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Abstract: MHD free convection inside a triangular-wave-shaped corrugated porous cavity with
Cu-water nanofluid is numerically studied with the finite element method. The influences of the
Grashof number (104 ≤ Gr ≤ 106), Hartmann number (0 ≤ Ha ≤ 50), Darcy number (10−4 ≤
Da ≤ 10−1) and solid volume fraction of the nanoparticle (0 ≤ φ ≤ 0.05) on the convective flow
features are examined. It is observed that increasing the Grashof number and Darcy number enhances
the heat transfer, while the effect is opposite for the Hartmann number. As the corrugation frequency
of the triangular wave increases, the local and averaged heat transfer rates decrease, which is more
effective for higher values of Grashof and Darcy numbers. Normalized total entropy generation
increases as the Darcy number and solid volume fraction of the nanoparticles increase and decreases
as the Hartmann number increases both for flat and corrugated wall configurations.
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1. Introduction

Natural convection in porous media has applications in some engineering problems such as in
cooling of MEMs, solar collectors, geothermal applications, building insulation materials and many
others. Industrial application examples are given in [1–4]. In some industrial applications such
as MEMs, coolers of nuclear reactors and many other magnetic field effects may be relevant [5].
An external magnetic field has the potential to control the convective heat transfer features [6–8].
Nanofluid technology with the addition of nano-sized particles to the base fluid was applied in many
thermal engineering problems [9,10]. Nanofluids enhance thermal transport [9]. Nanofluids can also
be used in applications with magnetic fields, and both thermal conductivity and electrical conductivity
of the base fluid are enhanced with the inclusion of the nanoparticles [11,12]. In the numerical study
of Mahmoudi et al. [13], free convection in a triangular cavity with nanofluids was examined under
the effects of a magnetic field, and the effects of various parameters such as the Rayleigh number,
Hartmann number and nanoparticle volume fraction on the convective flow features were analyzed.
Ghasemi et al. [14] numerically examined the free convection with a magnetic field for water: Al2O3

nanofluid. They noted that depending on the Hartmann and Rayleigh number values, the average
Nusselt number may be enhanced or deteriorated. In the literature, there exist several studies of
convection in porous media filled with a nanofluid. Sun and Pop [15] examined the natural convection in
a porous triangular cavity with nanofluids. They performed the study for different nanofluid types, and
they reported that as the solid volume fraction of the nanoparticles increases, the heat transfer in the cavity
is enhanced only at low Rayleigh numbers. Bourantas et al. [16] numerically examined the nanofluid
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natural convection in a porous cavity by using a meshless method, while the Darcy–Brinkman equations
were used. The effects of nanofluid in the cooling were examined. Other relevant studies for convective
heat transfer in a porous medium saturated by a nanofluid can be found in [17–19]. MHD flow in porous
enclosures was studied by many researchers [20–23]. In applications for convection, the geometries
can be simplified to some basic shapes such as square, triangular or trapezoidal. Surface corrugations
can be used to control the convection in cavities. Hydro-thermal performance in a corrugated channel
with nanofluid was numerically examined in [24]. As was shown by Hasan et al. [25], the corrugation
amplitude and frequency have a significant impact on the heat transfer rate in natural convection for a
deferentially-heated cavity. Hussain et al. [26] numerically examined the natural convection in a tilted
sinusoidal corrugated cavity with magnetic field effects.

In convective heat transfer applications, second law analysis can be used to evaluate the system
performance [27–31]. A review of the recent developments in entropy generation studies relevant
to convective heat transfer is given in [32]. Some application examples of second law analysis with
magnetic field and nanofluids can be found in [33–37].

As outlined in the above given literature survey, natural convection in a corrugated enclosure
filled with a porous medium saturated with nanofluids under the effects of a magnetic field has many
important thermal engineering applications. Some of the mentioned methods (surface corrugation,
using nanofluids and an external magnetic field) can also be used as efficient control methods to affect
the convective heat transfer features of the thermal engineering design for a porous medium. In this
study, second law analysis of the present configuration with surface corrugation was also examined,
which adds another novelty to the present study. The results of the present study may be useful in the
thermal design of systems, which includes porous media, nanofluid and magnetic field interactions.

2. Mathematical Formulation

A schematic diagram of the problem for natural convection in a triangular wave-shaped corrugated
cavity is shown in Figure 1. The enclosure size is H, while the corrugated wave has a length and height
as a and b = 0.2H. The cavity is deferentially heated with isothermal temperatures of Tc and Th for the
right and left corrugated vertical walls with Th > Tc. Other walls are adiabatic with no-slip boundary
conditions. A uniform vertical magnetic field is imposed. The nanofluid is assumed to saturate the
solid matrix, and both are in thermodynamic equilibrium. Thermo-physical properties are shown in
Table 1 [13]. Various effects such as joule heating, induced magnetic field and displacement currents are
neglected. We assume that the magnetic Reynolds number is much smaller than the induced magnetic
field so that it can be neglected when compared to the applied magnetic field.

H

H

a

b

g

T=T h T=T c

porousmedia

Figure 1. Schematic diagram of the physical model with boundary conditions.
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Table 1. Thermophysical properties.

Property Water Cu

ρ 997.1 8954
cp 4179 383
k 0.6 400
β 2.1 × 10−4 1.67 × 10−5

σ 0.05 5.97 × 107

Conservation equations and entropy generation in a two-dimensional system can be stated as
follows [38,39]:
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In the above representation, entropy generation due to heat transfer, viscous dissipation and
magnetic field is shown.

The effective density and specific heat of the nanofluid are defined as:

ρn f = (1 − φ)ρb f + φρp, (ρcp)n f = (1 − φ)(ρcp)b f + φ(ρcp)p. (6)

The thermal expansion coefficient of the nanofluid is given as:

(ρβ)n f = (1 − φ)(ρβ)b f + φ(ρβ)p. (7)

The Maxwell–Garnett model and Maxwell model were used for the definition of the thermal
conductivity and electrical conductivity of the nanofluid as:

kn f = k f

[
(kp + 2k f )− 2φ(k f − kp)

(kp + 2k f ) + φ(k f − kp)

]
, σn f = σf

1 +
3
(
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− 1
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φ(
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+ 2
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−
(

σp
σf
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)

φ

 . (8)

The dynamic viscosity of the nanofluid is defined as [40]:

µn f = µb f (1 − φ)−0.25. (9)

Neither the viscosity nor the thermal conductivity of the nanofluid as described above include the
effects of Brownian motion. Thermophoresis and Brownian motion in nanofluid flow were considered
in many studies [41–43].

The following dimensionless parameters are used to convert the nondimensional form
of equations:
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Non-dimensional equations are written as follows:
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Non-dimensional boundary conditions as:

• At the bottom and top walls:
U = V = 0, ∂θ

∂Y = 0,
• At the right vertical wall:

U = V = 0, θ = 0,
• At the corrugated left wall:

U = V = 0, θ = 1.

Local and average Nusselt numbers are calculated as [39]:

Nus = −
kn f

k f

(
∂θ

∂n

)
n=0

, Num =
∫ 1

0
Nusds. (15)

3. Solver and Code Validation

The finite element method was used to obtain the solution of governing equations with boundary
conditions as described above. The weak form of the governing equations is obtained, and when the
approximated flow variables are substituted in the governing equations, residual R results, and the
weighted average of R will be forced to be zero:∫

Ω
WRdv = 0, (16)

where W is the weight function, which is chosen from the same set of functions as of the trial
functions. A system of nonlinear ordinary differential equations is achieved, which is solved with the
Newton–Raphson method. Grid independence tests were performed, and the grid was refined near
the walls to resolve the significant gradients in those locations. Table 2 shows the average Nusselt
number for various grid sizes (Gr = 106, Ha = 50, φ = 0.05, Da = 10−2). Figure 2 demonstrates the
grid distribution. The present solver is validated by using the results of Oztop and Abu-Nada [9] for
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cavity flow at Ra = 105 and the numerical results of Ahmed et al. [24] for corrugated channel flow at
Re = 500. The results in Figure 3 show sufficient accuracy of the current solver.

(a) full computational domain (b) part of the computational domain

Figure 2. Grid distribution.

Table 2. Grid independence test.

Grid Name Number of Elements Averaged Nusselt Number

G1 1136 9.232
G2 2796 9.983
G3 4544 10.483
G4 18,176 11.087
G5 52,624 11.184
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Figure 3. Code verification with the results of Oztop and Abu-Nada [9] (a,b) and Ahmed et al. [24] (c).
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4. Results and Discussion

The effects of varying the Grashof number on the variation of flow and thermal patterns are shown
in Figures 4 and 5 (Ha = 20, Da = 10−2, φ = 0.02). A single main recirculation cell is observed for all
values of Grashof numbers. When the Grashof number value is augmented, the flow strength increases.
At a low Grashof number, the isotherms are parallel to the vertical walls, indicating the characteristics
of the conduction-dominated regime. By increasing the Grashof number, the flow strength increases,
and temperature gradients near the hot and cold wall become significant. The effects of the corrugated
wall on the streamlines and isotherms are also shown in Figures 4 and 5. The global features of the
flow and thermal patterns are not disturbed, except in the vicinity of the left wall. The streamlines and
isotherms mimic the wall’s profile. The value of the maximum stream function increases with surface
corrugation. The variation of the local and averaged Nusselt numbers for various Grashof numbers
is shown in Figure 6 for flat and corrugated walls. As the Grashof number increases, heat transfer
is locally enhanced along the heated wall for all configurations. The effect of the frequency of the
triangular wave of the corrugated surface is also demonstrated in Figure 6. As is seen from the figure,
the imposed frequency of the triangular wave affects the variation of the local heat transfer for the
corrugated wall. As the frequency of the triangular wave increases, averaged heat transfer increases,
and this effect is significant at higher Grashof numbers. This is due to the variation of the thermal and
flow patterns adjacent to the boundary with respect to the change in the frequency. The increase in
frequency reduces the space for the circulation adjacent to the boundary of the heated wall. This result
is supported by Hasan et al. [25].

(a) Gr = 104 (b) Gr = 105 (c) Gr = 106

(d) Gr = 104 (e) Gr = 105 (f) Gr = 106

(g) Gr = 104 (h) Gr = 105 (i) Gr = 106

Figure 4. The effect of varying the Grashof number on the streamlines for flat and corrugated walls
(Ha = 20, Da = 10−2, φ = 0.02).
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(a) Gr = 104 (b) Gr = 105 (c) Gr = 106

(d) Gr = 104 (e) Gr = 105 (f) Gr = 106

(g) Gr = 104 (h) Gr = 105 (i) Gr = 106

Figure 5. The effect of varying the Grashof number on the isotherms for flat and corrugated walls
(Ha = 20, Da = 10−2, φ = 0.02).
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Figure 6. Local and averaged Nusselt number along the flat and corrugated walls for various Grashof
numbers (Ha = 20, Da = 10−2, φ = 0.02).



Entropy 2018, 20, 846 8 of 17

The influences of varying the Hartmann number on streamlines and isotherms (Gr = 5 × 104,
Da = 10−2, φ = 0.02) are demonstrated in Figures 7 and 8. The strength of convection decreases as
the Hartmann number increases for flat and corrugated wall configurations. When the value of the
Hartmann number rises, a less dense arrangement of isotherms is obtained along the corrugated wall.
The influence of the Hartmann number on the variation of the local and average Nusselt number is
shown in Figure 9. Nusselt numbers decrease as the value of the Hartman number rises, which is due
to the convective heat transfer suppression with a magnetic field, both for a flat wall and a corrugated
wall configuration. These results are supported by [13,14].

(a) Ha = 0 (b) Ha = 30 (c) Ha = 50

(d) Ha = 0 (e) Ha = 30 (f) Ha = 50

(g) Ha = 0 (h) Ha = 30 (i) Ha = 50

Figure 7. The effect of varying the Hartmann number on the streamlines for flat and corrugated walls
(Gr = 5 × 104, Da = 10−2, φ = 0.02).

(a) Ha = 0 (b) Ha = 30 (c) Ha = 50

Figure 8. Cont.
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(d) Ha = 0 (e) Ha = 30 (f) Ha = 50

(g) Ha = 0 (h) Ha = 30 (i) Ha = 50

Figure 8. The effect of varying the Hartmann number on the isotherms for flat and corrugated walls
(Gr = 5 × 104, Da = 10−2, φ = 0.02).
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Figure 9. Local and averaged Nusselt number along the flat and corrugated wall for various Hartmann
numbers (Gr = 5 × 104, Da = 10−2, φ = 0.02).

Figures 10 and 11 demonstrate the effects of varying the Darcy number on streamlines and
isotherms for the flat wall and corrugated wall cases (Gr = 104, Ha = 10, φ = 0.02). For low values
of the Darcy number, fluid motion is not signification, and this can contribute to the high resistance
of the medium. Convection becomes significant for higher values of the Darcy number with flat and
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corrugated wall configurations of the cavity. Conduction is dominant for low values of the Darcy
number, which is demonstrated in Figure 11, while the isotherms are distributed approximately
parallel to the vertical walls. The main cell is elongated horizontally as the Da number increases, as
shown in Figure 10. An increment in Da results in increased temperature gradients near the heated
wall, which can contribute to the enhanced permeability of the medium. In this case, the resistance
from the boundary friction has been reduced with increasing Da number. Local and averaged
heat transfer distributions for various Da numbers are shown in Figure 12. Local heat transfer is
augmented for higher values of the Darcy number when both flat and corrugated wall configurations
are considered. The effect of Da number on the average Nusselt number is less for the flat wall
and corrugated wall with a = H/4 and a = H/8 for a low Da number due to the dominance of
conduction. As the Da number increases, the effect of corrugation on the averaged heat transfer is
more pronounced. The effect of nanofluid on the averaged heat transfer is demonstrated in Figure 13
(Gr = 5 × 104, Ha = 20, Da = 10−2). Heat transfer enhancements of 34.4%, 30.7%, 30.4% and
33.5% are achieved for the nanofluid with a volume fraction of φ = 0.05 when it is compared to the
base fluid (φ = 0) for the flat wall and corrugated walls with a = H/4, a = H/8 and a = H/16,
respectively. The distribution of velocity and temperature along a horizontal plane located at y = 0.5H
are shown in Figure 14 (Gr = 105, Ha = 20, Da = 10−2, φ = 0.02) for flat and corrugated wall
configurations. These profiles are affected from the corrugation frequency in the vicinity of the heated
wall. Temperature increases with wall corrugation and its frequency. A shift and reduction in the peak
values of the velocity components are seen with wall corrugation.

(a) Da = 10−4 (b) Da = 10−3 (c) Da = 10−1

(d) Da = 10−4 (e) Da = 10−3 (f) Da = 10−1

(g) Da = 10−4 (h) Da = 10−3 (i) Da = 10−1

Figure 10. The effect of varying the Darcy number on the streamlines for flat and corrugated walls
(Gr = 104, Ha = 10, φ = 0.02).
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(a) Da = 10−4 (b) Da = 10−3 (c) Da = 10−1

(d) Da = 10−4 (e) Da = 10−3 (f) Da = 10−1

(g) Da = 10−4 (h) Da = 10−3 (i) Da = 10−1

Figure 11. The effect of varying the Darcy number on the isotherms for flat and corrugated walls
(Gr = 104, Ha = 10, φ = 0.02).
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Figure 12. Local and averaged Nusselt number along the flat and corrugated walls for various Darcy
numbers (Gr = 104, Ha = 10, φ = 0.02).
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Figure 13. Averaged Nusselt number along the flat and corrugated walls for various nanoparticle
volume fractions (Gr = 5 × 104, Ha = 20, Da = 10−2).
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Normalized total entropy generation (normalized by the total entropy generation value for the
first parameter) is shown in Figure 15 for various Darcy numbers, Hartmann numbers and nanoparticle
volume fractions for both a flat wall and a corrugated wall with the a = H/4 case. The total entropy
generation increases as the value of the Darcy number increases due to the fluid friction irreversibility.
When the value of the Hartmann number rises, the total entropy generation deteriorates, which is
due to the suppression of the convection with the magnetic field strength. An increment in the solid
volume fraction of nanoparticles resulted in the enhancement of the total entropy generation rate,
which is due to the rise of heat transfer and fluid friction irreversibility. The discrepancy between the
normalized entropy generation of the flat and corrugated wall cases increases as the values of the
Darcy and Hartmann numbers rise.

10
−4

10
−3

10
−2

10
−1

1

1.5

2

2.5

3

3.5

4

Da

S
*

 

 

flat
corrugated

(a)

0 5 10 15 20 25 30 35 40 45 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ha

S
*

 

 

flat
corrugated

(b)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

φ

S
*

 

 

flat
corrugated

(c)

Figure 15. The effects of varying the Darcy number (a) Hartmann number (b) nanoparticle volume
fraction (c) on the normalized total entropy generation within the cavity.
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5. Conclusions

A numerical study of MHD free convection in a triangular wave-shaped corrugated cavity filled
with a porous medium saturated with nanofluids was analyzed. The following conclusions can be
stated as:

• Increasing the Grashof number and Darcy number results in heat transfer enhancement while
keeping other parameters fixed.

• The imposed frequency of the triangular wave affects the variation of the local Nusselt number
for the corrugated wall. The velocity and temperature distributions are very sensitive to the
corrugation frequency near the heated wall.

• Increasing the corrugation frequency reduces the local and average Nusselt number.
• The effect of the frequency of the triangular wave on the average Nusselt number is significant at

higher values of the Grashof and Darcy numbers.
• The magnetic field reduced the convective heat transfer.
• Thirty-four-point-four percent of the average Nusselt number enhancement is obtained for the

nanofluid with a nanoparticle volume fraction of φ = 0.05 when it is compared to the base fluid
(φ = 0) for the flat wall.

• The normalized total entropy generation increases as the values of the Da number (due to the fluid
friction irreversibility) and φ increase and the Ha number decreases (suppression of convection).
The discrepancy between the normalized entropy generation for a flat and a corrugated wall is
more pronounced for the highest values of the Darcy and Hartmann numbers.

An extension of this study may be considered to include the influence of corrugation amplitude,
various corrugation types (rectangular, trapezoidal, sinusoidal, etc.), different nanofluid types and
transient flow effects.
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Abbreviations/Nomenclature

a length of triangular wave (m)
b height of triangular wave (m)
B0 magnetic field strength
Da Darcy number, κ

H2

Gr Grashof number, gβ f (Th−Tc H3

ν2
f

h local heat transfer coefficient (W/m2K)

Ha Hartmann number, B0H
√

σn f
ρn f ν f

k thermal conductivity (W/m·K)
H length of the enclosure (m)
n unit normal vector
Nu local Nusselt number
p pressure (Pa)
P non-dimensional pressure
Pr Prandtl number, ν f

α f

T temperature (K)
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u, v x-y velocity components (m/s)
U, V dimensionless velocity components
x, y Cartesian coordinates (m)
X, Y dimensionless coordinates

Greek characters:
α thermal diffusivity (m2/s)
β expansion coefficient (1/K)
φ nanoparticle volume fraction
θ non-dimensional temperature,

T−Tc
Th−Tc

ν kinematic viscosity (m2/s)
ρ density of the fluid (kg/m3)
σ electrical conductivity (S/m)

Subscripts:
c cold wall
m average
h hot wall
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