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INTRODUCTION: Compositionality, general-
ization, and learning from a few examples are
among the hallmarks of human intelligence.
CAPTCHAs(CompletelyAutomatedPublicTuring
test to tell Computers and Humans Apart), im-
ages used bywebsites to block automated inter-
actions, are examples of problems that are easy
forpeoplebutdifficult for computers.CAPTCHAs
add clutter and crowd letters together to cre-
ate a chicken-and-egg problem for algorithmic
classifiers—the classifiers work well for char-
acters that have been segmented out, but seg-
menting requires an understanding of the
characters, which may be rendered in a com-
binatorial number of ways. CAPTCHAs also
demonstrate human data efficiency: A recent
deep-learning approach for parsing one specific
CAPTCHA style required millions of labeled ex-
amples, whereas humans solve new styles with-
out explicit training.
By drawing inspiration from systems neuro-

science, we introduce recursive cortical network
(RCN), a probabilistic generative model for vi-
sion inwhichmessage-passing–based inference
handles recognition, segmentation, and reason-
ing in a unified manner. RCN learns with very

little training data and fundamentally breaks
the defense of modern text-based CAPTCHAs
by generatively segmenting characters. In addi-
tion, RCN outperforms deep neural networks
on a variety of benchmarks while being orders
of magnitude more data-efficient.

RATIONALE: Modern deep neural networks
resemble the feed-forward hierarchy of simple
and complex cells in the neocortex. Neuro-
science has postulated computational roles
for lateral and feedback connections, segre-
gated contour and surface representations, and
border-ownership coding observed in the vi-
sual cortex, yet these features are not commonly
used by deep neural nets. We hypothesized that
systematically incorporating these findings into
a newmodel could lead to higher data efficien-
cy and generalization. Structured probabilistic
models provide a natural framework for in-
corporating prior knowledge, and belief prop-
agation (BP) is an inference algorithm that can
match the cortical computational speed. The
representational choices in RCN were deter-
mined by investigating the computational un-
derpinnings of neuroscience data under the

constraint that accurate inference should be
possible using BP.

RESULTS: RCNwas effective in breaking awide
variety of CAPTCHAswith very little training data
and without using CAPTCHA-specific heuristics.
By comparison, a convolutional neural network
required a 50,000-fold larger training set and
was less robust to perturbations to the input.

Similar results are shown
onone-andfew-shotMNIST
(modifiedNationalInstitute
of Standards and Technol-
ogy handwritten digit data
set) classification, where
RCNwassignificantlymore

robust to clutter introduced during testing. As a
generativemodel, RCN outperformedneural net-
work models when tested on noisy and cluttered
examples and generated realistic samples from
one-shot training of handwritten characters.
RCN also proved to be effective at an occlusion
reasoning task that required identifying the
precise relationships between characters at mul-
tiple points of overlap. On a standard benchmark
for parsing text in natural scenes, RCN outper-
formed state-of-the-art deep-learningmethods
while requiring 300-fold less training data.

CONCLUSION: Our work demonstrates that
structuredprobabilisticmodels that incorporate
inductive biases fromneuroscience can lead to
robust, generalizable machine learningmodels
that learnwith highdata efficiency. In addition,
ourmodel’s effectiveness in breaking text-based
CAPTCHAswith very little trainingdata suggests
that websites should seek more robust mecha-
nisms for detecting automated interactions.▪
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Breaking CAPTCHAs
using a generative
vision model.Text-based
CAPTCHAs exploit the
data efficiency and
generative aspects of
human vision to create
a challenging task for
machines. By handling
recognition and segmen-
tation in a unified way,
our model fundamentally
breaks the defense of
text-based CAPTCHAs.
Shown are the parses by
our model for a variety
of CAPTCHAs.
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Learning from a few examples and generalizing to markedly different situations are
capabilities of human visual intelligence that are yet to be matched by leading
machine learning models. By drawing inspiration from systems neuroscience, we
introduce a probabilistic generative model for vision in which message-passing–based
inference handles recognition, segmentation, and reasoning in a unified way. The model
demonstrates excellent generalization and occlusion-reasoning capabilities and
outperforms deep neural networks on a challenging scene text recognition benchmark
while being 300-fold more data efficient. In addition, the model fundamentally breaks
the defense of modern text-based CAPTCHAs (Completely Automated Public Turing test
to tell Computers and Humans Apart) by generatively segmenting characters without
CAPTCHA-specific heuristics. Our model emphasizes aspects such as data efficiency and
compositionality that may be important in the path toward general artificial intelligence.

T
he ability to learn and generalize from a few
examples is a hallmark of human intelli-
gence (1). CAPTCHAs (Completely Auto-
mated Public Turing test to tell Computers
and Humans Apart), images used by web-

sites to block automated interactions, are exam-
ples of problems that are easy for humans but
difficult for computers. CAPTCHAs are hard for
algorithms because they add clutter and crowd
letters together to create a chicken-and-egg prob-
lem for character classifiers—the classifiers work

well for characters that have been segmented
out, but segmenting the individual characters
requires an understanding of the characters, each
of which might be rendered in a combinatorial
number of ways (2–5). A recent deep-learning ap-
proach for parsing one specific CAPTCHA style
required millions of labeled examples from it (6),
and earlier approaches mostly relied on hand-
crafted style-specific heuristics to segment out
the character (3, 7), whereas humans can solve
new styles without explicit training (Fig. 1A). The

wide variety of ways in which letterforms could
be rendered and still be understood by people is
illustrated in Fig. 1.
Building models that generalize well beyond

their training distribution is an important step
toward the flexibility Douglas Hofstadter envi-
sioned when he said that “for any program to
handle letterforms with the flexibility that hu-
man beings do, it would have to possess full-scale
artificial intelligence” (8). Many researchers have
conjectured that this could be achieved by incor-
porating the inductive biases of the visual cortex
(9–12) using the wealth of data generated by neu-
roscience and cognitive science research. In the
mammalian brain, feedback connections in the
visual cortex play roles in figure-ground segmen-
tation and in object-based top-down attention
that isolates the contours of an object even when
partially transparent objects occupy the same spa-
tial locations (13–16). Lateral connections in the
visual cortex are implicated in enforcing contour
continuity (17, 18). Contours and surfaces are rep-
resented using separatemechanisms that interact
(19–21), enabling the recognition and imagination
of objects with unusual appearance—for example,
a chair made of ice. The timing and topography
of cortical activations give clues about contour-
surface representations and inference algorithms
(22, 23). These insights based on cortical function
are yet to be incorporated into leading machine
learning models.
We introduce a hierarchical model called the

Recursive Cortical Network (RCN) that incor-
porates these neuroscience insights in a struc-
tured probabilistic generative model framework
(5, 24–27). In addition to developing RCN and its
learning and inference algorithms, we applied
themodel to a variety of visual cognition tasks that
required generalizing from one or a few training
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Fig. 1. Flexibility of letterform perception in humans. (A) Humans
are good at parsing unfamiliar CAPTCHAs. (B) The same character
shape can be rendered in a wide variety of appearances, and people
can detect the “A” in these images regardless. (C) Common sense

and context affect letterform perception: (i) m versus u and n. (ii) The
same line segments are interpreted as N or S depending on occluder
positions. (iii) Perception of the shapes aids the recognition of “b,i,s,o,n”
and “b,i,k,e.”C

R
E
D
IT
:
(B

IS
O
N

LO
G
O
)
S
E
A
M
U
S
LE

O
N
A
R
D

on M
ay 3, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


examples: parsing of CAPTCHAs, one-shot and few-
shot recognition and generation of handwritten
digits, occlusion reasoning, and scene text recog-
nition.We then compared its performance to state-
of-the-art models.

Recursive cortical network

RCN builds on existing compositional models
(24, 28–32) in important ways [section 6 of (33)].
Although grammar-based models (24) have the
advantage of being based on well-known ideas
from linguistics, they either limit interpretations
to single trees or are computationally infeasible
when using attributed relations (32). The seminal
work on AND-OR templates and tree-structured
compositional models (34) has the advantage of
simplified inference but is lacking in selectivity
owing to the absence of lateral constraints (35).
Models from another important class (25, 29) use
lateral constraints, but rather than gradually build-
ing invariance through a pooling structure (36),
they use parametric transformations for com-
plete scale, rotation, and translation invariance
at each level. Custom inference algorithms are
required, but those are not effective in propagat-
ing the effect of lateral constraints beyond local
interactions. The representation of contours and
surfaces in (37) does notmodel their interactions,
choosing instead to model these as independent
mechanisms. RCNs and composition machines
(CMs) (32) share the motivation of placing com-
positional model ideas in a graphical model for-
mulation. However, CM’s representational choice
of “composed distributions”—using a single layer
of random variables to collapse feature detection,
pooling, and lateral coordination—leads to an ex-
panded state space, which in turn constrains the
model to a greedy inference and parsing process.
In general, because of the varied and conflicting
representational choices, inference in composi-
tionalmodels has relied on custom-craftedmeth-
ods for differentmodel instantiations, including
solving stochastic partial differential equations
(30), sampling-based algorithms (24), and pruned
dynamic programming (DP) (29).
RCN integrates and builds upon various ideas

from compositional models—hierarchical com-
position, gradual building of invariances, lateral
connections for selectivity, contour-surface fac-
torization, and joint-explanation–based parsing—
into a structured probabilistic graphical model
such that Belief Propagation (38) can be used as
the primary approximate inference engine [section
6 of (33)]. Experimental neuroscience data pro-
vided important guidance on the representational
choices [section 7 of (33)], which were then con-
firmed to be beneficial using experimental studies.
We now discuss the representation of RCN and its
inference and learning algorithms. Mathematical
details are discussed in sections 2 to 5 of (33).

Representation

In RCN, objects are modeled as a combination
of contours and surfaces (Fig. 2A). Contours ap-
pear at the boundaries of surfaces, both at the
outline of objects and at the border between the
surfaces that compose the object. Surfaces are

modeled using a conditional random field (CRF),
which captures the smoothness of variations of
surface properties. Contours are modeled using
a compositional hierarchy of features (28, 39).
Factored representation of contours (shape)
and surfaces (appearance) enables the model to
recognize object shapes with markedly different
appearances without training exhaustively on
every possible shape and appearance combina-
tion. We now describe the shape and appearance
representations in detail.
Figure 2B shows two subnetworks (black and

blue) within a level of the RCN contour hierar-
chy. The filled and empty circular nodes in the
graph are binary random variables that corre-
spond to features and pools, respectively. Each
feature node encodes anAND relation of its child
pools, and each pool variable encodes the OR of
its child features, similar to AND-OR graphs (34).
Lateral constraints, represented as rectangular
“factor nodes,” coordinate the choices between
the pools they connect to. The two subnetworks,
which can correspond to two objects or object
parts, share lower-level features.
Figure 2C shows a three-level network that

represents the contours of a square. The features
at the lowest, intermediate, and top levels repre-
sent line segments, corners, and the entire square,

respectively. Each pool variable pools over differ-
entdeformations, small translations, scale changes,
etc., of a “centered” feature, thus introducing the
corresponding invariances. Without the lateral
connections between the pools (the gray squares
in Fig. 2C), generating from a feature node repre-
senting a corner can create misaligned line seg-
ments, as shown in Fig. 3A. Lateral connections
between the pools provide selectivity (35) by en-
suring that the choice of a feature in one pool
affects the choice of features in pools it is con-
nected to, creating samples where the contours
vary more smoothly. The flexibility of lateral con-
straints is controlled through perturb-factor, a
hyperparameter that is specified per level. Through
multiple layers of feature pooling, lateral connec-
tions, and compositions, a feature node at the top
level comes to represent an object that can be
recognized with some level of translation, scale,
and deformation invariance.
Multiple objects are represented in the same

shape hierarchy by sharing their parts (Fig. 2B).
Whenmultiple parents converge on a single child
feature (feature node “e” in Fig. 2B), this will be
active when any parent is active (OR gate in the
graphicalmodel), and the child feature is allowed
to be part of both parents if evidence allows, unlike
the exclusive sharing inAND-ORgraph grammars
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Fig. 2. Structure of the RCN. (A) A hierarchy generates the contours of an object, and a CRF
generates its surface appearance. (B) Two subnetworks at the same level of the contour
hierarchy keep separate lateral connections by making parent-specific copies of child features
and connecting them with parent-specific laterals; nodes within the green rectangle are copies
of the feature marked “e.” (C) A three-level RCN representing the contours of a square. Features
at level 2 represent the four corners, and each corner is represented as a conjunction of four
line-segment features. (D) Four-level network representing an “A.”
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(24). Even when two higher-level features share
some of the same lower-level features and pools,
the higher-level features’ lateral networks are
kept separate by making copies of the lower-
level feature for each specific higher-level feature
it participates in, as shown in Fig. 2B. Parent-
specific copies of lateral networks serve to achieve
higher-order interactions compared to pairwise
connections, similar to the state copying mech-
anism used in higher-order networks (40). This
was also found to be important for message-
passing to achieve accurate results and is remi-
niscent of techniques used in dual decomposition
(41). Hierarchy in the RCN network plays two
roles. First, it enables the representation of de-
formations gradually through multiple levels,
spreading the amount of variation across layers
(Fig. 3B). Second, hierarchy provides efficiency
through the sharing of features between different
objects (42). Both of these result in efficient learn-
ing and inference through shared computations.
Surfaces are modeled using a pairwise CRF

(Fig. 3C). Local surface patch properties, such as
color, texture, or surface normal, are represented
by categorical variables, whose smoothness of

variation is enforced by the lateral factors (gray
squares in Fig. 2). Contours generated by the con-
tour hierarchy interact with the surface CRF in
a specific way: Contours signal the breaks in con-
tinuity of surfaces that occur both within an ob-
ject and between the object and its background,
a representational choice inspired by neurobiol-
ogy (19). Figure 3 (B and D) shows samples gen-
erated from an RCN.

Inference

To parse a scene, RCN maintains hierarchical
graphs for multiple object instances at multiple
locations tiling the scene. The parse of a scene
can be obtained via maximum a posteriori (MAP)
inference on this complex graph, which recovers
the best joint configuration, including object iden-
tities and their segmentations [section 4 of (33)].
Although the RCN network is extremely loopy, we
found that message-passing (38), with a sched-
ule inspired by the timing of activations in the
visual cortex (9, 20), resulted in fast and accurate
inference. An input image is first passed through
PreProc, which converts pixel values to edge like-
lihoods using a bank of Gabor-like filters. Partial

assignments that correspond to object hypothe-
ses are then identified using a forward and back-
ward message-passing in the network, and a
complete approximate MAP solution is found by
solving the scene-parsing problem on the graph
of object hypotheses (Fig. 4). The forward pass
gives an upper bound on the log-probability of
the nodes at the top level. The backward pass
visits the high-scoring forward-pass hypotheses
one by one, in a manner similar to a top-down
attention process (43, 44), running a conditional
inference that assumes that all other nodes are
off to find an approximate MAP configuration
for the object (Fig. 4A). The backward pass can
reject many object hypotheses that were falsely
identified in the forward pass.
The global MAP configuration is a subset of

all the object hypotheses generated from the for-
ward and backward passes. The number of ob-
jects in the scene is inferred as part of this MAP
solution. In addition to searching over an expo-
nentially large number of subsets, finding the
global MAP requires reasoning about high-order
interactions between different hypotheses. We
developed an approximateDPmethod that solves
this in linear time. The DP algorithm exploits
the fact that each object hypothesis occupies a
contiguous region that can be represented as a
two-dimensional (2D) mask on the input image.
By considering combinations of object hypotheses,
that is, parses, that produce spatially contiguous
masks when their 2Dmasks overlap, we create a
topological ordering of the parses by sorting them
according to masks that are contained in other
masks. This results in a recursive computation of
the scorewhere only a linear number of candidate
parses need to be evaluated in searching for the
best parse. See section 4.7 of (33) formore details.

Learning

Features and lateral connections up to the pen-
ultimate level of the network are trained un-
supervised using a generic 3D object data set
that is task-agnostic and rendered only as con-
tour images. The resulting learned features vary
from simple line segments at the lower levels to
curves and corners at the higher levels.
Consider a partially learnedmodel, where new

features are being learned at level k, where fea-
tures up to level k − 1 have already been learned
and finalized, and a few features have been
learned at level k (Fig. 4B). When a training
image is presented, the first step is to find a
MAP explanation for the contours of that image
using the existing features at level k. This is
identical to the inference problem described ear-
lier of finding the MAP solution for a scene. The
contours that remain unexplained are parsed
using features at level k − 1, and new features are
proposed from their contour-continuous conjunc-
tions. Repeating this process for all the train-
ing images accumulates counts on the usage of
different features at level k, and the final fea-
tures for this level are selected by optimizing an
objective function that balances compression and
reconstruction error (31). The same process is
repeated level by level [section 5.1 of (33)].
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Fig. 3. Samples from RCN. (A) Samples from a corner feature with and without lateral connections.
(B) Samples from character “A” for different deformability settings, determined by pooling and
lateral perturb-factors, in a three-level hierarchy similar to Fig. 2D, where the lowest-level features
are edges. Column 2 shows a balanced setting where deformability is distributed between the levels
to produce local deformations and global translations. The other columns show some extreme
configurations. (C) Contour-to-surface CRF interaction for a cube. Green factors, foreground-to-
background edges; blue, within-object edges. (D) Different surface-appearance samples for the
cubical shape in (C) [see section 3 of (33) for CRF parameters].
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The lateral graph structure, which specifies
the connectivity between pool pairs, is learned
from the contour connectivity of input images.
At the first pooling level, pools with features that
are adjacent in the input contours are connected
with each other. This process is repeated recur-
sively in the hierarchy where lateral connections
at the higher levels are inferred from adjacency
in the lower-level graphs.
Features at the topmost level represent whole

objects. These are obtained by finding the MAP
configuration of a new object up to the penulti-
mate level of the network, connecting pool pairs
at the penultimate level according to the contour
continuity of the input object, and then storing
the conjunction of activations at the penultimate
level as a feature in the topmost level. See section
5 of (33) for details.
Once the set of lower-level features and lateral

connections are trained, they can be used for dif-
ferent domains by tuning a few hyperparameters
[section 8.3 of (33)]. The filter scales in the PreProc
are chosen depending on the image and object
size, and the flexibility of the lateral connections
is set to match the distortions in the data. In ad-
dition, the features at the lowest level have a
“smoothing parameter” that sets an estimate on
the probability that an edge pixel is ON owing to
noise. This parameter can be set according to the
noise levels in a domain.

Results

A CAPTCHA is considered broken if it can be
automatically solved at a rate above 1% (3). RCN
was effective in breaking a wide variety of text-
based CAPTCHAs with very little training data
and without using CAPTCHA-specific heuristics
(Fig. 5). It was able to solve reCAPTCHAs at an
accuracy rate of 66.6% (character level accuracy
of 94.3%), BotDetect at 64.4%, Yahoo at 57.4%,
and PayPal at 57.1%, significantly above the 1%
rate at which CAPTCHAs are considered inef-
fective (3). The only differences in architecture
across different CAPTCHA tasks are the sets of
clean fonts used for training and the different
choices of a few hyperparameters, which depend
on the size of the CAPTCHA image and the
amount of clutter and deformations. These pa-
rameters are straightforward to set by hand or
can be tuned automatically via cross-validation
on an annotated CAPTCHA set. Noisy, cluttered,
and deformed examples from the CAPTCHAs
were not used for training, yet RCN was effec-
tive in generalizing to those variations.
For reCAPTCHA parsing at 66.6% accuracy,

RCN required only five clean training examples
per character. The model uses three parameters
that affect how single characters are combined
together to read out a string of characters, and
these parameters were both independent of the
length of the CAPTCHAs and were robust to the
spacing of the characters [Fig. 5B and section 8.4
of (33)]. In addition to obtaining a transcription
of the CAPTCHA, the model also provides a highly
accurate segmentation into individual charac-
ters, as shown in Fig. 5A. To compare, human
accuracy on reCAPTCHA is 87.4%. Because many

input images have multiple valid interpretations
(Fig. 5A), parses from two humans agree only 81%
of the time.
In comparison to RCNs, a state-of-the-art con-

volutional neural network (CNN) (6) required a
50,000-fold larger training set of actual CAPTCHA
strings, and it was less robust to perturbations
to the input. Because the CNN required a large
number of labeled examples, this control study
used a CAPTCHA generator that we created to
emulate the appearance of reCAPTCHAs [sec-
tion 8.4.3 of (33)]. The approach used a bank of
position-specific CNNs, each trained to discrimi-
nate the letter at a particular position. Training
the CNNs to achieve a word accuracy rate of 89.9%
required more than 2.3 million unique training
images, created using translated crops for data
augmentation, from 79,000 distinct CAPTCHA
words. The resulting network fails on string
lengths not present during training, and more
importantly, the recognition accuracy of the
network deteriorates rapidly with even minor

perturbations to the spacing of characters that
are barely perceptible to humans—15% more
spacing reduced accuracy to 38.4%, and 25%
more spacing reduced accuracy to just 7%. This
suggests that the deep-learning method learned
to exploit the specifics of a particular CAPTCHA,
rather than learning models of characters, which
are then used for parsing the scene. For RCN,
increasing the spacing of the characters results
in an improvement in the recognition accuracy
(Fig. 5B).
The wide variety of character appearances in

BotDetect (Fig. 5C) demonstrates why the fac-
torization of contours and surfaces is important:
Models without this factorization could latch
on to the specific appearance details of a font,
thereby limiting their generalization. The RCN
results are based on testing on 10 different styles
of CAPTCHAs from BotDetect, all parsed on the
basis of a single network trained on 24 training
examples per character and using the same
parsing parameters across all styles. Although
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Fig. 4. Inference and learning. (A) (i) Forward pass, including lateral propagation, produces
hypotheses about the multiple letters present in the input image. PreProc is a bank of Gabor-like
filters that convert from pixels to edge likelihoods [section 4.2 of (33)]. (ii) Backward pass and lateral
propagation creates the segmentation mask for a selected forward-pass hypothesis, here the letter
“A” [section 4.4 of (33)]. (iii) A false hypothesis “V” is hallucinated at the intersection of “A” and “K”;
false hypotheses are resolved via parsing [section 4.7 of (33)]. (iv) Multiple hypotheses can be
activated to produce a joint explanation that involves explaining away and occlusion reasoning.
(B) Learning features at the second feature level. Colored circles represent feature activations.
The dotted circle is a proposed feature [see text and section 5 of (33)]. (C) Learning of laterals
from contour adjacency (see text).
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BotDetect CAPTCHAs can be parsed with contour
information alone, using the appearance infor-
mation boosted the accuracy from 61.8 to 64.4%,
using the same appearance model across all data
sets. See section 8.4.6 of (33) for more details.
RCN outperformed other models on one-shot

and few-shot classification tasks on the standard
MNIST (modifiedNational Institute of Standards
and Technology handwritten digit data set) [sec-
tion 8.7 of (33)]. We compared RCN’s classification
performance on MNIST as we varied the number
of training examples from 1 to 100 per category.
CNN comparisons were made with two state-of-
the art models, a LeNet-5 (45) and the VGG-fc6
CNN (46), with its levels pretrained for ImageNet
(47) classification using millions of images. The
fully connected layer fc6 of VGG-CNNwas chosen
for comparison because it gave the best results
for this task compared to other pretrained levels
of theVGG-CNNand compared toother pretrained
CNNs that used the same data set and edge pre-
processing as RCN [section 5.1 of (33)]. In ad-
dition, we compared against the compositional
patch model (CPM) (48) that recently reported
state-of-the-art performance on this task. RCN
outperformed the CNNs and the CPM (Fig. 6A).
The one-shot recognition performance of RCN
was 76.6% versus 68.9% for CPM and 54.2% for
VGG-fc6. RCN was also robust to different forms

of clutter that were introduced during testing,
without having to expose the network to those
transformations during training. In comparison,
such out-of-sample test examples had a large det-
rimental effect on the generalization perform-
ance of CNNs (Fig. 6B). To isolate the contributions
of lateral connections, forward pass, and back-
ward pass to RCN’s accuracy, we conducted lesion
studies that selectively turned off these mecha-
nisms. The results, summarized in Fig. 6C, show
that all thesemechanisms contribute significantly
toward the performance of RCNs. RCN networks
with two levels of feature detection and pooling
were sufficient to obtain the best accuracy per-
formance on character parsing tasks. The effect of
increasing the number of levels in the hierarchy
is to reduce the inference time as detailed in
section 8.11 of (33).
As a generative model, RCN outperformed

variational autoencoders (VAEs) (49) and deep
recurrent attentive writer (DRAW) (50) on re-
constructing corrupted MNIST images (Fig. 7, A
and B). DRAW’s advantage over RCN for the
clean test set is not surprising because DRAW
is learning an overly flexible model that almost
copies the input image in the reconstruction,
which hurts its performance on more cluttered
data sets [section 8.9 of (33)]. On the Omniglot
data (1), examples generated fromRCNafter one-

shot training showed significant variations, while
still being identifiable as the original category
[Fig. 7D and section 8.6 of (33)].
To test occlusion reasoning (51–53), we created

a variant of the MNIST data set by adding a rec-
tangle to each validation/test image such that
some parts of the digit were occluded by the
rectangle and some parts of the rectangle were
occluded by the digit [Fig. 7C and section 8.8 of
(33)]. Occlusion relationships in these images can-
not bededuced as a simple layering of one object in
front of the other. Classification on this data set is
challenging because many parts of the digit are
occluded by the rectangle, and because the rect-
angle acts as clutter. If the rectangle is detected
and segmented out, its effect on the evidence for
a particular digit can be explained away using
the RCN generative model, thereby improving
the accuracy of classification and segmentation.
RCN was tested for classification accuracy and
for occlusion reasoning on this challenging data
set. Classification accuracy without explaining
away was 47.0%. Explaining away the rectangle
boosts the classification accuracy to 80.7%. In
addition, RCN was used to parse the scene by
reasoning about the occlusion relation between
the rectangle and the digit. The model was suc-
cessful at predicting the precise occlusion relations
of the test image as shown in Fig. 7C, obtaining a

George et al., Science 358, eaag2612 (2017) 8 December 2017 5 of 9

Fig. 5. Parsing
CAPTCHAs with RCN.
(A) Representative
reCAPTCHA parses
showing top two solutions,
their segmentations,
and labels by two
different Amazon
Mechanical Turk
workers. (B) Word
accuracy rates of RCN
and CNN on the control
CAPTCHA data set.
CNN is brittle and RCN is
robust when character
spacing is changed.
(C) Accuracies for dif-
ferent CAPTCHA styles.
(D) Representative
BotDetect parses
and segmentations
(indicated by the
different colors).
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mean intersection over union of 0.353 measured
over the occluded regions.
Last, RCN was tested on the data set from the

2013 International Conference onDocument Anal-
ysis and Recognition, known as ICDAR-13 (54),
a benchmark for text recognition in real-world
images (Fig. 7E). For this test, we enhanced the
parsing algorithm to include previous knowledge
about n-gram and word statistics, and about geo-
metric priors related to the layout of letters in a
scene, which includes spacing, relative sizes, and
appearance consistency [section 8.5 of (33)]. We
compared our result against top participants of
the ICDAR competition and against a recent deep
learning approach (55) (Table 1). The RCN model
outperformed the top contender, PhotoOCR, by
1.9%, despite PhotoOCR using 7.9 million training
images, whereas RCN used 1406 training images
selected usingmodel-based clustering from 25,584
font images. RCN achieved better accuracy on this
taskwhile being 300 timesmore data efficient, in
addition to providing a detailed segmentation of
the characters (Fig. 7E) that the competingmeth-
ods do not provide.

Discussion

Segmentation resistance, the primary defense
of text-based CAPTCHAs, has been a general
principle that enabled their automated gener-
ation (2, 3). Although specific CAPTCHAs have
been broken before using style-specific segmen-
tation heuristics (3, 7), those attacks could be
foiled easily by minor alterations to CAPTCHAs.
RCN breaks the segmentation defense in a fun-
damental way and with very little training data,
which suggests that websites should move to
more robust mechanisms for blocking bots.
Compositional models have been successfully

used in the past for generic object recognition
and scene parsing, and our preliminary experi-
ments [section 8.12 of (33)] indicate that RCN could
be applicable in those domains as well (Fig. 8).
The RCN formulation opens up compositional
models to a wider array of advanced inference
and learning algorithms developed in graphical
models, potentially leading to improvements that
build on their previous successes in real-world
scene parsing (56, 57). Despite the advantage of
being a generative model, RCN needs several
improvements to achieve superior performance
on ImageNet-scale (47) data sets. Flexible merg-
ing of multiple instances, the use of surface ap-
pearance at all levels of the hierarchy during
forward and backward inference, more sophis-
ticated pooling structures that learn to pool over
3D transformations, and generative modeling of
scene context and background are problems that
need to be investigated and integrated with RCN
[section 8.13 of (33)].
The high data efficiency of RCN, compared to

whole-imagemodels, such as CNNs and VAEs, de-
rives from the fact that RCN encodes strong as-
sumptions in its structure. Recent neural network
models incorporate ideas of compositionality using
a spatial attention window (58), but their current
instantiations need good separation between the
objects in an uncluttered setting because each at-

tention window is modeled using a whole-image
VAE. Incorporation of RCN’s object- and part-
based compositionality into neural networkmodels
would be an interesting research direction. Un-
like neural networks, the current version of RCN
learning algorithms need clean training data, a
drawback we intend to address using gradient-
based learning as well as message-passing–based
approaches (59).
CombiningRCNwith Bayesian program learn-

ing (BPL) (1) is another avenue for future inves-
tigations. BPL has the advantage of precisely
modeling the sequential causalmechanisms (for
example, the stroke generation in the Omniglot

data set), but its inference depends on the con-
tours being separated from the background—
somethingRCNcaneasily provide.More generally,
BPL- and RCN-like graphical models could be
combined to obtain the expressive power and
efficient inference required tomodel the parallel
and sequential processes (60) involved in percep-
tion and cognition.
Of course, Douglas Hofstadter’s challenge—

understanding letterforms with the same effi-
ciency and flexibility of humans—still stands as
a grand goal for artificial intelligence. People use
a lot more commonsense knowledge, in context-
sensitive and dynamic ways, when they identify
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Fig. 6. MNIST classification results for training with a few examples. (A) MNIST classification
accuracy for RCN, CNN, and CPM. (B) Classification accuracy on corrupted MNIST tests. Legends
show the total number of training examples. (C) MNIST classification accuracy for different
RCN configurations.

Table 1. Accuracy and number of training images for different methods on the ICDAR-13 robust
reading data set.

Method Accuracy Total no. of training images

PLT (54) 64.6% Unknown
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ...

NESP (54) 63.7% Unknown
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ...

PicRead (54) 63.1% Unknown
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ...

Deep Structured Output Learning (55) 81.8% 8,000,000
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ...

PhotoOCR (54) 84.3% 7,900,000
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ...

RCN 86.2% 26,214 (reduced to 1406)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ...
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letterforms (Fig. 1C, iii). Our work suggests that
incorporating inductive biases from systems
neuroscience can lead to robust, generalizable
machine learning models that demonstrate high
data efficiency. We hope that this work inspires
improved models of cortical circuits (61, 62) and
investigations that combine the power of neural
networks and structured probabilistic models
toward general artificial intelligence systems.

Methods summary

For reCAPTCHAexperiments,wedownloaded5500
reCAPTCHA images fromgoogle.comreCAPTCHA
page, of which 500were used as validation set for
parameter tuning, and accuracy numbers are re-
ported on the remaining 5000. The images were
scaled up by a factor of 2. A similar-looking font
to those used in reCAPTCHA, Georgia, was iden-
tified by visual comparison from the fonts avail-
able on the local system. RCN was trained on a

few rotations of the lowercase and uppercase
characters from this font.Hyperparameters were
optimized using the validation set. Human accu-
racy on the reCAPTCHA data set was estimated
usingAmazonMechanical Turk (AMT)U.S.-based
workers.
Emulated reCAPTCHAdata sets, used to train

the neural network for control experiments, were
created using ImageMagick to produce distor-
tions that are qualitatively similar to the origi-
nal reCAPTCHA. The emulated data generator is
used as an unlimited source to generate random
batches for training the neural network. Neural
network optimization was run for 80 epochs,
where data are permuted at the start of every
epoch; data were also augmented by random
translations of up to 5 pixels in each cardinal di-
rection per epoch.
Similar methods were used for BotDetect,

PayPal, and Yahoo CAPTCHAs. For BotDetect,

we downloaded a data set of 50 to 100 images
per CAPTCHA style for determining the pars-
ing parameters and training setup, and another
100 images as a testing data set on which the
network is not tuned. As training images for the
system, we selected a series of fonts and scales
from those available on the system by visual-
ly comparing a few examples of the BotDetect
CAPTCHAs. The BotDetect test images were
rescaled by a factor of 1.45. Parsing parameters
were optimized using the validation set, and the
transferability of the parsing parameters were
tested by adapting the parameters for each style
separately and then testing those parameters
on the other styles.
For training RCN to parse ICDAR, we obtained

492 fonts from Google Fonts, which resulted
in 25,584-character training images. From this
we selected a set of training images using an
automated greedy font selection approach. We
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Fig. 7. Generation,
occlusion reasoning,
and scene-text parsing
with RCN. Examples
of reconstructions
(A) and reconstruction
error (B) from RCN, VAE,
and DRAW on corrupted
MNIST. Legends show
the number of training
examples. (C) Occlusion
reasoning. The third
column shows the edges
remaining after RCN
explains away the edges
of the first detected
object. Ground-truth
masks reflect the occlu-
sion relationships
between the square and
the digit. The portions
of the digit that are in
front of the square are
colored brown and the
portions that are behind
the square are colored
orange. The last column
shows the predicted
occlusion mask. (D) One-
shot generation from
Omniglot. In each col-
umn, row 1 shows
the training example
and the remaining rows
show generated
samples. (E) Examples
of ICDAR images suc-
cessfully parsed by
RCN.The yellow outlines
show segmentations.
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rendered binary images for all fonts and then used
the resulting images of the same letter to train an
RCN. This RCN is then used to recognize the exact
images it was trained on, providing a compatibil-
ity score (between 0.0 and 1.0) for all pairs of fonts
of the same letter. Finally, using a threshold (0.8)
as the stopping criterion, we greedily select the
most representative fonts until 90% of all fonts
are represented,which resulted in 776unique train-
ing images. The parser is trained using 630word
images and the character n-grams are trained
using words from the Wikipedia.
RCN classification experiments on theMNIST

data set are done by up-sampling the images by a
factor of 4. For each training setting, two pooling
hyperparameters of themodelwere adaptedusing
an independent validation set of rotated MNIST
digits. Several ways of pretraining the CNN are
explored as part of the baselines. To understand
the performance of the networks on noisyMNIST
data, we created six variants of noise, each one
with three levels of severity. For occlusion reason-
ing, the RCN networkwas trained with 11 catego-
ries: tenMNISTdigit categorieswith 20 examples
for category and the rectangular ring category
with one example. Reconstruction experiments
on the MNIST data set used networks that were
trained only on cleanMNIST images which were
then tested for mean squared reconstruction
error on six different noise variants, each with
three levels of severity. Full methods are avail-
able in the supplementary materials.
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Fig. 8. Application of RCN to parsing scenes with objects. Shown are the detections and instance
segmentations obtained when RCN was applied to a scene-parsing task with multiple real-world
objects in cluttered scenes on random backgrounds. Our experiments suggest that RCN could be
generalized beyond text parsing [see section 8.12 of (33) and Discussion].
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services have done, may be a good idea.
comparatively little training data. The results suggest that moving away from text-based CAPTCHAs, as some online
developed a hierarchical model for computer vision that was able to solve CAPTCHAs with a high accuracy rate using 

et al.against a busy background. This test is used because computers find it tricky, but (most) humans do not. George 
CAPTCHA, where would-be users are asked to decipher letters that may be distorted, partially obscured, or shown
account, voting in an online poll, or even downloading a scientific paper. One of the most popular tests is text-based 

Proving that we are human is now part of many tasks that we do on the internet, such as creating an email
Computer or human?
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