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Abstract. Local binary patterns (LBP) has been very successful in a number
of areas, including texture analysis and face analysis. Recently, local quantized
patterns (LQP) was proposed to use vector quantization to code complicated pat-
terns with a large number of neighbors and several quantization levels. It uses
lookup table technique to map patterns into the corresponding indices. In this pa-
per, we propose completed local quantized patterns (CLQP) for improving the
performance of LQP. Firstly, we find that LQP only considers the sign-based
difference, it thus misses some discriminative information. We therefore pro-
pose to use the magnitude-based and orientation-based differences to comple-
ment the sign-based difference for LQP. We finally use vector quantization to
learn three separate codebooks for local sign, magnitude and orientation patterns,
respectively. Secondly, we also observe that LQP uses random initialization in
vector quantization, this leads to losing the distribution of local patterns and cost-
ing much computational time. For reducing the unnecessary computational time
of initialization, we use preselected dominant patterns as the initialization. Our
experimental results show that CLQP outperforms well-established features in-
cluding LBP, LTP, CLBP, LQP on a range of challenging texture classification
problems and an infant pain detection problem.

Keywords: Local binary pattern, local orientation, magnitude, texture
descriptor, pain detection.

1 Introduction

Local binary patterns (LBP) [12] is considered as an effective descriptor in a num-
ber of areas including texture classification [12], face analysis [1] and medical image
analysis [11]. Since the 1990′s, many variants of LBP [14] have been proposed. Some
representative ones include local ternary patterns (LTP) [15], a completed model of LBP
(CLBP) [7], and center-symmetric LBP (CS-LBP) [10].

Recently, an interesting texture descriptor, called local quantized patterns, was pro-
posed to be used in texture classification and object detection [8]. In LQP, two impor-
tant issues of LBP were considered: (1) how to code some complicated patterns and
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(2) how to find the representative and most discriminative patterns. In practice, some
complicated patterns, especially the sampling patterns with a large number of neighbors
and several quantization levels, will lead to high dimensional histograms. On the other
hand, the typical coding, such as uniform code [12], could be restricted by the exponen-
tial growth of the codebook size with neighborhood size and quantization depth [8]. For
solving these problems, LQP applies vector quantization to code some complicated pat-
terns and produce the dominant patterns. Furthermore, lookup-table technique is used to
replace the nearest neighbor search method for allowing real-time coding. These simple
methods make LQP more robust and discriminative.

However, there are two major limitations of LQP. The first one is that LQP only
exploits the sign-based difference. However, supplementary information, like magni-
tude, can be useful. In [7], a completed model of LBP (CLBP) was proposed to incor-
porate with three complementary components (CLBP): the sign-based difference, the
magnitude-based difference, and central pixel intensity. In practice, it is known that the
central pixel intensity information is very sensitive to illumination changes [21]. In re-
cent years, some state-of-the-art works show that the orientation is useful and attractive
information for a feature descriptor. For example, Zhang et al. [20] proposed Histogram
of Gabor Phase Pattern combining the spatial histogram and the Gabor phase informa-
tion coding scheme. Xie et al. [19] proposed local Gabor XOR patterns, which encodes
the Gabor phase by using local XOR pattern. Vu and Caplier [18] presented multiple
features combining patterns of oriented edge magnitude and patterns of domination ori-
entations. Inspired by the above-mentioned works, we therefore propose a completed
local quantized pattern operator (CLQP) to extend LQP by using the sign-based differ-
ence, the magnitude-based difference and the orientation-based difference.

Another limitation of LQP is that the initialization of vector quantization is not sta-
ble. Typically, the common way is that some samples are randomly chosen as the ini-
tialization. But it needs to be repeated several times for convergence. In our study, we
observe that the patterns of LBP and CLBP have one interesting property: some patterns
occur many times. This property is used to develop some novel methods, such as dom-
inant LBP [9] and discriminative LBP [6]. This property also motivates us to develop
the other way to initialize vector quantization. In our study, patterns that occur many
times are regarded as predominating patterns. They can be viewed as the distribution of
the texture or appearance.

To address the limitations of LQP mentioned above, we propose that (1) a new
descriptor incorporating the sign-based difference, magnitude-based difference and
orientation-based difference into steps of LQP, and (2) the revised vector quantization
step of LQP by using a dominant-pattern method.

The paper is organized as follows. In Section 2, we briefly review the completed
model of local binary pattern, and present local orientation pattern and revised vector
quantization method. In Section 3 we carry out experiments dealing with the applica-
tions of CLQP in texture classification and infant pain detection. Section 4 provides
concluding remarks and possible extensions.
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2 Completed Local Quantization Pattern

The essence of the proposed texture descriptor is to characterize texture or appear-
ance by using the sign-based, magnitude-based, and orientation-based differences. The
procedure of the proposed algorithm consists of two components: the learning and in-
ference stages. The learning procedure is illustrated in Fig.1. It includes four stages:
(1) three kinds of information (local sign, magnitude and orientation patterns) are ex-
tracted from the image, in which local orientation pattern is realized by using orientation
estimation and quantification, (2) three separate codebooks (called O, S, and M, respec-
tively) are learned by using vector quantization, (3) the sign, magnitude and orientation
patterns are mapped into their corresponding codebook by using lookup table (LUT),
and (4) three histograms are concatenated into one vector. The inference stage con-
sists of all stages except the second stage. In our case, we consider four neighborhood
topologies, as shown in Fig.2. Figs.2(a-c) show three common topologies with circular
neighborhoods of P sampling points and radius R around the central pixel. In Fig.2(d),
the multi-ring topology (Disc5) has two rings with 24 sampling points in total around
the central pixel.

Vector 
Quantization

Codebook 
(O)

Orientation 
Detection

Training 
Samples

Quantifi
cation

Vector 
Quantization

Codebook 
(S)

Sign 
Difference

Stage 1 Stage 2

LUT

Stage 3 Stage 4

Vector 
Quantization

Magnitude 
Difference

Codebook 
(M)

LUT

LUT

Fig. 1. Overview of the proposed algorithm
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Fig. 2. Three circular neighborhoods with P sampling points and radius R around the central point
(a-c), and Disc5 neighborhoods (d). (a) P = 8, R = 1, (b) P = 8, R = 2, (c) P = 16, R = 2,
(d) P = 24. The pixel values are bilinearly interpolated whenever the sampling point is not in
the center of a pixel.
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2.1 Review of CLBP

CLBP is an important local descriptor incorporating sign-based difference and
magnitude-based difference [7]. Here we briefly review CLBP. Consider a monochrome
image I(x, y) and let gc denote the gray level of any arbitrary pixel (x, y). Moreover, let
gp(p = 0, 1, . . . , P − 1) denote the gray value of P sampling points in local neighbor-
hoods around (x, y). The difference between the center pixel and its surrounding pixel
can be calculated as dp = gp − gc. The difference can be further decomposed into sign
up and magnitude vp as follows,

dp = up ∗ vp = sign(dp) ∗ |dp|, (1)

where up =

{
1, dp ≥ 0
0, dp < 0

is the sign of dp and vp is the magnitude of dp.

The sign pattern of (x, y) has the same formulation (binary) as the LBP operator. It
can be represented as [u0, . . . , uP−1]. For magnitude pattern [v0, . . . , vP−1], it is simply
converted into a consistent format with that of sign pattern by a threshold δ. Here we
set it as the mean value of vp from the whole image. The magnitude pattern can be

converted as hp =

{
1, vp ≥ δ
0, vp < δ

. Therefore, the magnitude pattern can be rewritten as

[h0, . . . , hP−1].

2.2 Local Dominant Orientation Patterns

The basic idea of difference of orientation is to encode the relationships between domi-
nant orientations of neighboring pixels in the image. In our algorithm, the procedure of
the difference of orientation can be divided into the following stages: (1) the estimation
of orientation angle of the pixel, (2) the calculation of dominant orientation, and (3) the
operation on neighborhood orientations.

We must firstly estimate the orientation angle of a pixel. To calculate this, the hori-
zontal and vertical filters are generally used to approximate the orientation of an image
patch around the pixel [3]. But they are limited to small patches. With the patch size
increasing, another way [18] can be developed by using accumulated gradient over all
pixels. In this method, the gradient vector of each pixel is calculated, and then a local
histogram of gradient over all pixels of one patch is accumulated. Finally the orienta-
tion angle is chosen according to the largest histogram bin. Instead, other possible ways,
such as Gabor filters and Gaussian recursive transformation, have been proposed to es-
timate the orientation angle of each pixel [5,19,20]. The advantage is that they could be
in practice applied to various patch sizes.

Following the work of [5], a Gaussian kernel is used to estimate the orientation angle
of the image patch. For each Gaussian kernel, we make the multi-ring circular mask
(similar to Disc5 shown in Fig.2). Let the size of an image patch denote as D × D,
and the circular mask includes �D

2 � circles, where �x� means the floor of x. Each ring
has radius r and 8 × r sampling points around a central point, where r = 1, . . . , �D

2 �.
We denote the number and interval of the orientation bins as M and Δθ, respectively,
where Δθ = 2π

M . We know that the angle of each orientation bin can be estimated as
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θm = m × Δθ,m = 0, . . . ,M − 1. For θm, its Gaussian kernel is defined as the
difference between two oriented with shifted kernels in an image patch,

Gθm =
G−

θm
−G+

θm∑
x,y[(G

−
θm

−G+
θm

) · h(G−
θm

−G+
θm

)]
, (2)

where

G−
θm

=
1

2πσ2
exp(− (x− σ cos θm)2 + (y − σ sin θm)2

2σ2
),

G+
θm

=
1

2πσ2
exp(− (x+ σ cos θm)2 + (y + σ sin θm)2

2σ2
),

h(G−
θm

−G+
θm

) =

{
1, G−

θm
−G+

θm
> 0

0, G−
θm

−G+
θm

� 0
,

and σ is a root mean square deviation of the Gaussian distribution, θm is the angle of the
Gaussian rotation, (x, y) is the coordinate of circular mask. For this image patch, the
response of each orientation can be obtained by convolving with each Gaussian kernel.
We can estimate the orientation angle of each pixel according to the maximum response
of Gaussian kernel.

As mentioned above, the orientation angle of each pixel has displaced the gray infor-
mation. Motivated by the formulation of LBP, we try to find out a method for exploiting
the relationship of orientation angles of the pixel and its surrounding neighbors. Based
on any neighborhood topology (in Fig.2), we assume that the orientation angles of the
center pixel (xc, yc) and its neighbors (xp, yp) are θ(xc, yc) and θ(xp, yp), respectively.
In general, we could compute the difference of orientation angle [16] and subsequently
code it as 0/1 by setting a threshold. However, it is difficult to find the best threshold.
Besides that, the threshold will lead the algorithm to be complicated and instable. In-
stead, for stability, we further quantify the orientation angle. In our case, we apply the
quantification function [3] as follows,

t = mod(�θ(x, y)2π
T

+ 0.5�, T ), (3)

where T is the number of dominant orientation.
We assume that the dominant orientation bin of the pixel (xc, yc) and its surrounding

pixels (xp, yp) can be denoted as tc and tp. Their relationship is calculated as follows,

op = tc
⊕

tp =

{
0, tc = tp
1, tc �= tp

, (4)

therefore, the orientation pattern can be written as [o0, . . . , oP−1], where P is the num-
ber of the sampling points.

In the above-mentioned procedure, we know that M and T are two important pa-
rameters in orientation pattern. Let us discuss the property of these two parameters.
(1) The orientation angle estimation is sensitive to M . If M is too small, it will cause
inaccurate orientation angle estimation. Thus, M is as large as possible for estimating
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accurately the orientation angle. However, if M is too large, it will lead to unneces-
sary computation. (2) In [19], Xie et al. showed that the appropriate quantification level
could achieve a good balance between robustness to orientation variation and represen-
tation power of local patterns. In [18], Vu and Caplier discussed how the quantification
level could affect the local pattern for the orientation in neighbor structure. Thus, T per-
forms a trade-off role between the robustness to orientation variation and representation
power of local patterns. Inspired by [5,19], we set M and T as 16 and 4, respectively.

2.3 Revision of Vector Quantization

Typically, the coding of local pattern can be realized by a predefined pattern model [12].
A recent work [8] proposed to use vector quantization for codebook learning for local
patterns. It can be applied to both simple and complicated neighborhood structures as
shown in Fig.2. The advantages of vector quantization include that (1) it is a generalized
form of local pattern feature and (2) it uses a learned codebook to make coding fast.
We therefore exploit it to produce the codebook for the three above-mentioned local
patterns.

Typically, in visual recognition, the local patterns from all images are fed into k-
means clustering, and then the codebook is learned. With the number of local patterns
increasing, powerful hardware and huge amount of memory are needed. In our study, we
find that the local patterns of sign, magnitude and orientation are binary vectors. Some
patterns often occur many times. For example, for neighborhood sampling structure
with radius one and eight sampled points, there are 256 possible code values for local
pattern of sign, magnitude and orientation. In order to speed up the clustering procedure,
we compute the weights of occurred patterns, and then feed them into the clustering. In
our experiments, we could find that this trick has good performance and reduces much
the computational time.

Through our study, the initialization problem is critical to vector quantization based
on k-means clustering. It is generally realized by randomly choosing the samples from
the training ones. But it needs to be repeated many times for finding the best initializa-
tion. Motivated by the benefit of dominant patterns [9], we propose to use the dominant
patterns of the images replacing the random initialization.

Let C be the codebook size of vector quantization, we accumulate the occurrence of
local patterns w1, w2, . . . , wn from all training samples, and then sort the local patterns
by the descending order of occurrence. We select the C local patterns as the domi-
nant ones. Instead of random initialization, we feed these dominant patterns to k-means
clustering. Fig.3 shows the performance of our dominant-pattern approach and random
initialization method (10-time repeated)for the local sign-based pattern in Brodatz32
database [13]. They were carried out on Matlab R2012 64 bits with 2.5GHz Intel Xoen
E5-2640 processor and 128Gb of RAM. From this figure, we can see that the classi-
fication accuracy by dominant-pattern initialization is better than the former one. We
can also observe that the gain in computational time of random initialization method
is proportional to the number of random initializations, and dominant-pattern approach
needs less time.
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2.4 Feature Descriptor and Classification

From the previous section, three kinds of pattern are derived: the sign-based pattern (S),
magnitude-based pattern (M ), and orientation-based pattern (O). Finally, we use the
revised vector quantization to learn the three separate codebooks. The advantage is that
we can explore the discriminative and most representative codebook for each one. For
each verified image, we can get their histograms through mapping three patterns into
the codebook. Here, we simply concatenate them into one histogram. For briefly, we
denote it as CLQPS/M/O. In our method, unless specified otherwise, the three-nearest-
neighbor classifier with Chi-square distance measure is used for fair comparison.
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Fig. 3. The comparative performance of dominant-pattern initialization and random initialization
(10 times repeated) on Brodatz 32 dataset [13]. It is repeated by 10-fold-cross-validation. (a)
Average classification accuracy (%), (b) average CPU time (seconds).

3 Experiments

In this section, we use our method for texture classification and emotion recognition,
and compare the performance with those of the state-of-the-art methods.

3.1 Texture Classification Experiments

Texture classification plays an important role in many applications. Several approaches
to the extraction of the texture features have been proposed. Experiments are carried out
on three different texture databases: Brodatz 32 [13], KTH-TIPS2-a [2] and CUReT [4].
For Brodatz32, it comprises 2,048 samples, with 64 samples in each of the 32 texture
categories. In CUReT, there are 5612 texture images, with 92 samples in each of the 61
real-world surfaces. The KTH-TIPS2-a texture dataset contains 11 texture classes with
4,395 images. In our experiments, we choose gray images for CUReT and transform
color images of size 200×200 pixels into gray level for KTH-TIPS2-a.

We follow the experimental setups of [3,2,4,13]. For Brodatz32, the performance
of our method was evaluated with ten different randomly chosen training and test
sets [3,13]. The data for each class is randomly split into equal halves with one used for
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training and the other one for testing. For CUReT, we split the images of each class into
equal parts and use half for training and the remaining half for testing, and we report
averages over 10 random trials [17]. For KTH-TIPS2-a, three samples of each class are
used for training and the fourth for testing, and we report averages over four random
partitions [2].

The average accuracies of different methods are listed in Tab.1. Since our implemen-
tation of LQP was not able to reproduce the results of [8], with our implementation
doing a little worse on three cases, we give the results for our implementations (here
we denote it LQPS) to allow a comparison with the other features. In Tab.1, the number
of sampling points for LBP, CLBP and LTP is eight, and the radius for LBP and CLBP
is one and for LTP two. And Disc5 is used in LQPS . From Tab.1, we can observe that
CLQPS/M and CLQPS/M/O outperform LBP, LTP and LQPS in all three cases.

(1) For Brodatz32, CLQPS/M and CLQPS/M/O work better than LQPS . They also
outperform CLBPS/M and CLBPS/M/C .

(2) For CUReT, CLQPS/M/O works little worse than CLBPS/M/C at the average ac-
curacy of 0.42%. It may be because that intensity information can provide more infor-
mation than orientation in this database. Without the intensity information, CLQPS/M

and CLQPS/M/O can significantly outperform CLBPS/M .
(3) For KTH-TIPS2-a, CLQPS/M/O achieves the average accuracy of 67.63%. The

reproduced result of LQP [8] can get the rate of 64.2%. Our method has better per-
formance than LQP. CLBPS/M and CLBPS/M/C have worse results compared with
LQPS , in turn perform worse than CLQPS/M and CLQPS/M/O. Furthermore, we can
observe that CLQPS/M/O performs better than CLQPS/M , especially for the KTH-
TIPS2-a database.

Table 1. Performance for various features and datasets on texture classification. Rows 1-6 show
results for our implementations of LBP, CLBP, LTP and LQP (Disc5), Rows 7 and 8 highlight that
the performance is produced by optimal local pattern and codebook size. The number in brackets
represents the optimal neighborhood topology.

Method Brodatz32 CUReT KTH-TIPS2-a
LBP 91.46 (1, 8) 87.56 (1, 8) 60.01 (1, 8)
LBPriu2 69.07 (1, 8) 77.82 (1, 8) 51.15 (1, 8)
CLBPriu2

S/M/C 93.83 (1, 8) 93.34 (1, 8) 57.14 (1, 8)
CLBPriu2

S/M 88.4 (1, 8) 84.84 (1, 8) 51.99 (1, 8)
LTP 94.06 (2, 8) 89.02 (2, 8) 62.30 (2, 8)
LQPS 95.54 (Disc5) 89.74 (Disc5) 63.42 (Disc5)
CLQPS/M 96.29 (Disc5) 91.97 (2, 8) 64.35 (Disc5)
CLQPS/M/O 96.33 (Disc5) 92.92 (2, 8) 67.63 (Disc5)

3.2 Neonatal Facial Expression Classification on Infant COPE Database

Recent research on facial expression analysis has provided a protocol for diagnosing
the pain of patient, especially for neonates who are incapable of articulating their pain
experiences [11]. To access pain states, we conducted experiments on the infant classi-
fication of pain expressions (COPE) database.
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The COPE database contains 204 face images of 260 neonates and involves five
neonatal expressions of these, 67 are rest, 18 cry, 23 air stimulus, 36 friction, and 60
pain. For pain detection, face images of nonpain states (rest, cry, stimulus, friction)
are combined to form a single class, and the ones of pain states are regarded as one
class. Following the protocol of [6,11], we use leave-one-subject-out cross-validation
and non-linear SVM with the Gaussian radial basis function kernel. The optimal values
of kernel and cost parameters were determined using the grid search strategy, where the
optimal values of kernel and cost parameters were searched exponentially in the ranges
of [2−15, 215] and [2−5, 210]. Considering the contour of the face, we divide face images
into 2 × 2 regions. Our proposed descriptor with 8 sampling points and the radius of
2 is used. The area under the ROC-curve (AUC) of different methods is presented in
Tab.2. From experimental results, our method achieves the highest AUC value among
all methods under comparison.

Table 2. Comparison among methods on Infant COPE database

Method EQPβ [11] LTPriu2
P,R [11] LPQ [11] ENS [11] dis(S+M)N,R [6] CLQPS/M/O

AUC 0.922 0.918 0.77 0.923 0.929 0.935

4 Conclusion

In this paper, we propose a new descriptor based on the sign-based, magnitude-based,
and orientation-based differences for improving the performance of LQP. For reducing
the unnecessary computation time of initialization, we further revise the vector quanti-
zation step of LQP. Our experimental results show that CLQPS/M/O outperforms the
state-of-the-art features, such as LBP, LTP, CLBP and LQP. We also observe that the
local orientation can provide significant information for CLQPS/M . In future, we will
investigate more discriminative clustering approaches and neighborhood topologies to
further improve the performance.
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Tekes and NSFC (61231002, 61073137).

References
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12. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and
Machine Intelligence 24(7), 971–987 (2002)
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21. Zhao, G., Ahonen, T., Matas, J., Pietikäinen, M.: Rotation invariant image and video de-
scription with local binary pattern features. IEEE Transactions on Image Processing 21(4),
1465–1467 (2012)


	Texture Description
with Completed Local Quantized Patterns

	1 Introduction
	2 Completed Local Quantization Pattern
	2.1 Review of CLBP
	2.2 Local Dominant Orientation Patterns
	2.3 Revision of Vector Quantization
	2.4 Feature Descriptor and Classification

	3 Experiments
	3.1 Texture Classification Experiments
	3.2 Neonatal Facial Expression Classification on Infant COPE Database

	4 Conclusion
	References




