archives-ouvertes

Artemisa: an Open-Source Honeypot Back-end to
Support Security in VolP Domains

Rodrigo Do Carmo, Mohamed Nassar, Olivier Festor

» To cite this version:

Rodrigo Do Carmo, Mohamed Nassar, Olivier Festor. Artemisa: an Open-Source Honeypot Back-end
to Support Security in VoIP Domains. IFIP/IEEE International Symposium on Integrated Network
Management - IM 2011, May 2011, Dublin, Ireland. inria-00594857

HAL 1d: inria-00594857
https://hal.inria.fr /inria-00594857

Submitted on 5 Jun 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00594857
https://hal.archives-ouvertes.fr

12th IFIP/IEEE International Symposium on Integrated Network Management 2011

Artemisa: an Open-Source Honeypot Back-End to
Support Security in VoIP Domains

Rodrigo do Carmo
Blas Pascal University
Av. Donato Alvarez 380
5147 Argiiello, Cérdoba, Argentina
Email: rdocarmo@ubp.edu.ar

Abstract—Voice over IP (VoIP) and the Session Initiation
Protocol (SIP) are establishing themselves as strong players in the
field of multimedia communications over IP, leveraged by low cost
services and easy management. Nevertheless, the security aspects
are not yet fully mastered. In this paper we present an open-source
implementation of a VoIP SIP-specific honeypot named Artemisa.
The honeypot is designed to connect to a VoIP enterprise domain
as a back-end user-agent in order to detect malicious activity at
an early stage. Moreover, the honeypot can play a role in the real-
time adjustment of the security policies of the enterprise domain
where it is deployed. We aim, by this contribution, to encourage
the deployment of such honeypots at large scale and the collection
of attack traces. We test the capacity of the honeypot to handle
a series of known SIP attacks and present results from diverse
scenarios.

I. INTRODUCTION

Voice over IP (VoIP) is quickly hitting the market after the
establishment of the Session Initiation Protocol (SIP [9]) as the
de-facto standard signaling protocol in the Internet and the IP
Multimedia Subsystems (IMS). Basically, SIP allows two com-
municating parties to establish, modify and terminate a media
session. The media session is described through the Session
Description Protocol (SDP) body carried by the SIP messages.
SIP is a request-response layered protocol: a SIP Dialog is
composed of one or more transactions. A transaction is formed
by a request, one or more informational responses and a final
response. There are four types of transactions: on the one hand
client transactions and server transactions, on the other hand
INVITE transactions and non-INVITE transactions. The SIP
addressing scheme is based on the Uniform Resource Identifier
(URI) scheme like sip:user@host:port; parameters.
A SIP enterprise domain is typically composed of user premises
(hard and soft-phones), a SIP infrastructure (e.g., proxy, reg-
istrar, back-to-back user-agent) and supporting services (e.g.,
web-based management, TFTP, DNS).

VoIP has not only the inherited security problems of the
network layers, but also new threats and vulnerabilities. The
unprotected VoIP products represent new opportunities for the
attackers to bypass firewalls and network security policies. The
main IP telephony threats are: request flooding and Denial of
Service (DoS) affecting the service availability, eavesdropping

978-1-4244-9220-6/11/$26.00 ©2011 |IEEE

Mohamed Nassar
INRIA Research Center
Nancy - Grand Est
615, rue du jardin botanique
54602 Villers-Les-Nancy, France
Email: nassar@]loria.fr

Olivier Festor
INRIA Research Center
Nancy - Grand Est
615, rue du jardin botanique
54602 Villers-Les-Nancy, France
Email: festor@]loria.fr

2 VoIP VLAN
~
S >
S
Proxy server Honeypot

Registrar
server

@j (]
@j

@j
l@j

%

Figure 1. VoIP honeypot deployment

and privacy unveiling, media injection and alteration such as
man-in-the-middle attacks, toll fraud and service theft, imper-
sonation and call redirection to a malicious party, caller-ID
spoofing, unsolicited call or what is known as SPAM over
Internet Telephony (SPIT) [2]. The future of the VoIP security
is hard to be predicted today, mostly because of the lack of
information about security incidents and exploits.

In front of these threats, innovative security approaches
should be extended to cover this arena. In particular, the
information gathering and the early warning systems are widely
deployed in computer networks today as an important security
component. The honeypots and the honeynets constitute an
important factor in order to know what are the real dangers and
what the attackers methodologies will be [13]. We do adapt this
concept to the VoIP sphere.

In this context, we propose an architectural design together
with an open-source implementation of a VoIP SIP-specific
honeypot that can be deployed as a user-agent back-end in a

361

VoIP enterprise domain. Because of the fact that the honeypot
extensions do not represent real users, every activity targeting
them is perceived as suspicious. The honeypot answers the calls
and records them along with the SIP trace. The honeypot is
able to classify many kinds of anomalies and report them to
the administrator or automatically control the security policy of
the domain under protection. The typical honeypot deployment
configuration is depicted in Figure 1: the honeypot registers
to one or several SIP registrars and waits for calls and SIP
messages. Two options are possible: The first option is to
connect the honeypot in the demilitarized zone. Thus it will be
isolated from the internal network and the VoIP VLAN in case
the machine running it is compromised. The second option is
to connect it through the Internet as many VoIP providers today
has subscribers from all over the globe across the Internet.

The rest of this paper is composed as follows: In Section 2 we
expose related work on VoIP security and honeypots. Section
3 describes the functional goals of our design. In Section 4 we
expand the software architecture and expose implementation
details. Experimentation and results are shown in Section 5.
Finally, Section 6 concludes the paper and presents the future
works.

II. RELATED WORK

VoIP security has stimulated the enterprises, research and
government communities to investigate the best ways of as-
suring its different security aspects. General recommendations
for a safe VoIP deployment are defined in [14], [1], [5].
Several books have already been published on this topic [12].
Geneiatakis et al. [4] analyzed the SIP protocol and high-
lighted its weaknesses. SIP product vulnerabilities have also
been notified. Sengar et al. [11] presented a threat model for
integrated signaling between VoIP and PSTN and proposed an
integral protection solution. The VoIP security clearly imposes
new challenges because of its dynamic, open and large-scale
settings. Therefore, innovative and novel defense approaches
are required.

One of the issues that is extensively studied is the SPIT
problem. The key issue with SPIT identification is the caller
identity. Quittek et al. [8] applied hidden Turing tests on
the caller side and compared their results to typical human
communication patterns. For passing these tests, significant
resource consumptions at the SPIT generating side were re-
quired, which contradicts the objective of the spammer of
placing as many SPIT calls as possible. Quinten et al. [7]
gave a survey of protection techniques against SPIT. VoIP
SEAL [10] implements a two-stage decision process: The first
stage contains modules that analyze a call only by looking at
information which is available before actually answering the
call. The second stage consists of modules that interact with
the caller or the callee during the call. Since the second stage
modules introduce some inconvenience, a scoring system is
deployed at the first stage to determine if there is need to use
them or not. In addition to the Turing test module, VoIP SEAL
includes white- and blacklisting, simultaneous calls, call rate,
and URI, IP, and domain correlation. The end-user feedback is

taken into account for the SIP clients that are instrumented with
this capability. Our approach in this paper is a complementary
system that can interact with the existing solutions.

There are many projects deploying VoIP honeypots based
on available VoIP software (such as Sipp'): The Honeynet
Project’ deploys several low interaction sensors providing triv-
ial functionalities. They do not interact, or trick the attacker into
making calls or else, but simply log connection attempts>. Par-
ticularly, the Australian and the Norwegian chapters announced
several events* where the employment of the SIPVicious® tool
is noticed. SIPVicious allows scanning for open SIP ports,
enumerating user accounts, determining those that can be
registered without authentication and cracking weak passwords
by dictionary attacks.

Nassar et al. [6] have proposed a VoIP honeypot architecture
equipped with reconnaissance tools and an inference engine
—based on Bayes inference and Markov chains— that deter-
mines the nature of a received SIP message. This probabilistic
approach cannot be applied without sufficient labeled data for
training. A rule-based approach can be used instead. In this
paper we extend this work and provide a real implementation
of a honeypot within realistic VoIP settings.

Regarding the announced security events, one concludes
that malicious attempts are in their infancy. There are many
“hacking” tools, however, that can be taken “off-the-shelf” and
used by script kiddies. We aim by this contribution to encourage
the deployment of VoIP honeypots on large and early scales
before the proliferation of large-scale attacks.

III. FUNCTIONAL GOALS

The honeypot registers several series of virtual extensions at
one or more SIP registrars. The virtual extensions have to be
chosen in order to protect the real ones. For example if the real
extensions are all composed of three digits, we recommend that
the virtual extensions cover all the 3-digit numbers that are used
by real subscribers. Alternatively, the domain proxy or PBX can
be configured to forward all the messages that are not addressed
to real extensions towards the honeypot. The functional goals of
such a setting range from enumeration detection and VoIP Spam
mitigation to signature collection and attackers blacklisting. The
security policy of the VoIP domain can be controlled in real
time. We expand each of these goals next.

A. Enumeration detection

An enumeration is detected as a series of OPTIONS, REG-
ISTER or INVITE messages addressed to a series of virtual
extensions. The attack source must be able to receive the re-
sponses in order to analyse them. In active mode, our honeypot
gathers information about the source (e.g., the attack tool,
the user-agent, the IP address and domain, the geographical
location, the autonomous system number) and reports them to

Uhttp://sipp.sourceforge.net/
Zhttp://www.honeynet.org/
3http://honeynet.org.au/?q=phoneynet_part2
“http://www.honeynor.no/
Shttp://sipvicious.org/blog/

362

SIP accounts

PJSIP User
Agent, PJSIP
and PJIMEDIA
Stacks

Rule-based
Classification

Rule-based
Fingerprinting

Configuration - Command Line Interface

Rule-based
Correlation

Flooding
armor

Artemisa VoIP Honeypot

Active Tools
Information

Gathering

Analysis tools

RENVING
scripts

Results - Alerts
E-mail
notification

Call Recording

Figure 2. The honeypot modules

the domain administrator. The gathering of information is based
on networking tools such as Nmap, Sipsak and DNS lookup.
This information can be interpreted automatically in order to
block the enumeration in real-time.

B. VoIP SPAM mitigation

Spam over Internet Telephony (SPIT) is detected as a series
of INVITE messages addressed to a series of honeypot ex-
tensions followed by deliveries of media. The spitters wait for
the 200 OK responses carrying the received SDP and send their
spam to the announced IP and RTP port. Our honeypot responds
to the SPIT calls and records them for further content-based
analysis. The SPIT call analysis is helpful for deploying anti-
spam filters within voice mail-boxes or for applying Turing tests
for distinguishing the human from the automated SPIT patterns.
The honeypot gathers pieces of information about the SPIT
source and reports them to the domain administrator. These
pieces can be interpreted automatically and used to block the
spammers.

C. Signatures collection

Different VoIP equipments and firmwares (such as phones,
call managers, servers) have been identified to be vulnerable
to attacks such as remote crash, SQL injection, XSS cross-site
scripting and remote eavesdropping. Theses vulnerabilities can
be exploited by sending especially crafted SIP messages. A
fingerprinting of the victim device may precede the attack in
order to choose a suitable exploit. Our honeypot announces fake
fingerprints (e.g., manufacturer string, product name, firmware
version) in the user-agent or server header when it is actively
fingerprinted (for example through an OPTIONS message).
For example, a VoIP domain administrator may be interested
by announcing similar fingerprints to what is used in the
production domain. Likewise, the crafted SIP messages that
are received will be collected and reported to the domain
administrator. These messages are important in order to extract

signatures and incorporate them in SIP-aware firewalls. We
report the zero-days exploits to the manufacturers in order to
patch their systems. We report and black-list the attack sources
if they are identified to not being spoofed.

D. Real-time closed-loop control of the domain security policy

As aforementioned in the three previous functionalities, we
aim to automate the interpretation and the reconnaissance of
the perceived activities in real-time. The results of this analysis
are reported to the administrator but can also trigger response
scripts and exchange data with other components in the VoIP
domain (e.g., SIP firewall, PBX dial-plan). The response can be
applied in a progressive and continuous manner especially when
the attacks persist. The closed-loop control of the openness
of the domain permits to establish a compromise between the
security and the reachability of the service. For example when
dealing with SPIT, we can start by a “try later” policy. If the
attack persists, we end by blocking totally the IP sources. From
another side, the real time reaction to the security threats is
mandatory for high-cost and sensitive services such as VoIP.

E. Configuring the honeypot

The honeypot functionalities are defined through a behavior
mode represented by a state machine. The state machine is
described using rules and fine-grained operations. Customized
modes can be defined by the administrator. In addition, we
define two primitive modes: passive and active. In passive
mode, the honeypot does not use any networking tool hence
does not send any request that may unveil its presence. In
active mode and when the honeypot reveals that the attack
source is real, it tries to collect information about it such as: the
SIP fingerprint, the underlying operating system fingerprint, the
IP route, the opened ports and services (several opened ports
might indicate that many sessions are maintained in parallel).
All these operations are supported by a modular and extensible
architecture as described next.

363

IV. HONEYPOT MODULES AND IMPLEMENTATION

Artemisa is composed of several modules bundled together
using the Python scripting language. These modules are de-
picted in Figure 2. The Tcpdump module controls the collection
of the raw network traffic at the honeypot machine using the
Tcpdump tool. The call recording module uses the PJMedia
library to safeguard the received audio flows in appropriate
formats. The remaining modules are briefly described next.

A. PJSIP User Agent, PJSIP and PIMEDIA stacks

The SIP User Agent is responsible of registering the virtual
extensions at one or several registrars, answering calls, respond-
ing to SIP requests and announcing the virtual fingerprints. In
addition, it controls the other components based on the behavior
mode. We use the Python binding of the C/C++ PJSIP® User-
Agent library (PJSUA). This library makes use of two stacks:
PJSIP and PJMedia for SIP and RTP handling. PISUA allows
to emulate a SIP user agent in a very easy way. In contrast, the
library binding does not offer full access to the SIP stack (e.g.,
for handling OPTIONS messages).

The PJSUA is supplied with the virtual SIP accounts and
configured through setting files at bootstrap and a Command
Line Interface (CLI) under execution.

B. Active tools - Information gathering

This component is responsible of running reconnaissance
tools in order to collect complementary information about the
source of received messages. We investigate several items in
the SIP and SDP message: the IP source of the message, the
caller URI, the Contact header, the Via header(s), the Route and
Record-Route headers if any, the media IP and port (in the SDP
attributes: Connection (c), Owner (o) and Media (m)).
This component invokes the following tools:

« Dig: being the alternative of the former Nslookup, this tool
is used for querying the DNS records. It performs DNS
and Reverse DNS lookups.

o jwhois: being an Internet Whois, this tool helps to obtain
publicly available information about the domain names
involved in the SIP message.

o Sipsak’: this is a SIP tool that can make different SIP tests
such as sending an OPTIONS message to a target URI.

o Nmap®: this is an efficient scanning tool that we can use
to scan the caller’s host and determine if SIP, media, or
both ports are open.

o Traceroute: helps trace the IP routes toward the different
SIP proxies and UAs involved in the SIP message.

o pOf’: is a passive fingerprinting tool that helps us retrieve
additional information about the source such as the oper-
ating system.

The collected information are formatted and supplied to the set
of classification and correlation rules.

Ohttp://www.pjsip.org/
"http://sipsak.org/

8http://nmap.org/
9http://lcamtuf.coredump.cx/pOf.shtml

INVITE

message
received

Fingerprint
Check indentified

fingerprint

Check DNS

DNS is fake Correct

Check if
SIP ports
are opened

Interactive
attack

Spoofed
message

Check if
media ports
are opened

Check if

request URI proxy in Via

Direct

Check for ACK attack

Check received YWel . .
Ringing

Media is received

Figure 3. Decision tree for a received INVITE

C. Rule-based classification

The classifier interprets the data obtained by the recon-
naissance tools and generates qualitative conclusions based on
rules forming a decision tree. An example is shown in Figure
3. This decision tree interprets a received INVITE message
and generates one or more conclusions about the nature of
the message. The ovals represent actions performed and the
rectangles (the leaf nodes) represent conclusions.

The first and most important step is to check if the message
has any known fingerprint of an attack tool, since it is easy to
deal with an attack if we know how it was generated.

The second step is to determine if the message is spoofed
or not. Messages that are not spoofed is a sign of interactive
attacks where the attacker needs to catch the responses and
analyse them. This can be done by checking for the used
domain names to be real, and checking if the announced SIP,
media, or both ports are opened.

The third step is to check if the request URI carries one of
the virtual extensions. If not, we check if the message is coming
across the used proxy (Via header), or PBX (IP source). This
can differ a direct attack (probably from inside the network)
from a dial-plan error (why this message is routed to the
honeypot while it does not address a virtual extension?).

364

Other checks apply to the overall dialog as initiated by this
INVITE message. The honeypot answers with a 200 OK and
waits for ACK and media. If received, the dialog is considered
as SPIT. Otherwise, the INVITE needs to be correlated with
other events because it could be part of a scanning (trying to
reach a gateway to the PSTN or valid extensions) or a ringing
attempt (ringing all the phones in the target domains).

We give the administrator the ability to define the inves-
tigation process operations, and the rules to be applied on
the investigation results, hence to control the decision process
of the honeypot. The classification rules are placed under a
context (for example the received INVITE message) and are
composed of a pre-action, a condition and an action. We use
a simple attribute = value syntax to describe the rules.
For example, the first node of the aforementioned decision tree
can be represented by the following rule:

[rule_1]

type = Classification

context = INVITE

pre—-action = assign %a Check_Fingerprint ()
condition= %a in FINGERPINTS

action= add \

"Tool identified as: CONCLUSIONS

om
sa

where assign, in and add are specific operators,
FINGERPINTS and CONCLUSIONS are pre-defined data ar-
rays, and Check_Fingerprint is a pre-defined operation.

D. Rule-based fingerprinting

The fingerprinting rules are applied when the
Check_Fingerprint operation is performed. A
fingerprinting rule looks for a regular expression in a
specified SIP header or attribute, or in the entire message. For
example the following rule looks for the chain of characters
friendly-scanner in the User Agent header of the SIP
message in question:

[rule_2]

type = Fingerprinting
context = INVITE

re = ’"friendly-scanner’
where = SipMessage.UserAgent
action = return "SIPVicious"

E. Rule-based correlation

The correlation rules are applied when several SIP messages
are used to infer a conclusion. We define different types of
correlation rules. These types are particularly needed to detect

flooding, scanning and SPIT series of events.

This type of rules support timer and threshold attributes. For
example, the following rule is used to check if an ACK is
received after an INVITE in a time window of 5 seconds.

[rule_3]
type = Correlation.EventInWindow

context = INVITE

scope = DIALOG

timer = 5

condition = context == ACK
action-if-false = add \

"no ACK is received" CONCLUSIONS

The scope attribute defines to which SIP messages this rule
can be applied. scope = DIALOG means that the rule can

VoIP domain Firewall Attacker
OPTIONS
300 -
200 OK >
OPTIONS
301 -
200 OK >
OPTIONS
302 |-
é 200 OK >
& OPTIONS E
g 303 |-
ac 200 OK -
Report >
OPTIONS
304 e
OPTIONS
305 N
\J

Figure 4. Real-time integration of the honeypot results

be solely applied to messages that have the same call-ID of
the former INVITE. The action-if-false attribute means
that the action will be executed in case the window time has
expired and the condition above is still false (in contrast to the
action attribute).

F. Flooding armor

This component protects the honeypot from been flooded
by SIP requests. This is done by ensuring that the honeypot
processes a limited number of requests in a given period of
time. The correlation rules are used. For example, the following
rule detects if three INVITE messages are received from the
same IP source in a time window of one second. The required
action is executed at the end.

[rule_4]

type = Correlation.ThresholdInWindow
context = INVITE

scope = IPSrc

timer = 1

threshold = 3

action = system "bash ./on_flood.sh $IPSrc"

G. Response scripts

The response scripts are executed by the honeypot in order
to react to a detected attack by blocking or mitigating it. For
example, Figure 4 shows an enumeration attempt that is blocked
in real time after being detected by the honeypot. The response
scripts are called within the rule definitions by using the
system keyword and passing the necessary arguments about
the attack source (e.g., IP source, SIP From URI). The reaction
can be performed at different levels: IP firewall, SIP-aware
firewall, dial-plan, among others. The administrator defines his
appropriate scripts in respect to the domain settings.

365

*kkkkxkkkxkxxxxx Information about the call *xxxxxxkkkkrkrk*k*
From: in 192.168.0.103:9/udp
To: 500 in 192.168.0.104

Contact: in 192.168.0.103:9/udp
Connection: 192.168.0.103
Owner: 192.168.0.103

Via 0: 192.168.0.103:9/udp
User-Agent: Elite 1.0 Brcm Callctrl/1.5.1.0 MxSF/v.3.2.6.26

Kkkkhkhkkhkhkhkkkhkkkkxhkkkkhk* CONCLUSIONS H*hkkhkhkkkhkkkkkkkkkkhkkhkkk
Tool identified as: Inviteflood

Spoofed Message

no ACK is received

no Media is received

Scanning or Ringing or flooding attack

waiting for correlation results

* ok ok ok o of

Alert is saved on file 2010-07-17_2.txt
Alert is saved on file 2010-07-17_5.html
E-mail notification is disabled.

Figure 5. Example of a message Alert

H. Results, alerts, and e-mail notification

We have two type of alerts:

o A message alert: contains all the conclusions that are
inferred about a SIP message,

o A composed alert: contains information about a list of
correlated SIP messages.

The alerts are provided to the command line interface and
logged in text and HTML formats. The honeypot can be
configured to send alerts to the administrator by e-mail. An
example of a message alert is shown in Figure 5.

The honeypot source code is distributed under the GPLv3'°
license. The latest release is available at the project home page:
http://artemisa.sourceforge.net/.

V. EXPERIMENTATION AND CASE STUDIES

We extensively tested the honeypot performance in terms
of robustness and accuracy. The goal of the robustness tests
is to ensure that the honeypot does not easily crash when it
is targeted by attacks or when it is abnormally flooded. The
goal of the accuracy tests is to verify that it makes the good
interpretation of received SIP messages.

In the sequel, we start by showing the offline interpretation
of a SIP message detected by a deployed sensor. After that, we
present our test-bed and summarize the results of 4 scenarios
involving several attack tools. We show how responses can be
triggered at parallel protection levels.

A. Interpretation of a SIP message

The INVITE message depicted in Figure 6 is reported by
the Norwegian chapter (http://www.honeynor.no/2009/09/20/
citibank-uk-number-was-target-for-a-lawnmower-telephone-
attack-today/). We assume that this message is received by
our honeypot and interpreted by the classifier decision tree.
The following remarks are obtained:

10http://www.gnu.org/licenses/gpl.html

INVITE sip:00442075005000@x SIP/2.0
Via: SIP/2.0/UDP IP hidden:58585;branch=z9hG4bKaergjerugroijrgrg
To: <sip:x>
From: <sip:IP hidden:58585>;tag=Zerogij34
Call-ID: 213948958-34384780214-384748@IP hidden
CSeq: 1 INVITE
Max-Forwards: 69
Contact: <sip:sip@IP hidden:58585;transport=udp>
Allow: INVITE,ACK,OPTIONS,BYE,CANCEL,NOTIFY,REFER, MESSAGE
Content-Type: application/sdp
Content-Length: 520
Session-Expires: 3600;
Allow-Events: refer..
v=0
o=sip 2147483647 1 INIP4 1.1.1.1
s=sip
c=INIP4 1.1.1.1
t=00
m=audio 29784 RTP/AVP 8 04 18 18 18 18 96 3 98
a=rtpmap:96 telephone-event/8000
a=sendrecva=ptime:20
a=rtpmap:18 G729AB/8000
a=rtpmap:18 G729B/8000
a=rtpmap:18 G729A/8000
a=rtpmap:18 G729/8000
a=rtpmap:4 G723

Figure 6. An INVITE from an attack trace

e The User-Agent header is missing: We cannot estimate
what tool has been used.

o Check DNS returns negative. The IP in the SDP (1.1.1.1)
shows that the message is spoofed.

e Check if host is up and if SIP, media, or both ports are
open: The host and ports are surely not available.

¢ Check for ACK and received media: No media delivery
or ACK are noticed.

At this level, the received message is reported as spoofed: No
real SIP state machine is involved at the attacker side. The
used IP is spoofed or it belongs to a compromised machine.
To get the overall picture, the other reported messages must be
considered and correlated. If all the messages target the same
extension, the correlator reports a flooding. If several extensions
are targeted in a short period of time, three conclusions are
possible:

1) The goal of the attacker may be making maximum
disturbance by ringing all the phones in the domain. This
is likely true if the attack persists.

2) The goal of the attacker is to enumerate the possible
extensions in the domain. This is likely true if a large
set of extensions is targeted (user part of the request
URI). One can wonder, however, why the attacker does
not use OPTIONS scanning which is more stealthy. In
the same time, one cannot assume the logical behavior
of the attacker.

3) The goal is to identify the gateways SIP/PSTN. This is
true if a few messages are targeting several gateways
(domain part of the request URI).

B. Testing against attack tools

Physically our test-bed is composed of two machines: The
first machine contains the honeypot and an Asterisk!'! PBX

Uhttp://www.asterisk.org/

366

server. The second machine contains two bridged virtual ma-
chines: one representing the attacking tools and one having a
soft-phone to emulate a legal external caller. We use a hard-
phone to represent a user of the Asterisk server that has to
be protected. The hardphone registers extension “305” at the
Asterisk server. The honeypot registers extensions *“300-304”
and “306-310” in order to protect the targeted extension from
both sides. Another option is to configure Asterisk to forward
all the calls towards unregistered extensions to the honeypot.
Next we give 4 case studies and we show how the honeypot
can react and help to support the test-bed domain security.

1) Catch and crash SIPVicious: In this scenario, we launch
the SIPVicious tool against our domain. The SIPVicious has
three main scripts: (1) SVMAP that identifies hosts with open
SIP ports, (2) SVWAR that identifies valid extensions in the
domain and (3) SVCRACK that cracks weak authentication
passwords using dictionary attacks. In addition, SVCRACK is
a script given with the SIPVicious suite that can crash the
attacker tool. We use this script at the honeypot side when the
SIPVicious tool is notified. This can be shown in the following
rule:

[rule_sip_vicious]

type = classification

context = INVITE

pre—-action = assign %a Check_Fingerprint ()
condition= %a == "SIPVicious"

action = system ’'python /sipvicious/svcrash.py

-d SipMsg.Contact.Ip \
-p SipMsg.Contact.Port’

In the future, we aim to discover vulnerabilities in the VoIP
hacking tools by using “fuzzing” techniques'?. The discovered
vulnerabilities will be incorporated into the response scripts
used by the honeypot to counter-attack the malicious sources.

2) Catch and block SPIT at the dial-plan level: In this
scenario (Figure 7), we launch the Spitter tool [3] against our
domain. When the honeypot detects the delivered SPIT calls, it
adds the source to a blacklist in the Asterisk database (AstDb).
The hardphone extension is protected by an AGI (Asterisk
Gateway Interface) script within the Asterisk dial-plan. In other
words every time this extension is called, the AGI script is run
first. The AGI script checks if the call source is blacklisted
before forwarding the call to the destination. In this way, the
SPIT calls are blocked while the “good” calls are still routed.
The blacklisting is based on the IP address for an external
source and on the SIP URI for an internal (registered) source.

3) Catch and block a scanning at the IP level: In this
scenario, we launch a scanning attempt against our domain.
When the honeypot classifies the received message as scan, it
adds a firewall rule at the IP firewall level (IPTables) in order
to block the attack at an early stage.

4) Fingerprint a bunch of SIP attacking tools: We launch
a bunch of SIP hacking tools against the honeypot in order to
test its robustness. Particularly, the SIP parsing robustness is

12“Fyzzing is a method for finding bugs and vulnerabilities by creating
different types of packets for the target protocol that push its specifications
to the breaking point.”[3]

Internet :\(\|
&y
Firewall
NAT

DMZ zone
External SER 0.9.6 Honeypot A
attacker

{@@j

3001

Asterisk 1.6.1 Honeypot B

003 Internal
attacker

@jj
/@j

3002

(98]

Internal network

Figure 7. The test-bed

inherited from the PJSIP stack. In the same time we show the
fingerprinting capability of the honeypot. The following tools
are used:

o PROTOS Test-Suit (cO7-sip): a SIP Torture Test that allows
sending a major amount of malformed messages;

o Sipscan [3]: supports REGISTER, OPTIONS and INVITE
scanning;

o SIPVicious: enumerates SIP servers in a given IP range
by sending OPTIONS or INVITE messages;

« Inviteflood [3]: simple tool that allows several types of
flooding based attacks;

o Sipp: allows testing the SIP servers performances under
stress conditions;

o Sipsak: command-line SIP testing tool helpful for flooding
and robustness tests;

o Spitter: works over Asterisk and automatically generates
calls with an audio message to be delivered,;

o SIP Send Fun'®: supports several fuzzy INVITE messages
for robustness testing;

o SipBot'*: remotely controlled SIP attack tool supporting
several attack commands.

o VOIPER": a set of several tools for attacks like fuzzing
and torturing.

The honeypot software shows good performance in terms of
robustness: no crash is noticed even against the fuzzing and the
flooding tools. It also demonstrates good performances in terms
of the interpretation accuracy. This is the advantage of the rule-

Bhttp://www.security-scans.de/
http://gforge.inria.fr/projects/voipbot/
Bhttp://voiper.sourceforge.net/

367

TABLE I
TESTING RESULTS

Tool Fingerprint Field Real IP? | Field
Sipp “Sipp” From Yes From
Inviteflood “Elite 1.0” User-Agent Yes From
Spitter “Asterisk” From Yes From
SIPSCAN “X-Lite” User-Agent Yes Contact
SIPVicious “friendly-scanner” User-Agent Yes Via
Sipbot “Twinkle” User-Agent Yes From
SIP Send Fun “Bad Guy Scripting Host” User-Agent No -
PROTOS ‘\d \d \d IN IP4’ where \d increments | Owner (SDP) || No -
Sipsak “sipsak” From Yes Contact
VoIPER “VoIPER” From No -

based approach when dealing with well-known attacks. We are
able to identify and fingerprint all the attack tools. The results
are summarized in Table I. The first two columns represent the
regular expression and the fields used in the fingerprinting rules,
respectively. The third column indicates if a real IP exists in
the messages sent by the tool or if all the IPs used are spoofed.
The last column indicates in which header or field the real IPs
can be found.

VI. CONCLUSION AND FUTURE WORKS

We have introduced an innovative security monitoring com-
plement to VoIP SIP-specific architectures by proposing an
interactive VoIP-specific honeypot called Artemisa. The hon-
eypot is able to contribute to the security of VoIP domains
in different directions such as early stage detection, attack
signatures collection, SPIT and scan mitigation. The honeypot
invokes third-party reconnaissance tools in order to interpret
the received messages and reports its finding in real time. The
software has been extensively tested and demonstrated to be
ready for incorporation in production domains. Also, to our
knowledge, this is the first study on the fingerprinting and
characterization of the existing VoIP “script-kiddies” tools. We
aim by this contribution to encourage the deployment of VoIP
honeypot sensors in order to build a security expertise in this
field at an early stage.

In the future, we will provide a complete reference for
Artemisa’s rule description: syntax, rule types, attributes, oper-
ators, keywords and built-in operations. We will also study how
to improve the processing performance of the honeypot when
the size of the rule set increases.

Another goal is to develop domain honeypots that are more
attractive in order to trap more sophisticated attackers. We
want to innovate means to emulate high financial values such
as gateway connections to the PSTN, premium-rate numbers
or the telephony network of a prestigious business. Domain
honeypots should regroup SIP infrastructures, PBX services,
and individual user agent honeypots such as Artemisa.

We aim to incorporate the honeypot in state of the art
VoIP intrusion detection systems such as SPIT prevention, ad-
vanced fingerprinting and anomaly-payload detection systems.
We therefore have to define the interaction of the honeypot
with the other security components in order to enable real-
time and efficient adaptation of the security policy in the VoIP

domains. In the longer term, a large deployment of the honeypot
sensors will help to establish a black list of malicious spamming
sources, attack tools signatures and a database of malicious SIP
payloads.

ACKNOWLEDGMENTS

We would like to thank the PJSIP project since we have used
the PJSIP and the PIMEDIA libraries in our implementation.
We also would like to thank Dr. Radu State from the University
of Luxembourg for his advices. We thank Pablo Masri from
Blas Pascal University for his contribution.

REFERENCES

[1] 1. Arce. Voices, I hear voices. IEEE Security and Privacy, 4(4):80-83,
2006.

[2] D. Butcher, X. Li, and J. Guo. Security challenge and defense in voip
infrastructures. IEEE Transactions on Systems, Man, and Cybernetics,
Part C, 37(6):1152-1162, 2007.

[3] D. Endler and M. Collier. Hacking Exposed VoIP: Voice Over IP Security
Secrets & Solutions. McGraw-Hill, Inc., New York, NY, USA, 2007.

[4] D. Geneiatakis, G. Kambourakis, T. Dagiuklas, C. Lambrinoudakis, and
S. Gritzalis. SIP security mechanisms: A state-of-the-art review. In
Proceedings of the Fifth International Network Conference (INC 2005),
pages 147-155, Samos, Greece, July 2005.

[5] D. R. Kuhn, T. J. Walsh, and S. Fries. Security Considerations for Voice
Over IP Systems. National Institute of Standards and Technology (NIST),
Special Publication, 800-58, January 2005.

[6] M. Nassar, R. State, and O. Festor. VoIP Honeypot Architecture. In IM
2007, pages 109-118, Munich, Germany, May 2007. IEEE Communica-
tions Society.

[71 V. M. Quinten, R. van de Meent, and A. Pras. Analysis of Techniques
for Protection Against Spam over Internet Telephony . In Proc. of 13th
Open European Summer School EUNICE 2007, July 2007.

[8] J. Quittek, S. Niccolini, S. Tartarelli, M. Stiemerling, M. Brunner, and
T. Ewald. Detecting SPIT calls by checking human communication
patterns. In [EEE International Conference on Communications (ICC
2007), June 2007.

[9] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. Rfc3261: SIP: Session Initiation
Protocol, 2002.

[10] R. Schlegel, S. Niccolini, S. Tartarelli, and M. Brunner. Spam over
Internet Telephony (SPIT) Prevention Framework. In Proc. of the IEEE
GLOBECOM Conference 2006, San Francisco, USA, November 2006.

[11] H. Sengar, R. Dantu, and D. Wijesekera. Securing VoIP and PSTN from
integrated signaling network vulnerabilities. In Ist IEEE workshop on
VoIP Management and Security (VoIP MaSe), Vancouver, Canada, April
2006.

[12] D. Sisalem, J. Floroiu, J. Kuthan, U. Abend, and H. Schulzrinne. SIP
security. John Wiley & Sons, 2009.

[13] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley Professional,
2002.

[14] T.J. Walsh and R. Kuhn. Challenges in securing Voice over IP. IEEE
Security and Privacy, 3(3):44-49, 2005.

368

