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Abstract Definitional knowledge has proved to be essential in various Natural

Language Processing tasks and applications, especially when information at the

level of word senses is exploited. However, the few sense-annotated corpora of

textual definitions available to date are of limited size: this is mainly due to the

expensive and time-consuming process of annotating a wide variety of word senses

and entity mentions at a reasonably high scale. In this paper we present SENSEDEFS, a

large-scale high-quality corpus of disambiguated definitions (or glosses) in multiple

languages, comprising sense annotations of both concepts and named entities from a

wide-coverage unified sense inventory. Our approach for the construction and

disambiguation of this corpus builds upon the structure of a large multilingual

semantic network and a state-of-the-art disambiguation system: first, we gather
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complementary information of equivalent definitions across different languages to

provide context for disambiguation; then we refine the disambiguation output with a

distributional approach based on semantic similarity. As a result, we obtain a

multilingual corpus of textual definitions featuring over 38 million definitions in 263

languages, and we publicly release it to the research community. We assess the

quality of SENSEDEFS’s sense annotations both intrinsically and extrinsically on

Open Information Extraction and Sense Clustering tasks.

Keywords Textual definitions � Glosses � Word Sense Disambiguation �
Entity linking � Multilinguality � Lexical resources

1 Introduction

In addition to lexicography, where their use is of paramount importance, textual

definitions drawn from dictionaries or encyclopedias have been widely used in

various Natural Language Processing (NLP) tasks and applications. Definitional

knowledge is effective inasmuch as it conveys the crucial semantic information and

the distinguishing features of a given subject (definiendum): this means that, on the

one hand, a definition often provides a fair amount of discriminative power that can

be leveraged to automatically represent and disambiguate the definiendum; on the

other, definitions are usually concise and encode ‘‘dense’’, virtually noise-free

information that can be best exploited with knowledge acquisition techniques. To

date, some of the areas where the use of definitional knowledge has proved to be key

in achieving state-of-the-art results are Word Sense Disambiguation (Lesk 1986;

Banerjee and Pedersen 2002; Navigli and Velardi 2005; Agirre and Soroa 2009;

Faralli and Navigli 2012; Fernandez-Ordonez et al. 2012; Chen et al. 2014; Basile

et al. 2014; Camacho-Collados et al. 2015b), Taxonomy and Ontology Learning

(Velardi et al. 2013; Flati et al. 2016; Espinosa-Anke et al. 2016b), Information

Extraction (Richardson et al. 1998; Delli Bovi et al. 2015), Plagiarism Detection

(Franco-Salvador et al. 2016), and Question Answering (Hill et al. 2015).

In fact, textual definitions are today widely available in knowledge resources of

various kinds, ranging from lexicons and dictionaries, such as WordNet (Miller

et al. 1990) or Wiktionary, to encyclopedic knowledge bases, such as Wikidata (see

Sect. 2 for a brief overview). Interestingly enough, sources of definitional

knowledge also include Wikipedia: despite its purely encyclopedic nature, and

although the format of a Wikipedia article does not include an explicit gloss or

definition, the first sentence of each article is generally regarded as the definition of

its subject.

Irrespective of the nature of the knowledge source, an accurate semantic analysis

of textual definitions is made difficult by the short and concise nature of definitional

text, a crucial issue for automatic disambiguation systems that rely heavily on local

context. Furthermore, the majority of approaches making use of definitions are

restricted to corpora where each concept or entity is associated with a single

definition; instead, definitions coming from different resources are often comple-

mentary and might give different perspectives on the definiendum. Moreover,
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equivalent definitions of the same concept or entity may vary substantially

according to the language, and be more precise or self-explanatory in some

languages than others. In fact, the way a certain concept or entity is defined in a

given language is sometimes strictly connected to the social, cultural and historical

background associated with that language, a phenomenon that also affects the

lexical ambiguity of the definition itself. This difference in the degree of ambiguity

when moving across languages is especially valuable in the context of disam-

biguation (Navigli 2012), as highly ambiguous terms in one language may become

less ambiguous (or even unambiguous) in other languages.

The fundamental idea of this paper is to bring together definitions coming from

different resources and different languages, and disambiguate them by exploiting

their cross-lingual and cross-resource complementarities. Our goal is to obtain a

large-scale high-quality corpus of sense-annotated textual definitions, constructed

using a single multilingual disambiguation model. While language- and resource-

specific techniques can certainly be used for disambiguation, they would not be

scalable for our goal: the number of models required would add up to the order of

hundreds, and there would also be the need for large amounts of sense-annotated

data for each language and resource, leading to the so-called knowledge acquisition

bottleneck (Gale et al. 1992).

A key step in achieving our goal is to leverage BabelNet (Navigli and Ponzetto

2012), a multilingual lexicalized semantic network obtained from the automatic

integration of lexicographic and encyclopedic resources. Thanks to its wide

coverage of both lexicographic and encyclopedic terms, BabelNet provides a very

large sense inventory for disambiguation, and at the same time a vast and

comprehensive target corpus of textual definitions. In fact, as it is a merger of

various different resources, BabelNet provides a heterogeneous set of over 35

million definitions for over 250 languages from WordNet, Wikipedia, Wiktionary,

Wikidata and OmegaWiki. To the best of our knowledge, this set constitutes the

largest available corpus of definitional text.

In this paper we present SENSEDEFS, a large multilingual corpus of sense-

annotated glosses. This resource is based on our approach presented in Camacho-

Collados et al. (2016a). In the present paper we provide the following main

contributions with respect to our prior study:

1. We provide an exhaustive background of all the resources used in this work

(Sect. 2), as well as an extended step-wise description of our disambiguation

pipeline (Sect. 3).

2. We present an overview of the resource, including relevant statistics about its

extension and language coverage (Sect. 4.1).

3. In addition to the previous XML format, we release the resource in NIF format,

making it compatible with Semantic Web technologies (Sect. 4.2.2).

4. We carry out an extensive manual evaluation of the resource intrinsically for

four different languages: English, French, Italian and Spanish (Sect. 5.1.1).

5. We additionally provide a large-scale automatic evaluation on the English

WordNet glosses (Sect. 5.1.2).
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The remainder of the paper is organized as follows: Sect. 2 provides a brief

overview on the individual semantic resources from which the textual definitions

inside SENSEDEFS are drawn, and then gives some background information on

BabelNet and Babelfy; Sect. 3 describes our disambiguation strategy and details

each stage of our pipeline; the final resource obtained as a result, SENSEDEFS, is

presented in Sect. 4, while Sect. 5 describes our experimental evaluation; in Sect. 6

we review some related work in the field and draw our conclusions and perspectives

on future work in Sect. 7.

2 Background

In this section we provide some background information about the main resources

and tools used in this study, namely BabelNet and all its integrated resources

(Sect. 2.1), Babelfy (Sect. 2.2) and NASARI (Sect. 2.3).

2.1 BabelNet

BabelNet (Navigli and Ponzetto 2012) is a large-scale, multilingual encyclopedic

dictionary (i.e. a resource where both lexicographic and encyclopedic knowledge is

available in multiple languages) and at the same time a semantic network where

concepts and entities are interconnected with several million semantic relations.

Each concept or entity inside BabelNet is associated with a synonym set (synset),
comprising lexicalizations of that concept or entity in a variety of languages.

Originally designed as the seamless integration of WordNet and Wikipedia,

BabelNet1 is the largest resource of its kind, with 13 million synsets, 380 million

semantic relations and 271 languages covered.2 For our purposes, not only does

BabelNet represent the largest sense inventory available for disambiguation and

entity linking, its internal structure, based on inter-resource mappings, enables us to

collect all the definitional knowledge associated with a given definiendum inside the

various individual resources and for any available languages. This is a crucial step

for context-rich disambiguation (Sect. 3.2). In the following we describe the

resources from which the definitions are extracted: WordNet (Sect. 2.1.1),

Wikipedia (Sect. 2.1.2), Wikidata (Sect. 2.1.3), Wiktionary and OmegaWiki

(Sect. 2.1.4).

2.1.1 WordNet

The Princeton WordNet of English (Miller et al. 1990) is by far the most widely

used computational lexicon in Natural Language Processing. It is manually curated

by expert lexicographers and organized as a semantic network, where concepts are

connected via lexico-semantic relations. Its internal structure based on synsets

constitutes the backbone of BabelNet (see Sect. 2.1). Similarly to traditional

1 http://babelnet.org.
2 These figures correspond to its 3.0 release version, which is the version used in this work.
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dictionaries, WordNet provides a textual definition (gloss), as well as small usage

examples for each synset. Being hand-crafted by expert annotators, definitional

knowledge from WordNet is among the most accurate available and includes non-

nominal parts of speech rarely covered by other resources (e.g. adjectives and

adverbs). However, given its considerably smaller scale, WordNet provides less

than 1% of the overall number of definitions in BabelNet.

2.1.2 Wikipedia

Wikipedia3 is the largest and most popular collaborative multilingual encyclopedia

of world and linguistic knowledge. It features articles in over 250 languages,

partially structured with hyperlink connections and categories, and today represents

an extraordinary resource for innumerable tasks in Natural Language Processing

(Cucerzan 2007; Gabrilovich and Markovitch 2007; Wu and Weld 2010; Chen et al.

2017). As already mentioned in Sect. 1, Wikipedia articles do not provide explicit

glosses or definitions, however, according to the style guidelines of Wikipedia4, an

article should begin with a short declarative sentence defining what (or who) the

subject is and why it is notable. Following previous literature, we also consider the

first sentence of a Wikipedia article as a valid definition of the corresponding

concept or entity. Furthermore, text snippets drawn from the associated disam-

biguation pages can also be regarded as definitions.5 Due to its focus on

encyclopedic knowledge, Wikipedia contains almost exclusively nominal senses

(such as named entities or specialized concepts); however, compared to lexico-

graphic resources like WordNet (Sect. 2.1.1), definitions drawn from Wikipedia

constitute by far the largest individual contribution to SENSEDEFS ([ 77% of the

total).

2.1.3 Wikidata

Wikidata (Vrandečić 2012) is a project operated directly by the Wikimedia

Foundation. Wikidata’s goal is to turn Wikipedia into a fully structured resource,

thereby providing a common source of data that can be used by other Wikimedia

projects. It is designed as a document-oriented semantic database based on items,
each representing a concept or an entity and associated with a unique identifier.

Knowledge is encoded with statements in the form of property-value pairs, among

which definitions (descriptions) are also included. Wikidata is the second largest

individual contribution to SENSEDEFS (more than 8 million items and ’ 22% of the

total), even though, given its strictly computational nature, it often provides minimal

definition phrases containing only the superclass of the definiendum.

3 https://www.wikipedia.org.
4 https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style.
5 The release format of SENSEDEFS (Sect. 4.2) specifies two distinct attribute values for definitions

extracted from the first sentence of Wikipedia articles (WIKI) and definitions extracted from

disambiguation pages (WIKIDIS).
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2.1.4 Wiktionary and OmegaWiki

Beyond WordNet, Wikipedia and Wikidata, the remaining definitions (’ 1% of the

total) are provided by two collaborative multilingual dictionaries: Wiktionary and

OmegaWiki. Wiktionary6 is a Wikimedia project designed to represent lexico-

graphic knowledge that would not be well suited for an encyclopedia (e.g. verbal

and adverbial senses). It is available for over 500 languages typically with a very

high coverage, including domain-specific terms and descriptions that are not found

in WordNet. Similar to Wiktionary, OmegaWiki7 is a large multilingual dictionary

based on a relational database, designed with the aim of unifying the various

language-specific Wiktionaries into a unified lexical repository.

2.2 Babelfy

Babelfy (Moro et al. 2014) is a graph-based approach to joint multilingual Word

Sense Disambiguation (WSD) and Entity Linking based on a loose identification of

candidate meanings, and on a densest-subgraph algorithm to select high-coherence

semantic interpretations. Unlike supervised WSD approaches that rely heavily on

sense-annotated training data to learn a disambiguation model for each target word

(word expert), Babelfy’s strategy does not require training word-specific models

from sense-annotated data, but rather leverages an underlying semantic network to

connect all the concepts and entities in its sense inventory. These connections are

then used to build semantic signatures for each concept and entity, using random

walks with restart. With state-of-the-art performances reported on various Word

Sense Disambiguation and Entity Linking benchmarks, Babelfy is arguably the

optimal choice given the wide-coverage sense inventory of BabelNet and our

multilingual disambiguation setting. In our pipeline we crucially leverage Babelfy’s

coverage and flexibility (Sect. 3.2); being completely unsupervised and language-

independent, the algorithm can easily be applied to any language for which

lexicalizations are available inside the underlying semantic network. As a result,

Babelfy can handle mixed text in which multiple languages are used at the same

time, or even work without being supplied with information as to which languages

the input text contains (language-agnostic setting).

2.3 NASARI

NASARI (Camacho-Collados et al. 2016b) is a vectorial representation of concepts

and entities from the BabelNet sense inventory. NASARI leverages structural

properties from BabelNet, encyclopedic knowledge from Wikipedia and word

embeddings trained on large corpora. Given a BabelNet synset, its NASARI

representation is computed by first gathering a relevant sub-corpus of contextual

information from Wikipedia, exploiting both the Wikipedia inter-link structure and

the BabelNet taxonomy. All content words in this sub-corpus are then tokenized,

6 https://www.wiktionary.org.
7 http://www.omegawiki.org.
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lemmatized and weighted using lexical specificity (Lafon 1980), a statistical

measure based on the hypergeometric distribution that measures the relevance of a

word in a given sub-corpus.8 Finally, the sub-corpus is turned into a vector using

three different techniques that give rise to three different types of representation:

lexical, unified, and embedded. In this paper we rely on the latter type (NASARI-

embed).9 The word embeddings used for NASARI-embed are the pre-trained vectors

of Word2Vec (Mikolov et al. 2013), trained on the Google News corpus. These

300-dimensional word embeddings are injected into the NASARI embedded

representation via a weighted average, where the weights are given by lexical

specificity. The resulting vector is still defined at the sense level, but lies in the same

semantic space as word embeddings, thus enabling a direct comparison between

words and synsets. In this work we use NASARI for refining and improving the sense

annotations using semantic similarity (Sect. 3.3). NASARI has proved to be effective

in various NLP tasks, including not only semantic similarity and WSD (Shalaby and

Zadrozny 2015; Camacho-Collados et al. 2016b; Tripodi and Pelillo 2017), but also

sense clustering (see Sect. 5.2.2), knowledge-base construction and alignment

(Lieto et al. 2016; Espinosa-Anke et al. 2016a; Camacho-Collados and Navigli

2017; Cocos et al. 2017), object recognition (Young et al. 2016) and text

classification (Pilehvar et al. 2017).

3 Methodology

In this section we describe our methodology for disambiguating the target corpus of

textual definitions that will go to make up SENSEDEFS. Our goal is to disambiguate

textual definitions, as provided by the various lexical resources integrated into

BabelNet (cfr. Sect. 2.1), and to obtain as many sense annotations as possible, while

at the same time retaining high disambiguation accuracy across languages. To this

end, we perform a joint disambiguation of both concepts and entities in three

successive stages, using BabelNet as reference sense inventory. Together with a

unified sense inventory, BabelNet also provides inter-resource mappings that can be

exploited to directly convert and utilize the sense annotations obtained within each

individual resource (e.g. WordNet, Wikipedia, Wikidata). Our disambiguation

strategy is based on three steps: (1) for a given concept or entity, we first gather all

its available definitions, drawn from different resources and in different languages,

and construct a multilingual sub-corpus of definitional knowledge (Sect. 3.1); (2)

we then perform a first high-coverage disambiguation step on this sub-corpus

(Sect. 3.2); and, finally, (3) we refine the disambiguation output at the previous step

using a procedure based on distributional semantic similarity (Sect. 3.3).

8 Lexical specificity has been shown to outperform tf-idf as a vector weighting scheme (Camacho-

Collados et al. 2015a).
9 We use NASARI-embed version 3.0, available at lcl.uniroma1.it/nasari.
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3.1 Step 1: Harvesting textual definitions in multiple languages and
resources

As highlighted in Sect. 1, definitional knowledge is not easy to analyze automat-

ically at the sense level. Since many definitions are short and concise, the lack of

sufficient and/or meaningful context might negatively affect the performance of an

off-the-shelf disambiguation system that works at the sentence level (i.e. targeting

individual definitions one by one). In light of this, we leverage the inter-resource

and inter-language mappings provided by BabelNet to combine multiple definitions

(drawn from different resources and in different languages) of the same concept or

entity; in this way, we can associate a much richer context with each target

definition, and enable high-quality disambiguation.

As an example,10 consider the following definition of castling in chess as

provided by WordNet:

Interchanging the positions of the king and a rook: ð1Þ

The context in this example is limited and it might not be obvious for an automatic

disambiguation system that the concept being defined relates to chess: for instance,
an alternative definition of castling where the game of chess is explicitly mentioned

would definitely help the disambiguation process. Following this idea, given a

BabelNet synset, we carry out a context enrichment procedure by collecting all the

definitions of this synset in every available language and resource, and gathering

them together into a single multilingual text. Figure 1 gives a pictorial represen-

tation of this harvesting process for the concept of castling introduced in Example 1.

Fig. 1 Some of the definitions, drawn from different resources and languages, associated with the
concept of castling in chess through our context enrichment procedure

10 This definition will be used as a running example throughout this section.
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3.2 Step 2: Context-rich disambiguation

Once a multilingual text is gathered for a given concept or entity, an initial

preprocessing step on all definitions is performed. The preprocessing consists of

tokenization, part-of-speech (PoS) tagging and lemmatization for a subset of

languages:

– Tokenization We use the tokenization system available from the polyglot

project11 for 165 languages.

– Part-of-speech tagging We train the Stanford tagger (Toutanova et al. 2003), for

30 languages using the available training data from the Universal Dependencies

project12 (Nivre et al. 2016).

– Lemmatization We lemmatize all content words (i.e. nouns, verbs and

adjectives) using BABELMORPH
13, an open-source API based on Wiktionary

and designed to retrieve the morphology of content words (i.e., nouns, verbs and

adjectives) for several languages.

Then, we employ Babelfy (Moro et al. 2014) (see Sect. 2.2) to disambiguate with

high coverage all content words in all the available languages at once. Our

methodology is based on the fact that knowledge-based disambiguation systems like

Babelfy work better with richer context, even when they use no supervision. In fact,

at disambiguation time, Babelfy considers the content words across the target text in

order to construct an associated semantic graph, whose richness in terms of nodes

and edges strictly depends on the number of content words. When provided solely

with the English WordNet definition of (1), Babelfy disambiguates rook incorrectly
as ‘‘rookie, inexperienced youth’’. However, as additional definitions from other

resources and languages are included, Babelfy exploits the added context to

construct a richer semantic graph, and disambiguates rook with its correct chess-

related sense. This approach is particularly advantageous for languages with low

resources, where standard disambiguation techniques have not yet proven to be

effective, due to the lack of sufficient sense-annotated data. As a result of this

disambiguation step, we obtain a fully disambiguated corpus of definitions, which is

later refined by means of distributional semantic similarity. In the following section

we explain how this refinement is carried out.

3.3 Step 3: Disambiguation refinement based on distributional similarity

As output of the previous disambiguation step, we obtained a set D of

disambiguated instances. These disambiguated instances consist of unambiguous

senses from the BabelNet sense inventory, each associated with a confidence score

(Babelfy score henceforth). However, when the Babelfy score goes below 0.7, a

back-off strategy based on the Most Common Sense (MCS) is activated by default

11 http://polyglot.readthedocs.org/en/latest/Tokenization.html.
12 We used version 1.2, available at https://universaldependencies.github.io/docs.
13 https://github.com/raganato/BabelMorph.
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for that instance. In fact, Babelfy has been shown to be heavily biased towards the

MCS (Raganato et al. 2017). At this stage, our task is to reduce this bias by

correcting or discarding these low-confidence instances using semantic similarity.

First of all, for each disambiguated instance14 d 2 D we compute a coherence
score Cd. The coherence score is computed as the number of semantic connections

from the BabelNet synset d to any other disambiguated instance in D inside the

BabelNet semantic network, divided by the total number of disambiguated

instances:

Cd ¼
jDisambiguated instances connected to dj

jDisambiguated instancesj � 1
ð2Þ

We empirically set a coherence score threshold to 0.125 (i.e. one semantic con-

nection out of eight disambiguated instances). Let L be the set of disambiguated

instances below both the Babelfy score and the coherence score thresholds (namely

the low-confidence annotations). In order to refine the disambiguated instances in L,
we use NASARI (Camacho-Collados et al. 2016b). NASARI provides embedded

vector representations for over four million BabelNet synsets which were con-

structed by exploiting the complementary knowledge of Wikipedia, WordNet and

text corpora (see Sect. 2.3). We consider those instances in L for which a NASARI>

vector can be retrieved (virtually all noun instances), and compute an additional

score (NASARI score). First, we calculate the centroid l of all the NASARI vectors

for instances in D n L. This centroid represents the vector of maximum coherence,

as it corresponds to the point in the vector space which is closer to all synsets in D
on average. Then, for each disambiguated instance l 2 L, we retrieve all the can-

didate senses of its surface form in BabelNet and calculate a NASARI score Ns for

each candidate sense. Ns is calculated as the cosine similarity between the centroid l
and its corresponding NASARI vector NASARI(s):

Ns ¼ Simðl;NASARIðsÞÞ ð3Þ

This score enables us to discard low-confidence disambiguated instances and correct

the original disambiguation output from Babelfy in certain cases. Each l 2 L is re-

tagged with the sense obtaining the highest NASARI score, provided that it exceeds

0.75:15

ŝ ¼ argmax
s2Sl

Ns ð4Þ

where Sl is the set containing all the candidate senses for l.
In our running example (Example 1) Babelfy did not provide a high-confidence

disambiguation for the word king, which was then incorrectly disambiguated using

the MCS strategy. This error is corrected with the refinement step, as the chess-

14 Throughout this step we represent each disambiguated instance as its corresponding synset in

BabelNet.
15 This threshold is set for the refined release of SENSEDEFS, which is intended to provide high-precision

(rather than high-coverage) annotations.
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related sense of king achieves higher semantic similarity with the disambiguated

instances in D n L, compared to its predominant sense. As shown in Fig. 1, the fact

that we gathered definitions in different languages for the same concept proved

essential in this disambiguation decision, as it provides a considerably larger context

than the one given by a single definition.

4 SENSEDEFS: overview of the resource

By applying the methodology described in Sect. 3 on the whole set of textual

definitions in BabelNet for all the available languages, we obtain a large

multilingual corpus of disambiguated glosses: SENSEDEFS. SENSEDEFS is publicly

available at the following website: http://lcl.uniroma1.it/sensedefs. We release two

versions of the resource:

– Full. This high-coverage version provides sense annotations for all content

words as provided by Babelfy after the context-rich disambiguation (see

Sect. 3.2) and before the refinement step.

– Refined. The refined, high-precision version of SENSEDEFS, instead, only includes
the most confident sense annotations as computed by the refinement step (see

Sect. 3.3).

Some relevant statistics of SENSEDEFS are presented in Sect. 4.1, while Sect. 4.2

illustrates the format of the release.

4.1 Statistics

Table 1 shows some general statistics of the full and refined versions of SENSEDEFS,

divided by resource. The output of the full version is a corpus of 38,820,114

disambiguated glosses, corresponding to 8,665,300 BabelNet synsets and covering

263 languages and 5 different resources (Wiktionary, WordNet, Wikidata,

Wikipedia and OmegaWiki). It includes 249,544,708 sense annotations (6.4

annotations per definition on average). The refined version of the resource includes

Table 1 Number of definitions and annotations of the full and refined versions of SENSEDEFS

# Glosses # Annotations

Full Refined Full Refined

Wikipedia 29,792,245 28,904,602 223,802,767 143,927,150

Wikidata 8,484,267 8,002,375 22,769,436 17,504,023

Wiktionary 281,756 187,755 1,384,127 693,597

OmegaWiki 115,828 106,994 744,496 415,631

WordNet 146,018 133,089 843,882 488,730

Total 38,820,114 37,334,815 249,544,708 163,029,131
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fewer, but more reliable, sense annotations (see Sect. 5.1), and a slightly reduced

number of glosses containing at least one sense annotation. Wikipedia is the

resource with by far the largest number of definitions and sense annotations,

including almost 30 million definitions and over 140 million sense annotations in

both versions of the corpus. Additionally, Wikipedia also features textual definitions

for the largest number of languages (over 200).

Statistics by language Figures 2 and 3 display the number of definitions and sense

annotations, respectively, divided by language.16 As expected, English provides the

largest number of glosses and annotations (5.8M glosses and 37.9M sense

annotations in the refined version), followed by German and French. Even though

the majority of sense annotations overall concern resource-rich languages (i.e. those

featuring the largest amounts of definitional knowledge), the language rankings in

Figs. 2 and 3 do not coincide exactly: this suggests, on the one hand, that some

languages (such as Vietnamese and Spanish, both with higher positions in Fig. 3

compared to Fig. 2) actually benefit from a cross-lingual disambiguation strategy;

on the other hand, it also suggests that there is still room for improvement,

especially for some other languages (such as Swedish or Russian) where the

tendency is reversed and the number of annotations is lower compared to the

amount of definitional knowledge available.

Table 2 shows the number of annotations divided by part-of-speech tag and

disambiguation source. In particular, the full version obtained as output of Step 2

(Sect. 3.2) comprises two disambiguation sources: Babelfy and the MCS back-off

(used for low-confidence annotations). The refined version, instead, removes the

MCS back-off, either by discarding or correcting the annotation with NASARI

(Sect. 3.3). Additionally, 17% of the sense annotations obtained by Babelfy without

resorting to the MCS back-off are also corrected or discarded. Assuming the

coverage of the full version to be 100%,17 the coverage of our system after the

refinement step is estimated to be 65.3%. As shown in Table 2, discarded

annotations mostly consist of verbs, adjectives and adverbs, which are often harder

to disambiguate as they are very frequently not directly related to the definiendum.

In fact, the coverage figure on noun instances is estimated to be 73.9% after

refinement.

4.2 Released format

SENSEDEFS is released in two different formats: a human- and machine-readable

XML divided by language and resource (Sect. 4.2.1), and NIF (Sect. 4.2.2).

16 Only the top 15 languages are displayed in the figures.
17 There is no straightforward way to estimate the coverage of a disambiguation system automatically. In

our first step using Babelfy, we provide disambiguated instances for all content words (including multi-

word expressions) from BabelNet and also for overlapping mentions. Therefore, the output of our first

step, even if it is not perfectly accurate, may be considered to have full coverage.
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4.2.1 XML format

The format for each of the two versions of SENSEDEFS (full and refined) is almost

identical: the corpus is first divided by resource (WordNet, Wikipedia, Wiktionary,

Wikidata and OmegaWiki) and then divided by language within each resource.

The disambiguated glosses for each language and resource are stored in standard

XML files. Figures 4 and 5 show a sample definition as displayed in the XML files

Fig. 2 Number of definitions by language (top 15 languages)

Fig. 3 Number of annotations by language (top 15 languages)
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of, respectively, the refined and full versions of SENSEDEFS. Each file contains a list

of definition tags, with their respective id18 as attribute. Then, each definition

tag contains the original definition as plain text and its annotations. The

annotation tag refers to the sense annotations provided as a result of our

disambiguation process. Each annotation includes the BabelNet synset identifier and

has four (or five) attributes (see Sect. 3 for more details about the attributes):

– source This indicates whether the disambiguation has been performed by

Babelfy, the Most Common Sense (MCS) back-off (only in the full version of

the corpus) or NASARI (only in the refined version of the corpus).

– anchor This corresponds to the exact surface-form match found within the

definition.

– bfScore This corresponds to the Babelfy score.

– coherenceScore This corresponds to the coherence score.

– nasariScore This corresponds to the NASARI score (only in the refined

version of the corpus).

4.2.2 NIF format

Recently the Linked Open Data community has made considerable efforts to extract

and standardize structured knowledge from a wide range of corpora and linguistic

resources, making them available on the Web by means of the RDF format

(Chiarcos et al. 2011; Auer and Hellmann 2012; Ehrmann et al. 2014; Flati and

Navigli 2014). In order to simplify the interoperability of linguistic resources, the

NLP Interchange Format (NIF) was developed (Hellmann et al. 2013). NIF aims at

easing the use of Linked Data among Natural Language Processing tools, language

Table 2 Number of annotations by part-of-speech tag (columns) and by source (rows) before and after

refinement

All Nouns Verbs Adjectives Adverbs

FULL

Babelfy 174,256,335 158,310,414 4,368,488 10,646,921 930,512

MCS 75,288,373 56,231,910 8 344,930 9,256,497 1,455,036

Total 249,544,708 214,542,324 12,713,418 19,903,418 2,385,548

REFINED

Babelfy 144,637,032 140,111,921 1,326,947 3,064,416 133,748

NASARI 18,392,099 18,392,099 – – –

Total 163,029,131 158,504,020 1,326,947 3,064,416 133,748

18 Identifiers depend on the resource, e.g. offsets in WordNet and page titles in Wikipedia.
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resources and annotations. Following this overarching goal, several resources have

already been converted and made available on NIF format, contributing to the

creation of the Linguistic Linked Open Data (Rizzo et al. 2012; Hellmann et al.

2012; Röder et al. 2014). In this paper we have transformed the English annotations

of the refined version of SENSEDEFS into the NLP Interchange Format, following the

guidelines provided by the hackathon organized at the Multilingual Linked Open

Data for Enterprises Workshop (MLODE 2014).19

5 Evaluation

We evaluated SENSEDEFS both intrinsically (Sect. 5.1) and extrinsically on two

Natural Language Processing tasks (Sect. 5.2).

5.1 Intrinsic evaluation

As intrinsic evaluation we carried out a thorough manual assessment of sense

annotation quality in SENSEDEFS. In our previous study (Camacho-Collados et al.

2016a), we performed a manual evaluation for three languages (English, Italian and

Spanish) employing three human judges. Each language was evaluated on a sample

of 100 definitions, considering the input of a baseline (i.e. disambiguating

definitions in isolation with Babelfy) and our Full and Refined versions of

Fig. 4 Sample XML output for the definition of castling in WordNet from SENSEDEFS full

Fig. 5 Sample XML output for the definition of castling in WordNet from SENSEDEFS refined

19 http://wwwusers.di.uniroma1.it/*flati/hackathon/index.html.
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SENSEDEFS. In the three languages the context-rich disambiguation achieved better

results than the baseline. More importantly, the refinement based on distributional

similarity proved highly reliable, obtaining a precision over 90% on the three

languages, without drastically decreasing the coverage. In this paper we have

extended that intrinsic evaluation by performing two additional experiments. In the

first experiment we extended the manual evaluation of Camacho-Collados et al.

(2016a) by increasing the number of definitions, languages and annotators

(Sect. 5.1.1). In the second experiment we performed a large-scale automatic

evaluation where we compared our annotations against the manual disambiguation

of WordNet glosses (Sect. 5.1.2).

5.1.1 Manual evaluation

We carried out an extensive evaluation of sense annotation quality in SENSEDEFS on

four different languages: English, French, Italian and Spanish. To this end, we first

randomly sampled 120 definitions for each language. Then, two annotators

validated the sense annotations given by SENSEDEFS (both Full and Refined) and

Babelfy. In contrast to the intrinsic evaluation of Camacho-Collados et al. (2016a),

in this case we excluded those annotations coming from the MCS back-off, in order

to assess the output explicitly provided by our disambiguation pipeline.

For each item in the sample, each annotator was shown the textual definition, the

BabelNet entry for the definiendum, and every non-MCS sense annotation paired

with the corresponding BabelNet entry. The annotator had to decide independently,

for each sense annotation, whether it was correct (score of 1), or incorrect (score of

0). The disambiguation source (i.e. whether the annotation came from Babelfy in

isolation, context-rich disambiguation or NASARI) was not shown. In some special

cases where a certain sense annotation was acceptable but a more suitable synset

was available, a score of 0.5 was allowed. One recurrent example of these indecisive

annotations occurred on multi-word expressions: being designed as a high-coverage

all-word disambiguation strategy, Babelfy can output disambiguation decisions over

overlapping mentions when confronted with fragments of text having more than one

acceptable disambiguation. For instance, the multi-word expression ‘‘Commission of
the European Union’’ can be interpreted both as a single mention, referring to the

specific BabelNet entity European_Commissionn
1 (executive body of the

European Union), and as two mentions, one (‘‘Commission’’) referring to the

BabelNet entry Parliamentary_committeen
1 (a subordinate deliberative

assembly), and the other (‘‘European Union’’) referring to the the BabelNet entry

European_Unionn
1 (the international organization of European countries). In all

cases where one part of a certain multi-word expression was tagged with an

acceptable meaning, but a more accurate annotation would have been the one

associated with the whole multi-word expression, we allowed annotators to assign a

score of 0.5 to valid annotations of nested mentions and a score of 1 only to the

complete and correct multi-word annotation. Another controversial example of

indecision is connected to semantic shifts due to Wikipedia redirections, which

cause semantic annotations that are lexically acceptable but wrong from the point of
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view of semantic roles. For instance, the term painter inside Wikipedia redirects to

the Wikipedia entry for Painting (Graphic art consisting of an artistic
composition made by applying paints to a surface), while the term Basketball
player redirects to the Wikipedia entry for Basketball (Sport played by two
teams of five players on a rectangular court). These redirections are also exploited

by Babelfy as acceptable disambiguation decisions (a policy that is often used in

Entity Linking, especially in Wikipedia-specific settings) and, as such, they are also

allowed a score of 0.5.

Once the annotations were completed, we calculated the Inter-Annotator

Agreement (IAA) between the two annotators of each language by means of

Relative Observed Agreement (ROA), calculated as the proportion of equal

answers, and Cohen’s kappa (Cohen 1968, j). Finally, the two annotators in each

language adjudicated the answers which were judged with opposite values. Table 3

shows the results of this manual evaluation. In the four languages, our refined

version of the corpus achieved the best overall results, consistently with the results

of the previous intrinsic evaluation (Camacho-Collados et al. 2016a). SENSEDEFS

achieved over 80% precision in three of the four considered languages, both in its

Table 3 Quality of the annotations of SENSEDEFS for English, Spanish, French and Italian

#Annotations Precision Recall* F1 IAA

ROA j

ENGLISH

Babelfy 671 84.3 69.6 76.1 94.6 71.7

Full 714 80.0 70.2 74.8 94.2 70.1

Refined 745 83.1 76.1 79.5 95.3 71.9

SPANISH

Babelfy 678 85.8 59.3 70.2 91.4 51.1

Full 737 82.6 62.1 70.9 92.4 66.2

Refined 725 86.6 64.0 73.6 95.1 63.3

FRENCH

Babelfy 516 84.3 49.8 62.6 97.2 85.7

Full 568 81.3 52.8 64.0 96.7 86.4

Refined 579 87.1 57.7 69.4 95.1 65.8

ITALIAN

Babelfy 540 81.7 53.5 64.7 94.5 74.3

Full 609 73.9 54.5 62.8 92.4 78.0

Refined 618 77.5 58.1 66.4 94.7 83.0

Bold numbers refer to best results overall in each language for each evaluation measure (the two last rows

are inter-annotator agreements, no evaluation measures)

Recall (*) was computed assuming each content word in a sentence should be associated with a distinct

sense. Inter-annotator agreement (IAA) was computed in terms of Relative Observed Agreement (ROA)

and Cohen’s kappa (j). MCS annotations were not considered in this evaluation
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full and refined versions. For Italian the precision dropped to 73.9 and 77.5%,

respectively, probably due to its lower coverage in BabelNet. Finally, it is worth

noting that, for all the examined languages, both the full and refined versions of

SENSEDEFS provided more annotations than using the Babelfy baseline on isolated

definitions.

5.1.2 Automatic evaluation: WordNet glosses

To complement the manual intrinsic evaluation, we performed an additional large-

scale automatic evaluation. We compared the WordNet annotations given by

SENSEDEFS
20 with the manually-crafted annotations of the disambiguated glosses

from the Princeton Gloss Corpus.21 Similarly to the previous manual evaluation, we

included a baseline based on Babelfy disambiguating the definitions sentence-wise

in isolation and using the pre-trained models22 of the IMS (Zhong and Ng 2010, It

Makes Sense) supervised disambiguation system. IMS uses a SVM classifier

including features based on surrounding words and local collocations. As in our

previous experiment, we did not consider the annotations for which the MCS back-

off strategy was activated on any of the comparison systems. Finally, as baseline we

include the results of WordNet first sense (i.e. MCS) for the annotations

disambiguated by each system. The MCS baseline has been shown to be hard to

beat, especially for knowledge-based systems (Raganato et al. 2017). However, this

baseline, which is computed from a sense-annotated corpus, is only available for the

English WordNet. Therefore, it is not possible to use this MCS baseline accurately

for languages other than English, and resources other than WordNet for which

sense-annotated data is not available or is very scarce.

Table 4 shows the accuracy results (computed as the number of automatic

annotations corresponding to the manual annotations divided by the total number of

overlapping annotations) of SENSEDEFS, Babelfy and IMS23 on the Princeton Gloss

Corpus. SENSEDEFS achieved an accuracy of 76.4%, both in its full and refined

versions. Nevertheless, the refined version attained a larger coverage, disambiguat-

ing a larger amount of instances. This result is relatively high considering the nature

of the corpus, consisting of short and concise definitions for which the context is

clearly limited. In fact, even if not directly comparable, the best systems in standard

WSD SemEval competitions (where full documents are given as context to

disambiguate) tend to obtain considerably less accurate results (Edmonds and

Cotton 2001; Snyder and Palmer 2004; Pradhan et al. 2007; Navigli et al. 2013;

20 As explained in Sect. 3, our disambiguation pipeline annotates with BabelNet synsets, hence its

coverage is larger than only WordNet. This implies that some annotations are not comparable to those

inside the WordNet glosses.
21 http://wordnet.princeton.edu/glosstag.shtml.
22 Downloaded from http://www.comp.nus.edu.sg/*nlp/corpora.html#onemilwsd. We used the models

from the One Million Sense-Tagged Instances as training corpus.
23 Note that only IMS disambiguates all instances in the corpus. The reason why the recall of other

systems is lower is twofold: first, IMS disambiguates all content words, unlike all other systems which use

a confidence threshold; and second, it disambiguates all words with WordNet synsets, while in the other

systems BabelNet is used as sense inventory (WordNet being a subset of BabelNet).
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Moro and Navigli 2015). In fact, even though results are not directly comparable,24

IMS achieved an accuracy which is considerably lower than our system’s

performance and also lower compared to its performance on standard benchmarks

(Raganato et al. 2017). This result highlights the added difficulty of disambiguating

definitions, as they do not provide enough context for an accurate disambiguation in

isolation. Only our disambiguation pipeline, which does not make use of any sense-

annotated data, proves reliable in this experiment, comfortably outperforming the

MCS baseline on the same annotations.

5.2 Extrinsic evaluation

We also evaluated extrinsically the effectiveness of SENSEDEFS (both the full and
refined versions of the resource) by making use of its sense annotations within two

Natural Language Processing tasks.

The first experiment evaluated the full version of SENSEDEFS (before refinement)

on Open Information Extraction (OIE) (Sect. 5.2.1). The experiment uses DEFIE

(Delli Bovi et al. 2015), an OIE system designed to work on textual definitions. In

its original implementation DEFIE used Babelfy to disambiguate definitions one-by-

one before extracting relation instances. We modified that implementation and used

the disambiguated glosses as obtained with our approach as input for the system,

and then we compared the extractions with those obtained by the original

implementation.

The second experiment, instead, evaluated the refined version of SENSEDEFS on

the Sense Clustering task (Sect. 5.2.2). For this experiment we used the semantic

representations of NASARI (see Sect. 3.3). In particular, we reconstructed the

vectorial representations of NASARI by, (1) enriching the semantic network used in

the original implementation with the refined sense annotations of SENSEDEFS, and (2)

running again the NASARI pipeline to generate the vectors. We then evaluated

these on the Sense Clustering task.

Table 4 Accuracy and number of compared WordNet annotations on the Princeton Gloss Corpus

#WN annotations Accuracy MCS-Acc.

SenseDefsFull 162 819 (59.0%) 76.4 66.1

SenseDefsRefined 169 696 (61.5%) 76.4 65.2

Babelfy 130 236 (47.2%) 69.1 65.6

IMS 275 893 (100%) 56.1 55.2

Bold numbers refer to the best accuracy results overall

On the right the accuracy of the MCS baseline on the same sample

24 Recall that our system annotates with BabelNet synsets and hence the set of disambiguation candidates

is larger than IMS and the MCS baseline. This also makes the set of annotations differ with respect to

IMS.
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5.2.1 Open information extraction

In this experiment we investigated the impact of our disambiguation approach on

the definitional corpus used as input for the pipeline of DEFIE. The original OIE

pipeline of the system takes as input an unstructured corpus of textual definitions,

which are then preprocessed one-by-one to extract syntactic dependencies and

disambiguate word senses and entity mentions. After this preprocessing stage, the

algorithm constructs a syntactic-semantic graph representation for each definition,

from which subject-verb-object triples (relation instances) are eventually extracted.

As highlighted in Sect. 3.2, poor context of particularly short definitions may

introduce disambiguation errors in the preprocessing stage, which then tend to

propagate and reflect on the extraction of both relations and relation instances. To

assess the quality of our disambiguation strategy as compared to the standard

approach, we modified the implementation of DEFIE to consider our disambiguated

instances instead of executing the original disambiguation step, and then we

evaluated the results obtained at the end of the pipeline in terms of quality of

relation and relation instances.

Experimental setup We first selected a random sample of 150 textual definitions

from our disambiguated corpus (Sect. 4.1). We generated a baseline for the

experiment by discarding all disambiguated instances from the sample, and treating

the sample itself as an unstructured text of textual definitions which we used as input

for DEFIE, letting the original pipeline of the system carry out the disambiguation

step. Then we carried out the same procedure using, instead, the modified

implementation for which our disambiguated instances are taken into account. In

both cases, we ran the extraction algorithm of DEFIE and evaluated the output in

terms of both relations and relation instances. Following Delli Bovi et al. (2015), we

employed two human judges and performed the same evaluation procedure

described therein over the set of distinct relations extracted from the sample, as well

as the set of extracted relation instances.

Results Results reported in Tables 5 and 6 show a slight but consistent

improvement resulting from our disambiguated glosses over both the number of

extracted relations and triples and over the number of glosses with at least one

extraction (Table 5), as well as over the estimated precision of such extractions

(Table 6). Context-rich disambiguation of glosses across resources and languages

Table 5 Extractions of DEFIE

on the evaluation sample
# Glosses # Triples # Relations

DEFIE ? GLOSSES 150 340 184

DEFIE 146 318 171

Table 6 Precision of DEFIE on

the evaluation sample
Relation Relation instances

DEFIE ? GLOSSES 0.872 0.780

DEFIE 0.865 0.770
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enabled the extraction of 6.5% additional instances from the sample (2.26

extractions on the average from each definition) and, at the same time, increased

the estimated precision of relation and relation instances over the sample by � 1%.

5.2.2 Sense clustering

Our second experiment focuses on the sense clustering task. Knowledge resources

such as Wikipedia or WordNet suffer from the high granularity of their sense

inventories. A meaningful clustering of senses within these sense inventories could

help boost the performance in different applications (Hovy et al. 2013; Mancini

et al. 2017; Pilehvar et al. 2017). In the following we explain how to deal with this

issue in Wikipedia.

Our method for clustering senses in Wikipedia was based on the semantic

representations of NASARI (Camacho-Collados et al. 2016b). We integrated the

high-precision version of the network as an enrichment of the BabelNet semantic

network, in order to improve the results of the state-of-the-art system based on the

NASARI lexical vectors. NASARI uses Wikipedia ingoing links and the BabelNet

taxonomy in the process of obtaining contextual information for a given concept.

We simply enriched the BabelNet taxonomy with the refined version of the

disambiguated glosses (see Sect. 3.3) of the target language. These disambiguated

glosses contain synsets that are highly semantically connected with the definiendum,

which makes them particularly suitable for enriching a semantic network. The rest

of the pipeline for obtaining lexical semantic representations (i.e. lexical specificity

applied to the contextual information) remained unchanged. By integrating the high-

precision disambiguated glosses into the NASARI pipeline, we obtained a new set

of vector representations for BabelNet synsets, increasing its initial coverage (4.4M

synsets covered by the original NASARI, compared to 4.6M synsets covered by

NASARI enriched with our disambiguated glosses).

Experimental setup We used the two sense clustering datasets constructed by

Dandala et al. (2013). In these datasets sense clustering is viewed as a binary

classification task. Given a pair of Wikipedia articles, the task consists of deciding

whether they should be merged into a single cluster or not. The first dataset (500-
pair henceforth) contains 500 pairs of Wikipedia articles, while the second dataset

(SemEval) consists of 925 pairs coming from a set of highly ambiguous words taken

from WSD Semeval competitions (Mihalcea 2007). We followed the original setting

Table 7 Accuracy (Acc.) and

F-measure (F1) percentages of

different systems on the

Wikipedia sense clustering

datasets

Bold numbers refer to the best

results overall in each dataset

and for each evaluation measure

(Acc. and F1)

500-pair SemEval

Acc. F1 Acc. F1

NASARI ? SENSEDEFS 86.0 74.8 88.1 64.7

NASARI 81.6 65.4 85.7 57.4

SVM-monolingual 77.4 – 83.5 –

SVM-multilingual 84.4 – 85.5 –

Baseline 28.6 44.5 17.5 29.8
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of Camacho-Collados et al. (2016b) and clustered a pair of Wikipedia articles only

when their similarity, computed by using the square-rooted Weighted Overlap

comparison measure (Pilehvar et al. 2013), was above 0.5 (i.e. the middle point in

the Weighted Overlap similarity scale).

Results Table 7 shows the accuracy and F1 results in the sense clustering task. As

a comparison we included the Support Vector Machine classifier of Dandala et al.

(2013), which exploits information from Wikipedia in English (SVM-monolingual)
and four different languages (SVM-multilingual). As a simple baseline we

additionally included a system which clusters all pairs. Finally, we report the

results of the original NASARI English lexical vectors (NASARI)25 and the

NASARI-based vectors obtained from the enriched BabelNet semantic network

(NASARI ? SENSEDEFS). As shown in Table 7, the enrichment produced by our

glosses proved to be highly beneficial, significantly improving on the original results

obtained by NASARI. Moreover, NASARI ? SENSEDEFS obtained the best perfor-

mance overall, outperforming the SVM-based systems of Dandala et al. (2013) in

terms of accuracy in both datasets.

6 Related work

Word Sense Disambiguation is a long-standing task in Natural Language Processing

(NLP), lying at the very core of language understanding (Navigli 2009). However,

the lack of sense-annotated data is slowing down progress in the field, as the largest

manually sense-annotated dataset (for WordNet) dates back to the nineties: Miller

et al (1993, SemCor). This is mainly due to the expensive manual effort required to

annotate large corpora. In order to overcome this gap, several recent studies have

proposed different automatic approaches to obtain reliable and large-scale sense-

annotated data (Pilehvar and Navigli 2014; Taghipour and Ng 2015; Raganato et al.

2016; Pasini and Navigli 2017), which have been shown to improve the

performance of supervised WSD systems (Raganato et al. 2017).

In particular, disambiguating definitions has attracted a considerable amount of

interest. To date, WordNet has definitely been the most popular and the most

exploited resource among those that include textual definitions. In fact, WordNet

glosses have still been used successfully in recent work (Khan et al. 2013; Chen

et al. 2015). A first attempt to disambiguate WordNet glosses automatically was

proposed as part of the eXtended WordNet project26 (Novischi 2002). However, this

attempt’s estimated coverage did not reach 6% of the total number of sense-

annotated instances. Moldovan and Novischi (2004) proposed an alternative

disambiguation approach, specifically targeted at the WordNet sense inventory and

based on a supervised model trained on SemCor (Miller et al. 1993). In general, the

drawback of using supervised models arises from the so-called knowledge-
acquisition bottleneck, a problem that becomes particularly vexed when such

models are applied to larger inventories, due to the vast amount of annotated data

25 Downloaded from http://lcl.uniroma1.it/nasari/.
26 http://www.hlt.utdallas.edu/*xwn/.
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they normally require. Another disambiguation task focused on WordNet glosses

was presented as part of the Senseval-3 workshop (Litkowski 2004). However, the

best reported system obtained precision and recall figures below 70%, which is

arguably not enough to provide high-quality sense-annotated data for current state-

of-the-art NLP systems.

In addition to annotation reliability, another issue that arises when producing a

corpus of textual definitions is coverage. In fact, reliable corpora of sense-annotated

definitions produced to date, such as the Princeton WordNet Gloss Corpus,27 have

usually been obtained employing human annotators. The Princeton corpus of

WordNet disambiguated glosses has already been shown to be successful as part of

the pipeline in semantic similarity (Pilehvar et al. 2013), domain labeling (González

et al. 2012) and Word Sense Disambiguation (Agirre and Soroa 2009; Camacho-

Collados et al. 2015b) systems. However, as new encyclopedic knowledge about the

world is constantly being harvested, keeping up using only human annotation is

becoming an increasingly expensive endeavor. With a view to tackling this problem,

a great deal of research has recently focused on the automatic extraction of

definitions from unstructured text (Navigli and Velardi 2010; Benedictis et al. 2013;

Espinosa-Anke and Saggion 2014; Dalvi et al. 2015). At the same time, the

prominent role of collaborative resources (Hovy et al. 2013) has created a

convenient development ground for NLP systems based on encyclopedic defini-

tional knowledge. By bridging the gap between lexicographic and encyclopedic

knowledge, BabelNet (Navigli and Ponzetto 2012) is a key milestone in this respect.

BabelNet includes, among others, Wikipedia as an additional source of encyclo-

pedic knowledge, thus enabling the application of Entity Linking techniques.28

Nevertheless, extending the manual annotation of definitions to such larger and up-

to-date knowledge repositories is clearly not feasible. First of all, the number of

items to disambiguate is massive; moreover, as the number of concepts and named

entities increases, annotators would have to deal with the added difficulty of

selecting context-appropriate synsets from an extremely large sense inventory. In

fact, WordNet 3.0 comprises 117,659 synsets and a definition for each synset, while

BabelNet 3.0 covers 13,801,844 synsets with a total of 40,328,194 definitions.

With the aim of overcoming this shortfall, in this paper we propose an automatic

disambiguation approach which leverages multilinguality and cross-resource

information along with a state-of-the-art graph-based WSD and Entity Linking

system (Moro et al. 2014) and a distributional representation of concepts and

entities (Camacho-Collados et al. 2015a). By exploiting at best all these compo-

nents, we are able to produce a large-scale high-quality corpus of glosses,

SENSEDEFS, automatically disambiguated with BabelNet synsets.

27 http://wordnet.princeton.edu/glosstag.shtml.
28 See Usbeck et al. (2015) and Ling et al. (2015) for an overview and comparison of entity linking

systems.
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7 Conclusion

In this paper we presented SENSEDEFS, a large-scale multilingual corpus of

disambiguated textual definitions (or glosses). We obtained high-quality sense

annotations with a disambiguation pipeline designed to exploit cross-resource and

cross-language complementarities of multiple textual definitions associated with a

given definiendum. By leveraging the structure of a wide-coverage semantic

network and sense inventory like BabelNet, we obtained a corpus of textual

definitions coming from multiple sources and multiple languages, fully disam-

biguated with BabelNet synsets. SENSEDEFS, to the best of our knowledge, is the

largest available corpus of its kind. Moreover, the choice of BabelNet as sense

inventory not only provides wide-coverage sense annotations of both a lexico-

graphic and encyclopedic nature. Indeed, since BabelNet is a merger of various

different resources, including WordNet and Wikipedia, these annotations are also

expandable to any of these resources and can be easily converted via BabelNet’s

inter-resource mappings.

SENSEDEFS is based on the very large and heterogeneous corpus of textual

definitions provided by BabelNet. After collecting all the definitions of a given

concept or entity into a single multilingual text, our pipeline carries out

disambiguation in two subsequent stages. In the first stage, we leverage a state-

of-the-art multilingual disambiguation system, Babelfy (Moro et al. 2014), which is

designed to exploit at best a multiple-language setting. Using Babelfy, we obtain an

initial set of sense annotations for all the available languages of the target corpus.

These initial sense annotations are then refined in the second stage, by integrating a

module based on NASARI (Camacho-Collados et al. 2016b) and distributional

similarity targeted to identify a subset of sense annotations disambiguated with

high-confidence. This refined version of the corpus was proven very reliable, with

precision and coverage figures over 80 and 60%, respectively.

We release to the research community two versions of SENSEDEFS: a full version

comprising all the sense annotations obtained with Babelfy in the first stage, and a

refined version including only the high-confidence annotations identified through

distributional similarity. Both versions additionally include a set of confidence

scores which can be taken into account by users for tuning them to their needs. The

refined version is especially suitable for high-precision applications, where having a

disambiguation error as low as possible is the foremost requirement. Moreover,

since high-precision sense annotations are those that are most closely connected to

the definiendum, they can also be used to enrich a semantic network (or to build a

semantic network on its own). The full version is, instead, targeted at applications

requiring high coverage, where extracting as much information as possible is key,

even at the cost of lower-confidence disambiguation decisions. In knowledge

acquisition and extraction, for instance, it could be just as important to discover

semantic relations between the definiendum and a concept or entity that is not part

of the same domain of knowledge.

We evaluated SENSEDEFS extensively, with both intrinsic and extrinsic experi-

ments. We assessed sense annotation quality intrinsically on four different
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languages, showing the reliability of our system in comparison to previous

approaches and to an off-the-shelf state-of-the-art disambiguation system. Finally,

we also carried out an extrinsic evaluation where we showed two possible

applications of our resource in both its full and refined versions, namely Open

Information Extraction (a high-coverage setting) and Sense Clustering (a high-

precision setting). In both cases, our sense annotations led to performance

improvement and showed the flexibility of SENSEDEFS across different Natural

Language Processing tasks. As future work we plan to exploit this corpus in two

main directions: first, as a sense-annotated training corpus for supervised Word

Sense Disambiguation and Entity Linking; second, in applications such as

Taxonomy Learning for which definitional knowledge has proved beneficial.

Moreover, we plan to investigate the effectiveness of our cross-lingual disam-

biguation strategy outside definitional knowledge, e.g. on general sentence-aligned

parallel corpora as already proved effective in Delli Bovi et al. (2017).
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