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Abstract: We explore some important consequences of the quantum ideal Bose gas, the properties
of which are described by a non-extensive entropy. We consider in particular two entropies that
depend only on the probability. These entropies are defined in the framework of superstatistics,
and in this context, such entropies arise when a system is exposed to non-equilibrium conditions,
whose general effects can be described by a generalized Boltzmann factor and correspondingly by a
generalized probability distribution defining a different statistics. We generalize the usual statistics to
their quantum counterparts, and we will focus on the properties of the corresponding generalized
quantum ideal Bose gas. The most important consequence of the generalized Bose gas is that the
critical temperature predicted for the condensation changes in comparison with the usual quantum
Bose gas. Conceptual differences arise when comparing our results with the ones previously reported
regarding the q-generalized Bose–Einstein condensation. As the entropies analyzed here only depend
on the probability, our results cannot be adjusted by any parameter. Even though these results are
close to those of non-extensive statistical mechanics for q ∼ 1, they differ and cannot be matched for
any q.
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1. Introduction

Entropy is one of the most useful concepts in physics. Its meaning and interpretation in the
realm of statistical mechanics has led to a beautiful understanding of the microscopic properties of
thermodynamic systems, and the mathematical properties of entropy also allow defining an arrow of
time, namely the direction in which physical processes occur. Future means increasing entropy. Despite
the successful use of entropy in the usual form that we know, namely the Boltzmann–Gibbs one, several
modifications have also been considered [1–7]. Such considerations were inspired by the observation
of physical systems, which do not accept the usual modeling with the standard form of entropy or,
in other words, the usual probability distributions of states (see for instance [8] and the references
therein). One characteristic of some generalized entropy measures is the dependence of one or more
parameters that can be adjusted depending on the physical system [9]. With such unusual physical
systems in mind, we consider in this work non-equilibrium systems characterized by spatiotemporal
fluctuations on an intensive quantity, usually the temperature [10]. Superstatistics considers these
fluctuations and takes them into account when estimating the probability of the occurrence of a state in
a particular configuration. The starting point is the derivation of entropy from a generalized Boltzmann
factor [11–14], and the probability distribution can be deduced by maximizing the corresponding
entropy; the particular case of some generalized quantum distributions can be found in [15–17].
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We will deal with the quantum statistics of two entropies that depend only on the
probability [12–14]. Some interesting implications of this particular generalized entropy have been
studied in [12,18–21]. We will consider particularly the thermodynamic properties of quantum ideal
Bose gases. Those thermodynamic properties can be calculated if the probability density of states of the
determined energy is known, a probability which can be derived from entropy. We will follow this path
in order to estimate the critical temperature where the Bose condensation occurs for a quantum system
characterized by the generalized statistics depending only on the probability [12,14]. This analysis has
already been considered for the quantum statistics of q-generalized entropies, and quite interesting
results arise [22–39]. This particular result will also be explored here for other generalized entropies.
The entropies we consider here, instead, depend only on the probability and do not have any adjusted
parameter [12,18]. These entropies are derived through a generalized Boltzmann factor that takes
into account small thermal fluctuations, and consequently, the form of the entropy depends on the
assumed thermal distribution [10]. This fact allows identifying the nature of the differences in the
thermodynamical properties of the usual (extensive) and the nonextensive quantum systems analyzed
here. Even when our results are close to those predicted by the q-entropy for q ∼ 1, they do not
coincide with these previous predictions.

The general structure of this work is as follows. First, in Section 2, we briefly review the
superstatistics framework where we define generalized Boltzmann factors from which generalized
entropies that depend only on the probability can be derived. In Section 3, we first review the
thermodynamic properties that define the Bose–Einstein condensation for the usual quantum statistics
and for the quantum ideal gas, in particular the consequences of the quantum statistics in the
occupation number, namely the number of particles in determined energy states; afterwards, we
explore the thermodynamic consequences of the same ideal gas, but influenced by the modified
statistics. In Section 4, we present a discussion and conclusions of the main results in our work.

2. Generalized Entropies

We have already mentioned that there exist several non-extensive generalizations to entropy;
we have remarkable examples in [1–6]. We will deal with a special class of generalized entropies,
depending only on pl , arising in the realm of superstatistics [10,12], those inspired by non-equilibrium
processes, like systems with spatiotemporal fluctuations, not far from equilibrium, in some intensive
quantity, which we will choose to be the temperature. Considering a distribution of temperature f (β),
a generalized Boltzmann factor B(E) can be calculated, which takes into account these fluctuations
as follows:

B(E) =
∫ ∞

0
f (β)e−βEdβ, (1)

where E is the corresponding energy, and when f (β) = δ(β− β0), we get the usual Boltzmann factor.
The procedure of obtaining Boltzmann factors from different distributions can be reviewed in [10,18],
and here, we show one particular example. Let us consider a Gamma distribution depending on the
parameter pl , which will be further identified with the probability,

fpl (β) =
1

β0 plΓ (1/pl)

(
β

β0

1
pl

) 1−pl
pl

exp
[
− β

β0 pl

]
, (2)

where β0 is the average inverse temperature. Integrating this distribution, we get its corresponding
Boltzmann factor (1):

Bpl (E) = (1 + pl β0E)−
1
pl . (3)

It was shown in [10,18] that for several distributions, after expanding for small pl β0E,
the generalized Boltzmann factor leads to the same first correction term; such an expansion for
the case of our distribution here is:
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Bpl (E) = e−β0E
(

1 +
1
2

plE2β2
0 −

1
3

p2
l β3

0E3+, · · ·
)

, (4)

and the entropy corresponding to (3) is given by:

S1 = k
Ω

∑
l=1

(1− ppl
l ) , (5)

where Ω is the total number of microstates and pl will be later identified with the probability; thus,
we will have the constraint ∑Ω

l=1 pl = 1. We have labeled this entropy with the subindex 1, as we will
consider in this work another entropy following from another distribution f (β), in which basically
pl is changed by −pl in (2), and consequently, a different Boltzmann factor and a different entropy
arise [12,18]; such entropy is given by:

S2 = k
Ω

∑
l=1

(p−pl
l − 1) . (6)

These entropies can be expanded, and both are equal to the Boltzmann–Gibbs entropy (Shannon)
at first order. We have for instance that (5) can be written as:

− S
k
=

Ω

∑
l=1

[
pl ln pl +

(pl ln pl)
2

2!
+, · · ·

]
. (7)

The probability distribution can be obtained by maximizing the following functional:

Φ =
S
k
− γ

Ω

∑
l=1

pl − β
Ω

∑
l=1

ppl+1
l El , (8)

where γ and β are Lagrange multipliers related to constraints in probability and energy. We have
consequently that the function defining the generalized probability pl(βEl) is given implicitly by:

1 + ln pl + βEl(1 + pl + pl ln pl) = p−pl
l . (9)

It is not possible to express analytically the probability as a function of energy, namely pl(βEl),
but we can, and will, use an approximation given by the best fitting adjustment of the inverse function
of energy in terms of the probability; we will call this probability distribution pl = g(βEl), where:

g(βEl) = e−βEl
(

a + bx + cx2 + dx3 + ex4
)

, (10)

and the constants, a, b, c, d, e, are the fitting parameters, whose specific values are shown in
Appendix A. As we will use two entropies related to two different distributions, each one of them
will have their corresponding fitting parameters; we name plI = gI(βEl) the probability related to
entropy (5) and plI I = gI I(βEl) the probability distribution corresponding to entropy (6). In the next
section, we will generalize the probability distributions to their quantum counterparts and particularly
explore the properties of systems obeying the generalized Bose–Einstein statistics. For completeness,
we will exhibit also the corresponding generalized Fermi–Dirac distribution. The differences between
the probability distributions that define our entropies (10) and the ones defined by the nonextensive
Tsallis q-statistics have been shown in [14]. For values not so far from q = 1, above and below,
our distributions behave similarly to those of q-statistics, but they are not exactly equal for any value
of q. They are conceptually different.
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3. Ideal Extensive and Non-Extensive Quantum Bose Gases

In this section, we will firstly review some thermodynamic properties of quantum ideal Bose
systems obeying the usual quantum statistics, and afterwards, we introduce the generalized quantum
statistics and show that the generalized statistics brings new important thermodynamic consequences.

3.1. Usual Quantum Statistics

Let us briefly review the case of the usual quantum ideal Bose gas [40,41]. The number of
particles is:

N = ∑
ε

1
z−1eβε − 1

, z = eβµ , (11)

where the statistics of the mean occupation number is given by the expression:

nε =
1

z−1eβε ± 1
, (12)

where the sign in the second term in the denominator corresponds to Bose–Einstein (BE) statistics
for −1 and Fermi–Dirac (FD) statistics for +1. Before changing the sum in (11) into an integral,
care should be taken because we should not give a zero statistical weight to the state with (ε = 0);
therefore, the first term in the sum is extracted, and we will have in particular for the BE statistics:

N
V

=
2π

h3 (2m)3/2
∫ ∞

0

ε1/2dε

z−1eβε − 1
+

1
V

z
1− z

, (13)

where the density of states in the energy space a(ε) is deduced from the fact that the particles do not
feel interactions among them and:

a(ε)dε =
2πV

h3 (2m)3/2dε . (14)

A change of variable is made x = βε, and we get:

N
V

=
1

λ3 g3/2(z) +
1
V

z
1− z

, (15)

where λ = h
(2πmkT)1/2 and gν(z) is the well-known Einstein function. If an expansion of the statistical

factor in powers of ze−x is performed, we get:

N
V

=
1

λ3

[
z +

z2

23/2 +
z3

33/2 +
z4

43/2 + · · ·
]
+

1
V

z
1− z

. (16)

At this point, we need to fix the limiting value of z. For z << 1, the expansion behaves like z,
and this equation is used to determine z itself. When ν > 1, the function gν(z) converges, and as
z→ 1, it approaches the Riemann zeta function ζ(ν). The function gν(z) grows monotonically, so the
maximum value of gν(z) is precisely ζ(ν). We have then the following cases: (i) when z << 1,
the second term in (16), namely N0

V where N0 = z
1−z , is negligible and gν(z), becomes a polynomial in

z; (ii) when z→ 1, the term proportional to N0 cannot be neglected. This corresponds to the number of
accumulation particles into the single state with energy ε = 0. As the number density has an upper
limiting value, when the number of particles exceeds this limit, the rest of the particles are forced to
occupy also the ground state, and the condensation takes place. This limit is explicitly given by:

N =
VT3/2

c (2πmk)3/2

h3 ζ(3/2) ; (17)
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thus, the critical temperature is:

Tc =
h2

(2mπk)

[
N

Vζ(3/2)

]2/3
. (18)

Temperature is fixed depending on the mass of the particles in consideration. In the next section,
we determine what happens with the critical temperature when the Bose ideal gas obeys the generalized
statistics determined by the non-extensive entropies [12,14].

3.2. Generalized Quantum Statistics

As we have mentioned before, the probability density cannot be expressed in analytical form when
maximizing its corresponding functionals, but we can approximate, in different ways, the probability
distribution with an explicit function that fits the curve of the inverse function of energy in terms of
probability as in Equation (9), and we can also get accordingly the generalized quantum statistics
for systems that correspond to the entropies S1 and S2 defined above that were first proposed by
O. Obregón in [12]. These generalized statistics will be called BEO and FDO for the generalized
Bose–Einstein and Fermi–Dirac statistics respectively. Using the kind of approximation as in
Equation (10), we find that the corresponding generalized occupation number is given by: [14]

nε =
1

ey[a + by + cy2 + dy3 + ey4]−1 ± 1
, y = (βε− βµ) , (19)

where −1 corresponds to BEO statistics and +1 to FDO statistics. In Figures 1 and 2, we show in
a single plot the occupation numbers for the usual and generalized statistics for the corresponding
entropies S1 and S2.

Figure 1. Simultaneous plot of the usual occupation number (blue line) and the generalized occupation
numbers for the BEO statistics for S1 (red line) and S2 (green line).
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Figure 2. Simultaneous plot of the usual occupation number (blue line) and the generalized occupation
number of the FDO statistics for S1 (red line) and S2 (green line).

We observe from Figures 1 and 2 that the generalized nε behave slightly different from the usual;
however, the BEO occupation number still will allow for condensation, and the FDO occupation
number is consistent with Pauli’s exclusion principle. For completeness, we have also shown the
behavior of the FDO statistics, but from now on, we will focus only on the properties of the BEO
statistics. We can calculate now the density of particles assuming that the new statistics is obeyed,
by rewriting the occupation number in terms of z = eβµ; it becomes:

N
V

=
2π(2m)3/2

h3

∫ ∞

0

ε1/2dε

a−1z−1eβε [1 + By + Cy2 + Dy3 + Ey4]
−1 − 1

+
N0

V
, (20)

where y = βε− ln z, and we have redefined the constant fitting parameters as B = b
a , D = d

a , and so
on. After the change x = βε, we get:

N
V

=
2π(2m)3/2

h3β3/2

∫ ∞

0

x1/2dx

a−1z−1ex [1 + By + Cy2 + Dy3 + Ey4]
−1 − 1

+
N0

V
. (21)

In the last two expressions, we have also extracted the ε = 0 term in the occupation number N0,
as the same situation occurs as in the usual statistics, but in this case, N0 is given by:

N0 =
az[1− B ln z + C ln2 z− D ln3 z + E ln4 z]

1− az[1− B ln z + C ln2 z− D ln3 z + E ln4 z]
. (22)

In Figure 3, we plot the behavior of N0 = z
1−z of the usual statistics and N0 as in Equation (22).
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Figure 3. Behavior of N0(z) in the interval 0 < z < 1 for the usual probability distribution (blue line)
and for the two non-extensive probability distributions corresponding to S1 (red line N0(S1)) and S2

(green line N0(S2)). When z << 1, N0(z),N0(S1) and N0(S1) can be neglected, but when z is close to
one, the number of particles that accumulate in the ground state grows rapidly in all cases.

Following with the calculation of the first term (integral) in Equation (21), the first term in the
denominator will be rewritten by expanding the powers of y = (x− ln z) to get:

N
V

=
2π(2m)3/2

h3β3/2

∫ ∞

0

x1/2(aze−x)dx

[1 + f1 + f2x + f3x2 + f4x3 + Ex4]
−1 − (aze−x)

, (23)

where the fi functions depend only on z in the following way:

f1(z) = −B ln z + C ln2 z− D ln3 z + E ln4 z, (24)

f2(z) = B− 2C ln z + 3D ln2 z− 4E ln3 z,

f3(z) = C− 3D ln z + 6E ln2 z ,

f4(z) = D− 4E ln z.

In order to make the expression simpler, we define:

[1 + f1 + f2x + f3x2 + f4x3 + Ex4] = H(x, z) , (25)

thus:
N
V

=
2π(2m)3/2

h3β3/2

∫ ∞

0
x1/2(aze−x)H[1− (aze−x)H]−1dx . (26)

After expanding the last factor when (aze−x)H < 1, we have:

N
V

=
2π(2m)3/2

h3β3/2

∫ ∞

0
x1/2 ∑

l=1
(aze−x)l Hldx , (27)

and using the definition of H(x, z) of Equation (25) and its powers, we can finally write:

N
V

=
1

λ3 g3/2(az) +
1

λ3Γ(3/2)

∫ ∞

0
x1/2F(x, z)dx , (28)
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where F(x, z) is the remainderfunction after extracting the first contribution in terms of the Einstein
function. At this point, we have succeeded in extracting the two first relevant terms in the non-extensive
density. Now, it is necessary to discuss again the relevance of the density corresponding to the particles
in the ground state. In order to have a better idea about the difference between the extensive and
non-extensive densities, let us perform the integrals and numerically estimate their values in the upper
limit as z→ 1; we have:

I =
∫ ∞

0

x1/2dx
z−1ex − 1

=

√
π

2
ζ(3/2) = 2.31482, (29)

I1 = 3.075,

I2 = 1.463,

where I1 and I2 are the numerical integrals using the fitting parameters for the two BEO statistics
corresponding to the entropies S1 and S2, respectively. In Figure 4, we plot the integrands in the
case of the usual statistics as in Equation (13) and for the new statistics as in Equation (21) for the
two entropies. In the three cases, the density has an upper value and is bounded. We can see that
I2 < I < I1. As we have managed to extract the first contribution as an Einstein function, we can write:

N
V

=
1

λ3 [g3/2(az)± C] , (30)

where the contribution C is given by:

C =
1

Γ(3/2)

∫ ∞

0
x1/2F(x, z)dx , (31)

and (+C) corresponds to the BEO statistics of the entropy S1 for which the density is above the usual
limiting value and (−C) corresponds to the BEO statistics of S2, which is below the limiting value.
As (az) → 1, g3/2(az) ≈ g3/2(z) = ζ(3/2). In this limit, we can estimate the critical temperatures at
which the condensation will occur if the system obeys the BEO statistics of one or another generalized
entropy, we will have correspondingly:

Tc =
h2

(2mπk)

[
N

V (ζ(3/2)± C)

]2/3
, (32)

and we can conclude that the critical temperature for the systems obeying the generalized statistics
for one or another entropy are below the usual critical value for S1 and above the critical value for S2.
The relation among these critical temperatures is T1c < Tc < T2c, where T1c is the critical temperature
for the system obeying the generalized statistics followed by S1 and T2c for S2.
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Figure 4. Plot of the integrands in the expressions for the usual density (blue line) and those
corresponding to the densities of the modified statistics for S1 (red line) and S2 (green line).

4. Discussion and Conclusions

We have explored some thermodynamic properties of a quantum ideal gas obeying a novel
generalized statistics [12]. We considered particularly the quantum probability distribution emerging
in the realm of superstatistics corresponding to the entropies of a system driven not so far from
equilibrium by considering spatiotemporal thermal fluctuations. Two generalized probability quantum
distributions corresponding to two different entropies that depend only on the probability were
analyzed [12,13,18]. The relevant result is that the critical temperature when the condensation occurs
is naturally modified if the system obeys these generalized quantum statistics. We have shown that the
generalized densities (28) are also bounded in the limit z→ 1; therefore, the final expression for the
density in this limit (30) is justified, and the critical temperature (32) follows directly. We observe that
the modification of the critical temperature is a consequence of considering a different statistics and
does not depend on other thermodynamic parameters as volume or particle number; this can be seen
from the expression (28), which is a consequence of the mathematical form of the quantum statistical
factor in the generalized occupation number (19).

Phase transitions of systems obeying modified statistics have been studied particularly for
generalized q-statistics in [22–39], where the corresponding critical condensation temperature has also
been calculated [29]. An extended study of the thermodynamic properties presented in this work and
other interesting ones will be reported elsewhere.
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Appendix A. Fitting Parameters of the Generalized Probability Distributions

The fitting constant parameters in the generalized quantum probability distributions are given by:

a = 1.00477, b = −0.0134648, c = 0.512088, d = −0.185251, e = 0.016645, (A1)

for the probability corresponding to the entropy S1 and:

a = 1.0126, b = −0.558859, c = 0.270725, d = −0.048416, e = 0.00302662, (A2)

for the distribution corresponding to the entropy S2.
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