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Nowadays, mobile services (applications) running on terminal devices are becoming more and more computation-intensive.
Offloading the service requests from terminal devices to cloud computing can be a good solution, but it would put a high burden
on the network. Edge computing is an emerging technology to solve this problem, which places servers at the edge of the network.
Dynamic scheduling of offloaded service requests in mobile edge computing systems is a key issue. It faces challenges due to the
dynamic nature and uncertainty of service request patterns. In this article, we propose a Dynamic Service Request Scheduling
(DSRS) algorithm, whichmakes request scheduling decisions to optimize scheduling cost while providing performance guarantees.
The DSRS algorithm can be implemented in an online and distributed way. We present mathematical analysis which shows that
the DSRS algorithm can achieve arbitrary tradeoff between scheduling cost and performance. Experiments are also carried out to
show the effectiveness of the DSRS algorithm.

1. Introduction

With the rapid development of Information Technology and
increasing promotion of terminal devices [1], the mobile ser-
vices (applications) running on terminal devices are becom-
ing more and more complex and computation-intensive [2,
3]. However, the computing capacity and battery life of
terminal devices are generally limited, and these devices
cannot afford to process all these service requests locally on
devices. To solve this problem, some researches propose to
offload the service requests from terminal devices to cloud
computing, which has more computing resources and larger
capacity [4–8]. Nevertheless, cloud computing is usually
located remotely that is far away from terminal devices.
Besides, with the increasing popularity of mobile services
running on terminal devices, scheduling all the offloaded
service requests to cloud computing can put a significant
burden on the networks [9, 10]. To meet this challenge,
recent researches have been proposed to put edge servers
with computing capacities at the edge of the networks in
close proximity to terminal devices. Mobile Edge Computing
(MEC) is an emerging technology based on this idea [11–14],

and it has drawn extensive attention from both academy and
industry [15–18].

One of the key issues in MEC research is how to schedule
service requests [2, 19, 20]: when a large number of service
requests are offloaded, how to schedule service requests
among multiple MEC systems in order to reduce scheduling
cost while providing performance guarantees. It is intuitive
that there exist tradeoffs between scheduling cost and per-
formance. Besides, the service request scheduling problem
among multiple MEC systems is challenging due to several
reasons. Firstly, as terminal devices are moving and the
service environment varies over time [21, 22], how to make
dynamic request scheduling decisions in accordance with the
uncertainty of request patterns and changing environment
is a great challenge [23]. Secondly, with the increasing
promotion of terminal devices and mobile services, both the
number of terminal devices and mobile services are rising
dramatically, making the service request scheduling problem
more complicated.

Some existing researches have studied the service request
scheduling problem in MEC systems. Reference [24] mod-
elled the server in the MEC as one𝑀/𝑀/1 queue. Reference
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[2] assumed the offloaded service requests arrived at theMEC
system according to a Poisson process. These works assumed
the request arrival followed certain distribution. However,
in reality, the request arrival process is highly dynamic, and
the statistical information of request arrival can hardly be
obtained or precisely predicted [25, 26]. Besides, with the
number of terminal devices and mobile services increasing,
traditional centralized optimization techniques such as com-
bination optimization and dynamic programming may suffer
from high-complexity and result in long execution time.

In this article, we introduce a dynamic online service
request scheduling mechanism which requires no prior
information of the statistical information of request arrivals.
Specifically, the request scheduling among multiple MEC
systems is formulated as an optimization problem, and the
goal is to minimize request scheduling cost while providing
performance guarantees. Based on Lyapunov optimization
techniques, we propose a Dynamic Service Request Schedul-
ing (DSRS) algorithm. DSRS uses a parameter 𝑉 to control
the tradeoff between scheduling cost and queue length.
Mathematical analysis is presented which proves that DSRS
is 𝑂(1/𝑉)-optimal with respect to the average scheduling
cost while still bounding the average queue length by 𝑂(𝑉).
Experiments are also conducted which demonstrate that
DSRS can make dynamic control decisions to adjust to
variable environments and achieve the tradeoff between
scheduling cost and queue length.

The remainder of this article is organized as follows.
In Section 2, we present the system model for dynamic
request scheduling among multiple MEC systems and for-
mulate the optimization problem. In Section 3, based on
Lyapunov optimization techniques, we propose an online and
Dynamic Service Request Scheduling algorithm. Theoretical
analysis of the scheduling algorithm is presented in Section 4.
Experiments are conducted to evaluate the efficiency and
effectiveness of the scheduling algorithm in Section 5. We
conclude this article in Section 6.

2. System Model

2.1. Overview. Consider 𝑛 mobile edge computing (MEC)
systems. Each MEC system has an edge server virtualized to
𝑚 virtualmachines to process offloaded requests of𝑚 types of
services from the terminal devices [25, 27]. More specifically,
the 𝑖-th virtual machine on each edge server in the MEC sys-
tem serves the offloaded requests for the 𝑖-th type of service.
Let 𝐼 be the collection of indexes for applications and 𝐽 be
the collection of indexes for edge server in the MEC systems.
Without loss of generality, the edge servers in different MEC
systems are supposed to be heterogeneous. We consider a
time-slotted model and the length of time slot is denoted by
𝜏. The main notations in this section are listed in Table 1.

2.2. Problem Formulation

2.2.1. Service Request Scheduling. In each time slot 𝑡 ∈
{0, 1, . . . , 𝑇 − 1}, a number of service requests for the𝑚 types
of services are offloaded. Let 𝐴 𝑖(𝑡) be the number of requests
for service 𝑖 offloaded to the MEC systems in time slot 𝑡. In

our article, we require no prior knowledge of the statistics of
𝐴 𝑖(𝑡), which is generally hard to obtain or precisely predict in
real-life. 𝑎𝑖𝑗(𝑡) represents the number of requests for service 𝑖
that are scheduled to the edge server in the 𝑗-th MEC system
in time slot 𝑡. 𝑎𝑖𝑗(𝑡) is the request scheduling control variable.
It should be satisfied that

∑
𝑗∈𝐽

𝑎𝑖𝑗 (𝑡) = 𝐴 𝑖 (𝑡) , ∀𝑖 ∈ 𝐼. (1)

The request scheduling method in our article will make
use of the diversity of different MEC systems to provide
service in order to reduce scheduling cost while providing
performance guarantees.

2.2.2. SchedulingCost. Let 𝛾𝑖𝑗(𝑡) be the unit cost of scheduling
requests for service 𝑖 to the 𝑗-th MEC system. 𝛾𝑖𝑗(𝑡) can
be different among different services 𝑖 and different MEC
systems 𝑗. It can also vary across time for other factors such
as traffic, wireless fading, the available resources, etc. The
request scheduling cost of service 𝑖 in time slot 𝑡 can be
calculated as ∑𝑗∈𝐽 𝛾𝑖𝑗(𝑡)𝑎𝑖𝑗(𝑡). The total scheduling cost for all
the services can be expressed as

𝑔 (𝑡) = ∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝛾𝑖𝑗 (𝑡) 𝑎𝑖𝑗 (𝑡) . (2)

Instead of studying the instantaneous scheduling cost,
we focus on the long-term average cost. The time-average
scheduling cost across time slots 𝑡 ∈ {0, 1, . . . , 𝑇 − 1} can be
expressed as

𝑔 = lim
𝑇󳨀→∞

1
𝑇
𝑇−1

∑
𝑡=0

E {𝑔 (𝑡)} . (3)

𝑔 is the minimization objective of the request scheduling
problem in this article.

2.2.3. Performance. Queueing delay is one of themost impor-
tant performancemetrics. According to Little’s Law, queueing
delay is in proportion to the number of requests waiting in
the queue.Thus, we seek to reduce queue length andmaintain
low congestion states. Let𝑄𝑖𝑗(𝑡) represent the queue length of
service 𝑖 in the 𝑗-th MEC system in time slot 𝑡. 𝑏𝑖𝑗(𝑡) denotes
the number of requests for service 𝑖 that can be served by the
𝑗-th MEC system. Thus, the queue length 𝑄𝑖𝑗(𝑡) evolves as

𝑄𝑖𝑗 (𝑡 + 1) = max [𝑄𝑖𝑗 (𝑡) − 𝑏𝑖𝑗 (𝑡) , 0] + 𝑎𝑖𝑗 (𝑡) . (4)

To reduce queueing delay and maintain system stability,
we seek to bound the average queue length. Let the time-
average queue length across the 𝑡 ∈ {0, 1, . . . , 𝑇 − 1} slots
represented by 𝑞𝑖𝑗. The service request scheduling method in
this article bounds the average queue length as

𝑞𝑖𝑗 = lim
𝑇󳨀→∞

1
𝑇
𝑇−1

∑
𝑡=0

E {𝑄𝑖𝑗 (𝑡)} < 𝜁, ∃𝜁 ∈ R
+. (5)
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Table 1: Notations and definitions.

Notation Definition
𝐼 Services set.
𝐽 MEC systems set.
𝐴 𝑖(𝑡) Number of requests for service 𝑖 in time slot 𝑡.
𝑎𝑖𝑗(𝑡) Number of requests for service 𝑖 that are scheduled to the 𝑗-th MEC system in time slot 𝑡.
𝑏𝑖𝑗(𝑡) Number of requests for service 𝑖 that can be served by the 𝑗-th MEC system in time slot 𝑡.
𝛾𝑖𝑗(𝑡) Unit cost of scheduling requests for service 𝑖 to the 𝑗-th MEC system.
𝑄𝑖𝑗(𝑡) Queue length of service 𝑖 on the 𝑗-th MEC system in time slot 𝑡.
𝑔(𝑡) Scheduling cost for all the services in time slot 𝑡.

2.2.4. Unified Framework. To combine scheduling cost and
performance, the request scheduling problem in this article
is formulated as

minimize 𝑔 = lim
𝑇󳨀→∞

1
𝑇
𝑇−1

∑
𝑡=0

E {𝑔 (𝑡)} ; (6)

subject to constraints (1), (5).
Solving problem (6) offline requires the future informa-

tion (such as requests arrival information, scheduling cost
information) which is generally hard to obtain or precisely
predict in practice. Thus, we propose an online Dynamic
Service Request Scheduling algorithm to solve the problem,
which will be shown in Section 3.

3. Dynamic Request Scheduling
Algorithm Design

In this section, based on the Lyapunov optimization frame-
work [28], we decompose the original optimization problem
into a series of independent subproblems. Then, we design
a Dynamic Service Request Scheduling algorithm to solve
these subproblems in a distribute way.

3.1. Problem Transformation Using Lyapunov techniques.
Based on Lyanuov optimization techniques, we defineΘ(𝑡) =
(𝑄𝑖𝑗(𝑡)) as the queue lengthmatrix of theMEC systems.Then,
we denote 𝐿(Θ(𝑡)) as the Lyanuov function as follows, which
is a scalarmeasure of the queue congestion state in the system,

𝐿 (Θ (𝑡)) = 1
2∑𝑖∈𝐼

∑
𝑗∈𝐽

𝑄2𝑖𝑗 (𝑡) . (7)

A small value of 𝐿(Θ(𝑡)) indicates that the queue lengths
of all MECs are small, which represents a low congestion state
of the MEC systems according to the Little’s Law. In order to
reduce queue length andmaintain system stability, we seek to
keep the Lyanuov function at a small value. Then, we define
the conditional Lyapunov driftΔ(Θ(𝑡)),

Δ (Θ (𝑡)) = E {𝐿 (Θ (𝑡 + 1)) − 𝐿 (Θ (𝑡)) | Θ (𝑡)} . (8)

By reducing the value of Δ(Θ(𝑡)), we can push the
Lyanuov function towards to a small value. To integrate
scheduling cost and queue length in the MEC systems, we

define the drift plus cost according to Lyapunov optimization
framework, which is expressed as

Δ (Θ (𝑡)) + 𝑉E {𝑔 (𝑡) | Θ (𝑡)} . (9)

The parameter 𝑉 can be considered as the tradeoff
parameter between the scheduling cost and queue length,
which can be determined by service providers or users
according to their requirements in real applications. Next in
Theorem 1, we show that the drift plus cost is upper bounded
if the service arrival rate can be upper bounded.

Theorem 1 (bounding drift plus cost). In each time slot 𝑡,
under any algorithm, for all possible values of Θ(𝑡) and any
parameter value of 𝑉, if there exits a peak value 𝐴𝑚𝑎𝑥𝑖 that
upper bounds the number of requests arrived in each time slot,
the drift plus cost can be upper bounded by

Δ (Θ (𝑡)) + 𝑉E {𝑔 (𝑡) | Θ (𝑡)}
≤ 𝐵 +∑

𝑖∈𝐼

∑
𝑗∈𝐽

𝑄𝑖𝑗 (𝑡)E {𝑎𝑖𝑗 (𝑡) − 𝑏𝑖𝑗 (𝑡) | Θ (𝑡)}

+ 𝑉∑
𝑖∈𝐼

∑
𝑗∈𝐽

E {𝑎𝑖𝑗 (𝑡) 𝛾𝑖𝑗 (𝑡) | Θ (𝑡)} ,
(10)

where 𝐵 = (1/2)[∑𝑖∈𝐼(𝐴𝑚𝑎𝑥𝑖 )2 + ∑𝑖∈𝐼∑𝑗∈𝐽 𝑏̂2𝑖𝑗] is a constant.

Proof. By squaring the both sides of (4) and applying the
inequality that (max[𝑄𝑖𝑗(𝑡) − 𝑏𝑖𝑗(𝑡), 0])2 ≤ (𝑄𝑖𝑗(𝑡) − 𝑏𝑖𝑗(𝑡))2,
we have

𝑄2𝑖𝑗 (𝑡 + 1) ≤ (𝑄𝑖𝑗 (𝑡) − 𝑏𝑖𝑗 (𝑡))
2 + 𝑎2𝑖𝑗 (𝑡)

+ 2𝑎𝑖𝑗 (𝑡)max [𝑄𝑖𝑗 (𝑡) − 𝑏𝑖𝑗 (𝑡) , 0] .
(11)

Then, we define 𝑏𝑖𝑗(𝑡) as the actual number of requests for
service 𝑖 served by the 𝑗-th MEC system in time slot 𝑡,

𝑏𝑖𝑗 (𝑡) =
{
{
{

𝑏𝑖𝑗 (𝑡) , 𝑏𝑖𝑗 (𝑡) ≤ 𝑄𝑖𝑗 (𝑡)
𝑄𝑖𝑗 (𝑡) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(12)
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We can obtain that max[𝑄𝑖𝑗(𝑡) − 𝑏𝑖𝑗(𝑡), 0] = 𝑄𝑖𝑗(𝑡) − 𝑏𝑖𝑗(𝑡) and
rewrite (11) as follows:

𝑄2𝑖𝑗 (𝑡 + 1) ≤ 𝑄2𝑖𝑗 (𝑡) + 𝑎2𝑖𝑗 (𝑡) + 𝑏2𝑖𝑗 (𝑡)

+ 2𝑄𝑖𝑗 (𝑡) (𝑎𝑖𝑗 (𝑡) − 𝑏𝑖𝑗 (𝑡))

− 2𝑎𝑖𝑗 (𝑡) 𝑏𝑖𝑗 (𝑡) .

(13)

Because 𝑎𝑖𝑗(𝑡)𝑏𝑖𝑗(𝑡) ≥ 0, we have
1
2 [𝑄
2
𝑖𝑗 (𝑡 + 1) − 𝑄2𝑖𝑗 (𝑡)]

≤ 1
2 [𝑎
2
𝑖𝑗 (𝑡) + 𝑏2𝑖𝑗 (𝑡)] + 𝑄𝑖𝑗 (𝑡) [𝑎𝑖𝑗 (𝑡) − 𝑏𝑖𝑗 (𝑡)] .

(14)

Taking the expectations on the condition of Θ(𝑡) to both
sides in (14) and summing over 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽, it can be
obtained that

Δ (Θ (𝑡)) ≤ 1
2∑𝑖∈𝐼

∑
𝑗∈𝐽

E {𝑎2𝑖𝑗 (𝑡) + 𝑏2𝑖𝑗 (𝑡) | Θ (𝑡)}

+∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑄𝑖𝑗 (𝑡)E {𝑎𝑖𝑗 (𝑡) − 𝑏𝑖𝑗 (𝑡) | Θ (𝑡)} .
(15)

Since it holds that ∑𝑗∈𝐽 𝑎𝑖𝑗(𝑡) = 𝐴 𝑖(𝑡) and 𝐴 𝑖(𝑡) ≤ 𝐴𝑚𝑎𝑥𝑖 ,
we have

∑
𝑗∈𝐽

E {𝑎2𝑖𝑗 (𝑡) | Θ (𝑡)} ≤ E {𝐴2𝑖 (𝑡) | Θ (𝑡)} ≤ (𝐴𝑚𝑎𝑥𝑖 )2 . (16)

In addition, we define 𝑏̂𝑖𝑗 as the upper bound of 𝑏𝑖𝑗(𝑡) over all
the time slots. We can obtain that

∑
𝑖∈𝐼

∑
𝑗∈𝐽

E {𝑎2𝑖𝑗 (𝑡) + 𝑏2𝑖𝑗 (𝑡) | Θ (𝑡)}

≤ ∑
𝑖∈𝐼

(𝐴𝑚𝑎𝑥𝑖 )2 +∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑏̂2𝑖𝑗.
(17)

By adding 𝑉E{𝑔(𝑡) | Θ(𝑡)} to both sides and letting 𝐵
take the value of (1/2)[∑𝑖∈𝐼(𝐴𝑚𝑎𝑥𝑖 )2] + ∑𝑖∈𝐼∑𝑗∈𝐽 𝑏̂2𝑖𝑗, it can be
obtained that

Δ (Θ (𝑡)) + 𝑉E {𝑔 (𝑡) | Θ (𝑡)}
≤ 𝐵 + 𝑉E {𝑔 (𝑡) | Θ (𝑡)}

+∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑄𝑖𝑗 (𝑡)E {𝑎𝑖𝑗 (𝑡) − 𝑏𝑖𝑗 (𝑡) | Θ (𝑡)} .
(18)

Substituting (2) into the right-hand-side (R.H.S.) of (18),
we can obtain (10).

3.2. Dynamic Request Scheduling Algorithm. Following the
design principles of Lyapunov optimization techniques, we
design an efficient Dynamic Service Request Scheduling
(DSRS) algorithm to minimize the upper bound of drift plus
cost in each time slot 𝑡. By decomposing the minimization of

upper bound problem into a series of independent subprob-
lems, our DSRS algorithm optimizes the average scheduling
cost concurrently in a distributed way. In addition, it will be
proven that DSRS algorithm can achieve a long-term time-
average scheduling cost that is arbitrarily close to the optimal
value while maintaining the stability of the MEC systems.

In each time slot 𝑡, based on the current queue length
matrix Θ(𝑡) of the MEC systems, the DSRS algorithm makes
request scheduling decisions 𝑎𝑖𝑗(𝑡) to minimize the upper
bound of R.H.S. of (10). Since 𝐵 and 𝑏𝑖𝑗 can be considered
as constant in the optimization problem, we can rewrite the
minimization of upper bound as

min
𝑎𝑖𝑗(𝑡)

∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑎𝑖𝑗 (𝑡) 𝑄𝑖𝑗 (𝑡) + 𝑉𝑎𝑖𝑗 (𝑡) 𝛾𝑖𝑗 (𝑡) . (19)

subject to

∑
𝑗∈𝐽

𝑎𝑖𝑗 (𝑡) = 𝐴 𝑖 (𝑡) , ∀𝑖 ∈ 𝐼. (20)

As the request scheduling decisions 𝑎𝑖𝑗 (𝑡) are independent
among different services, the above centralized minimization
problem (19) can be decomposed into the following subprob-
lem (21) for each service 𝑖 ∈ 𝐼, i.e.,

min
𝑎𝑖𝑗(𝑡)

∑
𝑗∈𝐽

𝑎𝑖𝑗 (𝑡) (𝑄𝑖𝑗 (𝑡) + 𝑉𝛾𝑖𝑗 (𝑡)) . (21)

subject to

∑
𝑗∈𝐽

𝑎𝑖𝑗 (𝑡) = 𝐴 𝑖 (𝑡) . (22)

Problem (21) can be regarded as a generalized min-weight
problem, where the number of requests scheduled to the
MEC systems is weighted by the value of 𝑄𝑖𝑗(𝑡) + 𝑉𝛾𝑖𝑗(𝑡).
Therefore, for each service 𝑖 ∈ 𝐼, the optimal solution is
to schedule all the requests to the MEC system with the
minimum value of 𝑄𝑖𝑗(𝑡) + 𝑉𝛾𝑖𝑗(𝑡); i.e.,

𝑎𝑖𝑗 (𝑡) =
{
{
{

𝐴 𝑖 (𝑡) , 𝑗 = 𝑗∗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(23)

where 𝑗∗ ∈ argmin(𝑄𝑖𝑗(𝑡) + 𝑉𝛾𝑖𝑗(𝑡)) for all 𝑗 ∈ 𝐽.

Remark. There exist tradeoffs between the scheduling cost
and queue length of the MEC systems. Scheduling all the
service requests to the MEC system with low cost can reduce
the overall scheduling cost; however, the queue length of the
MEC system canbe very large.TheDSRS algorithm combines
scheduling cost and queue length, and 𝑄𝑖𝑗(𝑡) + 𝑉𝛾𝑖𝑗(𝑡) can be
regarded as the penalty factor for each MEC system. Recall
that 𝑉 represents the tradeoff between scheduling cost and
queue length. The intuition of the optimal scheduling policy
obtained by the DSRS algorithm is to minimize the penalty
function of the MEC systems in each time slot. In this way,
the DSRS algorithm can reduce both the scheduling cost and
the queue length. In addition, by changing the value of𝑉, the
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1: In the beginning of each time slot 𝑡, observe the current queue length 𝑄𝑖𝑗(𝑡).
2: for all 𝑖 ∈ 𝐼 do
3: Set auxiliary variable𝑀𝑖𝑛𝑊𝑒𝑖𝑔ℎ𝑡 = −∞;
4: Set 𝑗∗ = 1;
5: for all 𝑗 ∈ 𝐽 do
6: Calculate the penalty factor 𝑝𝑓𝑗 = 𝑄𝑖𝑗(𝑡) + 𝑉𝛾𝑖𝑗(𝑡);
7: if 𝑝𝑓𝑗 < 𝑀𝑖𝑛𝑊𝑒𝑖𝑔ℎ𝑡 then
8: 𝑗∗ = 𝑗;
9: end if
10: end for
11: for all 𝑗 ∈ 𝐽 do
12: if𝑗 == 𝑗∗ then
13: Set 𝑎𝑖𝑗(𝑡) = 𝐴 𝑖(𝑡);
14: else
15: Set 𝑎𝑖𝑗(𝑡) = 0;
16: end if
17: end for
18: end for

Algorithm 1: Dynamic Service Request Scheduling (DSRS).

DSRS algorithm can achieve the arbitrary tradeoff between
scheduling cost and queue length.

After the scheduling decisions 𝑎𝑖𝑗(𝑡) are determined, the
queue length 𝑄𝑖𝑗(𝑡) updates according to (4). The detailed
algorithm is shown in Algorithm 1.

4. Algorithm Analysis

In this section, we present mathematical analysis of the
boundary of the time-average queue length and scheduling
cost of our DSRS algorithm. It can be proven that our
algorithm can achieve the scheduling cost arbitrarily close to
the optimal value while maintaining the stability of the MEC
systems. Let 𝑄 denote the long-term time-average queue
length,

𝑄 = lim
𝑇󳨀→∞

1
𝑇
𝑇−1

∑
𝑡=0

∑
𝑖∈𝐼

∑
𝑗∈𝐽

E {𝑄𝑖𝑗 (𝑡)} . (24)

We present in Lemma 2 that if the arrival 𝐴 𝑖(𝑡) is
independent and identically distributed (i.i.d.) over time
slots, there exists a randomized policy 𝜋∗ which can achieve
the minimum cost 𝑔∗ defined in (3), where the control
decision 𝑎𝑖𝑗(𝑡) follows certain fixed probability distribution
independent of the queue length matrix Θ(𝑡).
Lemma 2. For any service request arrival rate 𝜆 ∈ Λ, where
Λ is the capacity region of the system, if the arrival 𝐴 𝑖(𝑡) is
i.i.d. over time slots, there exists a randomized policy 𝜋∗ that
determines the control decision 𝑎𝑖𝑗(𝑡) in each time slot 𝑡 and
achieves the following:

E {𝑔𝜋∗ (𝑡)} = 𝑔∗ (𝜆) ;

E
{
{
{
∑
𝑗∈𝐽

𝑎𝜋∗𝑖𝑗 (𝑡)
}
}
}
≤ E

{
{
{
∑
𝑗∈𝐽

𝑏𝑖𝑗 (𝑡)
}
}
}
.

(25)

where 𝑔∗(𝜆) denotes the minimum time-average cost under the
arrival rate 𝜆.
Proof. Lemma 2 can be proven by Caratheodory’s theorem
in [28], we omit the detailed proof here for simplicity and
brevity.

Since it is assumed that there exists upper bound 𝐴𝑚𝑎𝑥𝑖 of
the service request arrival rate, there also exists upper bound
𝑔 and lower bound ̌𝑔 of the objective 𝑔. Then, we derive the
boundary of queue length and scheduling cost of the DSRS
algorithm based on Lemma 2.

Theorem 3. Assume that there exists 𝜀 satisfying 𝜆 + 𝜀 ∈ Λ,
then, under ourDSRS algorithm, for any value of the parameter
𝑉, the time-average queue length defined in (24) is bounded as

𝑄 ≤ 𝐵 + 𝑉 (𝑔 − ̌𝑔)
𝜀 . (26)

Furthermore, the time-average system scheduling cost can
be bounded by (27), which shows the cost derived by our DSRS
algorithm can approach the optimal value by increasing the
parameter 𝑉. Here, 𝐵 is the constant defined in Theorem 1.

𝑔𝐷𝑆𝑅𝑆 ≤ 𝑔∗ + 𝐵
𝑉. (27)

Proof. Since it holds that 𝜆 + 𝜀 ∈ Λ, we can obtain that there
exists a randomized policy 𝜋󸀠 which satisfies (28) and (29)
according to Lemma 2.

E {𝑔𝜋󸀠 (𝑡)} = 𝑔∗ (𝜆 + 𝜀) ; (28)

E
{
{
{
∑
𝑗∈𝐽

𝑎𝜋󸀠𝑖𝑗 (𝑡)
}
}
}
≤ E

{
{
{
∑
𝑗∈𝐽

𝑏𝑖𝑗 (𝑡)
}
}
}
− 𝜀. (29)
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As our DSRS algorithm can achieve the minimum value
of the R.H.S of (10) among all feasible policies (including
policy 𝜋󸀠), it can be obtained that

Δ (Θ (𝑡)) + 𝑉E {𝑔 (𝑡) | Θ (𝑡)}

≤ 𝐵 + 𝑉E {𝑔𝜋󸀠(𝑡) | Θ (𝑡)}

+∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑄𝑖𝑗 (𝑡)E {𝑎𝜋
󸀠

𝑖𝑗 (𝑡) − 𝑏𝑖𝑗 (𝑡) | Θ (𝑡)} .
(30)

Substituting (28) and (29) into the R.H.S. of (30), taking
expectations on both sides, and then using iterated expecta-
tions, we can yield

E {𝐿 (Θ (𝑡 + 1)) − 𝐿 (Θ (𝑡))} + 𝑉E {𝑔 (𝑡)}
≤ 𝐵 + 𝑉𝑔∗ (𝜆 + 𝜀) − 𝜀∑

𝑖∈𝐼

∑
𝑗∈𝐽

E {𝑄𝑖𝑗 (𝑡)} . (31)

Moving 𝑉E{𝑔(𝑡)} to the R.H.S. of (31), it can be obtained
that

E {𝐿 (Θ (𝑡 + 1)) − 𝐿 (Θ (𝑡))}
≤ 𝐵 + 𝑉 (𝑔∗ (𝜆 + 𝜀) − E {𝑔 (𝑡)})
− 𝜀∑
𝑖∈𝐼

∑
𝑗∈𝐽

E {𝑄𝑖𝑗 (𝑡)}

≤ 𝐵 + 𝑉 (𝑔 − ̌𝑔) − 𝜀∑
𝑖∈𝐼

∑
𝑗∈𝐽

E {𝑄𝑖𝑗 (𝑡)} .

(32)

To be general, we assume the queue length is empty when
𝑡 = 0. By summing both sides of (32) over 𝑡 ∈ {0, 1, . . . 𝑇 − 1}
and applying the fact that 𝐿(Θ(𝑡)) ≥ 0, we can obtain

𝜀
𝑇−1

∑
𝑡=0

∑
𝑖∈𝐼

∑
𝑗∈𝐽

E {𝑄𝑖𝑗 (𝑡)} ≤ (𝐵 + 𝑉 (𝑔 − ̌𝑔)) 𝑇

− E {𝐿 (Θ (𝑇))}
≤ (𝐵 + 𝑉 (𝑔 − ̌𝑔)) 𝑇.

(33)

Dividing both sides of (33) by 𝜀𝑇 and taking a lim as𝑇 󳨀→
∞ yield (26).

By summing both sides of (31) over 𝑡 ∈ {0, 1, . . . 𝑇−1} and
applying the fact that E{𝑄𝑖𝑗(𝑡)} ≥ 0, it can be obtained

𝑉
𝑇−1

∑
𝑡=0

E {𝑔 (𝑡)} ≤ (𝑉𝑔∗ (𝜆 + 𝜀) + 𝐵) 𝑇. (34)

Dividing both sides of (34) by 𝑉𝑇, we have

1
𝑇
𝑇−1

∑
𝑡=0

E {𝑔 (𝑡)} ≤ 𝑔∗ (𝜆 + 𝜀) + 𝐵
𝑉. (35)

Taking a lim of (35) as 𝑇 󳨀→ ∞, applying Lebesgue’s
dominated convergence theorem, and letting 𝜀 󳨀→ 0 yield
(27).

Remark. Theorem 3 shows that our DSRS algorithm can
achieve a [𝑂(1/𝑉),𝑂(𝑉)] tradeoff between the time-average
scheduling cost and queue length. According to (27), the gap
between the time-average scheduling cost obtained by our
DSRS algorithm and the optimal value is within 𝑂(1/𝑉). By
setting the value of 𝑉 sufficiently large, the DSRS algorithm
can approach the optimal scheduling cost. However, a large
𝑉 will cause a large queue backlog of the MEC systems. Nev-
ertheless, the queue length obtained by our DSRS algorithm
is also bounded according to (26). And constraint (5) can be
satisfied by letting 𝜁 take the value of (𝐵 + 𝑉(𝑔 − ̌𝑔))/𝜀.

Then, we analyze the time complexity of the DSRS algo-
rithm. According to Algorithm 1, for the two inner loops (line
5-10 and line 11-17), DSRS algorithm traverses each edge serv-
er once. Therefore, each loop terminates in 𝑂(𝑛) operations,
where 𝑛 is the number of edge servers. For the outer loop
(line 1-18), since the request scheduling of different service
applications is independent, it terminates in𝑂(𝑛) operations.
Thus, the time complexity of the DSRS algorithm is 𝑂(𝑛).

5. Evaluation

In this section, we conduct experiments to evaluate our
DSRS algorithm. First, we analyze the impact of parameters.
Then, we present comparison experiments which show the
effectiveness of our DSRS algorithm.

In the experiments, we consider 4 MEC systems, each
with an edge server providing services for the offloaded
requests. There are two types of heterogeneous services. For
each service 𝑖 ∈ 𝐼, the request arrival process is generated
according to Poisson distribution with arrival rate 𝜆𝑖 [29].
Note that the DSRS algorithm actually requires no knowledge
of the statistical information of request arrivals. The comput-
ing capacity of the MEC systems is set as 𝛽𝑖 ⋅ 𝜆𝑖 where 𝛽𝑖 > 1.
Without loss of generality, we assume the MEC systems are
heterogeneous with different computing capacities. And the
unit scheduling costs of different MEC systems are set to be
positively related to its computing capacity.

5.1. Parameter Analysis

5.1.1. Effect of Tradeoff Parameter. Figures 1 and 2 show the
time-average scheduling cost and queue length of the MEC
systems with different values of 𝑉. In Figure 1, it can be seen
that the scheduling cost decreases as the value of𝑉 increases,
which is in accordancewith (27) inTheorem3.This is because
as 𝑉 increases, more weight is put on scheduling cost, and
the DSRS algorithm would schedule more service requests
to the MEC system with lower unit cost in order to reduce
the overall scheduling cost. However, Figure 2 shows that
the queue length also rises with the increase of 𝑉, which is
consistent with (26) in Theorem 3. Nevertheless, the queue
length would stabilize gradually with far more increase of
𝑉. Together with Figures 1 and 2, we can see that the DSRS
algorithm can make a tradeoff between scheduling cost and
queue length by adjusting the value of 𝑉.

5.1.2. Effect of Service Request Arrival Rate. We analyze the
effect of service request arrival rate on the scheduling cost and
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Figure 1: Scheduling cost with different values of 𝑉.
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Figure 2: Queue length with different values of 𝑉.

queue length. In the experiments, for each application 𝑖 ∈ 𝐼,
we scale the service request arrival rate up or down to 𝑝 ⋅ 𝜆𝑖.
We consider three different cases, where 𝑝 = 1, 1.2 and 1.4,
respectively. Figures 3 and 4 show that both of the scheduling
cost and queue length increase as the request arrival rate
increases. Nevertheless, the queue length can stabilize quickly
with the increase of service request arrival rate. This shows
that our DSRS algorithm can dynamically adjust the request
scheduling decisions according to different service request
arrivals and maintain the stability of the MEC systems.

5.1.3. Effect of Unit Scheduling Cost. To analyze the effect of
unit scheduling cost on the MEC systems, we scale the unit
scheduling cost up or down to 𝑞 ⋅ 𝛾𝑖𝑗. We consider three
different cases, where 𝑞 = 1, 1.2 and 1.4, respectively. We
can see from Figure 5 that the overall scheduling cost rises
as the unit scheduling cost increases, since the scheduling
cost of each request increases. In Figure 6, we can see that
the queue length of the MEC systems also increases with the
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Figure 3: Scheduling cost with different arrival rates.
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Figure 4: Queue length with different arrival rates.

increase of unit scheduling cost. The reason is that our DSRS
algorithm tries to achieve low scheduling cost by scheduling
more requests to the MEC with smaller unit scheduling cost.
However, this will lead to the larger queue backlog in some
MEC systems.

5.2. Comparison Experiment. We conduct comparison
experiment and compare our DSRS algorithm with
Randomized algorithm to evaluate the effectiveness of
the DSRS algorithm. The Randomized algorithm schedules
all the service requests to each MEC system randomly. The
scheduling costs and queue lengths of the two algorithms are
shown in Figures 7 and 8, respectively.

We can see from Figure 7 that the scheduling cost of
our DSRS algorithm is smaller than that of Randomized
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Figure 5: Scheduling cost with different unit scheduling costs.

200

300

400

500

600

700

800

900

1000

qu
eu

e l
en

gt
h

200 400 600 800 10000
t

q=1
q=1.2
q=1.4

Figure 6: Queue length with different unit scheduling costs.

algorithm, which shows the effectiveness of our DSRS algo-
rithm in reducing cost. In Figure 8, we can observe that the
queue length of the Randomized algorithm is slightly smaller
than our DSRS algorithm at the very beginning. However, as
time goes by, the queue length of the Randomized algorithm
increases continuously along with the time.The queue length
of our DSRS algorithm stabilizes quickly and maintains at
a small level. The reason is that our DSRS algorithm can
adjust scheduling decisions dynamically according to the
current queue backlog and maintain low congestion state in
the MEC systems. Together with Figures 7 and 8, we can see
the effectiveness of our DSRS algorithm in optimizing both
scheduling cost and queue length.
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Figure 7: Scheduling cost under different algorithms.
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6. Conclusion

In this article, we study dynamic request scheduling for
MEC systems. We formulate it as an optimization problem,
and the goal is to optimize scheduling cost while providing
performance guarantee. We propose the DSRS algorithm to
solve the optimization problem, which transforms it to a
series of subproblems and solves each one efficiently in a
distributed way. Mathematical analysis is presented which
demonstrates that the DSRS algorithm can approach the
optimal scheduling cost while bounding the queue length.
Parameter analysis experiments and comparison experi-
ments are both conducted to verify the effectiveness of the
DSRS algorithm.
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