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Abstract
Sensor-based activity recognition involves the automatic recognition of a user’s activity in a smart environment using 
computational methods. The use of wearable devices and video-based approaches have attracted considerable interest in 
ubiquitous computing. Nevertheless, these methods have limitations such as issues with privacy invasion, ethics, comfort 
and obtrusiveness. Environmental sensors are an increasingly promising consideration in the ubiquitous computing domain 
for long-term monitoring, as these devices are non-invasive to inhabitants, yet certain challenges remain with activity rec-
ognition in sensorised environments, for example, addressing the challenge of intraclass variation between activities and 
reasoning from low-level uncertain information. In an effort to address these challenges, this paper proposes and evaluates 
the performance of a Radial Basis Function Neural Network approach for activity recognition with environmental sensors. 
The model is trained using the Localized Generalization Error and focuses on the generalization ability by considering both 
the training error and stochastic sensitivity measure. This measures the network output fluctuation with respect to the minor 
perturbation of input, to address the tolerance of the low-level uncertain sensor data. This approach is compared with three 
benchmark Neural Network approaches, including a popular deep learning approach using an Autoencoder, and it is evaluated 
with a simulated dataset as well as a number of publicly available datasets. The proposed method has shown advantages over 
the other models for all four evaluated datasets. This paper provides insights into the importance of model generalization 
abilities and an initial analysis of the limitation of deep Neural Networks with respect to sensor-based activity recognition.

Keywords Activity recognition · Uncertainty · Neural network · Localized generation error · Radial basis function neural 
network

1 Introduction

Activity recognition serves as a key component of connected 
health, ambient assisted living and pervasive computing 
applications (Aggarwal et al. 2014; Espinilla et al. 2018), 
ranging from promoting physical activity to monitoring long 
term chronic conditions. It is a complex process that requires 
the deployment of sensors, data collection, and data mod-
elling which is subsequently used to infer activities from 
the perceived sensor data (Chen et al. 2012). In this paper, 
we are mainly concerned with the modelling and percep-
tion of activities. Activity recognition is commonly used in 
rehabilitation systems for activity monitoring of inhabitants, 
and to support the management and also the prevention, of 
chronic disease. In relation to promoting physical activity, 
activity recognition is applied in rehabilitation centres that 
focus on stroke rehabilitation and those with motor dis-
abilities (Chen et al. 2012). Another common application 
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domain for activity recognition is within smart homes, as a 
key motivation behind this research is to monitor the health 
of smart home inhabitants by tracking their daily activities. 
Activity recognition involves the automatic recognition of a 
user’s activity in a smart environment using computational 
methods. These activities could be physical activities, i.e. 
standing and running as well as activities of daily living, i.e. 
dressing and preparing meals.

Sensor-based activity recognition has recently attracted 
considerable research interest in ubiquitous computing, 
predominantly due to advancements with wireless sensor 
networks and sensing technologies (Gu et al. 2011). Smart 
environments are an application of ubiquitous computing 
that rely on sensor data to perceive the environment, rea-
soning to assess how the environment could be changed, 
and actuators to make changes to it if required (Cook and 
Das 2007). The sensor activations capture user movement 
and interactions with objects in the environment, and there-
fore offer low-level but rich and fundamental information 
required for the recognition of human activities. There are 
challenges associated with activity recognition from such 
sensorised environments. For example, the sensor data read-
ings could be unreliable (Ranganathan et al. 2004) due to 
hardware and communication issues such as sensor temporal 
malfunctioning and transmission error (Hong et al. 2009), 
and the collected data may not provide a full representa-
tion of the activities undertaken. Besides data quality, the 
challenge of intraclass variability requires consideration as 
an activity may be performed differently by various users 
and also by the same user at various times, which can affect 
activity modelling (Vogiatzaki 2015). Additionally, data col-
lected may include sensor activations that are not representa-
tive of the current activity, due to human error or interleaved 
activities taking place.

Data-driven activity recognition approaches are therefore 
required to address the intraclass variation of activities and 
data uncertainty issues from the low-level information source. 
Neural Networks are non-parametric approaches that have the 
ability to implicitly detect complex nonlinear relationships 
between data and their classifications. Neural Networks have 
the potential to offer powerful modelling abilities for chal-
lenging problems, however, their application was partially 
restricted by computer computational capacities in earlier days. 
With the support of advances in computer hardware, it has 
enabled Neural networks to develop complicated architectures. 
Their state-of-the-art performance has recently attracted inter-
est and attention in different research communities to address 
challenges in various application areas. Recently, there has 
been increased investigations into Neural Networks for sensor-
based activity recognition, especially through the use of wear-
able and mobile devices (Wang et al. 2017a, b). Relatively, 
there has been less effort on exploring activity recognition 

with Neural Networks, particularly with respect to activities of 
daily living carried out within smart environments.

In an effort to address the challenges of sensor-based activ-
ity recognition in smart environments, modelling approaches 
with high generalisation capacity to address the challenge of 
high intraclass variability within the same smart environment 
is therefore required. With the increasing popularity of the 
ambient living environment (Calvaresi et al. 2017), various 
projects have different hardware setup and data collection. The 
modelling approach should be applicable and effective to the 
different environment, in addition to addressing the unreliabil-
ity of the low-level sensor information shared across different 
environment. This paper proposes and evaluates the perfor-
mance of a Radial Basis Function Neural Network (RBFNN) 
approach for activity recognition with environmental sensors. 
The model is trained using the Localized Generalization Error 
Model (L-GEM). The proposed approach in this paper focuses 
on the generalisation of the model by considering both the 
training error and stochastic sensitivity measure. This is used 
to quantitatively measure the network output fluctuation with 
respect to the minor perturbation of network input, to address 
the uncertainty tolerance of low-level sensor data. Evaluations 
of the RBFNN are carried out on a number of simulated and 
publicly available datasets. The performance of the model is 
also compared against other popular Neural Network mod-
els, as well as a number of established classification methods. 
Given the recent popularity of deep Neural Network methods 
and their success in other application domains, such as image 
processing (Novotny 2014), computer vision (Ciresan et al. 
2012; Bouchra et al. 2018), and natural language processing 
(Mikolov et al. 2013), this paper compares the performance 
of the RBFNN with an Autoencoder (Liou et al. 2014) which 
is amongst common approaches in deep learning. The major 
contributions of the proposed method include its fast train-
ing speed and high generalization capabilities compared with 
other neural network-based methods. The high performance 
achieved by the proposed method shows its effectiveness and 
robustness in sensor-based human activity recognition.

Related work on the methods and models for activity 
recognition is discussed in Sect. 2. The methodology of 
the proposed RBFNN via L-GEM is presented in Sect. 3 
followed by its evaluation, comparison with other Neural 
Network approaches and discussion in Sect. 4. The paper 
concludes with future work and identified opportunities in 
activity recognition.

2  Related work

Approaches for the automatic recognition of activities are 
becoming a significant research area for application in smart 
environments and ambient assisted living scenarios and 
Internet of Things applications (García et al. 2017).
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There has been extensive work in the literature on the 
activity recognition on the wearable sensors / devices 
(Hegde et al. 2017; Liu et al. 2017; Medina et al. 2017; 
Fullerton et al. 2017; Bulling et al. 2014), mostly focused 
on the physical activities such as running, sitting etc. These 
approaches are constrained with the participants wearing 
these devices and could be barrier to the uptake of long-term 
monitoring in a home environment. The other breath of work 
in activity recognition have been explored through the use 
of video-based approaches (Pirsiavash and Ramanan 2012; 
Rege et al. 2017; Jalal et al. 2017), which often require high 
computation costs. These methods, however, have limita-
tions to consider such as issues with privacy invasion, eth-
ics, comfort and obtrusiveness. In assisted living scenarios, 
for example, where activity monitoring occurs for elderly 
inhabitants, it has been reported that individuals are often 
reluctant to continuously wear body-worn sensors and are 
also reluctant to the installation of video-based monitoring 
due to privacy concerns (Roy et al. 2016). To avoid user 
acceptance issues and to address the concerns identified, 
binary sensors placed in the environment are an increas-
ingly promising consideration in the ubiquitous computing 
domain for long-term monitoring, as these devices are non-
invasive to inhabitants whilst also eliminating any privacy 
issues acknowledged with other approaches.

Binary sensors have been utilized in a recent study con-
ducted by (Gochoo et al. 2017) to recognise four commonly 
performed Activities of Daily Living (ADLs) within a home 
monitoring environment. These activities include meal prep-
aration, eating, relaxing and making a transition from bed to 
toilet. A Deep Convolutional Neural Network (DCNN) was 
implemented for the classification of these activities. The 
DCNN architecture consisted of two convolutional layers 
each followed by max-pooling layers, and subsequently two 
fully connected layers. The process involved converting the 
binary sensor data produced by 31 wireless passive infrared 
(PIR) motion sensors and 4 door sensors, into representa-
tive activity images for each of the activities defined. These 
images were then used to train and test the proposed DCNN 
classifier which produced an accuracy of 99.36% for ADL 
recognition. Although results produced are substantial, a 
larger number of activity classes could be investigated.

A recently conducted study (Moriya et al. 2017) used 
motion detectors attached to, or integrated within, vari-
ous smart appliances to recognize activities of daily living. 
These appliances also included ON/OFF states for ceiling 
lights, IH cooking heaters, TV, PC, and cleaning appliances 
e.g. a vacuum, and OPEN/CLOSE states for appliances such 
as a kitchen fridge. Four participants performed nine activi-
ties within a smart home setting, which included activities 
such as sleeping, cooking and cleaning. A Random Forest 
model was chosen for activity classification, which achieved 
an accuracy of 68%. As future work has stated, this figure 

could be improved by applying more effective techniques 
and selecting effective features.

Smart home testbeds generated at the Center of Advanced 
Studies in Adaptive Systems (CASAS) that contain only pas-
sive, non-intrusive sensors have been used to test a deep 
belief network (DBN) implemented by (Fang and Hu 2014). 
Several activities that are considered difficult for elderly or 
disabled individuals to perform independently have been 
included in their study. The proposed DBN model was 
compared to other algorithms in terms of classification 
performance, with experimental results showing the DBN 
outperformed the Hidden Markov model and Naïve Bayes 
classifiers.

A stacked denoising autoencoder (SDAE) was imple-
mented in (Wang et al. 2016) as an attempt to discover 
more intricate and non-linear relations for the classification 
of activity data acquired from numerous state-change binary 
sensors. The stacked autoencoder was first implemented for 
extracting features at a high-level, subsequently followed 
by the integration of a framework aimed at extracting rel-
evant features and training the classifier. Evaluations of this 
method included testing the algorithm on three benchmark 
datasets and drawing performance comparisons against four 
well known classification models. Experiments revealed the 
proposed SDAE method outperformed other models com-
paratively in terms of recognition rate and the ability to gen-
eralize to unseen data. A limitation was stated in that the 
influence of latent feature learning was not fully explored 
during the study.

The inference of ADLs within a smart home setting 
makes use of an abundance of time-series data to achieve 
optimal feature extraction for activity classification in (Singh 
et al. 2017). Specifically, experiments included the imple-
mentation of convolutional (CNN) and recurrent (RNN) 
neural networks to classify activities such as sleeping, 
bathing and cooking. The RNN employed is a Long Short-
Term Memory (LSTM) which is able to ascertain long-
term dependencies within data, and the CNN employed is a 
one-dimensional temporal model consisting of four layers. 
Three benchmark datasets were used to evaluate model per-
formance, which consisted of data acquired only through 
binary sensors including PIR motion sensors, pressure sen-
sors, reed switches, and float sensors. The performances of 
the neural network models were compared to that of four 
common classifiers, with experimental results showing the 
LSTM outperformed all other models when tested against 
all three datasets considered in the study, followed by the 
CNN approach. Both neural network approaches performed 
significantly better than the other models.

Although deep learning models provide promising results 
in human activity recognition, major disadvantages have 
been identified, including the requirement of large amounts 
of high quality data and training time. Small amounts of 
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data may lead to insufficient training of deep learning mod-
els and poor generalization capabilities. The L-GEM Model 
method has demonstrated its effectiveness in supporting 
the development of classifiers, i.e. multi-layer perceptron 
(Yeung et al. 2016) and support vector machines (Sun et al. 
2017), as well as its successful application in other domains, 
for example, feature selection (Ng et al. 2008) and sample 
selection (Ng et al. 2015). In order to achieve the minimized 
L-GEM function in this work, the selected RBFNN archi-
tecture is discussed for its application to activity recogni-
tion. To support the evaluation of the proposed method, we 
include several classification methods in the experiments. 
Experiments also include a deep learning stacked Autoen-
coder model, which is the most frequently used deep learn-
ing model for advanced feature representation using an unsu-
pervised learning schema. In this way, the proposed method 
is compared with the most representative method, as well 
as other popular methods to demonstrate its effectiveness 
and robustness.

Despite previous effort in the literature on activity rec-
ognition approaches, this paper focuses on dealing with 
uncertainties of low-level environmental sensor data. It also 
focuses on evaluating the generalization capability of this 
approach for recognising a relatively large number of activi-
ties in a smart environment.

3  Methodology

This section is outlined as follows. The localized generaliza-
tion error model is introduced in Sect. 3.1, followed by the 
Stochastic Sensitivity Measure and its analytical formula for 
RBFNN in Sect. 3.2. Finally, in Sect. 3.3, we describe the 
search method designed to discover the best architecture for 
RBFNN. The search method minimizes the L-GEM value of 
RBFNN and the network yielding the lowest L-GEM value 
will be selected.

3.1  Localized generalization error model

Using unseen samples very far away from training samples 
to evaluate the generalization capability of the classifier may 
be unmeaningful or misleading, as the classifier has never 
learnt knowledge about that region. Therefore, the localized 
generalization error model (L-GEM) has been proposed to 
provide an upper bound for the generalization error on the 
unseen samples, located within an identified small region 
of the training samples (Yeung et al. 2007). The L-GEM 
bounds above the training error for unseen samples. The 
training error of a classifier is defined by Remp in Eq. (1):

(1)Remp =
1

N

N∑

b=1

(
F
(
xb
)
− f

(
xb
))2

where F
(
xb
)
 , f

(
xb
)
 and N denote the target output on the 

training sample xb , the real classifier output and the number 
of training samples in the dataset respectively.

For the purpose of evaluating the generalization capabil-
ity of a classifier, in the L-GEM framework, samples located 
in the Q-neighborhood of xb described in Eq. (2) are consid-
ered as unseen samples:

where n and Δxi are feature numbers and the magnitude 
of perturbation of the ith input feature, respectively. Equa-
tion (2) shows that unseen samples are only allowed to devi-
ate away from training samples no more than magnitude 
Q. The Q-union 

(
SQ

)
 is the union of all Q-neighborhoods. 

The upper bound of the generalization error of a classifier 
for samples in the Q-union can now be computed by the 
L-GEM.

For a given Q, the L-GEM is given as follows in Eq. (3):

where p(x) denotes the unknown probability density func-
tion of x in SQ.

By applying Hoeffdings inequality with probability 1 − � , 
we have Eq. (4):

where � = B
√
ln �∕(−2m) , A, B, and ESQ

(
(Δy)2

)
 denote the 

maximum desired output difference, the maximum possible 
value of the training error, and the stochastic sensitivity 
measure (ST-SM) of the output differences, respectively. In 
general, A = B = 1 holds for a classification problem with 
outputs ranging from [0, 1].

The ST-SM is then defined in Eq. (5) as the expectation 
of the squared differences between outputs of the training 
samples and unseen samples within their Q-neighborhood 
( Δy = f

(
xb + Δx

)
− f

(
xb
)
):

3.2  Stochastic sensitivity measure for RBFNN

The Radial Basis Function Neural Network (RBFNN) is 
employed in this work for activity recognition due to its 
efficient training speed and its capability of approximating 
a function with any precision rate given enough hidden neu-
rons. An RBFNN can be described in Eq. (6)

(2)SQ
(
xb
)
=
{
x|x = xb + Δx, ||Δxi|| ≤ Q, i = 1, 2,… , n

}

(3)RSM(Q) = ∫
SQ

(F(x) − f(x))2p(x)dx

(4)

RSM(Q) ≤

(√
Remp +

√
ESQ

(
(Δy)2

)
+ A

)2

+ � = R∗
SM

(Q)

(5)ESQ

(
(Δy)2

)
=

1

m

m∑

b=1

E
[(
f
(
xb + Δx

)
− f

(
xb
))2]

(6)f(x) =

M∑

j=1

wjexp

(
x − uj

2

−2v2
j

)
=

M∑

j=1

wj�j(x)
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where M, wj , uj , and vj denote the number of hidden neurons, 
the connection weight between the jth hidden neuron and 
the output neuron, the center vector and the width of the jth 
RBFNN hidden neuron, respectively.

The ST-SM quantitatively measures the output fluctuation 
of the neural network with respect to minor perturbation of the 
network input. In other words, the ST-SM measures if a net-
work is sensitive to the input perturbation. Both the network 
inputs and connection weights could have their own mean and 
variance values (Yeung et al. 2007). Moreover, input and 
weight perturbations can be arbitrary. Thus, the perturbed sam-
ples can be treated as future unseen samples located around 
the training samples. In this work, we only consider the input 
perturbation and assume the inputs are independent and not 
identically distributed. The �xi

 and �2
xi
 represent the expectation 

and variance of the ith input feature respectively. Without any 
prior knowledge, the input perturbation of the ith input feature 
is a random variable following a uniform distribution with zero 
mean and a variance of �2

Δxi
.

Let uji denote the ith input feature of the center of the jth 
hidden RBF neuron 

(
uj =

(
uj1,… , ujn

)�) , and p(Δx) denote 
the probability density function of the input perturbations. Δx 
is uniformly distributed in the Q-neighborhood, i.e. 
p(Δx) = 1∕(2Q)n . For uniformly distributed input perturba-
tions, we have �2

Δxi
=

(2Q)2

12
= Q2∕3 . Theoretically, we do not 

restrict the magnitudes of input perturbations as long as the 
variance of the input perturbation 

(
�2
Δxi

)
 is finite. Neverthe-

less, it is reasonable to assume uniform distribution here 
because all unseen samples should have an equal probability 
of occurrence without any prior knowledge on the distribution 
of unseen samples around the training samples.

By the law of large numbers, when the number of input fea-
tures is not too low, �j(x) would have a log-normal distribution 
when n is not too small. Hence, the ST-SM of an RBFNN is 
given in Eq. (7) (Yeung et al. 2007):

where �i = �j∕v
4
j
 and �j = �j

�
n∑
i=1

�
�2
xi
+
�
�xi

− uji
�2�

∕v4
j

�
 . 

�j is defined by �j = �j

�
n∑
i=1

�
�2
xi
+
�
�xi

− uji
�2�

∕v4
j

�
 . �j is 

defined by �j =
(
wj

)2
exp

((
Var

(
sj
)
∕2v4

j

)
−
(
E
(
sj
)
∕v2

j

))
 , 

where E(Δ) and Var(Δ) denotes the expectation operator and 
the variance operator, respectively, and sj is given by 
sj = x − uj

2.

(7)ESQ

(
(Δy)2

)
=

1

3
Q2

M∑

j=1

�j +
0.2

9
Q4n

M∑

j=1

�j

3.3  Finding optimal RBFNN using R∗
SM

RBFNN training aims to find a set of parameters that mini-
mize the generalization error. A classic training method for 
RBFNN is that, by fixing the number of hidden neurons (M), 
the centers and widths are computed via the unsupervised 
k-means clustering method, and the connection weights are 
solved using the least square method. Therefore, RBFNN 
training aims to find an RBFNN with an optimal M value 
that minimizes L-GEM value ( R∗

SM
 ) among choices. In this 

section, a greedy technique based on R∗
SM

 is proposed to dis-
cover the optimal M value which makes use of the generali-
zation capability of the RBFNN. The optimization problem 
is defined in Eq. 8 given the fix Q value:

Given a training dataset with a given Q value, an RBFNN 
that yields a smaller R∗

SM
 value is preferable because it has 

higher generalization capability on unseen samples located 
within the Q-union. However, it is difficult to theoretically 
determine the Q value. A too large Q value may lead to a 
large R∗

SM
 value since too many dissimilar samples may be 

included in the calculation of the upper bound. Nevertheless, 
a too small Q value may lead to a Q-union containing too 
few unseen samples. In this case, one may consider revising 
the training data to include more of such data and retrain the 
classifier, since one may not expect a classifier to perfectly 
classify unseen samples that are totally different from the 
training data. As a rule of thumb, Q = 0.1 usually yields a 
good performance (Yeung et al. 2007), which means the 
maximum deviation from training samples is 10% for the 
input having been normalized to the range [0, 1].

The optimization problem (8) is solved by the simple 
greedy search algorithm (Zhang et al. 2017):

1. Start with M equals to the number of classes;
2. Train an RBFNN with M hidden neurons;
3. Compute the R∗

SM
(Q) value for the trained RBFNN;

4. If M < N, M = M + 1 and go to step 2.

4  Evaluation

The proposed Neural Network approach is compared with 
three popular Neural Network benchmarking approaches 
as well as a number of well-established machine learn-
ing methods, including a decision tree (CART), k-nearest 
neighbour (KNN), AdaBoost, Bagging, Naive Bayes, and 
Support Vector Machines (SVM) (Wu et al. 2008). The 
proposed method has also been compared with an RBFNN 
without LGEM to help clarify the usefulness of the mini-
mization of LGEM for RBFNN training. The evaluation 

(8)min R*
SM

(Q)
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has been carried out on a simulated dataset as well as a 
number of publicly available datasets.

4.1  Materials and methods

This section introduces three popular Neural Network 
approaches, namely, a deep learning method of a stacked 
autoencoder with softmax classifier, a Multi-Layer Percep-
tron Neural Network via minimized mean square error and 
the RBFNN without LGEM.

4.1.1  Autoencoder model

Deep Neural Networks aim to reveal distributed, high-
level representations by utilizing hierarchical architec-
tures. Generally, Convolutional Neural Networks (LeCun 
et al. 1998), Restricted Boltzmann Machines (Salakhutdi-
nov and Hinton 2009) and Autoencoders (AE) (Liou et al. 
2014) are the most commonly used in deep learning meth-
ods. Among them, the AE learns features from the original 
input as an unsupervised learning method (Baldi 2012). A 
deep architecture can be formed by stacking several AEs 
to improve the representation capability of the learned fea-
tures. An AE consists of an input layer, an encoding layer, 
and a decoding layer. The encoding layer first maps an 
input x onto a hidden representation f(x) through a deter-
ministic mapping in Eq. (9):

where We, be, and Se(·) denote the weight matrix, the bias 
vector, and the activation function of the encoding layer 
respectively. Then, the encoding layer maps f(x) back onto 
a reconstruction g(f(x)) of the same shape as x in Eq. (10):

where Wd, bd, and Sd(·) denote the weight matrix, the 
bias vector, and the activation function of the decoding 
layer, respectively. The aim of an autoencoder is to find 
a set of optimal parameters θ={We, be, Wd, bd} to mini-
mize the reconstruction error between inputs x and outputs 
g(f (x)) , formally represented in Eq. (11):

In the experiments, stacked autoencoders (SAEs) are 
utilised consisting of two AEs with the same activations to 
learn features. Figure 1 shows the work flow of the stacked 
autoencoder, and details of the feature learning algorithm 
for the SAEs can be found in Wang et al. (2017a, b).

(9)f (x) = Se
(
Wex + be

)

(10)g(f (x)) = Sd
(
Wef (x) + bd

)

(11)argmin
�

1

2

N∑

i=1

x(i) − g
(
f
(
x(i)

))
2

4.1.2  MLP

The MLP method used in this work aims to find the best 
architecture for the Multi-Layer Perceptron Neural Net-
work (MLPNN). We only consider the standard single hid-
den layer neural network and therefore the architecture here 
means the number of hidden neurons in the hidden layer. The 
MLPNN employed is trained using the off-the-shelf back-
propagation method with the loss function being MSE. To 
find the best architecture, the MLP method utilizes a similar 
method as that of the RBFNN with L-GEM:

1. Start with M equals to the number of classes;
2. Train an MLPNN with M hidden neurons;
3. Compute the MSE value for the trained MLPNN;
4. If M < N, M = M + 1 and go to step 2.

The MLPNN with the smallest training MSE value is 
selected as the network with the best architecture.

4.1.3  RBFNN without L-GEM

The difference between the RBFNN with L-GEM and the 
RBFNN without L-GEM is how they find the best archi-
tecture (i.e. the number of hidden neurons). The RBFNN 
with L-GEM finds its best architecture via the greedy search 
method introduced in Sect. 3. However, the RBFNN without 
L-GEM finds its best architecture via the same search method, 
however with the goal being to minimise the training MSE 
of the network. The RBFNN with the smallest training MSE 
value is selected as the network with the best architecture.

4.1.4  Datasets

Four datasets have been used for the evaluation. These 
include the Kasteren Dataset (van Kasteren et al. 2008), 

Fig. 1  Work flow of the stacked autoencoders with two hidden layers
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OrdonezA and OrdonezB from the UCI ADL Binary Data-
set (Ordycez et al. 2013) and the IESim Dataset (Synnott 
et al. 2014). The raw data were collected via the wireless 
sensor networks of various types of binary sensors including 
i.e., passive infrared (PIR), contact sensor, pressure sensors, 
depending on the projects experiments setup. The outputs of 
the sensors are binary where the value is 1 with the sensor 
being activated and 0 otherwise.

The characteristics of the datasets with respect to the 
number of features and the number of activities to be iden-
tified are summarised in Table 1.

The UCI ADL Binary dataset recorded ADLs performed 
by two users on a daily basis in their own homes. The ADLs 
were described by a set of sensors and the sensor events were 
captured by a wireless sensor network. The sensor events 
were recorded for 35 days in total, and the data was manually 
labelled. Two datasets have been obtained from this source, 
i.e. OrdonezA and OrdonezB. The OrdonezA contains 242 
data points with 12 binary features and 9 activities. The 
OrdonezB contains 482 data points with 10 binary features 
and 10 activities.

The KasterenADL dataset recorded 7 ADLs performed 
by a 26-year-old man with 14 state-change sensors. The data 
was acquired over 28 days which resulted in 2120 sensor 
events and 242 activity instances.

IESim (Intelligent Environment Simulation) is a simula-
tion tool which simulates the design and implementation 
of a real sensorized environment. Multiple sensors can be 
positioned on simulated objects and in the environment, and 
an avatar is used to represent the inhabitant. The simula-
tion tool can be used to generate synthetic sensor datasets 
from the interactions of the avatar with the simulated smart 
environment.

Figure 2 shows the IESim environment used for data 
collection. Eight participants carried out eleven activities 
of daily living using the generated environment, includ-
ing activities such as ‘Go to bed’, ‘Watch TV’ and ‘Use 
Telephone’. Data collection resulted in 2231 sensor events 
and 308 activity instances. There were 21 sensors in total, 
represented in red asterisks in Fig. 2. Further details of data 
collection can be found in Synnott et al. (2016).

The metric employed to evaluate the model’s performance 
is accuracy, which is the most commonly used metric. It 
describes the ratio of the number of correct predictions made 

by the model over the total number of test data instances. For 
the evaluation of the models, 10-fold cross-validation has 
been repeated five times to generate representative results.

4.2  Evaluation results and discussion

For evaluating the performance of the proposed RBFNN_
LGEM method and conducting extensive research, we 
compared the proposed method with not only the neural 
networks mentioned in Sect. 4.1, but also several estab-
lished classification methods, including a decision tree 
(CART), k-nearest neighbour (k-NN), AdaBoost, Bag-
ging, Naive Bayes, and Support Vector Machines (SVM) 
(Wu et al. 2008). Table 2 shows that the RBFNN_LGEM 
yields the best performance in every experiment. The 
deep learning method (DNN) does not show advantage in 
comparison to traditional neural networks, even without 
minimizing the localized generalization error. DNNs usu-
ally perform best in image classification problems through 
finding nonlinear and local (convolutionary) feature rep-
resentations among neighbouring pixels in images (Zeng 
et al. 2014). In contrast, the datasets used for sensor-based 
activity recognition consist of sensor data which focus 
more on the temporal relationships among sensor data. 
In addition to this, the signals need to be adapted to form 
virtual images for the DNN to process them, which may 
corrupt the correlations among consecutive signals. These 
may be the main reasons why the DNN does not yield 
good performance in sensor-based activity recognition. 
Both the DNN and the RBFNN use a linear classification 
(output) layer while the MLPNN uses a nonlinear clas-
sification (output) layer. Therefore, without the localized 
generalization error model, the MLPNN yields the best 

Table 1  Evaluation datasets characteristics

Dataset #Features #Classes

kasterenADL 14 7
OrdonezA 12 9
OrdonezB 10 10
IESimData 21 11

Fig. 2  the IESim environment with the sensor placements identified 
with red asterisks (Synnott et al. 2016)
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performances in three out of four experiments. When the 
RBFNN is optimized using the Localized Generalization 
Error, it yields the best performance. The RBFNN_LGEM 
merges the benefits of high generalization capability and 
fast training in comparison to both the MLPNN and the 
DNN. A classifier trained by minimizing the L-GEM can 
not only learn the training samples well by minimizing 
the training error, but can also avoid overfitting as it is 
not sensitive to input perturbations. Compared with the 
RBFNN without L-GEM, the RBFNN with L-GEM out-
performs it in all four datasets, which shows the efficacy 
of the L-GEM. In comparison with the established clas-
sification methods, the proposed method also yields the 
best results in all four datasets, which demonstrates the 
robustness of the proposed method.

The Kasteren Dataset consists of sensor data gener-
ated from the same set of activities collected in differ-
ent houses. This requires a higher level of generalization 
capability to yield a high accuracy. The RBFNN_LGEM 
outperforms the DNN, the MLPNN, and the RBFNN with-
out L-GEM in the Kasteren Dataset by 4.81%, 6.94%, and 
0.66%, respectively. These results show the RBFNN_
LGEM yields outperformance than the other models, 

demonstrating the importance of minimizing the Localized 
Generalization Error for neural network training.

All comparison methods are implemented using Mat-
Lab® Statistics and Machine Learning Toolbox. The main 
parameters settings for each method are given in the fol-
lowing. The maximum number of splits in CART is 20; the 
number of nearest neighbours in k-NN is 1; the number of 
learning cycles and the base learner in AdaBoost is 50 and 
discriminant analysis respectively; same parameters as that 
in AdaBoost are used in Bagging; Naive Bayes utilises the 
gaussian smoothing density estimate to model the data and 
SVM uses the gaussian kernel function and default values 
for the kernel are used.

In addition to evaluating the proposed method with regard 
to classification accuracy, the computational complexity of 
the proposed model has also been investigated. Tables 3 and 
4 present the average time required in seconds for training 
and testing the models, respectively. Experiments are run 
using Matlab2017a under Windows 10 system on a com-
puter with an intel i5-7300U CPU and 8 GB of RAM. For 
training, among all methods, the k-NN and the Naive Bayes 
required the least amount of time for models built from each 
of the datasets. The reason for this is the k-NN requires little 

Table 2  Comparison of 
classification accuracies of the 
models on the different data 
sources

All values are in percentage and that in the parenthesis are the standard deviation over five 10-fold Cross 
Validations

Models kasterenADL OrdonezA OrdonezB IESim

CART 88.24 (0.76) 96.71 (0.03) 85.21 (0.23) 94.33 (0.3)
k-NN 88.14 (0.54) 97.38 (0.52) 83.34 (0.56) 95.24 (0.2)
AdaBoost 90.42 (0.4) 83.8 (0.54) 85.5 (0.21) 85.3 (0.27)
Bagging 89.12 (1.72) 85.39 (0.61) 85.5 (0.31) 86.93 (0.26)
Naïve Bayes 84.98 (0.46) 67.04 (0.59) 84.5 (0.16) 87.09 (1.2)
SVM 88.97 (0.61) 97.14 (0.03) 85.83 (0.25) 95.63 (0.18)
DNN (Stacked autoencoder) 86.74 (1.29) 73.98 (7.55) 68.76 (0.65) 82.59 (9.74)
MLPNN 85.01 (2.61) 94.86 (2.72) 83.19 (1.63) 93.05 (1.07)
RBFNN without LGEM 90.31 (1.32) 96.95 (0.45) 85.92 (0.44) 96.18 (0.43)
RBFNN_LGEM 90.91 (0.94) 97.51 (0.49) 86.00 (0.23) 96.44 (0.32)

Table 3  Comparison of average 
training time (in seconds) of 
the models on the different data 
sources

Models KasterenADL OrdonezA OrdonezB IESim

CART 0.01 0.09 0.01 0.11
k-NN 0.01 0.08 0.01 0.08
AdaBoost 0.16 0.42 0.16 0.47
Bagging 0.13 0.32 0.13 0.34
Naïve Bayes 0.01 0.29 0.01 0.61
SVM 0.14 0.08 0.3 0.09
DNN (Stacked autoencoder) 3.51 3.75 3.56 3.94
MLPNN 0.29 0.46 0.39 0.39
RBFNN without LGEM 0.03 0.06 0.05 0.04
RBFNN_LGEM 0.03 0.06 0.06 0.04
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training but need to load all data into the RAM and “memo-
rizes” them. The Naive Bayes method only requires fitting 
to a predefined distribution. Compared with the Neural Net-
works based methods, both RBFNN methods demand the 
least training time, especially in comparison to the Deep 
Neural Network Model. For the testing time presented in 
Table 4, both RBFNN methods require little time in com-
parison to the other methods. Based on the performance in 
prediction accuracy and model complexity, the proposed 
RBFNN_LGEM method offers fast training, testing, and 
high generalization capabilities. As a result, it has shown 
great potential in sensor-based human activity recognition.

Although some of the benchmarking datasets have been 
very well established in the research community, attention 
has been drawn to the limitations of publicly available data-
sets for activity recognition within smart environments. Data 
is usually collected in a controlled environment with limita-
tions regarding the number of participants involved and the 
number of activities observed (Wang et al. 2018). There has 
been work attempting to address this issue in order to better 
support modelling and activity recognition using data col-
lected from wearable devices (Cleland et al. 2014). However, 
there is limited progress on such data collection from envi-
ronmental sensors for activity recognition.

5  Conclusion and future work

In this paper, we proposed a Radial Basis Function Neu-
ral Network approach trained using the Localized Gen-
eralization Error for the recognition of human activities 
within sensorised environments. This approach focused 
on generalization ability by considering both the training 
error and stochastic sensitivity measure, which measures 
the network output fluctuation with respect to the minor 
perturbation of input. This approach therefore deals 
with uncertainties in data from low-level sensor read-
ings. In addition, this approach addressed the challenge 

of intraclass variability where same activity may be per-
formed differently by different individuals (Sun et  al. 
2017) as well as potential variations that may occur when 
the same individual performs an activity influenced by e.g. 
fatigue or stress (Cleland et al. 2018). To evaluate the pro-
posed approach, a number of well-established public data-
sets have been used, as well as a dataset generated through 
a simulated environment. The proposed approach outper-
formed all benchmarking approaches used in this paper on 
all datasets, revealing the importance of model generaliza-
tion abilities in sensor-based activity recognition.

In this work, raw data was used directly without any 
data pre-processing. One of our future works is to combine 
the LGEM-trained RBFNN with better features extracted 
from the raw sensor data to improve activity recognition 
performance. For instance, Word-to-Vector methods pro-
jecting a binary vector to a shorter real-valued or integer-
valued vector may help with binary sensor data problems. 
On the other hand, owing to the simplicity of the binary 
sensor data, increasing the sampling rate to create a larger 
number of input features per time unit may help enhance 
feature representation. This will be helpful for real appli-
cations in which the user would collect their own data. For 
datasets with continuous sensor data, the window-size for 
an activity or sample is important. The optimal window-
size can be learned through data using machine learning 
methods. Furthermore, the transition point from one activ-
ity to another is an important issue in sensor-based activity 
recognition. It would be interesting to explore the use of 
an RBFNN trained via the minimization of the Localized 
Generalization Error to optimize window-size and transi-
tion detection, in addition to activity recognition. We may 
also conduct research into a unified framework of Local-
ized Generalization Error Minimization for all these tasks 
to perform activity recognition. Finally, regarding the 
dataset limitations discussed earlier, future evaluations of 
the proposed model could be carried out on a large-scale 
dataset acquired from a free-living environment.

Table 4  Average testing time 
(in seconds) of the models on 
the different test data sources. 
0 for the entries represents that 
the time needed was very small

Models kasterenADL OrdonezA OrdonezB IESim

CART 0 0.01 0 0.01
k-NN 0 0.02 0 0.02
AdaBoost 0.02 0.09 0.02 0.1
Bagging 0.02 0.09 0.02 0.1
Naïve Bayes 0 0.06 0 0.12
SVM 0.02 0.01 0.03 0.01
DNN (Stacked autoencoder) 0.01 0.01 0.01 0.01
MLPNN 0.01 0.01 0.01 0.01
RBFNN without LGEM 0 0 0 0
RBFNN_LGEM 0 0 0 0
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