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The shape-based method can provide suitable initial guesses for trajectory optimization, which are useful for quickly converging
a more accurate trajectory. Combined with the optimal control theory, an optimized shape-based method using the finite Fourier
series is proposed in this paper. Taking the flight time-fixed case and the time-free case into account, respectively, the optimized
shape-based method, which considers the first-order optimal necessary conditions, can guarantee that not only an orbit designed
during the preliminary phase is optimal, but also the thrust direction is not constrained to be tangential. Besides, the traditional
shape-based method using the finite Fourier series, in which the thrust direction is constrained to be tangential, is developed for
the time-free case in this paper.The Earth-Mars case and the LEO-GEO case are used to verify the optimized shape-basedmethod’s
feasibility for time-fixed and time-free continuous low-thrust trajectory design between circular coplanar orbits, respectively. The
optimized shaped-based method can design a lower cost trajectory.

1. Introduction

Recently, continuous low-thrust trajectory design and opti-
mization are becoming increasingly popular [1, 2], although
they are very challenging and time-consuming. What is
particular is that the continuous low-thrust trajectory design
consists of two phases: preliminary design and precise design
[3]. To pursue a faster optimization and a more accurate
trajectory, the preliminary design phase is expected to pro-
vide an efficient initial guess for trajectory optimizers. The
shape-based (SB)method is one of themost efficientmethods
during this preliminary design. The SB method assumes that
some functions contain a spacecraft’s trajectory, and therefore
boundary conditions are used to calculate the parameters of
the functions, thus analytically obtaining the needed thrust
during the spacecraft’s flight.

Many kinds of SB methods have been proposed by
researchers. For instance, Petropoulos and Longuski [4,
5] developed an exponential sinusoid (ES) method for
the two-dimensional (2D) interplanetary transfer trajectory

design. The ES method constrains the thrust direction to
be tangential. Izzo [6] utilized this method to investigate
the multirevolution Lambert’s problem and simplified the
interplanetary low-thrust trajectory design procedure. Cui et
al. [7] proposed a new search approach algorithm for the
launch window of low-thrust gravity-assist missions based
on the ES method, which has fewer searching variables and
is more efficient than the traditional SB methods. But the
ES method cannot satisfy the full consideration conditions
of circular terminal orbits unless thrusters provide impulsive
propulsion; besides, the parameters of a shape cannot be
solved when other constraints are introduced.

Zheng et al. [8] proposed a new trajectory shape called the
logarithmic spiral-based (LS) non-Keplerian orbit. The fea-
sibility and essential characteristics of the LS non-Keplerian
orbit are analyzed. The analytical geocentric distance 𝑟
expression and the phase angle 𝜃 expression about flight
time subject to a tangential thrust are derived. But the LS
method cannot satisfy the terminal constraints as well as the
ES method.
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To overcome the above-mentioned disadvantages, Wall
and Conway [9, 10] developed a 2D inverse polynomial (IP)
method. The fifth-order IP method can be used to design
the transfer trajectory for the time-free case, while the sixth-
order IP method is designed for the time-fixed case. But the
thrust direction is also constrained to be tangential in the IP
method, which cannot handle the thrust constraint very well.
Shang et al. [11] proposed a semianalytical Lambert algorithm
based on the 𝑁-degree IP method in order to improve
the precision of preliminary design for an interplanetary
low-thrust transfer trajectory. Considering thrust and radius
constraints, Wang et al. [12] proposed a modified IP method
for both the time-free transfer case and the time-fixed
rendezvous case. Compared with the original IP method, the
modified one can satisfy the thrust and radius constraints
through optimizing the polynomial orders. To realize low-
thrust trajectory design between elliptical orbits, Xie et al.
[13] constructed a new shape function about two semimajor-
axis parameters, which are polynomials in the polar angle.
With tangential thrust, a fifth-order and sixth-order method
is designed for time-free and time-fixed cases as in the IP
method.

Taheri and Abdelkhalik [14] and Abdelkhalik and Taheri
[15] proposed a new shape-based trajectory design method
using the finite Fourier series. With the hypothesis of tan-
gential thrust, a preliminary trajectory that satisfies the max-
imum thrust constraint is designed with this SB trajectory
design method.

Shaping the velocity components, Gondelach et al. [16]
proposed a novel low-thrust trajectory design method called
hodographic-shaping (HS) method. These velocity functions
are assumed to be some sets of simple base functions. Extra
parameters are used to make the trajectory design and
optimization more flexible.

In a word, all recent SB methods (except the HS method)
design spacecraft trajectories based on the tangential thrust
assumption and cannot guarantee that the designed trajec-
tory is optimal without the first-order optimal necessary
conditions. Meanwhile, almost SB methods require iterative
calculations or constraint optimization to match the total
flight time. However, it is difficult to determine a suitable
flight time during or before the preliminary design phase.

Therefore, combined with optimal control theory, an
optimized shape-based method using finite Fourier series,
which can easily overcome the above-mentioned shortcom-
ings, is proposed in this paper. Regarding spacecraft three-
dimensional (3D) trajectory design, Wall [9], Novak and
Vasile [17], and Taheri [18] presented their study advances.
However, 3D trajectory design is not the key point in this
paper, because the 2D case is enough to illustrate the idea of
our method.

The paper is organized as follows. In Section 2, the
spacecraft dynamics model in polar coordinate is developed.
Then, the proposed method is introduced in Section 3. In
the time-fixed rendezvous case and time-free transfer case,
respectively, the first-order necessary conditions are derived
from the Hamiltonian function.Through expanding the state
variables into expressions of finite Fourier series, the optimal
control problem is converted to a nonlinear programming
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Figure 1: Trajectory variables.

(NLP) problem that involves Fourier series coefficients. The
process of the proposed method is given in Section 4. In
Section 5, two examples are used to verify the optimized
shape-based method’s feasibility for continuous low-thrust
trajectory design between circular coplanar orbits, and the
advantage that the proposed method can design a lower cost
trajectory is proven by comparing it with other SB methods.

2. Spacecraft Orbital Model

In polar coordinate, the spacecraft’s orbital motion model
without considering any perturbation and celestial bodies’
rotation is established as

̇𝑟 = 𝑢,
̇𝜃 = V

𝑟 ,

𝑢̇ = − 𝜇𝑟2 +
V2

𝑟 + 𝑎 sin𝛼,
V̇ = −𝑢V𝑟 + 𝑎 cos𝛼,

(1)

where superscript “⋅” indicates a derivative with respect to
time 𝑡; 𝑟 is the magnitude of the position vector; 𝜃 is the polar
angle; 𝑢 is the magnitude of spacecraft radial velocity vector;
V is the magnitude of its circumferential velocity vector; 𝜇
is the gravitational parameter; 𝑎 is the thrust acceleration
magnitude of the spacecraft; 𝛼 is its steering angle, and 𝜉 is
its flight path angle, as shown in Figure 1.

Instead of shaping variables as a function of time, the
polar angle also can be used as an independent variable. In
that case, the variables have to be analytically integrable over𝜃 to obtain the change in position.

In this paper, a new thrust acceleration parameter ã is
introduced, its direction is the same as a, and its magnitude
is defined as shown in

𝑎 = 𝑟
V
𝑎. (2)

Instead of derivatives with respect to time d/d𝑡, these
state variables themselves are derivatives with respect to the
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polar angle d/d𝜃. According to the second equation of (1), the
spacecraft’s orbital motion model can be reestablished as

𝑟󸀠 = 𝑢𝑟
V
,

𝑢󸀠 = − 𝜇
(V𝑟) + V + 𝑎 sin𝛼,

V󸀠 = −𝑢 + 𝑎 cos𝛼,
(3)

where suffix “󸀠” indicates a derivative with respect to polar
angle 𝜃.
3. The Optimized Shape-Based Method
Using Fourier Series

3.1. Performance Index and Boundary Conditions. Usually the
performance index for the low-thrust trajectory design is set
tominimize the flight time or fuel consumption. In this paper,
we consider the minimal characteristic velocity (i.e., minimal
fuel consumption), as shown in

𝐽 = minΔ𝑉 = ∫𝑡𝑓
𝑡𝑖

𝑎 d𝑡 = ∫𝜃𝑓
𝜃𝑖

𝑎 d𝜃. (4)

To accomplish a spacecraft’s transfer successfully, some
constraints such as those given in (5) should be satisfied.

𝑃 (𝑡𝑖) = 𝑃𝑖,
𝑉 (𝑡𝑖) = 𝑉𝑖,
𝐴 (𝑡𝑖) = 𝐴 𝑖,
𝑃 (𝑡𝑓) = 𝑃𝑓,
𝑉 (𝑡𝑓) = 𝑉𝑓,
𝐴 (𝑡𝑓) = 𝐴𝑓,

(5)

where (𝑃, 𝑉, 𝐴) represent the spacecraft’s position, velocity,
and acceleration conditions, respectively; (𝑖, 𝑓) represent
initial and terminal condition, respectively.

Actually, the fact that (𝑃, 𝑉, 𝐴) mentioned in (5) are
regarded as generalized boundary conditions, which may be
the first-order or second-order derivative of a certain variable,
is more reasonable.

3.2. The Flight Time-Fixed Case

3.2.1. Traditional Fourier Series (TFS) Method. In the time-
fixed case, it is assumed that the thrust is aligned along or
against the velocity vector; that is, 𝛼 = 𝜉 + 𝑛𝜋, where 𝑛 =0, 1. The TFS method for the time-fixed case was studied
in detail in Taheri’s doctoral dissertation [18]. Besides, we
only consider the unconstrained version of the finite Fourier
series method in this paper; because the thrust magnitude
constraint is not a key point, we focus on optimizing the FS
method here.

The following equation is derived from the fourth equa-
tion of (1):

𝑎 = 𝑟V̇ + 𝑢V
𝑟 cos𝛼 . (6)

Substituting (6) into the third equation of (1), the follow-
ing equation is derived:

𝑢̇ + 𝜇
𝑟2 −

V2

𝑟 = 𝑟V̇ + 𝑢V
𝑟 tan𝛼, (7)

where the tangential thrust assumption can be written as

tan𝛼 = tan 𝜉 = 𝑢
V
= ̇𝑟
𝑟 ̇𝜃 . (8)

Substituting the first and second equations of (1) and the
tangential thrust assumption into (7), one can be rewritten as

𝑟2 ( ̈𝑟 ̇𝜃 − ̇𝑟 ̈𝜃) + ̇𝜃 (𝜇 − 2𝑟 ̇𝑟2) − (𝑟 ̇𝜃)3 = 0. (9)

According to Fourier series expansion, the radius 𝑟 and
the polar angle 𝜃 can be approximated as follows:

𝑥 = 𝑎𝑥02 + 𝑛𝑥∑
𝑖=1

{𝑎𝑥𝑖 cos(𝑖𝜋𝑡𝑇 ) + 𝑏𝑥𝑖 sin(𝑖𝜋𝑡𝑇 )} , (10)

where 𝑥means (𝑟, 𝜃); 𝑛𝑥 is the number of finite Fourier terms;(𝑎𝑥0, 𝑎𝑥𝑖, 𝑏𝑥𝑖) are Fourier coefficients; 𝑇 is the total flight time.
Substituting the state approximation (10) into (9), the

differential equation is converted to a nonlinear algebraic
equation, in which the only unknowns are the Fourier
coefficients and the independent time variable:

𝐹 (𝑎𝑥0, 𝑎𝑥𝑖, 𝑏𝑥𝑖; 𝑡) = 0. (11)

This shows that, in the flight time-fixed case that consid-
ers the tangential thrust direction hypothesis, (4), (5), and (11)
become an NLP problem about Fourier coefficients.

3.2.2. Optimized Fourier Series (OFS) Method. In light of (1)
and (4), the Hamilton function is written as

𝐻 = 𝑎 + 𝜆𝑟𝑢 + 𝜆𝜃 V𝑟 + 𝜆𝑢 (−
𝜇
𝑟2 +

V2

𝑟 + 𝑎 sin𝛼)

+ 𝜆V (−𝑢V𝑟 + 𝑎 cos𝛼) .
(12)
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Based on the optimal control theory, costate equations
and control equations are shown as

𝜆̇𝑟 = −𝜕𝐻𝜕𝑟 = 𝜆𝜃 V𝑟2 − 𝜆𝑢
2𝜇
𝑟3 + 𝜆𝑢

V2

𝑟2 − 𝜆V
𝑢V
𝑟2 ,

𝜆̇𝜃 = −𝜕𝐻𝜕𝜃 = 0,
𝜆̇𝑢 = −𝜕𝐻𝜕𝑢 = −𝜆𝑟 + 𝜆V

V
𝑟 ,

𝜆̇V = −𝜕𝐻𝜕V = −𝜆𝜃 1𝑟 − 𝜆𝑢
2V
𝑟 + 𝜆V

𝑢
𝑟 ,

(13)

𝜕𝐻
𝜕𝑎 = 1 + 𝜆𝑢 sin𝛼 + 𝜆V cos𝛼 = 0,
𝜕𝐻
𝜕𝛼 = 𝜆𝑢𝑎 cos𝛼 − 𝜆V𝑎 sin𝛼 = 0.

(14)

Let 𝑋 = 𝑢̇ + 𝜇/𝑟2 − V2/𝑟 and 𝑌 = V̇ + 𝑢V/𝑟; the third and
fourth equations of (1) are rewritten as

𝑋 = 𝑎 sin𝛼,
𝑌 = 𝑎 cos𝛼. (15)

With (15), the spacecraft’s thrust acceleration magnitude
is solved.

𝑎 = √𝑋2 + 𝑌2. (16)

Meanwhile, the thrust acceleration direction is defined by
the results of sin𝛼 and cos𝛼.

The following equation is derived from (14) and (15):

𝜆𝑢𝑋 + 𝜆V𝑌 = −𝑎,
𝜆𝑢𝑌 − 𝜆V𝑋 = 0. (17)

The expressions of the costate variables (𝜆𝑢, 𝜆V) are
obtained with the solution of (17):

𝜆𝑢 = −𝑎𝑋
𝑋2 + 𝑌2 ,

𝜆V = −𝑎𝑌
𝑋2 + 𝑌2 .

(18)

According to the second and fourth equations of (13), the
value of constant 𝜆𝜃 can be represented as

𝜆𝜃 = (𝜆V𝑢 − 2𝜆𝑢V − 𝜆̇V𝑟)󵄨󵄨󵄨󵄨󵄨𝑖 . (19)

The following equation is rearranged from the first
equation of (13):

𝑟3𝜆̇𝑟 + 𝑟V (𝜆V𝑢 − 𝜆𝑢V − 𝜆𝜃) + 2𝜇𝜆𝑢 = 0, (20)

where the costate variable 𝜆𝑟 is solved with the third equation
of (13)

𝜆𝑟 = 𝜆V
V
𝑟 − 𝜆̇𝑢. (21)

Therefore, all the costate variables (𝜆𝑟, 𝜆𝜃, 𝜆𝑢, 𝜆V) can be
expressed as the functions of state variables (𝑟, 𝜃).

Substituting the state approximations of (10) into (20),
the differential equation is converted to a nonlinear algebraic
equation, in which the only unknowns are the Fourier
coefficients and the independent time variable:

𝐹opt (𝑎𝑥0, 𝑎𝑥𝑖, 𝑏𝑥𝑖; 𝑡) = 0. (22)

This shows that, in the flight time-fixedwith no limitation
on thrust direction, (4), (5) and (22) become anNLP problem
about Fourier coefficients.

3.3. The Flight Time-Free Case

3.3.1. TFS Method. In the flight time-free case, it is assumed
that the thrust is aligned along or against the velocity, the
same as what was mentioned in Section 3.2.1. This method
for the flight time-free case is a new study in this paper.

The following equation is derived from the second and
third equations of (3):

tan𝛼 = 𝑢󸀠 − V + 𝜇/ (V𝑟)
V󸀠 + 𝑢 , (23)

where the tangential thrust assumption is expressed as

tan𝛼 = tan 𝜉 = 𝑢
V
= 𝑟󸀠

𝑟 . (24)

Substituting the first equation of (3) and (24) into (23), the
following equation is derived:

(𝑢󸀠V − 𝑢V󸀠) 𝑟 − (𝑢2 + V2) 𝑟 + 𝜇 = 0. (25)

Dividing (25) by V2, the following equation is derived:

𝑟 d
d𝜃 (

𝑢
V
) − 𝑟 (𝑢

V
)2 − 𝑟 + 𝜇

V2
= 0. (26)

Considering the thrust direction assumption, (26) is
rewritten as

𝑟 d
d𝜃 (

𝑟󸀠
𝑟 ) − 𝑟(𝑟󸀠𝑟 )

2

− 𝑟 + 𝜇
V2

= 0. (27)

Equation (27) can be simplified as

𝑟󸀠󸀠𝑟 − 2𝑟󸀠2 − 𝑟2 + 𝜇𝑟
V2

= 0. (28)

According to the Fourier series expansion, the radius𝑟 and the circumferential velocity magnitude V can be
approximated as follows:

𝑥 = 𝑎𝑥02 + 𝑛𝑥∑
𝑖=1

{𝑎𝑥𝑖 cos(𝑖𝜋𝜃Θ ) + 𝑏𝑥𝑖 sin(𝑖𝜋𝜃Θ )} , (29)

where 𝑥means (𝑟, V);Θ = 𝜃𝑓−𝜃𝑖+2𝑁rev𝜋;𝑁rev is the number
of revolutions around the attracting central body, as shown in
Figure 2.
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Substituting the state approximations of (29) into (28),
the differential equation is converted to a nonlinear algebraic
equation, in which the only unknowns are the Fourier
coefficients and the polar angle:

𝐺 (𝑎𝑥0, 𝑎𝑥𝑖, 𝑏𝑥𝑖; 𝜃) = 0. (30)

This shows that, in the flight time-free case that considers
the tangential thrust direction hypothesis, (4), (5), and (11)
become an NLP problem about Fourier coefficients.

According to (3), 𝑎 is represented as

𝑎 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
V󸀠 + V𝑟󸀠/𝑟
cos𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (31)

where cos𝛼 = ± cos 𝜉
cos𝛼 = ± 𝑟 ̇𝜃

√ ̇𝑟2 + 𝑟2 ̇𝜃2 = ± 𝑟
√𝑟󸀠2 + 𝑟2 . (32)

The spacecraft’s flight time is solved with the following
equation:

𝑡 = ∫𝑡𝑓
𝑡𝑖

1 d𝑡 = ∫𝜃𝑓
𝜃𝑖

𝑟
V
d𝜃. (33)

3.3.2. OFS Method. In light of (3) and (4), the Hamiltonian
function is expressed as

𝐻 = 𝑎 + 𝜆𝑟 (𝑢𝑟V ) + 𝜆𝑢 (− 𝜇
V𝑟 + V + 𝑎 sin𝛼)

+ 𝜆V (−𝑢 + 𝑎 cos𝛼) .
(34)

Based on the optimal control theory, the costate equations
and control equations are expressed as

𝜆󸀠𝑟 = −𝜕𝐻𝜕𝑟 = −𝜆𝑟 𝑢V − 𝜆𝑢 𝜇V𝑟2 ,
𝜆󸀠𝑢 = −𝜕𝐻𝜕𝑢 = −𝜆𝑟 𝑟V + 𝜆V,
𝜆󸀠V = −𝜕𝐻𝜕V = 𝜆𝑟 𝑢𝑟V2 − 𝜆𝑢

𝜇
V2𝑟 − 𝜆𝑢,

(35)

𝜕𝐻
𝜕𝑎 = 1 + 𝜆𝑢 sin𝛼 + 𝜆V cos𝛼 = 0,
𝜕𝐻
𝜕𝛼 = 𝜆𝑢𝑎 cos𝛼 − 𝜆V𝑎 sin𝛼 = 0.

(36)

With 𝑢 = V𝑟󸀠/𝑟, (35) and (3) can be rewritten as

𝜆󸀠𝑟 = −𝜆𝑟 𝑟
󸀠

𝑟 − 𝜆𝑢 𝜇V𝑟2 ,
𝜆󸀠𝑢 = −𝜆𝑟 𝑟V + 𝜆V,
𝜆󸀠V = 𝜆𝑟 𝑟

󸀠

V
− 𝜆𝑢 𝜇V2𝑟 − 𝜆𝑢,

(37)

𝑢󸀠 = − 𝜇
V𝑟 + V + 𝑎 sin𝛼,

V󸀠 = −V𝑟󸀠𝑟 + 𝑎 cos𝛼.
(38)

Let𝑋 = 𝑢󸀠+𝜇/(V𝑟)−V and 𝑌̃ = V󸀠+V𝑟󸀠/𝑟; (38) is rewritten
as

𝑋 = 𝑎 sin𝛼,
𝑌̃ = 𝑎 cos𝛼. (39)

The magnitude of ã is solved with (39):

𝑎 = √𝑋2 + 𝑌̃2. (40)

Meanwhile, the direction of ã is defined by the results of
sin𝛼 and cos𝛼.

The following equations are derived from (36) and (39):

𝜆𝑢𝑋 + 𝜆V𝑌̃ = −𝑎,
𝜆𝑢𝑌̃ − 𝜆V𝑋 = 0. (41)

The expressions of the costate variables (𝜆𝑢, 𝜆V) are
obtained with the solution of (41):

𝜆𝑢 = −𝑎𝑋
𝑋2 + 𝑌̃2 ,

𝜆V = −𝑎𝑌̃
𝑋2 + 𝑌̃2 .

(42)

The following equation is derived from the first and third
equations of (37):

𝜆󸀠𝑟𝑟 + 𝜆󸀠VV + 2𝜆𝑢 𝜇V𝑟 + 𝜆𝑢V = 0, (43)

where the costate variable 𝜆𝑟 is solved with the second
equation of (37) and (42):

𝜆𝑟 = (𝜆V − 𝜆󸀠𝑢) V𝑟 . (44)

So all the costate variables (𝜆𝑟, 𝜆𝑢, 𝜆V) can be expressed as
functions of state variables (𝑟, V).

Substituting the state approximation of (29) into (43),
the differential equation is converted to a nonlinear algebraic
equation, in which the only unknowns are the Fourier
coefficients and the polar angle:

𝐺opt (𝑎𝑥0, 𝑎𝑥𝑖, 𝑏𝑥𝑖; 𝜃) = 0. (45)

This shows that, in the flight time-free case with no
limitation on thrust direction, (4), (5), and (45) become an
NLP problem about Fourier coefficients.
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Figure 3: Flowchart of trajectory design using FS method.

4. Transfer Orbit Design with the FS Method

The flowchart of the spacecraft’s transfer trajectory design
with the FSmethod is shown in Figure 3, inwhich FCs is short
for “Fourier coefficients.”

The fmincon function is a MATLAB command used to
solve multivariable, nonlinear and optimal problem with
constraints. However, it requires that a set of initial guesses
for the Fourier coefficients should be obtained. Reference
[14] proposed some rough approaches used to gain the initial
guesses. Using the FSmethod for designing an interplanetary
low-thrust trajectory, a cubic polynomial function is used
to obtain initial guesses for the Fourier coefficients. The
constraint about finite Fourier series terms 𝑛𝑥 ≥ 2 is
set to satisfy the boundary conditions. Although there is
no upper limit on the number of included Fourier terms,
the computational efficiency and precision are important
considerations.

Based on the initial guesses, the new Fourier coefficients
are calculated with the fmincon function.Then, the analytical
trajectory and the thrust expressed with the finite Fourier
coefficients are found. These expressions are used to offer
initial guesses for detailed trajectory optimizers. After the
preliminary design phase, trajectory optimization is required
to show the advantage of the efficient initial guess from OFS
method compared with the guess from TFS.

In this paper, we use the direct collocation method [19].
In the direct collocation method, the optimization model,
performance index, and constraints are the same as those
in other SB methods, for example, (1) or (3), (4), and (5).

The optimal control problem would be converted into an
NLP problem. The total flight interval is discretized into𝑁 intervals, and two endpoints of each interval are called
“node.” In this paper, the selection of the number of nodes is
not a key point. Certainly, the simulation results will be more
accurate as the number of nodes increases.

5. Simulation Examples

In the time-fixed and time-free cases, the continuous low-
thrust Earth-Mars rendezvous and LEO-GEO transfer are
studied, respectively. The simulation of these cases has been
performed with MATLAB 2014a on an Intel Core i5 2.6GHz
computer with Windows 8.

5.1.TheEarth-Mars Rendezvous. TheFSmethod for the time-
fixed case can be applied to the interplanetary exploration,
asteroid deflection, rendezvous and docking missions, and
so on. In the time-fixed case, we design the continuous low-
thrust Earth-Mars rendezvous trajectory by using canonical
units, where 1 distance unit (DU) is 1 AU and 2𝜋 time unit
(TU) is 1 year.The boundary conditions and input parameters
are listed in Table 1, in which𝑁nod is the number of nodes in
the direct collocation method.

Figure 4 gives the spacecraft’s rendezvous orbits using
different FS methods. Figure 5 shows the angle relation
between velocity direction and acceleration direction using
the OFS method.

Different from other SB methods, which typically sup-
pose that the acceleration direction of a spacecraft is parallel
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Table 1: Boundary conditions and input parameters for Earth-Mars
rendezvous orbit.

Boundary conditions Input parameters
𝑟𝑖 1 DU 𝑁rev 1
𝜃𝑖 0 rad 𝑛𝑟 6
𝑟𝑓 1.5234DU 𝑛𝜃 6
𝜃𝑓 3.548 rad 𝑇 13.45 TU
̇𝑟𝑖 0DU/TU 𝑁nod 151̇𝜃𝑖 1 rad/TU
̇𝑟𝑓 0DU/TU̇𝜃𝑓 0.5318 rad/TU
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Figure 4: The Earth-Mars rendezvous orbits using different FS
methods.

with its velocity direction, the OFS method does not need
to constrain the relation between acceleration direction and
velocity direction as shown in Figures 4 and 5.

In Figure 5, 𝛿means the difference between steering angle
and flight path angle; for example, 𝛿 = 𝛼 − 𝜉. The figure
shows that the difference fluctuates within the range of −2∘
to 2∘ during the large part of flight time, and the maximum
difference is −12.59∘.The acceleration direction varies sharply
near the initial and terminal points, because the initial and
terminal conditions result in the obvious change of the two
parameters𝑋 and 𝑌.

Figure 6 gives the spacecraft’s thrust acceleration profiles
using different FS methods. In this case, we can observe
that the thrust acceleration profile using the OPS method is
smoother than the thrust acceleration profile using the TFS
method.

Regarding the thrust direction, the proposed method
does not assume it to be tangential. When the obtained
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Figure 5:The difference 𝛿with the OFSmethod for the Earth-Mars
case.

OFS method
TFS method

2 4 6 8 10 120
t (TU)

a
(D

U
·T

U
−
2
)

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05

Figure 6: The Earth-Mars spacecraft’s thrust acceleration profiles
using different FS methods.

solution is used as initial guess in an optimizer, Figure 7 shows
the thrust direction after optimization in the Earth-Mars case.
The figure shows that the difference fluctuates within the
range of −4∘ to 4∘ during the large part of flight time, and the
maximumdifference is−15∘. Similar to the preliminary phase,
the thrust direction after optimization varies sharply near the
initial and terminal points. It justify that it is significant to
relax the thrust direction or constrain it.

Table 2 gives simulation results using different initial
guesses. It shows evidently that the OFS method obtains
a lower cost rendezvous trajectory, and this verifies the
applicability of our OFS method to continuous low-thrust
trajectory design. Whether during the preliminary design
phase or the precise design phase, the transfer trajectory
designed with the OFSmethod consumes minimum fuel, but
the optimization time of the OFS method is a little longer.

5.2. The LEO-GEO Transfer. The FS method for the time-
free case can also be applied for a spacecraft orbit raise and
maneuver mission. For the time-free case, the LEO-GEO
transfer mission is considered, where 1DU is 1 𝑅earth and
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Table 2: Simulation results using different initial guesses in the Earth-Mars case.

Δ𝑉 before optimization Δ𝑉 after optimization Optimization time
OFS method 0.1896DU/TU 0.18787DU/TU 12.029 s
TFS method 0.2514DU/TU 0.18908DU/TU 10.943 s
Hohmann 0.1877DU/TU
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Figure 7:The thrust direction after optimization in the Earth-Mars
case.

Table 3: Boundary conditions and input parameters for LEO-GEO
transfer.

Boundary conditions Input parameters
𝑟𝑖 1.0313DU 𝑁rev 2
𝜃𝑖 0 rad 𝑛𝑟 5
𝑟𝑓 6.61 DU 𝑛𝜃 5
𝜃𝑓 3.1416 rad Θ 15.708 rad
̇𝑟𝑖 0DU/TU 𝑁nod 251̇𝜃𝑖 0.9565 rad/TU
̇𝑟𝑓 0DU/TU̇𝜃𝑓 0.05884 rad/TU

1 TU is 808.67 s. In this case, the flight time is unknown to
us previously, but the terminal position is given. Table 3 lists
the boundary conditions and input parameters.

In the time-free case, (𝑟, V) and their first-order deriva-
tives with respect to polar angle 𝜃 shall be calculated as new
boundary conditions, as shown in

𝑟 = 𝑟,
𝑟󸀠 = ̇𝑟 ̇𝜃 ,
V = 𝑟 ̇𝜃,
V󸀠 = − ̇𝑟.

(46)

Figure 8 gives the spacecraft’s LEO-GEO transfer orbits
using different FS methods. Figure 9 shows the angle relation
between velocity direction and acceleration direction using
the OFS method. Figure 10 gives the spacecraft’s thrust
acceleration profiles using different FS methods. Figure 11
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Figure 8: The LEO-GEO transfer orbit using different FS methods.
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Figure 9: The difference 𝛿 with the OFS method for the LEO-GEO
case.

shows the thrust direction after optimization in the LEO-
GEO case.

Figures 8 and 10 prove that the shape-based trajectory
design method using the finite Fourier series can be used
in the flight time-free case. This paper extends the scope of
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Figure 10: The LEO-GEO spacecraft’s thrust acceleration profiles
using different FS methods.
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Figure 11: The thrust direction after optimization in the LEO-GEO
case.

application of the Fourier series method to the flight time-
free case. Figure 10 shows that, in the flight time-free case,
different FSmethods have the similar trend: during the initial
phase of the flight, the thrust acceleration varies obviously
and then tends to be stable.

Figures 8 and 9 also show that, similar to the Earth-Mars
transfer in the flight time-fixed case, the OFS method does
not need to constrain the angle relation between acceleration
direction and velocity direction. As shown in Figure 9, the
phenomena that the acceleration direction varies sharply
near the initial and terminal points also exist, because the
parameters (𝑋 = 𝑢󸀠 + 𝜇/(V𝑟) − V, 𝑌̃ = V󸀠 + V𝑟󸀠/𝑟) are
(𝑋𝑖 = −0.0035, 𝑌̃𝑖 = 0) and (𝑋𝑓 = 4.5 × 10−5, 𝑌̃𝑓 = 0) at
the initial point and terminal point, respectively, which result
in 𝛼𝑖 = −90∘ and 𝛼𝑓 = 90∘. As shown in Figures 5 and 9,
it is obvious to find that the phenomena where the thrust
direction is not tangential near the initial and terminal points
are determined by theOFSmethod itself, because of𝑋 and𝑌.
As shown in Figure 11, some similar results, which are shown
in Earth-Mars rendezvous case, can be found.

Table 4 presents simulation results using different initial
guesses. As shown in Table 4, with the OFS method, the
spacecraft has the longest flight time, and with the TFS
method, its flight time is almost the same as that with
the OFS method because the rough approach mentioned in
Section 4, which can offer initial Fourier coefficients, leads to
the approximate trajectory of the spacecraft. With the rough

approach, the flight time is 112.2044 TU, which is almost
the same as that with the OFS method and TFS method.
Therefore, it suggests that the rough approach, which offers
initial coefficients for the FSmethod, plays an important role.

The same as in the time-fixed case, the OFS method
in the time-free case can provide better initial guesses for
optimizers, and the transfer trajectory designed with the
OFSmethod consumesminimal fuel, which is 0.5880DU/TU
before optimization and 0.5803DU/TU after optimization.
For all FSmethods, the flight time after optimization becomes
slightly longer. The increment with the OFS method is
0.0811 TU and TFS method is 0.2371 TU.

With regard to the optimization time, we obtain the
similar simulation results that the flight time under the OFS
method is a little longer than that under the TFS method, as
shown in Tables 2 and 4. From the derivation in Section 3,
we know that a more complicated NLP problem of the OFS
method needs to be solved than the NLP problem of TFS
method.

5.3. Remark. In this subsection, two important points are
given to illustrate the OFS method.

With regard to the number of terms in the Fourier
expansion, theoretically, the finite Fourier series expression
will be very close to the real function as the number of Fourier
series terms increases according to the characteristic of series
theory. So the OFS method can get analytical trajectory and
thrust which is very close to the optimal solution, if the
number of series terms is enough. Actually, in this case,
OFS looks more like a kind of hybrid optimization method,
which combines direct optimization method and indirect
optimization method. However, excessive series terms in
OFS will lead to very time-consuming calculation. Thus, the
computational efficiency is important considerations.

With regard to the sensitivity of the number of terms, we
obtain a result that the selection of the number will influence
the simulation obviously. Sometimes, we even cannot get the
convergence solution. However, the shape-based method is
proposed to get an approximate trajectory and provide an
efficient initial guess for trajectory optimizers. So we only
need to find a set of values which can satisfy the constraints.

6. Conclusion

A spacecraft’s initial trajectory design problem is studied
in this paper. On the basis of the traditional Fourier series
method, this paper proposes the optimized shape-based
method using the finite Fourier series.

According to these simulation examples, we can get
the following conclusions: Firstly, considering the first-order
optimal necessary conditions, the optimized shape-based
method can design the trajectory with minimal fuel con-
sumption and offer initial guesses for detailed optimizers;
secondly, different from other shape-based methods, the
thrust direction of the spacecraft is not constrained to be
tangential in the optimized shape-based method; thirdly,
the shape-based method using finite Fourier series could be
applied in the time-free case.
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Table 4: Simulation results using different initial guesses in the LEO-GEO case.

Before optimization After optimization Optimization timeΔ𝑉 𝑇 Δ𝑉 𝑇
OFS method 0.5880DU/TU 113.4903 TU 0.5803DU/TU 113.5714 TU 44.846 s
TFS method 0.5900DU/TU 111.1915 TU 0.5812DU/TU 111.4286 TU 37.880 s
Hohmann 0.4974DU/TU
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