
Architectural Synthesis
with Interconnection Cost Control

JEGO Christophe, CASSEAU Emmanuel & MARTlN Eric

LEST ER Lahoratory, UBS Unh'ersity, France
Tel: (+33) 2.97.87.45.65 Fax: (+33) 2.97.87.45.00
E-mail: {First-name.SlmzumellZi;univ-llhs.frhllp:/llesler.zmiv-u bsj;': 8080/

Abstract:

Keywords:

Architectural synthesis tools map algorithms to architectures under various
constraints and quickly providc estimations of area and performance.
However. these tools do not take the intcrconnection cost into account whereas
it bccomes predominant with the technology dccrease and the application
complexity incrcasc. A way to control costly interconnections during the
architcctural proccss is prcscnted in this paper.

Architcctural synthesis, digital ASIC dcsign, sub-micron tcchnologies,
interconncction cost

INTRODUCTION

Recent advances in VLSI technology lead to new design methodologies
like architectural synthesis, so called behavioral synthesis. Architectural
synthesis enables a significant productivity increase by raising the
abstraction level of digital designs. This process, which explores the space of
possible designs, reaches the "best" architectural solution satisfying a set of
constraints such as propagation time, area or power dissipation. However,

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
L. M. Silveira et al. (eds.), VLSI: Systems on a Chip

10.1007/978-0-387-35498-9_57

http://dx.doi.org/10.1007/978-0-387-35498-9_57

510 JEGO Christoplze. CASSEAU Emmal/uel & MARTlN Eric

both technology evolution and application complexity require models to be
modified and algorithms that are used during the architectural synthesis
process to be adapted. Actually, from the one hand, cost estimation models
do not take into account the interconnections that are typically numerous
with complex applications. On the other hand, interconnections have become
cost effective and critical with deep sub-micron designs. In order to insure
perfonnance and reliability of the provided designs, the architectural
synthesis flow has to be adapted.

This paper is structured in the following way: section I brietly presents
the architectural synthesis flow and the GAUT behavioral synthesis too1.
Section 2 introduces the interconnection cost problem with VLSI designs
and high-level synthesis processes. Previous works about the interconnection
cost problem in architectural synthesis tools are presented in section 3.1 and
a way to reduce this cost is finally proposed in section 3.2.

1. ARCHITECTURAL SYNTHESIS OVERVIEW

Owing to recent advances in semiconductor technology, application
complexity increase and time-to-market constraint, new design
methodologies have to be developed. Architectural synthesis promises a
significant productivity increase by raising the abstraction level of digital
design. Basically, this process maps a behavioral description of an
application into a register transfer (RT) level implementation. Since this
process quickly provides area and perfonnance estimations, it enables a
more effident exploration ofthe design space to be done.

1.1 Behavioral synthesis flow

From a behavioral description, an architectural synthesis tool generates
an architecture of RT components such as arithmetic operators, registers,
interconnection operators (multiplexors, demultiplexors and tristates) and
memories, based on a target structural model (register, multiplexor or bus
based architecture) [1]. The characteristics of the components (area,
propagation time, power dissipation ...) are initially given in a library.

Five steps/algorithms are involved during the architectural synthesis
process: compilation, allocation, scheduling, binding, and reSOllrces
optimisation [1,2]. Initially, a compilation step transfonns the behavioral
description into a control and/or a data flow graph representation. The
allocation task detennines the arithmetic operators to be used and their
number, whereas the scheduling process assigns the flow graph operations to

Architectural Synthesis with Interconnecfion Cost Confrol 511

time intervals under a real time constraint. These two tasks are closely
linked. If scheduling is performed before allocation, it imposes additional
constraints on the operations with respect to allocation. Similarly, if
allocation is performed before scheduling, it restriets the scheduling. That is
the reason why it is difficult to characterise the quality of a given scheduling
without considering the allocation step. Finally, binding maps variables and
operations of the scheduled flow graph into the selected components. After
the binding of operations to arithmetic operators and variables to storage
components, additional algorithms are used tor register sharing.

1.2 A behavioral synthesis tool : GAUT

The behavioral synthesis tool we use for this work is called GAUT. This
tool has been developed by two French university laboratories: Lester
(University of South Brittany, France) and Lasti (University of Rennes,
France). GAUT is a pipeline architectural synthesis tool, which is dedicated
to signal and image processing applications under real time execution
constraints. From one behavioral specification, one mapping technology and
one real time constraint, an optimised architecture is synthesised [3,4],

The generic architecture model is composed of tour functional units: the
processing unit, the control unit, the memory unit and the communication
unit. The specification is written in VHDL, at a behavioral level without any
architectural directive. After an algorithm compilation, the tool synthesises a
data flow graph according to its generic model of architecture
(register/multiplexor based architecture) and according to a library that
contains the characteristics of components that come from previous
logic/physical syntheses. GAUT starts the process with the processing unit
synthesis because this unit undergoes the most important constraints for a
real time application. Then the memory unit and the communication unit are
generated. The control unit is described in order to be synthesised by a finite
state machine design tool.

2. INTERCONNECTION COST PROBLEM

With the advancement of the VLSI circuit technology, a rapid scaling of
the feature size has been performed. The minimum dimension of a transistor
decreased from 2 fJ.m in 1985 to 0.25 fJ.m in 1999. According to the National
Technology Roadmap for Semiconducteurs (NTRS) [5], it will further
decrease at the rate of 0.7x per generation (consistent with Moore's Law) to
reach 0.07 fJ.m by 2010. Table 1 shows the evolution of the design
integration features in CMOS technology since 1995 and gives the
previsions until 2010.

512 JEGO Christophe. CASSEAU Emmanuel & MARTlN Eric

1995 1998 2001 2004 2007 2010
ütm) 0.35 0.25 0.18 0.13 0.1 0.07

supply voltage_(VJ 3.3 2.5 1.8 1.5 1.2 1
transistors per chip (M) 10 20 50 110 260 620

metal layers 4-5 5 5-6 6 7 7-8
ASIC area (mm2) 450 660 750 900 1100 1400
frequency (Mhz) 300 450 600 800 1000 1100

Table 1: Evolution ofthe design integration features in CMOS technology.

Such scaling implies that the circuit performance will be increasingly
determined by the interconnection performance : the wiring delay percentage
relative to the cycle time actually becomes more important than the operator
propagation time percentage [6,7]. For instance, interconnection contributes
50 percent of total delay in 0.35).I.m and is expected to contribute up to 70
percent in 0.25).I.m. Whereas this interconnection cost was not of great
importance with technologies above 0.7).I.m, interconnection design will
play the most critical role in achieving of chips with sub-micron
technologies.

New applications like multimedia or advance mobile communication
systems require complex real time algorithm implementation under
constraints such as area and/or power dissipation. Since behavioral synthesis
tools map algorithms to architectures and provide fast estimations of area
and propagation time, many different architectures can be rapidly explored
according to the specified constraints. One of the high-level synthesis
characteristics is an "optimal" reusing (sharing) of the operators and the
registers. This reusing is performed with interconnection operators
(multiplexors, demultiplexors and tristates) and involves interconnection
cost (path delay and wiring area). However, the different steps of the
synthesis process do not take into account the wiring area and unfortunately
the path delay which are difficult to predict. Moreover, these steps are
realised on the whole architecture without placement information, which
leads to tremendous different wiring lengths when the synthesis of complex
applications is concemed.

For instance, the architectural synthesis ofthe Viterbi aIgorithm, which is
a typically complex application unlike usuaI synthesis examples like FIR
filters etc., has been performed and logic and physical syntheses have been
realised afterwards [8]. This work highlighted the problem of
interconnection cost (wiring area and path delays) : a great difference may
occur between the estimated characteristics of the architectural synthesis and

Architectllral Synthesis with Interconnecfion Cosf Confrol 513

the placed and routed architecture if interconnection cost (wiring) is not
efficiently taken into account. In fact, the more complex the architecture is
the higher estimation difference.

3. INTERCONNECTION COST CONTROL
APPROACH

Since decisions made at the behavioral level may have a pronounced
impact on the final design, estimations playacentral role in guiding the
process to optimal or near-optimal solutions. Typically, there are three major
estimations used during the high-level synthesis flow: area, propagation time
and power dissipation. These measures can be used at different levels of the
process (tor instance, they are used to drive the selection of the target
architecture, to choose the library type, to select a particular component ...).
Since all synthesis decisions depend on these estimations, their accuracy is
essential for the generation of high-quality architectures.

Area and timing interconnection costs are known to be difficult to be
accurately estimated especially when architecture becomes complex.
However, even more than for a logic synthesis, routing performance may be
critical for an architectural synthesis. Previous works about the
interconnection cost problem in architectural synthesis tools are presented in
section 3.1 and a way to control this cost is detailed in section 3.2.

3.1 Previous works

These last years, the interconnection cost problem at the architectural
level was the subject of many publications [9-12]. These works are
characterised by the techniques used to estimate the interconnection cost
(wiring area and/or delay), the methods used to take into account these
estimations at a behaviorallevel and the structural model used.

In [9], an initial solution is generated by partitioning the operations in the
design to reduce the interconnection cost. Then a performance driven
floorplanning is realised to provide an estimation of the interconnection cost.
This estimation is then used for the scheduling of the operations. Afterwards,
the solution is optimised by an iterative process that uses design
transformations.

Xu [10] detailed a high-level synthesis flow which estimates the layout
features with a specific estimation tool before performing the scheduling­
binding task. The layout information is then used to guide the scheduling­
binding task. The final result is evaluated without actually going through the

514 JEGO Christophe. CASSEA U Emmlil/uel & MARTlN Eric

time conswning phase of placement and routing. When time constraints are
met, a structural RTL netlist and it is corresponding physical characteristics
are generated.

The estimation of the interconnection length at the architectural level is
one of the critical points. Mecha [11] presents a method that takes into
account the interconnection wires during the behavioral synthesis without
requiring floorplanning to be perfonned. It is an empirical method which
fonnulates the interconnection length from a study of the routing rules
features of Cadence CAD tools. Then, this length enables the
interconnection delay to be estimated. In [12], the algorithm that evaluates
the interconnection length does not require a complete placement of the
components, it uses the topology of the connected components and the
interconnections to estimate the distance between each pair of connected
components [13]. The interconnection wire delays, computed from the
estimated length of the wires, are finally included in an iterative be ha vi oral
synthesis.

However, these methods have various disadvantages: either they
overestimate the interconnection cost and when the application becomes
complex, the architectllral solution can not satisfy the constraints (the
allocation step selects too many components because the estimations are
very pessimistic: worst case approach) or they are based on an iterative
process (an initial architectural solution is improved from the estimation of
its interconnections) therefore costly in CPU time. Our objective is to
quickly provide reliable estimations of the architecture to the designer. We
thus propose a different approach that enables the interconnection cost to be
controlled all along the synthesis process and that takes care of costly
interconnections. The interconnection cost control is carried out by the
characterisation of the data flow graph variables. The synthesis also
integrates a clllstering task in order to insure temporal dependencies.

3.2 A way to control and reduce the interconnection cost

Architectural synthesis tools are based on a generic architecture model.
This model is typically composed of tour functional units : the processing
unit, the control unit, the memory unit and the communication unit. The
structural model of the processing unit is based on virtual elementary cells
including an arithmetic operator, its connected registers and interconnection
operators (figure 1).

Arcllitectllral Synthesis with lnferconllecfioll Cost Confrol 515

Figure 1: Structural model of the processing unit.

The arithmetic operators perform the data processing whereas the
registers are used to temporarily memorise the variables and also to
synchronise the data transfers between the processing unit and the memory
or communication units. Interconnection operators are multiplexors,
demultiplexors and tristates. The multiplexors and demultiplexors are
necessary for the register reusing (optimisation step for register sharing) and
the tristates make the control of arithmetic operator access possible. Finally,
interconnection wires perform the data transfers intolbetween the elementary
cells of the processing unit and a parallel multi-bus is used for the data
communications between the four functional units of the architecture. Note
that basically each variable of the algorithm is firstly recorded in a register.
Different algorithms are next used for the decreasing of the register number
during the optimisation step (optimisation by register sharing) : Left Edge
[I], Branch&Bound [14], Branch&Bound with heuristics [15].

Consequently, a processing unit associated with this kind of typical
structural model is composed of three different types of interconnection wires:

o local to an elementary cell : these interconnections perform the variable
transfers into an elementary cell,

CJ local to the processing unit : these interconnections perform the
variable transfers between elementary cells,

o global to the architecture : these interconnections perform the parallel
multi-bus access and, by this way, the communication with the other
functional units of the architecture.

In fact, the processing unit interconnection cost (wiring area and
propagation delay) depends on the type of interconnection wires. On the one
hand, this cost is low for interconnection wires that are local to an
elementary cell or global to the architecture. On the other hand, for

516 JEGO Christophe, CASSEA U Emmanuel & MARTlN Eric

interconnection wires that are local to the processing unit, this cost depends
on the complexity of the architecture (related to the algorithm complexity)
and the place and route tool perfonnance. Thus, in order to minimise the
processing unit interconnection cost, the length and the number of
interconnection wires that are local to the processing unit have to be
minimised. Our objective is to firstly minimise their number all along the
high-level synthesis process (selection-allocation, scheduling, binding and
resource optimisation). Then their length will be controlled by a clustering
step which has to be inserted between the binding and the register
optimisation steps and which provides placement directives.

Since interconnections are associated with data transfers, the idea is to
characterise the types of data (temporary processing data, constants or
signals) and take advantage of their type. Three categories of data have thus
been defined according to the interconnection features:
1:1 category 1 : temporary proeessing data which are linked to a single

arithmetie component,
1:1 eategory 2 : temporary proeessing data which are linked to several

arithmetic components,
1:1 category 3 : temporary processing data and constants which are stored in

the memory unit and input/output signals.
An initial characterisation of the variables is realised from the data flow
graph associated with the behavioral description. In fact, in this step, the
variables are associated with categories 2 or 3 because the set of arithmetic
components is not yet being selected. This characterisation is presented
figure 2a for a straightforward example.

The selection algorithm is a basic task of the architectural synthesis
process that aims at optimising the cost of dedieated circuits. lts objeetive is
to find the optimal set of components from a given library, for a behavioral
description and a set of constraints. Different sets of eomponents can be
selected according to the library and the constraints. Then the allocation task
detennines the minimum number of every selected type of components. An
initial automatie selection-allocation step that generates an "optimal" set of
components in tenn of area under a time constraint is first perfonned.
Consequently, the data characterisation may be refined : variables that are
linked to one single arithmetic component are thus associated with category
I whereas variables that are linked to more than one arithmetic component
are still associated with category 2. By now, an optimisation phase is
performed in order to minimise the number of variables associated with
category 2 in favour of category I variables (related to component area and
propagation time). The designer rnay take the opportunity of modifying the
set of arithmetic components and/or their number to obtain a better set of

Architectllral Synthesis with Intercollnection Cost Contra! 517

components in term of data characterisation und er a time constraint. Several
data characterisations that correspond to different sets of selected
components are carried out. The designer can thus choose one of the
selection-allocation solutions according to the constraints (propagation time,
data characterisation and components area). For example, three sets of
components and their characterisation are presented in figure 2 b,c,d. They
illustrate the evolution of the variable characterisation. In figure 2b, the
architecture is costly in terms of interconnection wires because four
variables are associated with category 2. The solutions that are proposed in
figures 2c and 2d are more interesting from the interconnection cost point of
view (only 2 variables are associated with category 2). However, solution d)
is more restricted for temporal data dependencies. Furthermore, these data
characterisations may change during the next steps ofthe synthesis process.

t'-)

:: i..'X.n!W1
V: _

0 :"""

V : ''';'"Ö:;
O:"qu _ ""'1P)'2 :

_ -.3:9

_ a:oqpy3 : 9""

Figure 2: Characterisation ofthe data flow graph variables for the
computation of 0 = [(l1*C1)+(h-C2)] + [(l3*C3)+(14-C4)].

Many algorithms can perform the important task of scheduling. However,
in order to take into account a given data characterisation, a resource
constrained scheduling (List-Based Scheduling) [I] is used in this synthesis
process. This algorithm is a generalisation of the ASAP algorithm with the
incIusion of constraints. A scheduling priority list is provided according to a
priority function . Naturally, the efficiency of this algorithm mainly depends
on the priority ftmction used. The priority function used in oUf approach
depends on the mobility of the operations and the data characterisation

518 JEGO Christophe. CASSEA U Emmanue/ & MARTlN Eric

constraints. For instance, the operations with a small mobility and associated
with category I variables are scheduled in priority. By this way, the
interconnection length is still shorten in the next step.

Finally, a binding algorithm is used to respectively assign the variables
and operations of the data tlow graph to registers and to the allocated
components. Naturally, the variable characterisation is also taken into
account in this step. For instance, during the previous steps, category I
variables were variables linked to a single arithmetic component without
regards to the number of this component (the operation performed by the
component was only concerned). However, after the binding step, if a
variable is l inked to two mapped components (even if they carry out exactly
the same operation), it becomes a category 2 variable, i.e. a potential costly
interconnection. In this step, an operation is thus assigned to an available
arithmetic component in such a way that the number of variables associated
with category 2 is minimised in favour of category 1 variables.

--- e ilte«)' I
- C ab.'gOl)"}
- CatrJ:UI'), J

[J[)Reglstt r = ParoUt l mult;'b\ls

Figure 3: Characterisation ofthe processing unit wiring.

Obviously, any provided architectural solution will be composed of
interconnection wires associated with category 2 variables, like the
architecture presented in figure 3. For this reason, a clustering step is
necessary to specifically control their cost. Since conventional place and
route tools take hierarchical descriptions and placement directives into
account, the generation of a h ierarchie al RTL description enables locally
placed components, i.e. low cost interconnections. The clustering step ofthis
synthesis tlow thus consists in providing hierarchy in the RTL description. It
starts with a non-partitioned set of components as provided by the binding
process (for instance all the components of the processing unit of figure 3),
and places them into clusters according to some component closeness
measures. The processing unit is thus partitioned into elementary cells
including an arithmetic component, its connected registers and

Architectura/ Synthesis wilh Inferconnec!io/1 Cosf COl1frO/ 519

interconnection operators (figure 1). The lengths of the wiring associated
with category 1 variables can thus be minimised. Specific cluster placement
directives are then provided in order to minimise the inter-cluster
interconnection wiring, i.e. wiring associated with category 2 variables.
Furthermore, when mobility ofthe operations is not critical, a register can be
placed between two clusters to insure against wiring delay and to reduce the
cluster placement constraints. Thus, one clock period is specifically
dedicated to the data transfer between two clusters. This feature is actually
carried out during the scheduling process.

With regards to the register sharing (optimisation step), the optimisation
algorithm is applied to each distinct cluster neither on the whole processing
unit. Figure 4 presents for instance the architecture obtained after the register
optimisation step corresponding to figure 3. This method of register sharing
is not as efficient as a register sharing applied to the wh oIe processing unit
from the number of registers point of view, however it insures local data
transfers and, in this way, the time constraints to be observed.

Figure 4: Processing unit obtained after clustering and register optimisation.

Naturally, this synthesis flow may involve a slight increase in the number
of resources. However when complex applications are concerned and with
sub-micron technologies, the additional resource area is often made up for
the interconnection area decrease. Furthermore, the delay control, which is
the most important point with VLSI design, can thus be significantly
improved. This synthesis flow is currently being tested. The next step of our
work is about the control unit, in particular the model of this unit. Actually,
it seems that the critical path of the overall architecture is taken back from
the processing unit to the control unit. A hierarchical finite state machine,
included in the processing unit, may be a solution. This work will be
reported later.

520 JEGO Christophe. CASSEA U Emmanuel & MARTIN Eric

4. CONCLUSION

High-level synthesis is said to provide a signiticant productivity increase
by raising the abstraction level of digital designs. Actually, HLS tools
attempt to provide RT level design solutions with a quite good trade-off
between cost and performance from a behavioral description. However, as
interconnection cost becomes predominant, architectural synthesis tools have
to take this additional cost into account. An approach that enables this cost to
be controlled and that takes care of costly interconnections is proposed in
this artic1e.

5. REFERENCES
[I] D.D. Gajski, N. Dutt, A. Wu, S. Lin, "High-level Synthesis", Ed. Kluwer Academic

Publishcr 1992.
[2] M. C. FcFarland, A. C. Parker, R. Camposano, "The High-Level Synthesis of Digital

Systems", In proccedings ofiEEE, VoL78, W2, pp 301-318,1990.
[3] E. Martin, O. Scntieys, H. Dubois. J.L. Philippe, "GAUT, an Architecture Synthesis Tool

for Dedicated Signal Processors", In proceedings of EU RO-DAC 93, pp. 14-19, 1993.
[4] J.L Phi lippe, O. Scnticys, J.P. Diguet. E. Martin ... From digital signal proccssing

spccification to layout". In Logic and Architccturc Synthcsis : statc-of-thc-art and novcl
approaches, pp. 307-313, Chapman&Hall, 1995.

[5] Scmiconductor Industry Association, "Tbc National Tcchnology Roadmap For
Semiconductors", 1997.

[6] V. Moshnyaga, K. Tamaru, "Effeet ofTcchnology Scaling on Area-Delay Characteristics
ofRTL Designs: A Case Study", In proceedings ofED&TC'97. pp. 75-79, 1997.

[7] Wayne W.-M. Dai, "Chip Parasitic Extraction and Signal Integrity Verification", In
proceedings ofDAC 97, p 720-722,1997.

[8] C. Jego, E. Casseau, E. Martin, "Architectllral Synthesis of a Complex Application : the
Viterbi Algorithm", In User Forum proceedings ofDATE 99, pp. 69-73,1999.

[9] V. Moshnyaga, K. Tamaru, "A Floorplan Based Methodoloh'Y tür Data-Path Synthesis of
Sub-Mieron ASICs", IEICE Trans. on Information and Systems, pp. 1389-1395, Vol. E79-D.
W 10, 1996.

[10] M. Xu, F. 1. Kurdahi. "Layout-Driven RTL Binding Techniqucs for High-Level
Synthesis Using Accuratc Estimators", ACM Trans. on Design Automation of Electronic
Systems, pp. 312-343, Vol. 2. N° 4, 1997.

[lI] H. Mecha, M. Fernandcz, F. Tirado, J. Septien, D. Mozos, K. Olcoz. "A Mcthod for Area
Estimation of Data-Path in High-Level Synthesis", IEEE Trans. on CAD of Integrated
Circllits and Systems, pp. 258-265, Vol 15, 1996.

[12] J. HaUberg, Z. Peng, "Estimation and Consideration of Intcrconnection Delays during
High-Level Synthesis", In proceedings of Euromicro'98, pp. 349-356, 1998.

[13] A. Alvandpollr and C Svensson, "A Wire Capacit,mce Estimation Teehnique tür Power
Consuming Interconnections at High Levels of Abstraction", In proceedings ofPatmos'97,
pp. 305-314,1997.

[14] W. Grass, "A Branch-and-Bound Method for Optimal Transformation of Data Flow
Graphs for Observing Hardware Constraints", In proeeedings ofEDAC 91 ,pp.73-77, 1991.

[15] J. Scptien. D. Mozos. F. Tirado, R. Hermida, M. Fcmandez. "Hcuristics for Branch-and­
Bound Global Allocation". In proceedings ofEURO-DAC 92, pp. 334-340,1992.

	Architectural Synthesis with Interconnection Cost Control
	INTRODUCTION
	1. ARCHITECTURAL SYNTHESIS OVERVIEW
	1.1 Behavioral synthesis flow
	1.2 A behavioral synthesis tool : GAUT
	2. INTERCONNECTION COST PROBLEM
	3. INTERCONNECTION COST CONTROLAPPROACH
	3.1 Previous works
	3.2 A way to control and reduce the interconnection cost
	4. CONCLUSION
	5. REFERENCES

