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Abs t rac t .  The use of invariants quickly gained impetus in the com- 
puter vision community. The paper recapitulates why this strand of 
research has become so influential by summarizing the traditional ad- 
vantages often highlighted in the context of object recognition. Then, 
however, the paper moves on to corroborate the importance of certain 
geometrical entities, called "fixed structures". It is argued that looking 
at these entities forms a core idea, that can be considered central to 
several applications. These include as diverse subjects as grouping and 
three-dimensionai scene reconstruction. A careful and systematic study 
of fixed structures, the corresponding subgroups, and their invariants is 
advocated. 

1 Introduction 

Intensive research on the use of invariance in computer vision has started only a 
few years ago, yet it seems it will leave its mark in several areas. For one thing, it 
has strongly influenced the thinking about  shape recognition. In the meantime,  
its ramifications are going well beyond this particular and most obvious area of 
application. The paper highlights the study of "fixed structures" as one of the 
key ideas underlying diverse trends in ongoing research. 

In section 2, the usefulness of invariants for recognition is summarised. These 
are the rationales that  have triggered the interest in invariance in the first place. 
Section 3 discusses the concept of fixed structures and section 4 illustrates their 
use in two areas: grouping and three-dimensional reconstruction. Throughout  
the paper, mathemat ica l  derivations are avoided. Emphasis is on the general 
idea. 

2 A n  E a r l y  E x a m p l e :  R e c o g n i t i o n  

Consider fig. l(a).  It  shows a robot before a table with workpieces. The scene is 
viewed by a camera mounted on the robot 's  end effector, which is also equipped 
with force feedback. The task is to insert a pen into a similarly shaped hole, for 
objects as shown in fig. 2(a). The viewing angle is unknown, as well as the posi- 
tions and orientations of the objects. There can be more objects than just two. 
In particular, irrelevant distractor objects are allowed to lie in the scene. The 
problem is then to recognize pairs of corresponding positive and negative objects, 
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Fig. 1. (a) lh,bot c~ssembl~j call; (b) robot .qrasping ~t~ t)e~ object; (c) approc~ch of the 
hole from. visu~fl ~stimates; (d) ir~sertion bc~sed on ,force fledback. 

Fig. 2. (a) Scene with pair of corresponding pe~z and hole objects; (b) recognized shapes 
superimposed in eztracted pose. 
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to grasp the positive object, and to plug it into the negative. The problem was 
solved by using affine invariants to match the shape cross-sections. Rationales 
for using invariants in such application include: 

Viewpoint independent operation: The use of the affine invariants made the dif- 
ference is slants and tilts between objects and between views irrelevant. The 
invariant features are not affected by these changes. 

Handling scene clutter: Invariants allow the computer to extract descriptions 
that are local and therefore allow for recognition of objects that are not com- 
pletely visible or under conditions where edge extraction leaves gaps and other 
imperfections. Yet, at the same time, these descriptions are sufficiently rich to 
distinguish shapes. 

Efficiency: The fact that the invariants do not change allows the system to use 
simple look-up tables for the matching. The invariants are used as the addresses 
to read-out the table entries, which contain the different model objects that are 
compatible with the measured invariants. Such process, usually called "indexing" 
[8], recognizes the shape without having to know its position and orientation. 
This avoids the hypothesis/verification loop that is typical of many recognition 
strategies and that tends to take a lot of time because of the enormous search 
spaces. After the indexing has suggested a few possible matches, a more detailed, 
but still invariant based comparison solves the remaining ambiguities and yields 
the position and orientation information by looking for the affine transformation 
that relates the model and the matched image projection. 

No need for calibration: For the matching process no calibration of the camera 
parameters or its relative position with respect to the robot is needed. Time- 
to-contact type procedures can bring the gripper in the neighbourhood of the 
object, from where precise positioning of the gripper can be guided by a second 
camera, or as in the example, with force feedback. 

These are the major advantages that have ensured invariants' initial suc- 
cess in vision. They have been described many times in the literature, that also 
includes recognition under more general conditions such as taking the full per- 
spective effects into account by using projective invariants. 

3 F i x e d  S t r u c t u r e s  

Invariance theory can be brought to bear if the changes that one wants the 
vision system to be immune against can be expressed as group actions, i.e. as 
transformations belonging to a group. The more parameters the group has, the 
more complicated the corresponding invariants will get. It is therefore advanta- 
geous to identify the smallest group that still applies. In the example of section 2 
projective invariants could have been used, thereby including robustness against 
additional, but small perspective deformations. This, however, proved to be an 
unnecessary luxury, that would have required the use of invariants with a higher 
complexity. One can also actively simplify the situation by controlling the envi- 
ronment and lowering the variability in it. Note, however, that removing a degree 
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of freedom not necessarily simplifies the problem, i.e. not necessarily introduces 
a smaller group. As an example, if one is to match shapes under the conditions 
of the previous section, it does not help to fix the camera's focal length. The 
remaining variability will still call for dealing with the complete group of plane 
affine transformations. The theories that underlie the use of invariants, such as 
the analysis of Lie prolongations [12], allow one to identify the parameters that  
bring the most benefit if they can be measured or fixed. 

Here I would like to focus on smaller groups that  emerge because the trans- 
formations keep' certain geometric entities in the scene fixed. As an example, 
consider a planar, mirror symmetric shape. If one considers the two symmetric 
halfs, then the transformation joining symmetric points between their deformed 
image projections (assuming affine skewing) will not be a general affine transfor- 
mation as considered in section 2. Actually, if one were to know the symmetry  
axis, the distances of a point and its symmetric counterpart to the symmetry  
axis are equal. This invariant can be calculated on the basis of a single point 
(if the axis is known), whereas a general affine transformation would require at 
least four points for the calculation of an invariant. It is clear that the crux of 
the matter  lies with the assumption that we know the axis. 

In the symmetry example, the line corresponding to the axis is so special 
because it stays fixed under the symmetry transformation (i.e. under the trans- 
formation that corresponds to the skewed symmetry).  As a mat ter  of fact, every 
single point on that line remains fixed. A moment 's  thought shows that  if one 
considers all the transformations in a group that keep a certain geometric struc- 
ture fixed as the axis in the example - then these particular transformations 
form a subgroup. The subgroup has fewer parameters and hence the invariants 
can be obtained with less information. Not only are the invariants simpler in that  
sense (the expressions need not be simpler, however), they are also better geared 
towards the task at hand, i.e. they are more selective in the kind of changes they 
allow for. In the sequel the symmetry example will be extended to perspectively 
skewed symmetries. 

Summarizing the foregoing observations, it is interesting to find out the small- 
est group that applies to a problem. If fixed structures of the transformations 
are known, then these will deliver such a subgroup. 

4 E x p l o i t i n g  F i x e d  S t r u c t u r e s  

This section discusses how the fixed structure observation ties in with some 
recent strands of research. A first example is geometry-based grouping. As a sec- 
ond example, the problem of uncalibrated 3D reconstruction is sketched. In both 
cases, considering fixed structures of interest brings about a kind of stratification 
of possible subgroups of the most general group. 

4.1 Grouping 

The seminal non-accidental approach to grouping [4, 5] is based on lists of prop- 
erties that very probably have not arisen by accident. Typically, these special 
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configurations correspond to transformations with fixed structures. Symmetry is 
an example that  will usually figure prominently in these lists. In fact, basing the 
classification of non-accidental properties on the classification of fixed structures 
yields some interesting, additional cases [11]. A discussion of such classification 
is out of the scope of the presentation and it will therefore be limited to two 
related cases. 

The first are so-called planar homologies. These are transformations that  
keep a line pointwise fixed, as well as a point off that line. A practical config- 
uration that corresponds to such case is given in fig. 3. A planar wall casts a 

Fig. 3. A hangar and its shadow. Corresponding points of the facade and the shadow 
transform into eachother through a planar homology. 

shadow onto a ground plane. The line that is pointwise fixed under the shadow 
casting transformation corresponds to the intersection of the facade plane with 
the ground plane. The fixed point off the line corresponds with the position of 
the sun (here assumed to be a point source) in the image. If both the fixed line 
and the fixed point are known, then only a single degree of freedom remains. 
Invariants under this 1D subgroup of the 8D plane projectivities are easy to 
derive. It is not without interest to have a closer look to the remaining d.o.f. 
It corresponds to the cross ratio of the fixed point, the pair of corresponding 
points, and the intersection of their join with the fixed line [9]. 

The previous case can be further specialised to that of perspectively skewed 
mirror symmetry (and equally well point symmetry for that matter).  What it 
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takes is that a pair of points is mapped onto eachother, i.e. that  the pair of 
points is a fixed as a pair.  This addition to the fixed structures of the planar 
homology yield a so-called harmonic homology. It lifts the remaining degree of 
freedom and the fixed cross-ratio is -1. Suppose one wants to check whether two 
points (on contours) are a symmetric pair. In that case, the points form a fixed 
pair and the following invariant should apply [13]: 

sin 30 -- sin 30 I 

where t~ and t~ ~ are the curvatures of the symmetric contours in these points and 
the meaning of 0 and 0 ~ is explained in fig. 4. Readers interested in symmetry  will 

j /  c rva re 

Fig.  4. variables used in Ponce's symmetry invariant. 

recognize this relation as the one introduced by Ponce [7] for symmetric points 
in the case of affine skewing. But as comes out, this relation also applies under 
perspective skewing. What  this means is that ~ /s in30 is an invariant under 
the specific projective transformations that correspond to mirror symmetries 
as seen in the image, whereas such expression is by no means invariant under 
general projectivities. The fact that the pair of symmetric points is fixed (the 
pair is mapped to the pair, i.e. the points are swapped) has been instrumental 
in deriving this result. It allows to test a point pair for its potential symmetry. 

Figure 5 shows a picture of a fly-flapper with a clear, perspective distorsion. 
A spline has been fitted to the contour and was used to calculate ~ and 0 and 
a collection of corresponding points. Figure 6 shows the value for the ~ /s in  30 
invariant for corresponding points on both halls. Clearly, they match quite well, 
indicating that the invariant can be used to generate point correspondences. In 
fact, two such correspondences suffice to completely fix the harmonic homology, 
i.e. the symmetry transformation in the image. 

Symmetry is just one of the so-cMled "non-accidental" configurations used 
for grouping. The use of invariants can both speed up and specialize the search. 
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Fig. 5. Left: Image of a fly-flapper; Right: corresponding points on the spline fit. 
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Fig. 6. The Ponce invariant for corresponding points (one curve for each half). 

The classification of subgroups according to the structures that they keep fix 
yields a systematic approach for listing non-accidental configurations. There is 
a strong link between non-accidentalness and fixed structures in the sense that 
if a structure remains fixed in the original pattern, then it will also remain 
fixed under the transformation that includes the effects of image projection. 
Indeed, the transformations in the image are projection-conjugated versions of 
the original transformations and conjugations keep fixed structures intact (e.g. 
same eigenvalue multiplicities), in contrast to many other geometric properties. 

4 .2  U n c a l i b r a t e d  R e c o n s t r u c t i o n  

In the past, the use of range finders and stereo rigs would require a substantial 
time for their installation. This was hampering progress in the 3D area. The 
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development of systems for 3D reconstruction from uncalibrated sets of images 
would yield an enpowering technology, where 3D reconstruction could be brought 
at about anybody's fingertips. Moving around with a camcorder would suffice 
to generate the necessary imagery. 

In the discussion on grouping, it was suggested that  the study of fixed struc- 
tures helps to stratify a group (like the group of plane projective transformations) 
into subgroups. A very similar strategy lies at the heart of quite a few papers in 
the field 3D scene reconstruction from uncalibrated images. From two such im- 
ages, only 3D projective structure can be recovered [2, 3]. Such a reconstruction 
can be upgraded, however, if the plane at infinity can be identified, which is kept 
fixed by all affine transformations of the 3D world. Moving this plane to infinity 
allows to preserve properties such as parallelism and length ratios along a line. 
A further upgrade to metric structure then follows by identifying the absolute 
conic in that plane, because all Euclidean transformations keep that conic fixed 
(see [9]). 

A discussion of the work that exploits such fixed structures again is outside 
our current scope, but a simple example is given by the opportunities offered 
by a translating camera. In that case it easy to find vanishing points of several 
3D orientations. All these points lie in the plane at infinity. Having identified 
this plane it is possible to build an affine reconstruction [10]. Note that  the 
direction of translation or the translation distance between the two views need 
not be known. The camera model is fully perspective and its parameters are 
left uncalibrated. Fig. 7 shows two images obtained with a translating camera. 
Four different views of the affine reconstruction are shown in fig. 8. Note that  

Fig. 7. Two images  of  a Chinese vase scene obtained with a t ranslat ing camera.  

the scene is skewed, but this is normal since an affine reconstruction does not 
preserve the angles. On the other hand, it is not always necessary to know 
about absolute distances or metric structure. An affine reconstruction can e.g. 
be quite sufficient for guiding autonomous vehicles. Important  information such 
as the planarity of the road, its midline, the parallelism of its sides, etc. are 
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Fig. 8. Four views o f  the affine reconstruct ion o f  the vase scene. The bottom row re- 
cons t ruc t ions  are taken f rom an ex treme side and  top posi t ion.  

all preserved under affine reconstructions. Translation has also been used to 
yield an affine initialisation, followed by an upgrade to metric structure from a 
subsequent, general motion [1, 6]. Depending on the degree to which the fixed 
structures have been identified, one would then have to use 3D projective, affine, 
or metric invariants for 3D shape recognition. 

Exploiting the plane at infinity and its absolute conic as the fixed structures 
of the 3D world can be considered as the most basic stratification. An obvious 
extension is to look at additional fixed structures that have to do with shape 
symmetries, for instance, and to extend the work on grouping to 3D. 
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5 Conc lus ions  

There is an interesting interplay between fixed structures, subgroups, and invari- 
ants. Looking from this vantage point to geometric problems in vision can help 
to get a more systematic handle on different issues. In the case of uncalibrated 
3D reconstruction most effort so far went into detecting the fixed structures, 
whereas the invariants are relatively easy to derive. In the case of grouping, 
most attention has been paid to deriving dedicated invariants, whereas detect- 
ing the fixed structures needs to be considered and exploited further. Hough like 
strategies are one promising route, because the fixed structures have a simple 
shape such as a line, however complex the shapes of e.g. a mirror symmetric 
pattern happen to be. 
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