaczek distribution by using appropriate kernel functions.
This class of representations, under certain conditions, satis-
fies marginal properties in both the vertex domain and the
spectral domain.

An important concept that is used in classic time domain
signal analysis for the description of local signal behavior
around a time instant is the instantaneous frequency. The
local smoothness is introduced in this paper as an extension
of the instantaneous frequency concept to graph signal
analysis. The local smoothness is defined by using the graph
signal Laplacian matrix. The vertex-frequency representa-
tions can be highly concentrated along the local spectral
index, corresponding to the local signal smoothness. This
property is used to define local smoothness estimators based
on the vertex-frequency representations.

After an introduction, we will review the fundamental
theory of graph signal processing. This review will include
the graphFourier transformand the global signal smoothness
in Section 2. Then, the local signal smoothness will be intro-
duced and its properties derived within Section 3.The vertex-
frequency representations, along with their connections to
the local signal smoothness, will be presented in Section 4.
The theory will be illustrated through a nonstationary graph
signal example.

Hindawi
Mathematical Problems in Engineering
Volume 2019, Article ID 3208569, 14 pages
https://doi.org/10.1155/2019/3208569

http://orcid.org/0000-0002-3317-3632
http://orcid.org/0000-0002-9736-9036
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3208569


2 Mathematical Problems in Engineering

2. Graph Signals

A graph is defined as a set of vertices and a set of edges
connecting these vertices. In signal processing, such a struc-
ture can be considered as the domain of a signal. The
signal values are defined at the graph vertices. The graph
Fourier transform (graph spectrum) is defined through the
eigenvalue decomposition of the graph Laplacian matrix.
Here, we will present a review of the graph spectrum and
the global signal smoothness index calculated using the
Laplacian matrix [10].

2.1. Graph Signal and Spectrum. A weighted undirected
graph with 𝑁 vertices will be considered. The edge weights𝑤𝑛𝑚 are nonzero if there is an edge between the vertices 𝑛
and 𝑚. If there is no edge between the vertices 𝑛 and 𝑚,
the corresponding weight is equal to zero, 𝑤𝑛𝑚 = 0. The
weight matrix W is a matrix whose elements are 𝑤𝑛𝑚. It is a
symmetric matrix (since the underlying graph is undirected),
with zeros on the main diagonal.

The definition of the graph Laplacian, using the weight
matrixW and its elements 𝑤𝑛𝑚, is given by

L = D −W, (1)

where D is a diagonal matrix, called the degree matrix. Its
diagonal elements are obtained from𝑤𝑛𝑚 as 𝑑𝑛𝑛 = ∑𝑁𝑚=1 𝑤𝑛𝑚,
while 𝑑𝑚𝑛 = 0 for𝑚 ̸= 𝑛.

TheLaplacianmatrix, like any other quadraticmatrix, can
be written using its eigenvectors and eigenvalues as

L = UΛU𝑇. (2)

In this decomposition, the matrix U consists of the matrix
L eigenvectors, denoted by u𝑘, as its columns. The diagonal
matrix of eigenvalues 𝜆𝑘, 𝑘 = 1, 2, . . . , 𝑁, is denoted byΛ.The
eigenvectors and eigenvalues of L are calculated from Lu𝑘 =𝜆𝑘u𝑘. Here we will consider the case with simple eigenvalues,
whose multiplicity is one.

Graph signal samples, 𝑥(𝑛), 𝑛 = 1, 2, . . . , 𝑁, are
sensed/defined at each graph vertex 𝑛. These signal samples
can be written in vector form as an𝑁 × 1 vector:

x = [𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑁)]𝑇 . (3)

The graph discrete Fourier transform (GDFT) of a signal
x is defined by [10]

X = GDFT {x} = U𝑇x. (4)

The coefficients in the GDFT X are calculated as the projec-
tions of the considered graph signal to the eigenvectors

𝑋 (𝑘) = u𝑇𝑘 x =
𝑁∑
𝑛=1

𝑥 (𝑛) 𝑢𝑘 (𝑛) . (5)

The inverse graph discrete Fourier transform (IGDFT)
follows from the property U𝑇U = I that holds for the

Laplacian matrix eigenvectors, where I is an identity matrix.
The IGDFT relation is x = UX, with

𝑥 (𝑛) = 𝑁∑
𝑘=1

𝑋 (𝑘) 𝑢𝑘 (𝑛) . (6)

The GDFT concept can be extended to the directed
graphs. The cases of repeated eigenvalues can also easily be
included in the analysis [19–21].

2.2. Global Graph Signal Smoothness. In classic signal analy-
sis, when the signal domain is time, the signal 𝑢(𝑛) smooth-
ness can be defined through a second-order difference 𝑦(𝑛) =−𝑢(𝑛 − 1) + 2𝑢(𝑛) − 𝑢(𝑛 + 1). Since classic time domain signal
processing can be considered as graph signal processing on a
circular graph, the second-order difference can be written as
y = Lu, where L is the Laplacian of the circular graph. The
signal smoothness can be measured as cumulative energy of
the signal changes 𝐸𝑢 = ∑𝑛(𝑢(𝑛) − 𝑢(𝑛 − 1))2. It can also be
calculated as𝐸𝑢 = ∑𝑛 𝑢(𝑛)𝑦(𝑛). Inmatrix notation, we get the
quadratic form 𝐸𝑢 = u𝑇Lu.This approach can be extended to
general (non-circular) graphs.

From the Laplacian eigendecomposition, we have

Lu = 𝜆u (7)

or

u𝑇Lu = 𝜆u𝑇u = 𝜆 = 𝐸𝑢, (8)

since for an eigenvector u holds u𝑇u = 1. For an arbitrary
eigenvector u𝑘 and the corresponding eigenvalue 𝜆𝑘, here we
omitted index 𝑘 for notation simplicity. The quadratic form
of an eigenvector u is equal to the corresponding eigenvalue.
This quadratic form can be used as a measure of the signal
smoothness. We can write the quadratic form as

u𝑇Lu = 𝑁−1∑
𝑛=0

𝑢 (𝑛)𝑁−1∑
𝑚=0

𝑤𝑛𝑚 (𝑢 (𝑛) − 𝑢 (𝑚))

= 𝑁−1∑
𝑛=0

𝑁−1∑
𝑚=0

𝑤𝑛𝑚 (𝑢2 (𝑛) − 𝑢 (𝑛) 𝑢 (𝑚)) .
(9)

Since 𝑤𝑛𝑚 = 𝑤𝑚𝑛, the last relation can also be rewritten as

u𝑇Lu = 𝑁−1∑
𝑛=0

𝑁−1∑
𝑚=0

𝑤𝑛𝑚 (𝑢2 (𝑚) − 𝑢 (𝑛) 𝑢 (𝑚)) . (10)

The sum of the previous two relations produces

2u𝑇Lu = 𝑁−1∑
𝑛=0

𝑁−1∑
𝑚=0

𝑤𝑛𝑚 (𝑢 (𝑛) − 𝑢 (𝑚))2 . (11)

Obviously, a small value of u𝑇Lu = 𝜆 corresponds to slow
eigenvector variations 𝑤𝑛𝑚(𝑢(𝑛) − 𝑢(𝑚))2, within the neigh-
boring/connected vertices. This means that the eigenvectors
calculated with a small 𝜆 represent a low-pass (slow-varying)
part of the graph signal.
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Figure 1: Signals in the time domain (left) and in the graph domain (right). The global signal smoothness 𝜆𝑥 is calculated and presented in
the figure for each considered signal.

Since the eigenvalues of the Laplacian matrix are equal
to the quadratic form u𝑇Lu, they are nonnegative. It is
known that at least one eigenvalue of the Laplacian is zero.
The corresponding eigenvector is constant, i.e., maximally
smooth signal.

The graph signal x smoothness is defined, in general,
using a full analogy with (8). By normalizing the quadratic
form,

𝐸𝑥 = xTLx. (12)

With the signal energy, the smoothness index 𝜆𝑥 definition is
obtained as

𝜆𝑥 = x𝑇Lx
x𝑇x

. (13)

An example of the time domain signals and graph signals,
with various values of the global smoothness 𝜆𝑥, is presented

in Figure 1. It is obvious that small 𝜆𝑥 values correspond to
the smooth (slow-varying) signals and that large values of 𝜆𝑥
indicate fast-varying signals.

Now consider the signal whose form is given by a
weighted sum of the eigenvectors,

𝑥 (𝑛) = 𝑀∑
𝑖=1

𝑥𝑖 (𝑛) = 𝑀∑
𝑖=1

𝛼𝑖𝑢𝑘𝑖 (𝑛) . (14)

The global smoothness of this signal is

𝜆𝑥 = ∑𝑁𝑖=1 𝛼2𝑖 𝜆𝑘𝑖∑𝑁𝑖=1 𝛼2𝑖 . (15)

It is obvious that 𝜆min ≤ 𝜆𝑥 ≤ 𝜆max, where 𝜆min =
min{𝜆𝑘1 , 𝜆𝑘2 , . . . 𝜆𝑘𝑀} and 𝜆max = max{𝜆𝑘1 , 𝜆𝑘2 , . . . 𝜆𝑘𝑀}.
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The smoothness of graph signals is used in graph topology
learning [22], vertex ordering, and graph clustering [23].
Since u1, corresponding to 𝜆1 = 0, is constant, the vertex
ordering can be done using the next smoothest eigenvectoru2
(called the Fiedler vector).The vertices are ordered according
to the indices of the sorted u2 values. Regions with similar u2
values can be used for the graph clustering.

3. Local Graph Signal Smoothness

The local graph signal smoothness is introduced next. Its
properties are analyzed in the second part of this section.

3.1. Local Graph Signal Smoothness Definition. Assume the
simplest case, when the analyzed signal is proportional to the𝑘th Laplacian eigenvector,

𝑥 (𝑛) = 𝛼𝑢𝑘 (𝑛) . (16)
In a full analogy to classic spectral analysis, we can say that
the signal of this form is a monocomponent signal, since its
spectrumhas only one nonzero coefficient at the 𝑘th position.
We can define the spectral index of this component, or its
smoothness index, as

x𝑇Lx
x𝑇x

= 𝛼2u𝑇𝑘Lu𝑘𝛼2u𝑇
𝑘
u𝑘

= 𝜆𝑘. (17)

It is equal to the corresponding eigenvalue.
The smoothness index can be related to the frequency

in the time domain signal analysis [10]. The classic Fourier
analysis may be obtained as a special case of the GDFT on a
circular undirected graph. For this graph, the eigenvectors are
periodic functions 𝑢𝑘(𝑛) = cos(2𝜋𝑛𝑘/𝑁+𝜙)with frequencies𝜔𝑘 = 2𝜋𝑘/𝑁. The smoothness index is obtained from Lu𝑘 =𝜆𝑘u𝑘 as

𝜆𝑘 = 4 sin2 (𝜔𝑘2 ) = u𝑇𝑘Lu𝑘. (18)

We can conclude that the eigenvalue 𝜆𝑘 corresponds to the
squared classic signal analysis frequency 𝜔2𝑘. If continuous-
time is considered, instead of discrete-time, or the case with
a small 𝜔𝑘 is considered in the discrete-time domain (18), we
would get 𝜆𝑘 ≈ 𝜔2𝑘.

For the time domain signals with a time-varying spec-
trum, the concept of instantaneous frequency is introduced.
Several approaches to the instantaneous frequency exist [16–
18]. In general, for a signal with varying frequency, we can
define instantaneous frequency by considering the signal
behavior in the vicinity of the considered time instant 𝑡. If
the signal form at the instant 𝑡 and its small neighborhood is
close to the formof a sinusoidal signalwith frequency𝜔𝑡, then
we can say that the instantaneous frequency of the considered
signal, at the considered time instant 𝑡, is equal to𝜔(𝑡). In this
case, the frequency𝜔𝑡 can be estimated by using a few samples
around the considered time instant [24]. Another method
to find the instantaneous frequency 𝜔𝑡 is to approximate the
signal 𝑥(𝑡 + 𝜏) by a second-order polynomial around 𝑥(𝑡),

𝑥 (𝑡 + 𝜏) ≈ 𝑥 (𝑡) + 𝑥󸀠 (𝑡) 𝜏 + 𝑥󸀠󸀠 (𝑡) 𝜏22 . (19)

If we compare this signal with a sinusoidal signal expansion
at the instant 𝑡, for a small 𝜏,

𝐴 cos (𝜔𝑡 (𝑡 + 𝜏) + 𝜙) ≈ 𝐴 cos (𝜔𝑡𝑡 + 𝜙)
− 𝐴𝜔𝑡 sin (𝜔𝑡𝑡 + 𝜙) 𝜏
− 𝐴𝜔2𝑡 cos (𝜔𝑡𝑡 + 𝜙) 𝜏2

2 ,
(20)

we can conclude that, for 𝑥(𝑡) ̸= 0, the sinusoidal signal that
fits the signal defined by (19), around the considered time
instant 𝑡, has the frequency 𝜔𝑡 = 𝜔(𝑡) such that

𝜔2𝑡 = 𝜔2 (𝑡) = 𝜆 (𝑡) = −𝑥󸀠󸀠 (𝑡)𝑥 (𝑡) . (21)

Nowwe can conclude that the instantaneous frequency of the
considered signal at a time instant 𝑡 is𝜔(𝑡). If 𝑥(𝑡) = 0, we can
use the ratio of higher-order derivatives 𝑥(𝑛+2)(𝑡)/𝑥(𝑛)(𝑡) in
order to obtain the signal’s instantaneous frequency (assum-
ing that 𝑥(𝑛)(𝑡) ̸= 0).

The discrete-time definition of the squared instantaneous
frequency is

𝜔2 (𝑛) = −𝑥 (𝑛 − 1) − 2𝑥 (𝑛) + 𝑥 (𝑛 + 1)𝑥 (𝑛) = L𝑥 (𝑛)𝑥 (𝑛) , (22)

whereL𝑥(𝑛) = −𝑥(𝑛−1)+2𝑥(𝑛)−𝑥(𝑛+1) is the second-order
difference of the considered signal.

In the previous section, we show that the second-order
difference of a time domain signal corresponds to the ele-
ments of Lx, where L is the Laplacian of a circular graph.
An example of a signal with time-varying smoothness is
presented in Figure 2. In the first part, 1 ≤ 𝑛 ≤ 20, the signal
is slow-varying (with a small local smoothness), then a fast
varying part of the signal follows, and in the last part, the
signal is moderately smooth.

In analogy with (22), we will introduce the local smooth-
ness for a signal defined on an arbitrary graph as

𝜆 (𝑛) = L𝑥 (𝑛)𝑥 (𝑛) . (23)

We have assumed that 𝑥(𝑛) ̸= 0.
3.2. Properties of the Local Smoothness. Some of the proper-
ties of the local smoothness are described next.

(1) Consider a monocomponent signal

𝑥 (𝑛) = 𝛼𝑢𝑘 (𝑛) . (24)

Its local smoothness 𝜆(𝑛) is vertex independent. This
smoothness is equal to the global smoothness𝜆𝑘 since

L𝑥 (𝑛) = 𝛼L𝑢𝑘 (𝑛) = 𝛼𝜆𝑘𝑢𝑘 (𝑛) . (25)

In the time domain signal analysis, this property
means that the instantaneous frequency of a sinu-
soidal signal is equal to its frequency.
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Figure 2: An example of the signal with varying local smoothness
in the time domain.

(2) Assume a piecewise monocomponent signal

𝑥 (𝑛) = 𝛼𝑖𝑢𝑘𝑖 (𝑛) for 𝑛 ∈ V𝑖, 𝑖 = 1, 2, . . . ,𝑀, (26)

where V𝑖 are subsets of the vertices such that V𝑖 ∩
V𝑗 = 0 for 𝑖 ̸= 𝑗, and each vertex belongs to a
subset V𝑖. Within each subset, the considered signal
is proportional to the eigenvector 𝑢𝑘𝑖(𝑛).
For each interior vertex 𝑛 ∈ V𝑖, i.e., a vertex
whose neighborhood lies in the same setV𝑖, the local
smoothness is

𝜆 (𝑛) = 𝛼𝑖L𝑢𝑘𝑖 (𝑛)𝛼𝑖𝑢𝑘𝑖 (𝑛) = 𝜆𝑘𝑖 . (27)

An example of a piecewise monocomponent graph
signal is presented in Figure 3. Three subsets of
vertices V1, V2, and V3 are considered. They are
marked in colors in Figure 3.The component spectral
indices are 𝑘1 = 54, 𝑘2 = 38, and 𝑘3 = 18.
For subsetV1 = {1, 2, . . . , 22}, the boundary vertices
are 1, 4, 6, 17, and 22. For subsetV2 = {23, 24, . . . , 34},
the boundary vertices are 23, 24, 29, and 34. For
subset V3 = {35, 36, . . . , 64}, the boundary vertices
are 35, 39, 53, 62, and 64. All other vertices are interior
vertices.
The local smoothness of the piecewise monocompo-
nent graph signal from Figure 3 is calculated and
presented in Figure 4. The obtained results are exact
for each interior vertex (presented with dots in Fig-
ure 4). For the boundary vertices, the results are not
exact since we include samples from all neighboring
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Figure 3: Piecewise monocomponent signal on the graph. The
signal is composed of three parts. The support setsV1,V2, andV3
are presented with different vertex colors.
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Figure 4: The local smoothness values for the graph signal shown
in Figure 3. The local smoothness values at the interior vertices
are indicated by the red dots. The local smoothness values at the
boundary vertices are indicated by the blue cross marks.

vertices in the local smoothness calculation. Some of
them are outside the considered set V𝑖. The results
for the boundary vertices are indicated by the cross
marks.

(3) An ideal vertex-frequency distribution can be defined
as

𝐼 (𝑛, 𝑘) ∼ |𝑥 (𝑛)|2 𝛿 (𝜆𝑘 − 𝜆 (𝑛)) . (28)

It has been assumed that the local smoothness is
rounded to the nearest eigenvalue.
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For the graph and the signal presented in Figure 3,
the ideal vertex-frequency distribution is shown in
Figure 5.
This distribution can be used as a local smoothness
estimator since, for each vertex 𝑛, the maximum of𝐼(𝑛, 𝑘) is positioned at 𝜆𝑘 = 𝜆(𝑛). The index of the
eigenvalue that corresponds to the local smoothness𝑘̂ is obtained as

𝑘̂ (𝑛) = argmax
𝑘

{𝐼 (𝑛, 𝑘)} , (29)

and the estimated local smoothness is 𝜆̂(𝑛) = 𝜆𝑘̂(𝑛).
This estimator is common and widely used in classic
time-frequency analysis [16–18].

(4) For a multicomponent graph signal with 𝑀 compo-
nents,

𝑥 (𝑛) = 𝑀∑
𝑖=1

𝑥𝑖 (𝑛) = 𝑀∑
𝑖=1

𝛼𝑖𝑢𝑘𝑖 (𝑛) , (30)

the local smoothness, calculated by definition, is

𝜆 (𝑛) = ∑𝑀𝑖=1 𝛼𝑖L𝑢𝑘𝑖 (𝑛)∑𝑀𝑖=1 𝛼𝑖𝑢𝑘𝑖 (𝑛) = ∑𝑀𝑖=1 𝛼𝑖𝜆𝑘𝑖𝑢𝑘𝑖 (𝑛)∑𝑀𝑖=1 𝛼𝑖𝑢𝑘𝑖 (𝑛) . (31)

From classic time domain analysis, we know that a
multicomponent signal cannot be analyzed directly;
that is, the instantaneous frequency is not defined
as a single value in this case. We can only estimate
the instantaneous frequencies of the individual com-
ponents. The same holds for graph signals, where
we should decompose multicomponent signals to the
individual components and then calculate the local
smoothness for each component.

(5) A vertex-frequency distribution 𝐺(𝑛, 𝑘) satisfies the
local smoothness property if

∑𝑁𝑘=1 𝜆𝑘𝐺 (𝑛, 𝑘)
∑𝑁𝑘=1 𝐺 (𝑛, 𝑘) = 𝜆 (𝑛) . (32)

The ideal vertex-frequency distribution 𝐼(𝑛, 𝑘) satis-
fies the local smoothness property under the assump-
tion that 𝜆(𝑛) ∈ {𝜆1, 𝜆2, . . . , 𝜆𝑁} for all 𝑛.

(6) For a vertex-frequency distribution 𝐺(𝑛, 𝑘) that satis-
fies the local smoothness property, the local smooth-
ness bandwidth is defined by
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𝜎2𝜆 (𝑛) = ∑𝑁𝑘=1 (𝜆𝑘 − 𝜆 (𝑛))2 𝐺 (𝑛, 𝑘)
∑𝑁𝑘=1 𝐺 (𝑛, 𝑘)

= ∑𝑁𝑘=1 𝜆2𝑘𝐺 (𝑛, 𝑘)
∑𝑁𝑘=1 𝐺 (𝑛, 𝑘) − 𝜆2 (𝑛) .

(33)

4. Vertex-Frequency Representations

The energy vertex-frequency distributions follow the concept
of the time-frequency energy distributions in classic signal
analysis. The estimation of the local smoothness can be
obtained by using the vertex-frequency representations that
localize the graph signal energy on the local smoothness.
Here we will present the vertex-frequency energy distribu-
tion, a reduced interference vertex-frequency distribution,
and the graph signal spectrogram, as the tools for local
smoothness estimation.

4.1. Energy Vertex-Frequency Distributions. The energy of a
signal 𝑥(𝑛) is commonly defined as

𝐸 = 𝑁∑
𝑛=1

𝑥2 (𝑛) . (34)

The signal 𝑥(𝑛) can be written as 𝑥(𝑛) = ∑𝑁𝑘=1𝑋(𝑘)𝑢𝑘(𝑛),
where 𝑋(𝑘) is the GDFT of the signal. The signal energy is
now

𝐸 = 𝑁∑
𝑛=1

𝑁∑
𝑘=1

𝑥 (𝑛) (𝑋 (𝑘) 𝑢𝑘 (𝑛)) = 𝑁∑
𝑛=1

𝑁∑
𝑘=1

𝐸 (𝑛, 𝑘) , (35)

where the distribution of the signal energy in the vertex-
frequency domain 𝐸(𝑛, 𝑘) is

𝐸 (𝑛, 𝑘) = 𝑥 (𝑛)𝑋 (𝑘) 𝑢𝑘 (𝑛)
= 𝑁∑
𝑚=1

𝑥 (𝑛) 𝑥 (𝑚) 𝑢𝑘 (𝑚) 𝑢𝑘 (𝑛) . (36)

This distribution corresponds to the Rihaczek distribution in
classic time-frequency analysis.

A vertex-frequency distribution 𝐸(𝑛, 𝑘) satisfies the
marginal properties, if

N∑
𝑛=1

𝐸 (𝑛, 𝑘) = |𝑋 (𝑘)|2
𝑁∑
𝑘=1

𝐸 (𝑛, 𝑘) = 𝑥2 (𝑛) .
(37)

The marginal properties state that the signal power 𝑥2(𝑛)
can be obtained by a summation of 𝐸(𝑛, 𝑘) over 𝑘 and that
the squared signal spectrum |𝑋(𝑘)|2 can be obtained by a
summation of 𝐸(𝑛, 𝑘) over 𝑛.

We will show that the vertex-frequency distribution
defined by (36) satisfies the local smoothness property (32)

∑𝑁𝑘=1 𝜆𝑘𝐸 (𝑛, 𝑘)∑𝑁𝑘=1 𝐸 (𝑛, 𝑘) = ∑𝑁𝑘=1 𝜆𝑘𝑥 (𝑛)𝑋 (𝑘) 𝑢𝑘 (𝑛)∑𝑁𝑘=1 𝑥 (𝑛)𝑋 (𝑘) 𝑢𝑘 (𝑛)
= 𝑥 (𝑛)L𝑥 (𝑛)𝑥2 (𝑛) = L𝑥 (𝑛)𝑥 (𝑛) = 𝜆 (𝑛) ,

(38)

since ∑𝑁𝑘=1 𝜆𝑘𝑋(𝑘)𝑢𝑘(𝑛) = L𝑥(𝑛) is the inverse GDFT of𝜆𝑘𝑋(𝑘). In a matrix form, it is equal to

U (ΛX) = UΛ (U𝑇U)X = (UΛU𝑇) (UX) = Lx. (39)

For the vertex-frequency distribution defined by (36), the
local smoothness bandwidth (33) may be written in terms of
L2x, Lx, and x, since ∑𝑁𝑘=1 𝜆2𝑘𝑋(𝑘)𝑢𝑘(𝑛) corresponds to the
elements of L2x.

Example. The distribution 𝐸(𝑛, 𝑘) of the graph signal from
Figure 3 is illustrated in Figure 6. The marginal properties
(sums over 𝑛 and over 𝑘) are presented below and right of the
distribution image. Both marginal properties are satisfied, as
expected. It is important to note that this distribution does
not use a localization window. From the vertex-frequency
representation, we can identify the signal components and
the cross-terms. The cross-terms, well known in classic
time-frequency analysis, are produced by mixing the signal
components in the calculation of the distribution values𝐸(𝑛, 𝑘). The third signal component of the signal analyzed in
Figure 6 exists at vertices 𝑛 ∈ V1 = {35, 36, . . . , 64} only, and
the distribution 𝐸(𝑛, 𝑘) is nonzero for lower vertex indices 𝑛
at 𝑘3 = 18. Also, there is no signal component at 𝑘 = 27, but𝐸(𝑛, 27) is obviously not equal to zero.
4.2. Vertex-FrequencyDistributionswith Reduced Interference.
In order to reduce the cross-terms interferences and to
preserve the marginal properties, a general class of reduced
interference time-frequency distributions is extended to the
graph signals [14]. The frequency domain definition of the
reduced interference energy distribution is

𝐺 (𝑛, 𝑘)
= 𝑁∑
𝑝=1

𝑁∑
𝑞=1

𝑋(𝑝)𝑋∗ (𝑞) 𝑢𝑝 (𝑛) 𝑢∗𝑞 (𝑛) 𝜙 (𝑝, 𝑘, 𝑞) , (40)

where 𝜙(𝑝, 𝑘, 𝑞) is a kernel function. For 𝜙(𝑝, 𝑘, 𝑞) = 𝛿(𝑞−𝑘),
the graph Rihaczek distribution (36) follows.The exponential
kernel, a counterpart to the Choi-Williams kernel in classic
time-frequency analysis, is defined as

𝜙 (𝑝, 𝑘, 𝑞) = exp (−𝛼 (󵄨󵄨󵄨󵄨󵄨𝜆𝑝 − 𝜆𝑘󵄨󵄨󵄨󵄨󵄨 / 󵄨󵄨󵄨󵄨󵄨𝜆𝑝 − 𝜆𝑞󵄨󵄨󵄨󵄨󵄨))𝑠 (𝑞, 𝑝) , (41)

where

𝑠 (𝑞, 𝑝) = 𝑁∑
𝑘=1

exp(−𝛼
󵄨󵄨󵄨󵄨󵄨𝜆𝑝 − 𝜆𝑘󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆𝑝 − 𝜆𝑞󵄨󵄨󵄨󵄨󵄨) (42)

for 𝑞 ̸= 𝑝 and 𝜙(𝑝, 𝑘, 𝑝) = 𝛿(𝑘 − 𝑝).
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Figure 6: Vertex-frequency energy distribution with its marginal values.

The reduced interference vertex-frequency distribution is
presented in Figure 7. Here we have used the exponential
kernel. It is notable that the cross-terms are reduced as
compared to Figure 6, while the marginal properties are
preserved in this case.

Now we will consider a general case and review the
conditions that the distribution kernel should satisfy in order
to preserve the marginal properties.

A sum of all 𝐺(𝑛, 𝑘) values should be equal to the signal
energy

𝑁∑
𝑘=1

𝑁∑
𝑛=1

𝐺 (𝑛, 𝑘) = 𝐸𝑥. (43)

This relation is satisfied if

𝑁∑
𝑘=1

𝜙 (𝑝, 𝑘, 𝑝) = 1. (44)

The vertex marginal property of the distribution 𝐺(𝑛, 𝑘)
is satisfied if

𝑁∑
𝑘=1

𝜙 (𝑝, 𝑘, 𝑞) = 1 (45)

since
𝑁∑
𝑘=1

𝐺 (𝑛, 𝑘) = 𝑁∑
𝑝=1

𝑁∑
𝑞=1

𝑋(𝑝)𝑋∗ (𝑞) 𝑢𝑝 (𝑛) 𝑢∗𝑞 (𝑛)
= |𝑥 (𝑛)|2 .

(46)

Note that the eigenvectors are orthonormal, producing

𝑁∑
𝑛=1

𝑢𝑝 (𝑛) 𝑢∗𝑞 (𝑛) = 𝛿 (𝑝 − 𝑞) . (47)

Moreover, if this condition is satisfied, then the vertex
moment property holds

𝑁∑
𝑛=1

𝑁∑
𝑘=1

𝑛𝑚𝐺 (𝑛, 𝑘) = 𝑁∑
𝑛=1

𝑛𝑚 |𝑥 (𝑛)|2 . (48)

The frequency marginal property holds if

𝜙 (𝑝, 𝑘, 𝑝) = 𝛿 (𝑝 − 𝑘) . (49)

A sum of 𝐺(𝑛, 𝑘) over the vertex index 𝑘 is
𝑁∑
𝑛=1

𝐺 (𝑛, 𝑘) = 𝑁∑
𝑝=1

󵄨󵄨󵄨󵄨𝑋 (𝑝)󵄨󵄨󵄨󵄨2 𝜙 (𝑝, 𝑘, 𝑝) = |𝑋 (𝑘)|2 . (50)
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Figure 7: Reduced interference vertex-frequency distribution obtained using the exponential kernel.

If the frequency marginal property holds, then the fre-
quency moment property holds as well,

𝑁∑
𝑛=1

𝑁∑
𝑘=1

𝑘𝑚𝐺 (𝑛, 𝑘) = 𝑁∑
𝑘=1

𝑘𝑚 |𝑋 (𝑘)|2 . (51)

The local smoothness property (32) of 𝐺(𝑛, 𝑘) is satisfied
if

∑𝑁𝑘=1 𝜆𝑘𝐺 (𝑛, 𝑘)
∑𝑁𝑘=1 𝐺 (𝑛, 𝑘) = L𝑥 (𝑛)𝑥 (𝑛) = 𝜆 (𝑛) . (52)

This can be written as

∑𝑁𝑘=1∑𝑁𝑝=1∑𝑁𝑞=1𝑋(𝑝)𝑋∗ (𝑞) 𝑢𝑝 (𝑛) 𝑢∗𝑞 (𝑛) 𝜆𝑘𝜙 (𝑝, 𝑘, 𝑞)
∑𝑁𝑘=1∑𝑁𝑝=1∑𝑁𝑞=1𝑋(𝑝)𝑋∗ (𝑞) 𝑢𝑝 (𝑛) 𝑢∗𝑞 (𝑛) 𝜙 (𝑝, 𝑘, 𝑞)
= 𝜆 (𝑛) .

(53)

The local smoothness property is satisfied if
𝑁∑
𝑘=1

𝜙 (𝑝, 𝑘, 𝑞) = 1

and
𝑁∑
𝑘=1

𝜆𝑘𝜙 (𝑝, 𝑘, 𝑞) = 𝜆𝑝.
(54)

The reduced interference distributions can be used as
estimators of the local smoothness. The local smoothness is
estimated as the eigenvalue that corresponds to the position
of the maximum in 𝐺(𝑛, 𝑘), for a considered vertex 𝑛,

𝜆̂ (𝑛) = 𝜆𝑘̂(𝑛),
𝑘̂ (𝑛) = argmax

𝑘
{𝐺 (𝑛, 𝑘)} . (55)

The reduced interference distribution 𝐺(𝑛, 𝑘), along with
the marginal properties, is presented in Figure 7. Perfor-
mance of the distribution as a local smoothness estimator will
be illustrated through an example at the end of this section.

4.3. Vertex-Frequency Spectrogram. In the classic time-
frequency analysis, the short-time Fourier transform and the
spectrogram are well-developed tools for analysis of nonsta-
tionary signals. Their extension to the graph signals leads
to the vertex-frequency spectrogram. It can be calculated as
the spectrum of a signal 𝑥(𝑛) multiplied by an appropriate
localization window function ℎ𝑚(𝑛)

𝑆 (𝑚, 𝑘) = 𝑁∑
𝑛=1

𝑥 (𝑛) ℎ𝑚 (𝑛) 𝑢𝑘 (𝑛) . (56)
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Thewindow function ℎ𝑚(𝑛) should localize the signal content
around the vertex 𝑚. In general, it is vertex-dependent,
in contrast to the classic time domain spectrogram, where
commonly the same window (with a shift in time) is used.

In a special case, when ℎ𝑚(𝑛) = 1, the localized vertex
spectrum is equal to the standard spectrum 𝑆(𝑚, 𝑘) = 𝑋(𝑘)
for each 𝑚; that is, no vertex localization is performed. The
second special case is a maximally localized window

ℎ𝑚 (𝑛) = {{{
1 for 𝑛 = 𝑚
0 for 𝑛 ̸= 𝑚. (57)

The localized vertex spectrum, in this case, is equal to the
signal 𝑆(𝑚, 𝑘) = 𝑥(𝑚), for each 𝑘, and we do not have any
spectral resolution.

The spectrogram of a graph signal is defined as

|𝑆 (𝑚, 𝑘)|2 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑁∑
𝑛=1

𝑥 (𝑛) ℎ𝑚 (𝑛) 𝑢𝑘 (𝑛)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

. (58)

The vertex marginal of the spectrogram |𝑆(𝑚, 𝑘)|2 is
𝑁∑
𝑘=1

|𝑆 (𝑚, 𝑘)|2 = 𝑁∑
𝑘=1

𝑆 (𝑚, 𝑘) 𝑁∑
𝑛=1

𝑥 (𝑛) ℎ𝑚 (𝑛) 𝑢𝑘 (𝑛)

= 𝑁∑
𝑛=1

󵄨󵄨󵄨󵄨𝑥 (𝑛) ℎ𝑚 (𝑛)󵄨󵄨󵄨󵄨2 ,
(59)

where Parseval’s theorem is used. It is obvious that the vertex
marginal property is not satisfied for a general localization
window ℎ𝑚(𝑛). Only for a very specific case when ℎ𝑚(𝑛) =𝛿(𝑛 − 𝑚), the vertex marginal is equal to the signal energy∑𝑁𝑛=1 |𝑥(𝑛)ℎ𝑚(𝑛)|2 = 𝑥2(𝑚).

A summation over 𝑚 and 𝑘 should produce the total
signal energy. For the vertex spectrogram, we get

𝑁∑
𝑚=1

𝑁∑
𝑘=1

|𝑆 (𝑚, 𝑘)|2 = 𝑁∑
𝑛=1

(|𝑥 (𝑛)|2 𝑁∑
𝑚=1

󵄨󵄨󵄨󵄨ℎ𝑚 (𝑛)󵄨󵄨󵄨󵄨2)) . (60)

If the localization windows are such that ∑𝑁𝑚=1 |ℎ𝑚(𝑛)|2 =1 holds for all 𝑛, then the vertex spectrogram |𝑆(𝑚, 𝑘)|2 is
energy unbiased

𝑁∑
𝑚=1

𝑁∑
𝑘=1

|𝑆 (𝑚, 𝑘)|2 = 𝑁∑
𝑛=1

|𝑥 (𝑛)|2 = 𝐸𝑥. (61)

The localization windows ℎ𝑚(𝑛) could be defined in the
spectral domain using a generalized graph convolution [9] or
in the vertex domain using the vertex neighborhood [12].

(i) The localization window, defined in the spectral
domain, is equal to [9]

ℎ𝑚 (𝑛) = 𝑁∑
𝑘=1

𝐻(𝑘) 𝑢𝑘 (𝑚) 𝑢𝑘 (𝑛) , (62)

where𝐻(𝑘) is a window basic function defined in the
spectral domain, for example, as

𝐻(𝑘) = 𝐶 exp (−𝜆𝑘𝜏) , (63)

where 𝐶 is the amplitude of the window and 𝜏 > 0
is a constant that defines the width of the window.
The vertex-frequency spectrogram calculated with
localization windows defined in the spectral domain
is presented in Figure 8. It is obvious that themarginal
properties are not satisfied in this case.

(ii) The localization window ℎ𝑚(𝑛) can be defined in the
vertex domain. The window function value depends
on the distance 𝑑𝑚𝑛 between the vertices𝑚 and 𝑛

ℎ𝑚 (𝑛) = 𝑔 (𝑑𝑚𝑛) , (64)

where 𝑔(𝑑) is a form of the basic window that
corresponds to the classic signal processing window
form.
Here we will review a method for obtaining the
localization window functions, at each vertex, in
matrix form [10].The vertices whose distance is𝑑𝑚𝑛 =1 follow from matrix A1. This matrix is equal to the
graph adjacency matrix. The matrix A, with elements𝑎𝑚𝑛, is obtained from the weighting matrixW

𝑎𝑚𝑛 = {{{
1 for 𝑤𝑚𝑛 > 0
0 for 𝑤𝑚𝑛 = 0. (65)

The vertices whose distance is 𝑑𝑚𝑛 = 2 follow from
the matrix

A2 = (A ⊙ A1) ∘ (1 − A1) ∘ (1 − I) . (66)

We have used the following notation: ⊙ for the
logical (Boolean) matrix product, ∘ for the Hadamard
product (element-by-element multiplication), and 1
for the matrix whose all elements are equal to 1.
The elements 𝑎(2)𝑚𝑛 of the matrix A2 are equal to 1
if the distance between vertices 𝑚 and 𝑛 is 2, and
0 otherwise. Matrix A ⊙ A1 gives the information
about all vertices that are connected with walks of the
length 2 and a lower walk. The element-by-element
multiplication by the matrix 1 − A1 removes the
vertices connected with walks of length 1, while the
multiplication by 1−I removes the diagonal elements.
When 𝑑𝑚𝑛 = 𝑑 ≥ 2, a recursive relation for the matrix
follows. It will give the information about the vertices
at a distance 𝑑

A𝑑 = (A ⊙ A𝑑−1) ∘ (1 − A𝑑−1) ∘ (1 − I) . (67)

The matrix for the graph localization windows is
formed as

P𝐷 = 𝑔 (0) I + 𝑔 (1)A1 + ⋅ ⋅ ⋅ + 𝑔 (𝐷 − 1)A𝐷−1. (68)
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Figure 8: Local vertex-frequency spectrum calculated by using the localization windows defined in the spectral domain.

The graph signal weighted by the localization window
is calculated by using the previous matrix as

𝑥𝑚 (𝑛) = ℎ𝑚 (𝑛) 𝑥 (𝑛) = 𝑃𝐷 (𝑛,𝑚) 𝑥 (𝑛) . (69)

An example of the vertex-frequency spectrogram
calculated by the vertex domain localization window
is presented in Figure 9.

The relation that would connect the vertex domain
spectrogram (56) and a general vertex-frequency distribution
(40) is very complex. In order to establish this relation, the
general vertex-frequency distribution should be rewritten
using a kernel function in the vertex-vertex shift domain.This
form is dual to (40)

𝐺 (𝑛, 𝑘) = 𝑁∑
𝑚=1

𝑁∑
𝑙=1

𝑥 (𝑚) 𝑥∗ (𝑙) 𝑢𝑘 (𝑚) 𝑢∗𝑘 (𝑙) 𝜑 (𝑚, 𝑛, 𝑙) , (70)

where 𝜑(𝑚, 𝑛, 𝑙) is the vertex-vertex shift kernel. The condi-
tions for the frequencymarginal and the vertexmarginal with
a vertex-vertex shift kernel are

𝑁∑
𝑛=1

𝜑 (𝑚, 𝑛, 𝑙) = 1
𝜑 (𝑚, 𝑛,𝑚) = 𝛿 (𝑚 − 𝑛) .

(71)

The kernel that corresponds to the vertex domain spec-
trogram (56) is

𝜑 (𝑚, 𝑛, 𝑙) = ℎ𝑛 (𝑚) ℎ∗𝑛 (𝑙) . (72)

For localization windows defined in the spectral domain, the
kernel function can be written as

𝜑 (𝑚, 𝑛, 𝑙) = 𝑁∑
𝑝=1

𝑁∑
𝑞=1

𝐻(𝑝)𝐻∗ (𝑞) 𝑢𝑝 (𝑚) 𝑢𝑝 (𝑛) 𝑢∗𝑞 (𝑙) 𝑢∗𝑞 (𝑛) . (73)

This kernel cannot satisfy both marginal properties. The
unbiased energy condition is

𝑁∑
𝑛=1

𝜑 (𝑚, 𝑛,𝑚) = 1. (74)

Here, the local smoothness property cannot be satisfied.
However, since the graph spectrogram is concentrated along
the local smoothness, we can still use the maximum-based
estimator of the local smoothness

𝜆̂ (𝑛) = 𝜆𝑘̂(𝑛),
𝑘̂ (𝑛) = argmax

𝑘
{|𝑆 (𝑛, 𝑘)|2} . (75)
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Figure 9: Local vertex-frequency spectrum calculated using the vertex neighborhood windows.

5. Numerical Results

Now we will calculate the local signal smoothness by using
the Laplacian applied to the graph signal (23) as well as the
maximumpositions of the Rihaczek distribution, the reduced
interference distribution, and the local vertex spectrum with
the spectral domain and the vertex domain windows.We will
use the signal presented in Figure 3. The spectral domain
window, defined by (62) and (63), is calculated with 𝐶 = 1
and 𝜏 = 2.The vertex domain window is calculated according
to (68), with 𝐷 = 4 and 𝑔(𝑑) = cos2(𝑑𝜋/8), i.e., 𝑔(0) = 1,𝑔(1) = 0.8536, 𝑔(2) = 0.5, and 𝑔(3) = 0.1464.

The obtained results are presented in Figure 10 and in
the first row of Table 1. For all considered estimators, the
local smoothness is estimated at the vertices where significant
signal sample values are detected, |𝑥(𝑛)|2 > 0.05max𝑛 |𝑥(𝑛)|2.
The theoretical value of the local smoothness is presented by
a line and the estimated values are presented by dots. The
number of outliers (indicated byNO in Table 1) is the number
of vertices where the estimated smoothness is not equal to
the theoretical one. The mean squared error (MSE) of the
local smoothness estimations is also given in Table 1, for each
considered case.

Next, we will consider a noisy signal. The signal is
corrupted by a Gaussian noise added to the signal samples.

Table 1: The number of outliers and the mean squared error of the
local smoothness for the considered estimators.

Laplacian Rih. dist. RID LVS spec. LVS vert.
SNR NO MSE NO MSE NO MSE NO MSE NO MSE
∞ 4 0.027 0 0.000 0 0.000 4 0.161 4 0.161
50 4 0.027 0 0.000 0 0.000 4 0.161 4 0.161
40 8 0.027 0 0.000 0 0.000 4 0.161 5 0.165
30 20 0.032 0 0.000 0 0.000 4 0.161 5 0.165
20 32 0.057 0 0.000 0 0.000 4 0.161 5 0.165
10 36 0.261 0 0.000 1 0.027 4 0.172 5 0.036
5 38 0.848 3 0.177 1 0.027 4 0.172 5 0.042
0 38 1.557 5 0.290 3 0.095 6 0.278 6 0.270
-2.5 38 2.294 11 0.648 8 0.693 6 0.278 7 0.282
-5 38 2.194 14 1.127 16 1.814 9 0.581 9 0.555
-7.5 38 2.701 21 2.115 19 2.293 11 0.667 12 0.826
-10 38 3.052 25 2.486 23 2.474 19 1.089 15 1.177
-15 38 3.469 33 3.005 33 3.477 27 1.683 27 2.503

Signal-to-noise ratio (SNR) is varied from −15db to 50dB.
The number of outliers and the MSE are given in Table 1.
We can conclude that the direct method of local smoothness
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Figure 10: Local signal smoothness for the graph signal presented in Figure 3. Exact smoothness is presented by a solid line. The estimated
smoothness is presented by dots. It is calculated only at the vertices where the signal takes significant values, |𝑥(𝑛)|2 > 0.05max𝑛 |𝑥(𝑛)|2
using (a) the Laplacian of the graph signal (23), (b) the vertex-frequency energy distribution (Figure 6), (c) the reduced interference vertex-
frequency distribution (Figure 7), (d) the graph spectrogram with a window defined in the vertex domain (Figure 9), and (e) the graph
spectrogram with a window defined in the spectral domain (Figure 8).

estimation using the Laplacian is very sensitive to the noise,
while the vertex-frequency based estimations are robust to
the noise. For the local vertex spectrum, the number of
outliers is slightly increased for the high SNR cases. This
increase is caused by the signal smoothing. Note that the
Rihaczek distribution and the reduced interference distribu-
tion provide better estimation for a high SNR, while for the
SNR below 0dB, the local vertex spectrum, calculated with
either the spectral or the vertex domain window, results in
fewer outliers and a lower MSE.

The ratio of the concentration measures is calculated
using the ℓ1-norm of the Rihaczek distribution and the ℓ1-
norm of the reduced interference distributions [25]. It varied
from 1.32 in the non-noisy case to 1.59 for the highest noise
level.

6. Conclusion

In this paper, the local smoothness of graph signals is
introduced and analyzed. Methods for local smoothness
estimation, based on the signal Laplacian and the vertex-
frequency representations, are given and applied to examples
with graph signals. It has been shown that the local smooth-
ness is a counterpart of the instantaneous frequency in classic
signal analysis and can be estimated using vertex-frequency
distributions. Finally, the vertex-frequency energy distribu-
tions, including a reduced interference distribution, and the
local vertex spectrogramwith twowindowing techniques, are
considered as the local smoothness estimators.
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