
Automatic and Accurate Detection of Webshell
Based on Convolutional Neural Network

Zhuo-Hang Lv1, Han-Bing Yan1(&), and Rui Mei2

1 National Computer Network Emergency Response Technical
Team/Coordination Center of China, Beijing, China

{lvzhuohang,yhb}@cert.org.cn
2 Institute of Information Engineering, Chinese Academy of Sciences,

Beijing, China
meirui@iie.ac.cn

Abstract. The rapid development of the Internet has changed the way people
live and work. Web security, as the foundation of network security, has received
much more attention. Based on the variability of Webshells and the vulnerability
of detection methods, this paper proposed a model that used deep learning to
detect and implements the automatic identification of Webshells. For the
shortcomings of the traditional detection models using machine learning algo-
rithms, this paper proposed to apply convolutional neural network to Webshell
detection process. The deep learning model does not require complicated arti-
ficial feature engineering, and the modeled features trained through model
learning can also allow the attacker to avoid targeted bypassing in Webshell
detection. The experimental results showed that this method not only has better
detection accuracy, but also can effectively avoid the attacker’s targeted
bypassing. At the same time, with the accumulation of training samples, the
detection accuracies of the detection model in different application environments
will gradually improvements, which has clear advantages over traditional
machine learning algorithms.

Keywords: Webshell � Convolutional neural network � Text classification

1 Introduction

When an attacker conducts attacks such as penetration tests, data theft, dark chain
implantation, and intranet lateral movement on the websites, the backdoors (that is,
Webshells) of the website are often implanted on the website servers to maintain the
management authority of the websites. Even if the website vulnerabilities are patched,
as long as the backdoors of the hackers are exist, the hackers can still easily penetrate
the website servers. There are many kinds of Webshells, small one that can exploit
vulnerabilities, and big one that can obtain administrator privileges. Using a variety of
attack tools and Webshell scripts, hackers can quickly and effectively implement bulk
website intrusion. In addition, Webshell connection tools have different application

This work was supported by the NSFC Foundation, No. U1736218.

The original version of this chapter was revised: The acknowledgment of the NSFC Foundation was
missing. The chapter has been updated to include these corrections. The correction to this chapter is
available at https://doi.org/10.1007/978-981-13-6621-5_15

© The Author(s) 2019
X. Yun et al. (Eds.): CNCERT 2018, CCIS 970, pp. 73–85, 2019.
https://doi.org/10.1007/978-981-13-6621-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6621-5_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6621-5_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6621-5_6&domain=pdf
https://doi.org/10.1007/978-981-13-6621-5_15
https://doi.org/10.1007/978-981-13-6621-5_6

environments, such as “China Chopper”, “axe” and other tools are website manage-
ment tools, and they are often used for website attack.

At present, the methods of Webshell detection are mainly divided into four cate-
gories. One is based on the experience of webmasters for manual identification, the
second one is static feature detection, the third one is dynamic feature detection, and the
last one is statistical analysis.

1.1 Manual Identification

Webmasters need to have a comprehensive grasp of the website pages and files, and
have a high recognition ability for some newly added exception files, such as some
special naming files, 1.asp, hello.php, abc. Jsp, etc. In addition, due to some common
Webshell, such as “one sentence”, the file is very small, so attention should be paid to
extremely small files. Finally, the content of the file is analyzed and determined. The
normal webpage source files have a large number of labels and comments, and the
layouts are neat and clear at a glance. The backdoor files, especially the small one,
often have only some functions that perform specific functions, and the content is
simple and the elements are very few.

1.2 Static Feature Detection

It is based on the features of the script files. These features generally include multi-
dimensional information such as keywords, high-risk functions, file permissions, and
owners. If the feature setting is reasonable, the success rate of this detection method
will be high, but the disadvantage is that this method is only effective for the existing
Webshells, and is basically undetectable for 0day Webshells. In such methods, machine
learning algorithms are fully applied and are the mainstream of current Webshell
detection. The application of machine learning algorithms needs to extract features
from black and white samples (i.e. Webshell pages and normal web pages). The feature
settings are based on the number of words, total length of text, key function calls, etc.,
and then apply different algorithms. Detection. For example, the literature [1] proposed
a detection method using matrix decomposition, which has higher detection efficiency
and correct rate, and can also detect new type of Webshells with a certain probability.
However, the rationality and effectiveness of the classification method have not been
confirmed when classifying page features. Literature [2] proposed a Webshell detection
method based on decision tree, which can quickly and accurately detect the mutated
Webshell, overcome the deficiencies of the traditional feature-based matching detection
method, and combine the Boosting method to select the appropriate number of sub-
models. The detection capability can be further improved. However, there are fewer
training samples used in this document. In [3], a Webshell detection method based on
Naive Bayesian theory is proposed for Webshell with obfuscated encryption coding
technology. This model can accurately detect Webshells that have been confusingly
encrypted and encoded, effectively improving traditional feature-based detection
methods. The lack of detection methods is also the small number of training samples
during the experiment, the training test samples need to be added, so that the classi-
fication model can more accurately identify the Webshell, and the classification model
should be optimized and improved through experiments to improve the performance.

74 Z.-H. Lv et al.

1.3 Dynamic Feature Detection

The dynamic detection method detects traffic requests, responses, system commands,
and state changes generated in BS activities, discovers abnormal behaviors or states,
and finally detects the existence of Webshell. For example, if there is a user accessing
or calling a file that has never been used, the probability of a Webshell in the file is
greatly increased. This method has certain detection capabilities for the new Webshells,
but it is difficult to detect for some specific backdoors, and it is difficult to deploy.
Intruders can also put Webshell into existing code, which makes the difficulty of
dynamic detection more difficult. Literature [4] introduced a real-time dynamic
detection method for PHP Webshell. For the key functions and variables involved in
the execution of Webshell, mark tracking is performed by using a method similar to
stain propagation to perform black and white discrimination.

1.4 Statistical Analysis

The statistics-based Webshell detection method is tailored to the user’s access char-
acteristics. The normal range of these features is statistically calculated and compared
with the user-uploaded script files to finally determine the existence of Webshell. This
method is still valid for encoded and encrypted Webshells, as these Webshells also
exhibit some special statistical features. Generally, there are statistical analysis tech-
niques such as coincidence index, information entropy, longest word length, and
compression ratio. This method is generally used to identify obfuscated, encrypted
code and performs well in identifying fuzzy codes or obscuring Trojans. However,
there are also obvious shortcomings. Unblurred code is more transparent to statistical
detection methods. If the code is integrated into other scripts, it is likely to be con-
sidered a normal file. Literature [5] proposed a Webshell detection technology based on
semantic analysis. Compared with the rule-based detection method, the false positives
are reduced, and the linear growth in time after the rule is increased is avoided.
However, there is only one language in the literature is envolved. The scripting lan-
guage was designed systematically, the system compatibility was not enough, and there
were fewer training samples.

2 Convolutional Neural Network for Webshell Detection

2.1 Advantages of Convolutional Neural Networks

The advantages of CNN compared with other deep learning algorithms are as follows:

• Compared with RNN, its training time is shorter
• Compared with DNN, its parameters are fewer and the model is more concise.

The CNN model limits the number of parameters and mines the local structure. The
training time is short and the effect is ideal. More importantly, compared with the
traditional machine learning algorithm, the CNN model has the greatest advantage that
its feature set is “learned” by itself. As long as the computing resources are sufficient, it

Automatic and Accurate Detection of Webshell 75

is not necessary to use statistical analysis data to find features. The advantages of
applying CNN to Webshell detection are:

• As long as the sample quality is high, there can be a lower false positive rate.
• There is no clear feature extraction link, and the attacker could not bypass easily.
• Compared to traditional machine learning algorithms, CNN has better ability to

discover 0day Webs hell or unknown attack scripts.
• The model is easier to accumulate and iterate. For new samples, just add them to

training set.

2.2 Application in Text Processing

At first, the emergence of convolutional neural networks solved the problem that deep
learning could not be done in the image processing field because the amount of
computation was too large. The convolutional neural network greatly reduces the
amount of computation of the network through convolution, weight sharing, pooling,
etc., and the result is very satisfactory. The computer’s storage of images is usually in
the form of a two-dimensional array, and the convolutional neural network processes
the small images by using a two-dimensional convolution function, so that advanced
features can be extracted. Similarly, feature extraction and analysis of text segments
can be performed using a one-dimensional convolution function, as shown in Fig. 1.

Assuming that xi 2 Rk is a k-dimensional word vector corresponding to the i-th
word in a sentence, a statement of length n can be expressed as:

x1:n ¼ x1 � x2 � . . .� xn ð1Þ

Where � is the connector.

Fig. 1. Convolutional neural network for text processing

76 Z.-H. Lv et al.

Thus, xi:iþ j can be defined as a connection or combination of words or characters
xi; xiþ 1; . . .; xiþ j. Let w 2 Rhk be the filter in the convolution operation, also known as
the convolution kernel, whose length is h, which can produce a feature after the
convolution operation. For example, the feature ci is generated by a word or character
xi:iþ h�1 in a window.

ci ¼ f w � xi:iþ h�1 þ bð Þ ð2Þ

Where b 2 R is the offset term and f is a nonlinear function, such as a hyperbolic
tangent function.

The convolution kernel is slidably convolved with the sentence x1:h; x2:hþ 1; . . .;f
xn�hþ 1:ng to generate a feature layer.

c ¼ c1; c2; . . .; cn�hþ 1½ � ð3Þ

Where c 2 Rn�hþ 1, Then use the max-over-time pooling operation, that is, for each
value in this pooled operation window, only the maximum value is reserved:

bc ¼ max cf g ð4Þ

By such a method, only the most important features in the feature layer can be
retained, thereby obtaining a pooled layer, and such a pooling operation can correspond
to a statement with a variable length.

For the above steps, a convolution kernel can generate a feature after a convolution
operation, and multiple convolution kernels can generate multiple features. The win-
dow sizes of these different convolution kernels can be different.

The pooled layer is then connected to the fully connected layer with dropout and
softmax, and the final output is the probability distribution of each category [6].

2.3 Sample Data Preprocessing

One of the main application areas of machine learning related algorithms is text pro-
cessing and analysis. However, the raw data form used for text cannot be directly used
as input to the algorithms, because the original sample data is only a combination of
characters, and most of the input of the algorithm cannot be a text file of different
length, but a fixed-length vector. Therefore, the relevant text files need to be prepro-
cessed, some of the most basic methods for extracting data numerical features from text
content are:

• Mark the text content and encode the result of the tag using an integer value. In the
process of marking, special characters or punctuation in the text can be used as the
dividing point to split the text data.

• Count the frequency of occurrence of characters or marks in a text file.
• Add weights, for the marks that often appear in the sample file, reduce their weight,

and the marks appearing in fewer samples increase their weight.

Automatic and Accurate Detection of Webshell 77

2.4 Simplified Word Segmentation

For Webshell detection, this paper first classifies the sample, treats the characters in the
sample except English letters and Arabic numerals as separators, and then uses the bag-
of-words model to encode the divided words, numbers, etc., to generate a dictionary,
and then For each sample page, take the fixed number of character codes (such as 200)
with the highest frequency appearing as the representative vector for this page, as
shown in Fig. 2.

2.5 Vectorization Model

One-Hot
The One-hot vector method first extracts the words in the sample set and extracts only
the repeated words. This results in a vocabulary, assuming a size of V. The text is then
represented by a vector of size V. If a word in the vocabulary appears in the text
segment, the value in this dimension in the vector is 1, and no words appear in the text,
the value of its corresponding bit is 0.

In the Webshell detection, this method is improved. Firstly, the dictionary is built.
In order to avoid the sample matrix being too sparse, the dictionary size is controlled,
and then the sample page is vectorized. Here the words that appear repeatedly in the
text accumulate the corresponding bits on their vectors and words that do not appear in
the simplified dictionary are ignored. This avoids excessive computational complexity
and incorporates word frequency information.

Bag-of-Words
The so-called bag-of-words model is to treat the entire contents of a text file as a whole,
and then add an index to all words, characters or positions in the whole. Thus, a text file
can be represented by a word document matrix, where each column represents a word
and each row represents a document. However, the disadvantage of this method of
characterization is that:

• The matrix representing the document is too sparse in most cases and will consume
a lot of storage resources.

Fig. 2. Sample of word segmentation

78 Z.-H. Lv et al.

• For the processing of a large number of different corpus samples, the representation
of the document matrix will take up a lot of computing resources.

• The bag-of-words model ignores the relative positional information of words or
characters in the text.

In view of the balance between the accuracy of the processing results and the
computational complexity, this strategy can be optimized in special cases.

Word2vec
Word2vec is an NLP tool launched by Google in 2013. It is used to vectorize the words
in the file, and the generated word vector can measure the relationship between the
quantity and the distance, so word characterization and artificial word habits can be
added to the process of vectorization.

In the past, neural networks were used to train word vector models. In order to
calculate the classification probability of all words, such as the use of softmax in the
output layer, you need to calculate the probability of softmax, and then find the
maximum value. This process involves a very large amount of calculation.

For the Word2vec model, in order to avoid the heavy computation from the hidden
layer to the output layer, the network structure has been modified and optimized. It uses
the Huffman tree instead of the neuron structure in the output layer and the hidden layer
[7]. In the Fuman tree, the number of leaf nodes is the size of the vocabulary composed
of the input samples. At the same time, the leaf nodes have the same function as the
neurons of the original output layer, and the internal nodes of the network act as the
neurons of the original hidden layer. So, there is no need to calculate the softmax
probability, which greatly reduces the amount of computation of the network.

Compared with the bag-of-words model, the Word2vec model incorporates the
contextual relationship of lexical semantics, and the similarity between words can be
obtained by calculating the Euclidean distance. This article uses the Word2vec library
in Python. First, all the samples are trained to get the dictionary, and then each word in
each sample is vectorized. In the process of vectorizing a single sample page, averaging
and averaging all vectorized characters as a vector for this sample [8].

2.6 Convolutional Neural Network Structure

The convolutional neural network used in the experiments in this paper consists of the
Embedding layer, the convolution layer, the pooling layer, the dropout layer, and the
fully connected layer. The network is built on Tensorflow. TensorFlow is Google’s
second-generation artificial intelligence learning system based on DistBelief. It is most
suitable for machine learning and deep neural network research, but the versatility of
this system makes it widely used in other computing fields. The structure is shown in
Table 1.

Automatic and Accurate Detection of Webshell 79

In the convolutional layer, setting padding does not add new elements based on the
original data, that is, the boundary data is not processed, and the convolution is only
performed in the original data.

The activation function uses ReLU:

f xð Þ ¼ max 0; xð Þ ð5Þ

The advantage of using ReLU as an activation function is that its SGD will con-
verge faster than tanh or sigmoid. ReLU can get the activation value based on only one
threshold, no complicated operation, and it is linear. The disadvantage is that it is not
suitable for inputs with large gradients during training, because as the parameters are
updated, the ReLU neurons will no longer have an active function, which will cause
their gradient to always be zero.

The regularization term uses the L2 norm, that is, each element in a vector is first
summed to its square root, and then its square root is obtained. During the optimization
process, the regularization term adds a penalty term to the activation value of the
parameter in the layer, and the loss function together with this penalty term becomes
the ultimate optimization goal of the network.

The pooling layer uses global_max_pool, that is, the feature point maximum
pooling, and the maximum pooling can extract features better.

For the over-fitting problem in convolutional neural networks, the dropout layer is
used to reduce its impact, which is equivalent to the effect of regularization. The
essence of the dropout layer is to randomly delete some hidden neurons in the neural
network. The input and output neurons are kept unchanged, and then the input data is
forwardly propagated through the modified neural network, and then the error value is

Table 1. Convolutional neural network structure

network = input_data(shape=[None,
MAX_DOCUMENT_LENGTH],name='input')
network = tflearn.embedding(network, input_dim=n_words+1, output_dim=128)
branch1 = conv_1d(network, 128, 14, padding='valid', activation='relu',
regularizer="L2")
branch2 = conv_1d(network, 128, 15, padding='valid', activation='relu',
regularizer="L2")
branch3 = conv_1d(network, 128, 16, padding='valid', activation='relu',
regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam',
learning_rate=0.001,loss='categorical_crossentropy', name='target')
model = tflearn.DNN(network, tensorboard_verbose=0)

80 Z.-H. Lv et al.

propagated back through the modified neural network. However, after randomly
deleting some hidden layer neurons, the fully connected network has a certain
sparseness at this time, and finally the synergistic effects of different features are
effectively reduced.

Classifier using softmax regression:

f zj
� � ¼ ezjPn

i�1 e
zi

ð6Þ

The dimension of the output vector is the number of required categories, and the
value of each bit is the probability value of each one.

For the encrypted Webshells, such as the Base64-encoded Webshells, based on the
above-mentioned bag-of-words model, has not been specially processed. After the
word segmentation, the Base64-encoded part will be treated as a whole. The method
does not reduce the final effect, and the same can be done for the other encoding
encryption methods.

3 Experiments

3.1 Sample Collection

The so-called web page source code files are script files that can be parsed by the server
side and written by the script language asp, jsp, php and so on. Common Webshells are
also written by these scripting languages and then uploaded to the servers. The content
of the webpage source file is shown as Fig. 3.

Fig. 3. Sample of source code

Automatic and Accurate Detection of Webshell 81

The Webshell sample in this article is mainly from related projects on Github, as
shown in Table 2.

In addition, there are also common Webshell samples on the Internet, direct
extraction from attacked websites, and samples shared by professionals. A total of three
data sets of PHP, JSP, and ASP are collected:

• PHP Webshells: 2103
• JSP Webshells: 712
• ASP Webshells: 1129.

The white samples are derived from open source CMS, open source software, etc.
Since there is no evidence that these open source software contain backdoor code, they
are considered to be white samples. The collected data sets of PHP, JSP and ASP are as
follows:

• PHP white samples: 3305
• JSP white samples: 3927
• ASP white samples: 3036.

3.2 Comparison of Three Vectorization Models

In this paper, the above three models are compared experimentally. In the processing of
Webshell detection and classification tasks, the same structure of convolutional neural
network is used. The final effect is shown in Table 3.

Table 2. Webshell related projects

Project name Description

tennc/Webshell This is a Webshell open source project
ysrc/Webshell-sample Webshell sample
xl7dev/Webshell Webshell & Backdoor Collection
tdifg/Webshell Webshell Collection
testsecer/Webshell A project for Webshell Collection

Table 3. Comparison of three vectorization models

Models Accuracy

Improved One-hot (1000 dimensions) 90.43%
Improved One-hot (5000 dimensions) 97.26%
Improved One-hot (10000 dimensions) 98.39%
Bag-of-words (200 dimensions) 99.21%
Bag-of-words (400 dimensions) 99.31%
Bag-of-words (600 dimensions) 99.16%
Word2vec (average) 65.66%
Word2vec (sum) 70.23%

82 Z.-H. Lv et al.

It shows that the improved one-hot vectorization model works well when the
dictionary size is above 5000. The bag-of-words model is also very good, but the
Word2vec model has the worst effect. It shows that the word2vec model is not suitable
for document-based classification tasks. At the same time, the improved one-hot model
consumes a longer time and consumes more computing resources when the dimension
is very high. In contrast, the bag-of-words model is a simple and effective way to deal
with it.

For the source code sample, since there is a difference in the writing language, the
experiment uses a separate training method. First, for the PHP samples, the sample is
trained firstly, and then the ten-fold cross-validation is used, as shown in Fig. 4.

For the Webshell samples in various languages, the final indicators are shown in
Table 4. The convolution function used in the experiment is 128 cores, one-
dimensional, the processing length is 3, 4, 5 respectively, using relu as the excitation
function, L2 norm processing over-fitting, and the dimension of the bag-of-words
model is 400.

It can be seen that the detection method based on convolutional neural network
works pretty good in the application of Webshell detection. At the same time, due to
different script languages, the generated lexicon is different. So Webshell source codes
of different languages generate different detection models will have a better detection
effect. The trained model is then compared with the existing detection methods.

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10 12

Webshell Detec on(Source Code)

accuracy_score

precision_score

recall_score

f1_score

Fig. 4. Webshell source code detection curve

Table 4. Webshell sample testing indicators

Index Accuracy Precision Recall F1

PHP 99.5% 99.2% 99.7% 99.4%
ASP 98.3% 99.2% 99.5% 99.3%
JSP 97.5% 98.2% 99.4% 99.4%

Automatic and Accurate Detection of Webshell 83

The total number of Webshells used in this comparative experiment was 1,637, all
written in PHP language. The detection accuracy of the convolutional neural network
model compared with the decision tree, Webshell detector, D shield and 360 Trojan
detection is shown in Table 5, in this case, the CNN network that has been used is the
same as above:

It shows that the trained CNN detection model has a higher detection accuracy.

3.3 The Impact of Filter Window

According to the research results of Zhang [9], for statements with a maximum word
size of no more than 100, the size of the filter window in a convolutional neural
network is generally between 1 and 10. But for statements with a maximum number of
words over 100, the most appropriate window size (also known as a convolution
kernel) will be larger. Moreover, for different data sets, there is a most suitable
matching window size for each one. At the same time, the experiment confirms that
more filtering windows with the same size that is near the most suitable size are added,
the more final effect will be improved, but if the added filtering window sizes far apart
from the most suitable size, the effect will be reduced. Based on this, for the
200-dimensional convolutional neural network model using the fixed sample vector of
the bag-of-words model, the effects of different window sizes in the experiment are
tried respectively. The results are shown in Table 6.

The best window size for this experiment is 15.
Therefore, the window sizes of the convolution kernel in the experiment are 14, 15,

16. As shown in Table 7.

Table 5. Comparison of test results

Methods C4.5 D shield 360 detection Webshell detector CNN
Checkout 1347 1518 362 413 1553
Accuracy 82.28% 92.73% 22.11% 25.23% 94.87%

Table 6. Impact of filter window size on recall rate

Window size 5 9 12 15 30 60
Recall rate 82.4% 87.5% 85.8% 92.4% 83.2% 90.6%

Table 7. Convolution kernel

branch1 = conv_1d(network, 128, 14, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 15, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 16, padding='valid', activation='relu', regularizer="L2")

84 Z.-H. Lv et al.

4 Conclusion

This paper proposed the idea and process of using convolutional neural network model
for Webshell detection. In this process, the most important thing is the quantity and
quality of samples. A good training sample set can train very good models. Sample sets
need to be expanded in the future. The training of the deep learning model does not
require complex artificial feature engineering, which means that it is difficult for the
attackers to bypass. Therefore, the deep learning model is stronger when facing some
potential bypassing me thods. That is to say, the application of convolutional neural
network to Webshell detection can prevent unknown attacks to a certain extent.

References

1. Dai, H., Li, J., Lu, X.-D., Sun, X.: Machine learning algorithm for intelligent detection of
webshell. Chin. J. Netw. Inf. Secur. 3(3), 71–77 (2017)

2. Hu, J., Xu, Z., Ma, D., Yang, J.: Research of webshell detection based on decision tree.
J. Netw. New Media 6 (2012)

3. Hu, B.: Research on webshell detection method based on bayesian theory. Science Mosaic
(2016)

4. Du, H., Fang, Y.: PHP webshell real-time dynamic detection. Netw. Secur. Technol. Appl.
(2014)

5. Yi, N., Fang, Y., Huang, C., Liu, L.: Semantics-based webshell detection method research.
J. Inf. Secur. Res. 3(2), 145–150 (2017)

6. Kim, Y.: Convolutional neural networks for sentence classification. EprintArxiv (2014)
7. Goldberg, Y., Levy, O.: word2vec explained: deriving Mikolov et al.’s negative-sampling

word-embedding method. EprintArxiv (2014)
8. Rong, X.: Word2vec parameter learning explained. Computer Science (2014)
9. Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide to) convolutional

neural networks for sentence classification. Computer Science (2015)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Automatic and Accurate Detection of Webshell 85

http://creativecommons.org/licenses/by/4.0/

	Automatic and Accurate Detection of Webshell Based on Convolutional Neural Network
	Abstract
	1 Introduction
	1.1 Manual Identification
	1.2 Static Feature Detection
	1.3 Dynamic Feature Detection
	1.4 Statistical Analysis

	2 Convolutional Neural Network for Webshell Detection
	2.1 Advantages of Convolutional Neural Networks
	2.2 Application in Text Processing
	2.3 Sample Data Preprocessing
	2.4 Simplified Word Segmentation
	2.5 Vectorization Model
	2.6 Convolutional Neural Network Structure

	3 Experiments
	3.1 Sample Collection
	3.2 Comparison of Three Vectorization Models
	3.3 The Impact of Filter Window

	4 Conclusion
	References

