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Effective Design of Multi-User Reception and
Fronthaul Rate Allocation in 5G Cloud RAN
Dora Boviz, Student Member, IEEE, Chung Shue Chen, Senior Member, IEEE, and Sheng Yang,

Member, IEEE

Abstract—Cloud Radio Access Network (C-RAN) is be-
coming more than ever timely in 5G for dense network
deployments, but its design has to be adapted to 5G
requirements. To ensure high uplink throughput in cell-
edge regions affected by inter-cell interference, C-RAN
enables multi-user reception techniques among cells. In this
paper, we propose an efficient end-to-end uplink transmis-
sion scheme dealing with implementation and deployment
constraints on both communication interfaces in C-RAN,
i.e., the wireless one between the users and the Remote
Radio Heads (RRHs), and the fronthaul links between
the RRHs and the central processing unit. Multi-cell non-
orthogonal multiple access (NOMA) can improve spectral
efficiency and cell-edge throughput, but its design needs to
fit requirements regarding receiver complexity and delay.
Optimizing the fronthaul rate allocation to maximize the
benefit of the transmissions allows to exploit the fronthaul
links effectively. Our model considers the throughput of
NOMA transmissions in C-RAN and the expense related
to fronthaul usage in various deployment scenarios. When
the available fronthaul rate allows accurate transmission,
optimizing fronthaul rate allocation results in 10% higher
transmission benefit than uniform allocation. It also makes
possible to involve less users in NOMA while keeping the
benefit. The proposed strategy enables uplink multi-cell
multi-user processing in a cost-effective manner in 5G C-
RAN deployments.

Index Terms—5G, Cloud RAN, Multi-User Reception,
Fronthaul, Resource Allocation, Cost-aware Optimization.

I. INTRODUCTION

As some operators have already announced the de-
ployment of 5G mobile networks in the coming years [1],
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it becomes essential to propose high performance and ef-
ficient network design that supports new services. We are
entering the era of ambient connectivity requiring highly
increased network capacity and reliability. Enhancing
network capacity on the uplink becomes essential for
services including real-time personal content sharing. In
this paper, we will address radio access network for 5G
and describe a practical solution that allows to achieve
high throughput on the uplink even in the presence of
many cell-edge users, when processing capability and
network infrastructure are constrained. Our solution is
based on Cloud Radio Access Network (C-RAN) which
aims to improve both the performance on the radio
interface and the efficiency of utilizing the computational
resources and infrastructures in 5G networks.

A. C-RAN Deployment Challenges

An important part of throughput improvement in 5G is
planned to be realized through the deployment of more
radio access points, e.g., in a dense urban deployment,
the distance between two macro base stations (BS)
should be 200 m [2], significantly lower then with LTE,
where usually we have at least 1 km between them. Con-
sequently, the coverage area of each neighboring radio
access point can simply overlap and due to frequency
reuse between cells, inter-cell interference occurs and
needs to be managed. Besides, it is also practical to
use light-weight access points executing only a part of
radio access network (RAN) processing: C-RAN is a key
architecture in 5G [3]. The distributed Remote Radio
Heads (RRHs) are connected to a Central Office (CO)
where signal processing for several cells takes place
allowing low latency multi-cell cooperation. Further-
more, today’s general purpose processors and optimized
real-time software enable a virtualized implementation
of C-RAN in cloud components. The flexibility and
scalability introduced by this new architecture allows to
shift the focus of processing chains from the conven-
tional cell-centric one to user-centric, making multi-cell
transmission and reception techniques a major element



of 5G. However, from an economic perspective, cost-
effective network design is needed to allow sustainable
operation. Fronthaul design is crucial to C-RAN and
its optimization is indispensable. Our work is dedicated
to the fronthaul resource allocation optimization for the
purpose of 5G multi-user reception in C-RAN. We will
discuss related work in the following.

B. Related Work

Aiming to achieve higher spectral efficiency and sat-
isfy 5G requirements, non-orthogonal multiple access
(NOMA) techniques are considered both for the down-
link [4] and the uplink [5]. NOMA is also helpful in a
multi-cell environment to manage inter-cell interference
[6]. To deal with practical constraints such as receiver
complexity, it has been proposed in [7] to perform
the uplink multi-user detection needed in NOMA over
several smaller subsets of users, while each subset trans-
mits on a different channel. Besides, low-complexity
multi-user receivers based on the approximation of op-
timal Minimum Mean Square Error (MMSE) detection
are studied in [8]–[10]. In [11], the characteristics of
the multi-user Multiple Input Multiple Output (MIMO)
channel with fewer users than receive antennas are
exploited to design an efficient receiver.

In addition, to realize low-latency data exchange re-
quired for multi-cell NOMA reception on the uplink
(UL), a part of the physical layer processing of the
cooperating cells has to be centralized, i.e., Cloud RAN
architecture is needed. C-RAN is also necessary to ac-
commodate large bandwidth planned 5G [2] and enable
to serve a high number of users per cell, however,
the interface between the RRHs and the CO has to
be redefined [12], [13]. Signal compression in C-RAN
aiming to satisfy fronthaul constraint is studied in various
configurations, e.g., in [14], the authors propose a dis-
tributed compression method to maximize the sum rate.
An efficient strategy consisting in jointly compressing
the uplink signals and the channel state information
(CSI) is described in [15]. In a previous work, we
have defined a user-centric interface enabling multi-
cell processing with affordable fronthaul traffic between
the RRHs and the CO [16]. For legacy C-RAN and
orthogonal multiple-access on the uplink, the fronthaul
allocation optimization problem is investigated in [17].
Joint power allocation and adaptive quantization can
substantially improve the system throughput compared
to uniform distribution of available fronthaul, indicating
the interest of channel-aware fronthaul allocation.

C. Contributions

In this paper, we consider 5G C-RAN uplink and study
the fronthaul optimization problem in an end-to-end
view. The contributions of the paper can be summarized
as follows:
• We propose an uplink multiple-access scheme for

C-RAN that improves cell-edge throughput and
spectral efficiency while requiring affordable re-
ceive processing. It consists in associating UL
Coordinated MultiPoint (CoMP) joint reception
with NOMA, i.e., scheduling on the same fre-
quency resource users located at the edge of neigh-
boring cells. This allows cell-edge users benefit
from multi-cell diversity and improved spectral
efficiency. To ensure low receiver complexity, we
distribute the users into several smaller groups and
orthogonal resources are attributed to each group.

• We study the partitioning of users in groups
which are required for the low-complexity NOMA
scheme. We design an iterative algorithm for creat-
ing user groups based only on information that can
be acquired without degrading the overall perfor-
mance (e.g., the channel statistics), and evaluate its
result compared to other user grouping strategies.

• We consider various deployment scenarios and the
fronthaul allocation strategy that maximizes the net
gain of operators from uplink transmissions in each
scenario. We point out the significant improvement
of the benefit of uplink transmissions in C-RAN
thanks to optimal fronthaul allocation. Numerical
evaluations illustrate that combining the proposed
NOMA scheme with fronthaul optimization allows
to deploy a practically implementable receiver sat-
isfying 5G requirements without sacrificing the op-
erators’ benefits.

The remainder of the paper is organized as follows.
In Section II, we describe the system model. In Section
III, we propose an uplink NOMA scheme taking into ac-
count practical constraints regarding receiver complexity.
In Section IV, we formulate the optimization problem
allowing to adapt fronthaul rate in order to maximize
the benefit that we can obtain from uplink transmissions
using the NOMA strategy. In Section V, we give numeri-
cal results to illustrate the gain of fronthaul optimization.
Finally, Section VI contains some concluding remarks.

II. UPLINK MIMO C-RAN SYSTEM MODEL

The system model that we use for uplink multi-
user MIMO transmissions in C-RAN architecture is
depicted in Figure 1. We consider M RRHs located
at the cell sites with a antennas each, thus the total
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Fig. 1: System model with several user groups (example
M = 2 RRHs), where JD stands for joint detection and
BBU stands for base-band unit.

number of antennas is K = a · M . All of the RRHs
are connected via digital communication links to the
same CO which can perform signal processing. We have
N single-antenna users and consider that each user is
allowed to communicate with all the M RRHs. The users
are already present in the system and remain present,
arrival or departure of users is not in the scope of the
present work. We assume that the system architecture
allows for all the N users to centralize the user-specific
physical layer functions, i.e., the ones after demapping
user signals from the attributed physical resource blocks
(PRBs). This enables to perform multi-cell multi-user
joint detection (JD) on the uplink [16] when NOMA
is applied. We will describe in Section III the details
of the NOMA receiver required before the user-PHY
processing.

The RRHs, after receiving the uplink signals sent
by the users, quantize them and forward through the
fronthaul links to the CO. To send the signal received
by each antenna via the fronthaul link, a given quan-
tization rate is used when frequency modulated radio
signals are compressed to digital base-band symbols. The
transmission rate over the fronthaul link depends on the
quantization rate, which is included in our optimization
problem.

In the system, we consider that there is a total of
J orthogonal physical resource blocks (PRBs) available
commonly for all the RRHs at each channel use. Note
that if the same data is sent by a user on several PRBs,
the signal received by a given antenna will be combined

after PRB demapping and then forwarded to the CO.
Block fading channel model is used throughout the pa-
per, and the coherence time is assumed to be long enough
to consider adapting the fronthaul rate following uplink
channel realizations. In terms of user mobility, e.g., for
pedestrian users moving at 5 km/h, the channel changes
approximately every 720 ms, in this time window we
can update network parameters such as scheduling or
quantization rate. Optimization is performed in the CO
and results are fed back to the RRHs that can apply them
on the mobile radio interface and the fronthaul interface
respectively.

We use the following notational conventions: for ran-
dom variables, uppercase letters with non-italic fonts,
e.g., S, for scalars, bold and non-italic fonts, e.g., V,
for vectors, and bold and sans serif fonts, e.g., M, for
matrices. Deterministic variables are denoted with italic
letters, e.g., a scalar x or N (for quantities), lowercase
bold for a vector vvv, and uppercase bold letters for a
matrixMMM . Logarithms are in base 2 and superscript (.)H

denotes the conjugate transpose of a vector or a matrix.
The N users are uniformly distributed in the region

covered by every RRH. The channel of each user n in
the set SN = {1, ..., N} towards all the antennas among
the RRHs is denoted by hhhn, which is a K dimensional
vector following the Gaussian distribution N (0,RRRn)
with RRRn ∈ CK×K . In the numerical evaluations, the
channel covariances are computed following the one-ring
scatterer model [18], thus they reflect the position of each
User Equipment (UE)1 with respect to the RRHs. Note
that one can consider that the N users are not uniformly
distributed in a region; this can be a subject of future
work.

The UEs transmitting on the same PRB are said to
form a group that has channel matrix given by the
juxtaposition of the users’ channel vectors. The number
of user groups is denoted by L (with L ≤ J). There are
sl users in the group denoted by Πl, with l ∈ {1, ..., L}.
The multi-user channel of the group Πl, comprising
the users with indexes πli ∈ SN with i = 1, ..., sl,
towards the K antennas is the K×sl dimensional matrix
HHH l =

[
hhhπl

1
... hhhπl

sl

]
. The complete set of the groups

{Π1, ...,ΠL} is a partition of the set of the users SN .
We assume that the channel is perfectly known at the
receiver. Though, channel estimators that are generally
used result in an estimation error, its impact on our
model is negligible.

The Gaussian channel noise vector is denoted by nnnl ∼
N (0, σ2

zIIIK). Power of the input signal is normalized, so

1In 3GPP terminology, a mobile user is also called User Equipment
(UE). In the paper, we will use the term user and UE interchangeably.

3



that noise covariance is σ2
z = 1

SNR . The signal received
by the whole set of antennas for group Πl is the K-
dimensional vector yyyl and it is given by the superposition
of the signals sent by all of the sl users in the group such
that

yyyl =

sl∑
i=1

hhhπl
i
xπl

i
+nnnl. (1)

The UL signal from group Πl received at the CO
is denoted by ŷyyl = (ŷl1, ..., ŷlK)T , it is the quantized
form of yyyl. The fronthaul rate used for transmitting ŷyyl
is ccc(l) = (cl1, ..., clK)T , where clk with k ∈ {1, ...,K}
denotes the fronthaul rate attributed to the forwarding
of the component of yyyl received by the antenna k, i.e.,
ylk. The total fronthaul rate of group Πl over the link
between the RRH m and the CO is denoted by c(l)m with
l ∈ {1, ..., L} and m ∈ {1, ...,M}. We can write c

(l)
m

using fronthaul rates {clk} as follows:

c(l)m =

m·a∑
k=(m−1)·a+1

clk. (2)

If the capacity of the fronthaul links is limited, we denote
the maximum capacity available for the whole set of user
groups on the link m by cm.

III. PARTIAL MULTI-CELL NOMA

In this section, we describe the multi-cell NOMA
scheme that is adapted to implementation requirements.
This transmission strategy is applied in C-RAN architec-
ture for the study of fronthaul rate allocation in Section
IV.

A. Uplink NOMA

While with orthogonal multiple-access techniques we
attribute to each UE a different time-frequency resource,
in NOMA, users are intentionally scheduled in a way
that they use the same PRBs. NOMA allows to increase
the overall spectral efficiency if multi-user reception is
applied for uplink, but requires this additional signal
processing on the receiver side. Fortunately, in C-RAN,
with multiple antennas, we can apply MIMO techniques,
such as linear MMSE, for multi-user detection.

To increase the overall throughput while serving the
whole set of users, in order to ensure (some) fairness,
the best scheduling strategy is allowing to as many users
as possible to transmit on all of the available PRBs.
We will call this strategy full NOMA in the coming
discussions. Indeed, the sum rate of sl users transmitting
together over J PRBs is higher than the sum of their rates
while each of them uses alone J/sl PRBs. Furthermore,
frequency diversity is improved by scheduling all of the

UEs on all of the subcarriers. However, regarding the
implementation and the execution of receiver processing,
it is not necessarily the best choice to apply full NOMA
for many users.

B. Practical limitations: receiver complexity and data
exchange

We aim to provide an end-to-end system design inte-
grating uplink NOMA and ensure both high throughput
and efficient implementation. For example, even if linear
MMSE receiver has significantly lower complexity com-
pared to maximum likelihood detection, it still requires a
matrix inversion that has a complexity of O(N3) with N
co-channel users. Several approximations of the MMSE
detector have been proposed (e.g., [10], [11]). However,
their complexity is still around O(N2). Furthermore,
since the design of the low-complexity algorithms ex-
ploits the properties of tall MIMO channel matrices, with
many users, the performance of the receiver decreases
and would result in relatively high block error rates.

The physical layer processing of MIMO receivers has
usually a parallel structure which bears separate streams
for the processing of the data received at each antenna,
and combines them before the decoding. Thus, to include
NOMA in such an implementation, data sharing between
these streams is needed, both in single-cell and multi-
cell configurations. The fastest way of communicating
between these simultaneously executed physical layer
signal processing functions is to store the data that needs
to be used by several streams (i.e., threads or processes)
in a memory segment accessible to all of them. In
order to keep the parallel structure of processing units
and reduce the delay due to synchronization between
the data streams that provide the inputs for computing
MMSE matrices, it is more suitable and convenient to
perform multi-user detection over several smaller subsets
of users, with each subset scheduled on different PRBs.

C. Partial NOMA scheme

An ideal tradeoff between the throughput and the
complexity of receive processing is to schedule users
by groups and attribute different PRBs to each group in
order to ensure orthogonality between them [7]. We will
call this strategy partial NOMA, which aims to achieve
significantly higher overall throughput with respect to
single user transmission. Its advantage compared to full
NOMA is to require multi-user receive processing over
a smaller number of users for each group, thus, receiver
complexity remains low and the signals of different
groups can be processed simultaneously.
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We define as a user group the UEs that are granted to
transmit over the same set of PRBs. In the following, our
goal is to illustrate the interest of partial NOMA on a
simple model. Therefore, we assume that each of the N
users in our system is included in one group exactly (see
conditions (3b)-(3c) below) and for the sake of fairness,
each group contains the same number of users when
possible or at most one user more than another group
(see condition (3d)). Also, we attribute the same number
of PRBs to each group.

The following function g(.) is used to denote the
partitioning of the set of users SN into L groups under
the conditions (3b)-(3d):

g : SN 7→ {Π1, ...,ΠL}, (3a)
∪
l

Πl = SN , (3b)

Πi ∩Πj = ∅ ∀i, j | i 6= j, (3c)
| si − sj |≤ 1 ∀i, j | i 6= j. (3d)

The proposed partial NOMA scheme allows to main-
tain the advantages of full NOMA, i.e., frequency and
antenna diversity, at a reduced computational cost on
the receiver side. In principle, the throughput of partial
NOMA increases linearly with the number of users in
each group, while the complexity of the MMSE receiver
used for the detection in each group will increase pro-
portionally to the square of the number of users. This
would make MMSE receive processing inefficient and
add significant computational delay when handling many
users. Since in 5G systems, low transmission round trip
time is targeted [19] and retransmission protocols (such
as Hybrid Automatic Repeat reQuest) require low receive
processing latency, full NOMA receiver is not very prac-
tical for 5G, for example to support enhanced Mobile
BroadBand (eMBB) service. With partial NOMA, we
can achieve high throughput compared to single-user
scheduling and keep computational complexity and delay
low.

D. Multi-cell partial NOMA and user grouping

For cells with the same CO, we apply the partial
NOMA to multiple cells and turn inter-cell interference
to useful signal by exchanging received data and CSI
inside the CO. Similarly to uplink CoMP reception, the
signals sent by cell-edge users can be received by several
cells. If scheduler coordination is not used between
neighboring cells involved in joint reception, we can
benefit only from additional antenna diversity, but the
overall spectral efficiency does not increase linearly.
Furthermore, in some cases, cell-edge users can find

themselves scheduled on the same PRB so that they
are affected by the interference created by each other.
To perform uplink NOMA, the scheduling needs to be
coordinated between cells, and multi-user JR has to be
realized accordingly. Low-latency data exchange enabled
by C-RAN allows on one hand to apply multi-user
reception techniques, and on the other hand to support
it by scheduling coordination in order to assign the
same PRB to the cooperating users, thus improve the
throughput and spectral efficiency.

The C-RAN configuration is also more favorable for
NOMA reception, thanks to better channel diversity cre-
ated by the placement of the receive antennas at several
spatially distributed RRHs. Users can have channel gain
mainly contained in different matrix subspaces, i.e., their
channels are not much correlated. Scheduling such users
in the same group results in higher sum rate. However, in
a practical system, it would introduce very high signaling
overhead and require high-complexity processing to find
the partitioning which gives the maximal throughput.
Indeed, one needs the CSI between each user and each
antenna, on all of the frequency resources. In addition,
the problem of joint user grouping and scheduling opti-
mization of N users into L groups scheduled on J PRBs
would have an extremely high complexity, especially if
we may deal with a significant number of users. As such
an optimization must be realized in a fraction of the
channel coherence time, high processing time prevents
its usage in real systems.

To take into account constraints of real-time operation
and avoid the overhead introduced by the pilot sequences
for channel estimation, we can use the second order
channel statistics, i.e., the channel covariance, that also
does not change with the carrier frequency. Assuming
that previous channel estimates are available for each
user and these were computed for different subcarrier
frequencies, the covariance can be easily computed and
characterizes the user’s channel independently from the
scheduling decision. However, statistics describe less
precisely the channel compared to real-time CSI. Using
statistical CSI, we can then approximate the group sum
rates and find a grouping scheme that is likely to achieve
higher throughput, even without the knowledge of con-
crete channel realizations. This method also reduces the
computational complexity, since the grouping can be
realized separately from the scheduling.

Since we perform the user grouping step regardless
to the limited fronthaul, we can assume unconstrained
fronthaul in this step. In fact, the optimization of the
fronthaul allocation (see Section IV) is performed once
the user groups are determined and scheduled. We also
assume that each group transmits over a resource orthog-

5



onal to the resources used by the other groups, thus there
is no interference between them. The achievable sum rate
of the user group Πl with uniform power allocation is
given by

E[log det(IIIK + SNR · HlHHl )]. (4)

Note that for equation (4) we assume that the number
of PRBs is equal to the number of user groups, i.e., J =
L. If more PRBs are available then the number of user
groups resulting in a group size convenient for receive
processing, we can allocate in average J/L PRBs to each
group and scale the sum rate consequently. To provide
a simple comparison between the overall performance
with different group sizes, we can write the following
relation for L1 < L2 and sl1 = N

L1
> sl2 = N

L2
,

J

L1
E[log det(IIIK + SNR · Hl1HHl1)] >

J

L2
E[log det(IIIK + SNR · Hl2HHl2)].

(5)

We can see that for larger user groups the sum rate for
a single PRB is higher, since more users transmit, thus
the total power is higher, in addition, they can use more
PRBs, consequently, the total sum rate increases with
the group size. This confirms that in theory full NOMA
gives better performance, but for the reasons detailed
in Section III-B it is not convenient for being used in
practical systems.

Using Jensen’s inequality, we get the following func-
tion that is an upper bound of the sum rate depending
only on the channel covariance RRRl = E[HlHHl ]:

f̂(Πl) = log det(IIIK + SNR ·RRRl). (6)

We can compute the value f̂(.) based on the CSI avail-
able in a practical system, although it only approximates
the sum rate. Optimizing f̂(.) cannot guarantee that the
actual sum rate is maximal, but it is likely to increase it.

A user pairing method maximizing the total sum rate
was proposed in [20], it optimizes the user association
by solving the assignment problem for a bipartite graph
where users are denoted as the nodes and the value
associated to the edge between two nodes is the sum
rate that they can achieve together. Since the problem of
finding the best user grouping with more than two users
in each group is very complex to evaluate by exhaustive
search, we can use an iterative algorithm built on the
maximum sum assignment in bipartite graphs [21]. In
our proposed scheme, we will solve the assignment
problem N/L times to find a user grouping scheme
which is expected to achieve high sum rate. The details
of the proposed user grouping method are described in

Algorithm 1, in the following. Obviously, the proposed
user grouping method is not optimal, since in addition to
the approximation of the sum rate, we assign the users
to the groups in several iterations and keep the decisions
of the previous iterations unchanged.

Input: Sets of channel vectors {hhh1, ... hhhN} enabling to
compute RRRl

Result: User grouping solution g(SN )
Initialize Πl ← ∅ ∀l ∈ {1, ..., L};
for i = 1 : dN

L
e do

Set
W = {wk,m}1≤k≤L

1≤m≤N−(i−1)L

= {0}L×(N−(i−1)L);

for l = 1 : L do
for each user n not included in any group do

H(n)
l ← [Hl,hhhn];

RRR
(n)
l ← E[H(n)

l H(n)
l

H
];

wln ← f̂(Πl ∪ {n});
end

end

Find {n∗
1, ..., n

∗
L} ← argmax

1≤nl≤sl

L∑
l=1

wlnl using the

Hungarian algorithm [21];
for l = 1 : L do

Πl ← Πl ∪ {n∗
l };

Hl ← [Hl,hhhn∗
l
];

end
end

Algorithm 1: User grouping algorithm based on chan-
nel statistics

We have evaluated the sum rate of the grouping
scheme resulted by Algorithm 1 over a set of N = 12
users forming L = 4 groups and transmitting towards
M = 2 RRHs with a = 4 antennas at each of them. We
have compared the performance obtained by Algorithm
1 to exhaustive search, as well as to the average sum
rate and the worst case grouping that we get by creating
groups randomly. Table I shows the comparison of sum
rates and also the complexity of each method.

We can see from Table I that the sum rate of the group-
ing scheme obtained by our proposed iterative algorithm
that has the advantage of exploiting input data available
in real radio access network deployments, is able to
ensure a throughput only 1.2% lower than the globally
best solution. Although the throughput achieved in av-
erage with random grouping is only slightly lower than
the one with our solution, by the proposed deterministic
grouping we can avoid a drop of the throughput by 5% in
some cases. In use cases where throughput requirements
are tight, it can be interesting to use the proposed
algorithm although it requires more computation than
random grouping. We can remark that the result of any
practically implementable method exploiting realistic

6



Grouping
strategy Single-user

Random
grouping (worst

case)

Random
grouping
(average)

Iterative
algorithm
(proposed)

Exhaustive
search

Average
throughput (bits
per channel use)

157.27 441.38 455.66 458.88 464.45

Processing
complexity 1 1 1 O( 3N4

4L ) ∼ 4000
O(L

N

L! ) ∼
700000

TABLE I: Comparison of different user grouping methods in terms of throughput and computational complexity.
Evaluation is done for N = 12 users with random location and J = 12 PRBs available. The partial NOMA scheme
is realized with L = 4 groups of 3 users, each of them transmitting over 3 PRBs towards K = 8 receive antennas
equally distributed between the M = 2 RRHs.

input data similarly to the one described above can serve
to fill the relatively small gap between random grouping
and the optimal scheme.

IV. COST-EFFECTIVE FRONTHAUL ALLOCATION

To propose an efficient end-to-end design of multi-
cell NOMA in C-RAN, besides the implementation
constraints in the CO described in the previous section,
we have to improve the data transfer over the fronthaul
links between the RRHs and the CO. We adopt a
practical optimization scheme of fronthaul rates on the
uplink which aims to maximize the net benefit that
operators get from an uplink transmission. Since the user
grouping decision is taken before scheduling the users,
while the fronthaul quantization is set after the uplink
partial NOMA transmission, for fronthaul optimization
we are not restricted to use only statistical CSI. For
given scheduling decision, real-time channel realizations
(assumed perfectly known) within a channel coherence
period are available for being used in the optimization
of fronthaul rate. The technical details are given below.

A. Net benefit of the uplink multi-user transmission

In the C-RAN architecture, the cost of the data transfer
between the RRHs and the CO is added to the usual
exploitation costs of mobile networks. The gain of uplink
transmissions increases with the rate, since high through-
put allows mobile users to realize more data traffic that
generates (direct or indirect) incomes for the mobile
network operator. At the same time, the transmission
requires some operational costs, among which we will
focus on the one related to fronthaul usage. In fact,
each uplink data transmission from a UE to the network
results in a benefit that is assumed proportional to
the instantaneous transmission rate, and each of them
requires also to use fronthaul links for a given cost

depending on the actual data rate. Obviously, the end-to-
end rate of a user depends on the applied fronthaul rate,
as it is determined by the level of quantization which
impacts the quality of the reception at the CO. Finding
an optimal tradeoff between the overall throughput and
the fronthaul usage allows to maximize the final benefit
that the operator gets. In the following, we define the
net benefit of an uplink multi-user transmission as the
instantaneous sum rate minus the fronthaul cost.

Proposition 1. The partial NOMA scheme in C-RAN
architecture with fronthaul quantization the achievable
sum rate of a group Πl with a known channel realization
HHH l is given by

sl∑
i=1

ri ≥ log det
(
Isl +HHHH

l VVV
−1
sl
HHH l

)
(7)

with VVV sl the equivalent noise covariance:

VVV sl = σ2
zIIIK + diag

k={1,...,K}

(
σ2
ylk|Hl

2−clk

1− 2−clk

)
(8)

where σ2
ylk|Hl

is the covariance of the signal received by
the RRH at antenna k and clk is the number of bits that
we use over the fronthaul link to forward this signal, i.e.,
the number of quantization bits.2

The proof of Proposition 1 is provided in Appendix
A; it shows the impact of fronthaul quantization on the
sum rate.

We use the achievable sum rate (7) to formulate the
objective function allowing to maximize the end-to-end
benefit of the user group Πl with sl users towards the
M RRHs with a antennas each. The parameters of this
function are the following:

2Note that as both the channel noise and the equivalent quantization
noise are assumed independent (between the antennas) and Gaussian,
equation (7) gives the minimum sum rate that we can achieve [22] in
the defined system model.
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• The Gaussian channel noise variance σ2
z .

• The average received signal power from group l at
antenna k given the channel estimate of the group:
σ2
ylk|Hl

.
• The fronthaul capacity clk used for forwarding to

the CO the symbols ylk.
The following function characterizes the net benefit of

the transmission of group Πl towards the whole set of
receive antennas when the fronthaul rate allocated to the
group is ccc(l):

Given the parameters σ2
z , σ

2
ylk|Hl

,∀k ∈ {1, ...,K},

f(HHH l, ccc
(l)) = logdet

(
Isl +HHHH

l VVV
−1
sl
HHH l

)
− q(ccc(l)) (9)

where VVV sl is defined in (8). The first term of the function
f(.) in (9) gives the instantaneous sum rate during the
coherence time block where the channel matrixHHH l holds
and the second term is the total cost of the fronthaul
transmission for group Πl over the whole set of fronthaul
links connecting the RRHs to the CO, denoted by the
cost function q(.) defined in equation (13), see later.

B. Fronthaul deployments and cost models

To enable data processing in the CO, it has to be
connected to the RRHs through high capacity and re-
liable communication links. Several technologies (e.g.,
microwave) are considered depending on the cell size
and the deployment area, however, the mainstream tech-
nology for fronthaul connection of macrocells in 5G
remains the fiber-based Carrier Ethernet. It is also the
most suitable for a generic C-RAN architecture, where
the distance between the RRHs and the CO can reach a
few kilometers. Network operators have several options
to connect their cell-sites to the CO [23]:

a) Scenario 1 (Fronthaul leasing): A given capac-
ity of fiber Ethernet can be leased from its owner who
provides it either through a point-to-point link in some
cases or through a switched network infrastructure. This
scenario is modeled by limited fronthaul link capacity
and a constant cost-per-bit λ(1)k . Assuming that the leased
network capacity is accurately dimensioned, the cost-per-
bit of the fronthaul transmissions in this model reflects
the part of the total leasing cost for a unit rate. This linear
model allows to dispatch the overall investment between
all the transmissions over the leased link proportionally
to the fronthaul rate that they use. As in our system
model the antennas are located at several RRHs, due to
differences between the fronthaul connections at each
RRH, the cost can vary in function of the location of
the antennas (we attribute a cost to an antenna k instead
of an RRH in order to keep the framework independent

of the number of antennas).3 Then the total cost of the
fronthaul transmission between the K antennas and the
CO can be written as

q1(ccc(l)) =

K∑
k=1

λ
(1)
k clk. (10)

b) Scenario 2 (Owned point-to-point links): The
network operator can install its own point-to-point fiber
link fully dedicated to the communication between a
given RRH and the CO, thus the transmission cost
is the consequence of the investment realized for the
deployment and the operational costs such as energy con-
sumption. In this case, the fronthaul capacity is limited
and the cost-per-bit can be modeled as in (11). In this
formulation, the first term decreases with the rate used,
its role is to represent a portion of deployment costs.
The more fronthaul is used, the lower is the cost-per-bit,
since the constant deployment cost is distributed over
a higher total rate. The second term λ

(2)
k accounts for

constant operational costs such as energy consumption.

q2(ccc(l)) =

K∑
k=1

(
µ
(2)
k

clk
+ λ

(2)
k clk

)
(11)

with µ
(2)
k a real-valued constant. We use µ

(2)
k

clk
as a de-

creasing function in our model, since the more straight-
forward is to distribute investment costs over the oc-
curring transmissions proportionally to the rate used.
However, note that any other positive decreasing function
can be applied to represent a different way of distributing
link deployment costs.

c) Scenario 3 (Owned converged infrastructure):
Some operators own large fiber network infrastructures
that are shared by various services and multiple sites.
We expect that the cost model suitable to this scenario
is when per-link fronthaul capacity is unlimited and the
cost-per-bit of the fronthaul usage includes a penalty
for preventing other services to use the given amount
of rate. The first term of the cost then increases with the
allocated rate and the second one represents the constant
price. In this model, the more fronthaul rate is used,
the higher is the price factor, since the allocated rate
becomes unavailable for other services that may generate
additional revenue. Here, we model the penalty pricing
linearly with respect to the fronthaul rate (resulting in
a quadratic term in the total cost), but other positive
increasing functions can be also suitable. Note that the

3It is also possible to attribute different cost coefficients λ
(1)
k to

each group, for example if there is a priority ordering between the user
groups. For simplicity, we do not consider this case, but our method
and results remain valid as long as all the cost coefficients are positive.
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second term captures operational costs in the constant
λ
(3)
k . The following equation describes this model where
µ
(3)
k is a real-valued constant

q3(ccc(l)) =

K∑
k=1

(µ
(3)
k clk + λ

(3)
k ) · clk. (12)

The cost functions (10)-(12) model various consid-
erations of the fronthaul capacity, pricing, investment
cost, and fronthaul infrastructure sharing. They can be
generalized as follows:

q(ccc(l)) =

K∑
k=1

(µkc
n
lk + λkclk) (13)

where n is a real-valued exponent, µk and λk are non-
negative coefficients.4

When n = 1, q(ccc(l)) = q1(ccc(l)) with λ(1)k = λk + µk;
n = −1 gives q(ccc(l)) = q2(ccc(l)) with µk = µ

(2)
k and

λk = λ
(2)
k ; while n = 2 covers Scenario 3 with µk =

µ
(3)
k and λk = λ

(3)
k .

C. Optimal fronthaul allocation

With the above definitions of the net benefit of uplink
partial NOMA transmission and the fronthaul cost, we
can determine the fronthaul allocation that results in
a maximal benefit for the network operator, by the
following optimization problems.

1) With per-link fronthaul constraint: The fronthaul
allocation scheme that maximizes the net benefit for the
whole set of L users groups is the one that gives the
highest sum of the metric (9) over all groups. In Scenario
1 and Scenario 2, where the available fronthaul rate
is limited, we have to solve the following constrained
optimization problem:

Find {ccc(1)∗, ..., ccc(L)∗} = argmax
{ccc(1),...,ccc(L)}

L∑
l=1

f(HHH l, ccc
(l))

subject to
L∑
l=1

c(l)m ≤ cm, ∀m ∈ {1, ...,M}.

(14)

Let us recall that c(l)m =
m·a∑

k=(m−1)·a+1

clk, so the above

constraint can also be written as:
L∑
l=1

m·a∑
k=(m−1)·a+1

clk ≤ cm, ∀m ∈ {1, ...,M}. (15)

4We can remark that although (12) is a general polynomial function,
the optimization problem that includes such a cost function can be
solved similarly with any non-negative convex cost function.

Proposition 2. The problem (14) is concave, thus ad-
mits a unique solution that gives the optimal capacity
allocation scheme.

The proof of Proposition 2 is provided in Appendix
B.

2) Without fronthaul constraint: In Scenario 3, we
assume that by the usage of a converged network
infrastructure serving for the fronthaul, the available
fronthaul capacity can be considered unlimited, and the
cost function includes a term that stands for the cost
related to network sharing. In this case, the following
unconstrained optimization problem, which is also to
maximize the the sum of (9) over all groups, needs to be
solved for finding the best fronthaul allocation scheme:

Find {ccc(1)∗, ..., ccc(L)∗} = argmax
{ccc(1),...,ccc(L)}

L∑
l=1

f(HHH l, ccc
(l))

with 0 < c∗lk, ∀k ∈ {1, ...,K}, ∀l ∈ {1, ..., L}.
(16)

Note that the possible fronthaul rate values have to be
positive, however, this does constrain the optimization
in practice. We have the following statement extended
from Proposition 2. The proof is very similar and thus
omitted.

Proposition 3. The unconstrained optimization problem
(16) is concave and admits a unique solution, as it has
the same objective function as problem (14).

V. PERFORMANCE EVALUATION

In this section, we aim to highlight by numerical
results the benefit of cost-aware fronthaul allocation ap-
plied to the proposed partial multi-cell NOMA scheme.
We have evaluated the results of the fronthaul allocation
optimization in the 3 deployment scenarios described in
Subsection IV-B with N = 40 users transmitting towards
M = 2 RRHs located at 500 meters from each other.
We have K = 8 antennas equally distributed between
the RRHs. Note that the optimization problem can be
solved efficiently using standard convex programming
[24]. Channel gain is modeled using independent one-
ring scatterer model for each user [18].

To provide an accurate comparison of the scenarios
that we have defined in Subsection IV-B, we assume the
following relation among the price factors λ(i)k in order to
illustrate the characteristics of the fronthaul architectures
and commercial models respectively

λ
(2)
k ≤ λ

(3)
k ≤ λ

(1)
k . (17)
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Fig. 2: Net benefit of uplink transmission with con-
strained fronthaul

A. Limited fronthaul rate available

In Scenarios 1 and 2, the fronthaul rate that we can
allocate per link is constrained. The gain provided by
optimal fronthaul allocation strategy depends on the
amount of available fronthaul rate and the fronthaul cost.

We show in Figure 2 the benefit realized by uplink
multi-user partial NOMA transmissions with L = 10
user groups following the metric defined in (9). For

Scenario 2, we used µk =
λ
(2)
k

2 for this evaluation
in order to model the fact that constant operational
costs are higher than the cost related to the investment
which is shared among all the transmissions occurring.
We compare the optimal fronthaul allocation scheme
to uniform fronthaul allocation for different amounts of
available fronthaul capacity. Note that in uniform fron-
thaul allocation, available fronthaul capacity is equally
distributed to all groups and all antennas.

When the available fronthaul rate is low, both uniform
and optimized allocation result in similar efficiency,
since the constraint does not allow to achieve higher sum
rate. With sufficient fronthaul rate, optimized fronthaul
allocation allows to achieve higher transmission benefit,
since the sum rate of each group can be improved by
allocating more fronthaul to the received signals with
higher powers. In other words, fronthaul allocation is
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Fig. 3: Net benefit of uplink transmission for different
cost coefficient values

adapted to the variations of channel gains for different
users and antennas. In Scenario 2, when a point-to-point
fronthaul link is owned by the network operator, we can
see that the benefit of the transmission is higher when
more fronthaul rate is available, since the investment
cost term is reduced thanks to higher sum rate, therefore
higher gain.

B. Fronthaul allocation with different cost values

We have evaluated the maximal net benefit that we get
by optimizing the fronthaul rate allocation for different
cost coefficients. For Scenario 2, we have used µ

(2)
k =

λ
(2)
k

/2 and for Scenario 3 µ(3)
k = λ

(3)
k

/4.
We can observe in Figure 3 that the benefit in Scenario

2 is close to the one of Scenario 1 when exploitation
costs are low, and for high cost it approaches the (lower)
benefit obtained in Scenario 3. Also, the benefit of the
transmission decreases quickly when the cost increases.
The benefit of the transmission can even happen to
be negative despite optimization, whereas the cost of
fronthaul usage can be higher than the total sum rate.
Obviously, in this case it is better not to transmit or
change the system parameters, e.g., the size of the
NOMA groups.

C. Optimization for various group sizes

As we have detailed in Section III, for practical con-
siderations, the best choice is not necessarily to schedule
as many users as possible on the same PRBs. However,
regarding the fronthaul, one can expect that by reducing
the number of user groups, we use less fronthaul and
get higher benefit from the transmission. To quantify this
benefit, we have evaluated the result of optimal fronthaul
allocation for various group sizes. The number of PRBs
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Fig. 4: Net benefit of uplink partial NOMA transmission for different group sizes. For Scenario 1 λ(1)k = 0.2, ∀k ∈
{1, ...,K} and the available fronthaul rate is 400 bits/channel use/link. For Scenario 2, λ(2)k = 0.1 and µ

(2)
k =

0.05, ∀k ∈ {1, ...,K} and the available fronthaul rate is also 400 bits/channel use/link. For Scenario 3, λ(3)k = 0.12

and µ(2)
k = 0.03, ∀k ∈ {1, ...,K}. These values are set to follow the differences between deployment and operational

cost as described in (17).

is fixed to J = 20 and the N = 40 users are partitioned
in groups varying from L = 20 to L = 5.

We can see in Figure 4 that thanks to fronthaul
optimization, with groups of 4 users, we already get
around 70% of the gain that we can get with 8 users
per group (note that the latter requires much higher
computational cost). In Scenarios 1 and 2, we have a
gap of about 10% of net benefit between optimized and
uniform fronthaul allocation. In these scenarios, since the
dominant cost term is the one with λ

(i)
k which models

exploitation costs, fronthaul allocation improves more
the transmission gain for medium group size than for
large group size. We can achieve a given value of net
benefit for a partial NOMA transmission with less users
when fronthaul allocation is optimized.

In Scenario 3, when more fronthaul is allocated per
group, the cost term with µ

(3)
k that aims equity be-

tween the various services sharing the same fronthaul
infrastructure, becomes dominant for large user group.
Consequently, optimizing the fronthaul allocation gives
more improvement compared to smaller group size.
However, with optimal fronthaul allocation and a group
size of 5 users, we can achieve the maximal net benefit
possible with uniform fronthaul allocation for any group
size.

We compare in Figure 5 the efficiency of fronthaul
usage, i.e., the ratio of the net benefit of the transmis-
sion and the total fronthaul rate used, in the different
deployment scenarios. We can see again that optimizing
fronthaul allocation improves the performance of trans-
missions for any group size in all of the 3 scenarios. With
the different cost models used, the fronthaul is exploited
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Fig. 5: The efficiency of fronthaul usage by uplink partial
NOMA transmission for different group sizes in the 3
deployment scenarios defined in Subsection IV-B

with the highest efficiency in Scenario 3. In comparison,
Scenario 2 can achieve higher efficiency than Scenario
1, in both the uniform and optimized fronthaul allocation
cases. We can observe in Figure 5 that by optimizing the
fronthaul allocation in Scenarios 1 and 2, the efficiency
of the fronthaul usage becomes close to the one that we
get from uniform allocation under Scenarios 2 and 3,
respectively.

VI. CONCLUSION AND PERSPECTIVES

In the first part of the paper, we have described
practical limitations of uplink multi-user detection for
NOMA and identified a solution that allows to improve
the spectral efficiency with respect to single-user trans-
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missions, despite the tradeoff between high throughput
and implementation complexity. We have proposed to
apply the partial NOMA scheme defined as a mixture
between orthogonal and non-orthogonal scheduling to
Cloud RAN architecture where both control and traffic
data can be shared between several cells. By partitioning
the users into groups that use different PRBs, we can sig-
nificantly reduce computational complexity and process-
ing latency, although we would get slightly lower data
rate. We have also studied the possibility to create the
user groups in a deterministic manner based on channel
statistics accessible in real RAN deployments. We could
observe that with a practical grouping method only a
small improvement of the sum rate can be achieved with
respect to random grouping, thus it is useful to apply it
only in services for which even a small improvement of
the throughput can be important.

In the second part of the paper, we have focused on
optimizing the fronthaul rate used for forwarding the
signals received by the RRHs to the CO in the case
of partial multi-cell NOMA where these signals are the
superposition of UEs that are in the same user group.
Our aim is to adapt the fronthaul rate of each group
following its instantaneous channel conditions, in order
to maximize the net benefit of the transmission (i.e., the
gain that we get from achievable sum rate minus the
cost of using a given amount of fronthaul rate). We have
described various fronthaul cost models, each of them
corresponding to a different deployment and exploitation
scenario. The optimization problems that we can define
allow to find the optimal allocation scheme that gives
the highest net benefit of the uplink transmission.

Finally we have shown the improvement of the net
benefit of uplink partial NOMA transmissions by the
proposed optimal fronthaul allocation optimization. We
have found that the more fronthaul rate is available on the
link between the RRHs and the CO, the more the optimal
allocation improves the benefit compared to uniform
allocation. The comparison of deployment scenarios for
different exploitation cost coefficients has shown that
leasing fronthaul infrastructures can be the most bene-
ficial except when the cost of deploying new links is
negligible (e.g., very long term investments). We can also
confirm that independently of the cost model, fronthaul
allocation is useful for any group size and can compen-
sate the loss of benefit due to partial NOMA instead
of using full NOMA. By optimizing fronthaul rates,
we can achieve the efficiency of exploiting fronthaul
links, for example optimal allocation in simpler models
(Scenarios 1 and 2) can be as efficient as the more
evolved one (Scenario 3) but using uniform allocation.
These show that by combining partial multi-cell NOMA

on the C-RAN radio interface with cost-aware fronthaul
allocation on the RRH-CO interconnection, we are able
to ensure high spectral efficiency and throughput, by
using affordable and practically implementable multi-
user receiver and maximizing the benefit that operators
get despite the fronthaul usage cost that is considered as
the main limitation of Cloud RAN.

An interesting work to study the fronthaul allocation
optimization is to use channel measurements coming
from real network deployments in order to evaluate its
effect with real-world channel realizations instead of
modeling the channel. A future work is also to consider
other channel models including microwave and millime-
ter wave. Applying similar optimization strategies in
heterogeneous networks can be also an interesting future
work.

APPENDIX A
SUM RATE OF A MULTI-USER CHANNEL IN C-RAN

Proof:
Quantization noise: To model the limited available

fronthaul rate, we use the notion of equivalent quanti-
zation noise which is defined for a transmission by sl
users towards K receive antennas as follows.

We define the distortion dlk between the signal ylk
received by the RRH and the compressed signal ŷlk re-
ceived by the CO as the squared-error distortion between
ylk and ŷlk.

dlk = D(ylk, ŷj) := E[| ylk − ŷlk |2| H] (18)

The minimum achievable rate of a signal quantized
with distortion D is given by the mutual information
between the initial (received) signal and the quantized
(forwarded) one [25, Theorem 10.2.1]. If this rate is
lower than the capacity of the fronthaul link, the used
quantization allows an accurate transmission where the
distortion does not exceed a given variance σ2

dlk
. We can

write for a point-to-point link lk:

rlk ≤ clk
rlk ≥ min

pŷlk|ylk :D≤σ
2
dlk

I(Ylk; Ŷlk | Hl). (19)

The following relation between the received signal power
denoted by σ2

ylk|Hl
and σ2

dlk
, the maximum variance of

distortion noise that we assume Gaussian5 can be derived
according to [25, Theorem 10.3.2].

σ2
dlk
≤ σ2

ylk|Hl
2−clk (20)

5Other distributions of the distortion noise would result in a higher
achievable rate.

12



where

σ2
ylk|Hl

=

sl∑
i=1

(| hkπl
i
|2) + σ2

z . (21)

We use a scaling factor αlk in order to adapt the power
of forwarded signal to the fronthaul capacity used, i.e.,

αlk =
σ2
ylk|H − σ

2
dlk

σ2
ylk|Hl

, ∀k ∈ {1, ...,K}. (22)

Scaling factors for each antenna form the matrix AAAl =
diag

k=1,...,K
(αlk). The distortion has then the following

upper bound which, when the equality is satisfied, gives
the optimal point-to-point quantization scheme:

σ2
dlk

αlk
=

σ2
dlk
σ2
ylk|Hl

σ2
ylk|Hl

− σ2
dlk

≤
σ2
ylk|Hl

2−clk

1− 2−clk
. (23)

Achievable sum rate: We compute the achievable sum
rate from the received signal affected by the quantization
noise for a given user group Πl using the mutual
information between the signal sent by all users in the
group and the one received in the CO,
sl∑
i=1

ri ≥ I(Xl; Ŷl | Hl) = h(Xl)−h(Xl | Ŷl,Hl). (24)

We compute both entropy terms in order to find the
lower bound of the sum rate. The first term describes
the quantity of information sent by the users, and thus
depends on the transmission power (defined as unit in
our system model):

h(Xl) = log(det(2πeE[XlXHl ])) = log((2πe)). (25)

The second term represents the loss of information
between the UEs and the CO. We can compute its
upper bound using linear MMSE covariance Ce that
corresponds to the case where Ŷl would be Gaussian.

h(Xl | Ŷl,Hl) ≤ log(det(2πeCe)). (26)

For this, we use the definition of received signal by the
CO:

ŷyyl = AAAl

(
sl∑
i=1

hhhπl
i
xxxi +nnnl

)
(27)

where nnn = zzz + ddd is the equivalent noise containing
Gaussian channel noise and the quantization noise. The
covariance matrix of this equivalent noise is CN =

σ2
zIK + diag

k=1,...,K

(
σ2
dlk

αlk

)
.

We can compute the linear MMSE covariance based
for a given channel realization

Ce = IIIsl −HHH
H
l (HHH lHHH

H
l + CN )−1HHH l. (28)

Then we apply the inversion lemma on the lower bound
of the mutual information, finally, substituting the quanti-
zation noise by its upper bound following (23) completes
the proof of Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: The constraint in (14) is linear, and sub-
tracted cost function q(.) is assumed to be convex, thus
the concavity of the first term of f(.) is sufficient to show
that the problem is concave. The function log det(AAA)
is concave if and only if the matrix AAA is non-negative
definite. The sum of two non-negative definite matrices
is also non-negative definite. Since the identity matrix
satisfies this condition, we only need to show that the
second term of the argument of the log det(.) in (9)
is non-negative definite. The equivalent SNR matrix
VVV sl is diagonal with positive elements which are its
eigenvalues, thus it is positive definite. This property
stands also for its inverse.

If a positive definite matrixMMM is multiplied by another
matrix and its hermitian as BBBHMMMBBB, the result is also
positive definite if BBB is full rank. This is true for
HHHH
l VVV
−1
sl
HHH l since the columns of HHH are independent,

thus rank(HHH) = sl. Consequently, the matrix being the
argument of log det(.) is positive definite and also non-
negative definite, thus the first term of (9) which implies
with the above reasons that (14) is concave.
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