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Abstract: Recently, convolutional neural networks (CNN) have been intensively investigated for
the classification of remote sensing data by extracting invariant and abstract features suitable for
classification. In this paper, a novel framework is proposed for the fusion of hyperspectral images
and LiDAR-derived elevation data based on CNN and composite kernels. First, extinction profiles are
applied to both data sources in order to extract spatial and elevation features from hyperspectral and
LiDAR-derived data, respectively. Second, a three-stream CNN is designed to extract informative
spectral, spatial, and elevation features individually from both available sources. The combination
of extinction profiles and CNN features enables us to jointly benefit from low-level and high-level
features to improve classification performance. To fuse the heterogeneous spectral, spatial, and elevation
features extracted by CNN, instead of a simple stacking strategy, a multi-sensor composite kernels (MCK)
scheme is designed. This scheme helps us to achieve higher spectral, spatial, and elevation separability
of the extracted features and effectively perform multi-sensor data fusion in kernel space. In this
context, a support vector machine and extreme learning machine with their composite kernels version
are employed to produce the final classification result. The proposed framework is carried out on
two widely used data sets with different characteristics: an urban data set captured over Houston,
USA, and a rural data set captured over Trento, Italy. The proposed framework yields the highest
OA of 92.57% and 97.91% for Houston and Trento data sets. Experimental results confirm that the
proposed fusion framework can produce competitive results in both urban and rural areas in terms
of classification accuracy, and significantly mitigate the salt and pepper noise in classification maps.

Keywords: data fusion; extinction profiles (EPs); composite kernels; convolutional neural networks
(CNN); feature extraction (FE)

1. Introduction

With the rapid development of imaging techniques, it is now possible to obtain multi-sensor data
captured over the same region. Such multi-sensor information can demonstrate different characteristics,
including spectral information obtained by passive sensors (e.g., multispectral and hyperspectral
images) [1,2], or elevation and shape information obtained by light detection and ranging (LiDAR)
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sensors [3,4]. Therefore, it is important to develop robust and accurate multi-sensor fusion methods,
which could integrate the complementary information from individual sources.

Urban and rural areas are inherently complex due to the existence of many classes with similar
spectral responses, which makes the classification of the available classes a challenging task. It is
generally optimistic to assume that a single sensor can provide enough information for classification
of complex areas [5]. To be more specific, the classification of land cover classes only based on
spectral signatures derived from hyperspectral images (HSI) may result in very limited discriminant
capabilities, especially for different classes that are made of the same material (e.g., building roof and
road both made from asphalt). Conversely, individual consideration of the LiDAR data is not enough
for the classification of objects (e.g., residential and commercial buildings) with the same elevation but
made of different materials, where classes can be easily mixed considering only elevation information.

Due to the above-mentioned facts, multi-sensor data fusion may lead to accurate land cover
classification by taking advantage of the promising aspects of each sensor. In other words, it is natural
to imagine that, through the joint use of hyperspectral and LiDAR data, one can combine detailed
spectral and spatial information from the hyperspectral data with elevation information from the
LiDAR data to increase the discriminating power of the subsequent classifier.

Furthermore, much research has confirmed this higher discriminating power obtained by the joint
use of HSI and LiDAR data [6–14]. In [6], a generalized graph-based fusion method and morphological
profiles (MPs) have been investigated for HSI and LiDAR data fusion, which could simultaneously
reduce the dimensionalities in feature space and fuse heterogeneous data for accurate classification.
In [7], the fusion of HSI and LiDAR data was taken into account for the classification of cloud-shadow
mixed remote sensing scenes, which processed the cloud-shadow and shadow-free areas separately.
This generated more specific training samples for the cloud-shadow area in order to achieve higher
classification performance. In [8], the joint use of HSI and LiDAR data was explored for accurate
land cover classification of both urban and rural areas, which employs extinction profiles (EPs) to
extract spatial and contextual features from multisensory data sources. Then, through a graph-based
fusion process, a deep learning-based classifier was adopted for further boosting of the framework
performance. In [9], a novel HSI and LiDAR fusion method named the sparse and low-rank component
analysis was proposed to improve classification performance, where low-rank components helped
to handle spectral redundancy and sparsity properties dealt with spatial smoothness. Therefore,
this method could efficiently degrade the influence of the Hughes phenomenon and lead to region-wise
homogeneous classification map. In addition, the deep fusion of HSI and LiDAR data for accurate land
cover classification was developed in [10], in which the feature fusion framework was purely based on
deep neural networks architectures, including abstract feature extraction and classification. To sum up,
it is well-founded to believe that the fusion of heterogeneous features, such as spectral, spatial and
elevation features, could provide more robust and reliable signatures of different land cover classes
during the classification task.

Spatial information has been confirmed to be significantly important in HSI data processing,
especially for that of high spatial resolution [1]. In this case, the spatial feature extraction recently
became a hot topic in the HSI community. Among the existing spatial information extraction methods,
mathematical morphology profiles have attracted a lot of attention. Morphological profiles (MPs)
and attribute profiles (APs) have been intensively investigated due to the capability of generating
discriminating spatial information for classification [15–21]. MPs could be established by stacking a
set of opening profiles and closing profiles that are reconstructed with a structuring element (SE) of
increased size. In [15], MPs using morphological transformations were carefully designed for extracting
informative spatial features from the high-resolution image. Based on the MPs, APs were introduced
in [17] as generalized MPs, which considered using attribute filters (AFs) to produce multilevel spatial
information profiles of the image. In [18,20], APs were employed to model the contextual information
of the ground appearance in order to improve the performance of image classification and building
extraction. In [21], APs and their extended multi-attribute profiles (EMAP) were investigated for
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the fusion of HSI and LiDAR data, where heterogeneous features were integrated with a subspace
multinomial logistic regression approach. The result further proved that modeling of contextual
and spatial information is of great importance, especially in very high-resolution image processing.
APs have been proven to be a more robust tool, compared to MPs [17], since APs are naturally based
on any attributes of images (e.g., pure geometric, spatial resolution or spectral-related characteristics).
Otherwise, there are still general limitations of APs, like their performance is higHy dependent on the
attributes threshold, which demands the manual initialization of parameters.

Extinction profiles (EPs) were proposed in [22], aimed at addressing the main limit of
APs’ threshold dependence, since EPs are extrema-oriented profiles and free of threshold setting
burdens [23]. EPs have been successfully investigated for their wide use in spatial feature extraction of
panchromatic images [22], HSI [23], and LiDAR-derived images [24], respectively. Despite the benefit
of using the spatial features for classification, traditional morphological feature extraction methods
still appear to be insufficient in invariant feature learning, e.g., the morphological-level features are
naturally redundant and the classification result is still affected by image noise problems (such as the
salt and pepper noise).

Recently, with great developments of deep learning concept in remote sensing applications [25–29],
deep learning architectures have been investigated to progressively extract high-level and abstract
features, which are more reliable and invariant due to their independence from most local details
of the input data [26]. Specifically, convolutional neural networks (CNN), as fundamental deep
learning architectures, have been successfully designed for various feature extraction and classification
applications [30–33]. In [30], a deep feature extraction method has been proposed, where the
spectral-spatial hierarchical features extracted by CNN were employed for accurate land cover
classification. To improve the feature representation by involving temporal information, an end-to-end
recurrent CNN architecture for change detection in multispectral images has been proposed in [31].
By iteratively selecting the spectral bands from HSI, a self-improving CNN was proposed in [32],
which was proven to be effective in HSI classification. In case of Synthetic Aperture Radar (SAR) images
key-point matching, a Pseudo-Siamese CNN has been developed to determine the corresponding
patches between SAR images and very high resolution (VHR) optical images in [33]. Moreover,
other deep learning architectures (such as, generative adversarial networks and recurrent neural
networks [34,35]) have also been proved to be efficient for feature learning and classification in
high-dimensional data like HSI. For instance, a successful work on employing generative adversarial
networks (GAN) for HSI classification has been reported in [34]. In [35], an unsupervised HSI feature
extraction framework based on Conv-Dconv recurrent neural networks (RNN) has been investigated
for better HSI feature leaning. Overall, it is believed that, in comparison to other “shallow” feature
extraction models, deep learning architectures are able to extract high-level, hierarchical, and abstract
features, which are generally more robust to the nonlinear input data [26].

In this paper, a novel framework is proposed for the fusion of HSI and LiDAR data based on CNN
and composite kernels. The proposed framework designs a three-stream CNN to extract high-level and
invariant spectral features (HSI), spatial features (obtained by performing EPs on HSI), and elevation
features (obtained by applying EPs on LiDAR-derived data). To effectively classify the heterogeneous
spectral, spatial, and elevation features obtained by the three-stream CNN, instead of feature stacking,
a multi-sensor composite kernels (MCK) scheme is carefully designed based on either a support
vector machine (SVM) or extreme learning machine [36] (ELM). This MCK scheme considers three
individual kernels suitable for the joint use of spectral, spatial, and elevation features, as their superior
performance is shown in [37]. The main contributions of this paper are described below:

1. A three-stream CNN is designed in the proposed framework, which can effectively extract
high-level features from spectral as well as spatial and elevation features produced by EPs.
This baseline allows us to simultaneously take advantage of heterogeneous complementary
features (from HSI and LiDAR) to achieve higher discriminating power during classification tasks.
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2. The proposed framework progressively combines low-level features (obtained by extinction profiles)
with high-level features (obtained by CNN) for invariant feature learning. This consideration
could significantly reduce the salt and pepper noise, as well as further promote the classification
performance.

3. A novel fusion scheme is proposed based on multi-sensor composite kernels, where three different
base kernels for spectral, spatial and elevation features are taken into account. To be more
specific, the MCK scheme provides us with an efficient framework for multi-sensor data fusion,
where complementary information from heterogeneous features can be joint used for accurate
classification by establishing and optimizing the corresponding MCK.

The proposed fusion framework is tested in both urban and rural scenes. As a result, the proposed
method achieves significant noise reduction in classification maps and competitive classification
accuracy compared to state-of-the-art approaches.

The rest of this paper is organized as follows: Section 2 explains the design of the proposed fusion
framework in detail. Section 3 is devoted to the description of experiment details on two commonly
used multi-sensor data sets. Section 4 reports evaluation results and detail comparisons between
the proposed framework and state-of-the-art methods. At last, Section 5 gives the main concluding
remarks and wraps up this paper.

2. Methods

2.1. Workflow of the Proposed Fusion Framework

In this section, the general workflow of the proposed fusion scheme is shown in Figure 1.
First, two EPs were generated from HSI (EPHSI) and LiDAR-derived data (EPLiDAR), individually.
These profiles can be regarded as spatial features and elevation features of the co-registered area.
Next, a three-stream CNN feature extraction approach was designed to extract hierarchical high-level
abstract features from spectral, spatial and elevation features, respectively. Then, two machine learning
classifiers, SVM and ELM, which was embedded with a multi-sensor composite kernels scheme,
were adopted to achieve the final data fusion and classification step. The detailed design with
emphasis on the CNN feature extraction layers is shown in Figure 2.

Figure 1. Workflow of the proposed multi-sensor fusion framework of hyperspectral images (HSI)
and light detection and ranging (LiDAR) data for land cover classification, which consists of three
main parts: unsupervised EPs feature extraction, supervised CNN feature extraction and multi-sensor
composite kernels data fusion.



Remote Sens. 2018, 10, 1649 5 of 20

Figure 2. Detailed design of the proposed multi-sensor data fusion framework based on convolutional
neural networks and composite kernels. SVM and ELM are used as classifiers for evaluating the
classification performance.

2.2. Extinction Profiles

Actually, EPs [22] are based on extinction filters (EFs) [38], which are extrema-oriented connected
independent filters. Different from the attribute profiles (APs), whose performance are higHy dependent
on the manual initialization of the attributes threshold, EPs are naturally based on the number of extrema,
which can be set automatically. To this end, EPs could get rid of the time-demanding burden of manually
determining attributes-threshold values [22].

Extinction filters (EFs), which are the main building blocks of EPs, can be defined as follows:
Let Max (F) = {M1, M2, . . . , MN} be a set of regional maxima of the grayscale image F. Mi is an image
with the same size as F, whose entities are zero except in the positions of the pixels that include the
regional maximum Mi (the gray-value is the value of the maximum). Each regional maximum Mi
corresponds to a certain extinction value that is defined by Vachier [38]. The EFs of F, which are set to
keep the n maxima with the highest extinction values, is then given as:

EFn (F) = Rδ
F (G) , (1)

where Rδ
F (G) is the reconstruction by dilation [39] of the mask image F from the marker image G.

The marker image G is then given as:
G =

n
max
i=1

{
M
′
i

}
, (2)

where M
′
1 represents the regional maximum with the highest extinction value, M

′
2 as maximum with

the second highest extinction value, etc. [22].
By applying a series of thinning and thickening EFs to a grayscale image, extinction profiles

(EPs) can be derived. The threshold values progressively decreases or increases to shape the profile
to simultaneously extract spatial and contextual information of the input image. The mathematical
definition of the EPs is given as below:

EP(F) =

{
Πφλm , m = (s− i + 1), ∀i ∈ [1, s];
Πγλm , m = (i− s), ∀i ∈ [s + 1, 2s].

}
, (3)

where Πφλ is the thickening extinction profile, Πγλ is the thinning extinction profile, and λ :
{λm} (m = 1, . . . , s) is a set of ordered threshold values (i.e., λi ⊂ λj, i 6 j). Here, s is the amount of
thresholds [22].

To generalize the concept of extinction profiles from grayscale images to hyperspectral data [23],
the extended extinction profiles (EEP) were proposed by applying EPs on the most informative
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features [23] that were generated by dimension reduction approaches, such as the principal component
analysis (PCA) or independent component analysis (ICA). In addition, to extract complementary
features and boost the performance of the EPs, one can produce multi-EP (MEP) by stacking different
EPs (e.g., area, height, volume, diagonal of the bounding box, and standard deviation) and the raw
image together. Moreover, an extended multi-EP (EMEP) can be further derived, Figure 3 shows the
details of EMEP formulation. The definition of EMEP is given as follows:

EMEP = {MEP (C1) , MEP (C2) , . . . , MEP (Cm)} (4)

where Ck = {C1, C2, . . . , Cm} stands for different independent components (ICs) provided by the ICA.
In this way, the EMEP could yield more spatial features than a single EPs.

In addition, it is necessary to mention that the computational cost of EPs and EMEP are almost
the same since the main time demanding part is constructing of the max-tree and min-tree, which only
established once for each image [22,23].

Figure 3. The construction workflow of the EMEP with respect to the Houston data set. In the first steps,
ICA analysis is applied to HSI data, and three ICs are extracted. Then, each IC is used to produce MEP
including five extinction value types (i.e., area, volume, standard deviation, diagonal of the bounding box
and height) as well as the IC itself. At last, the EMEP is obtained by stacking these MEP together.

2.3. Convolutional Neural Networks Feature Extraction

Among all of the deep learning models, convolutional neural networks [40] have gained great
research interests due to their advantages of using local connections to handle spatial dependencies
and sharing weights to reduce the number of training parameters. Moreover, due to the layer-wise
nature of the CNN, it makes hierarchical feature extraction doable.

In general, CNN architectures contain three parts: convolutional layers, pooling layers,
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and nonlinear transformations [41,42], which are shown in Figure 4. The convolutional layer acts as
the most important part of the CNN architecture, which is defined as follows:

xl
i = f

(
P

∑
j=1

xl−1
j ∗ kl

ij + bl
i

)
, (5)

where P indexes the feature map numbers, xl−1
j is the jth feature map of the (l − 1)th layer, and xl

i is

the ith feature map of the current (l)th layer. kl
ij refers to the weight of (l)th layer, which connects the

ith and jth feature maps. bl
i stands for the bias of the jth feature map in the ith layer. The function f is

a nonlinear activation function, and ∗ is the convolution operation.
A pooling layer can be added after the convolution layers in order to cluster spatially

discriminating signatures of the singal [43]. By pooling over a small window into a single value,
CNN could additionally extract invariant features as well as reduce the size of the feature maps.
The neuron in the pooling layer combines a small n× n patch of the corresponding convolution layer.
In this paper, the following max pooling [44] is employed:

xmax = max
n×n

(
xn×n

i u (n, n)
)

, (6)

where u (n, n) is a window function to the patch of the convolution layer, and xmax is the maximum in
the neighborhood.

Figure 4. An example of CNN feature extraction architecture for HSI data, which has three convolution
layers and two pooling layers. At last, the fully connected layer is shown as a part of the softmax layer.

Commonly, there would be a fully connected layer before the last softmax layer, where the input
feature maps would be further reshaped into a vector feature. Let us assume the input training patch
to be a c× c× b dimensional subset notated by tn (n = 1, 2, 3 . . . N) and the corresponding training
label to be yn, where N refers to the total amount of training samples. Based on the above theory,
the input subset tn would be reduced to a vector feature vn and fed into a softmax classifier as an input.
As an output, the softmax layer leads to multi-classes label possibilities of each input training patch,
which is shown as follows:

qm
n =

evm
n

∑M
m=1 evm

n
, (7)

where M is the number of classes, vm
n is the mth value of vector vn and qm

n refers to the possibility
of vn belonging to mth classes. Moreover, a predicted label would be determined by the maximal
possibilities as well as the loss function L as follows:

L = (−1)
M

∑
m=1

N

∑
n=1

ym
n log qm

n , (8)
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During the back-propagation of CNN, the weights kl
ij and biases bl

i would be optimized with a
stochastic gradient descent algorithm in order to achieve a minimized loss. With the convergence of
the loss function, these parameters would eventually be fixed.

Once the CNN training is achieved, the trained networks could further perform as feature
extractors by cutting off the coefficients of the last softmax layer [30]. Firstly, all spectral, spatial and
elevation features are feedforwad into the corresponding feature extraction networks with a pixel-wise
sliding window method, where input patches are sampled with a fixed window size centering at
every pixel. Then, the feature maps produced by the third convolutional layers are extracted as deep
feature outputs, which are shown as Feature map-3 in Figure 5. To be more specific, the softmax layer
plays different roles during the CNN training and classification. In the feature extraction, so to say,
training step, the softmax is taken into account to adjust the parameters in the back-propagation
algorithm. After the training, once all the parameters are fixed, the softmax is used as a multi-class
classifier, which can be replaced by any other classifiers. Here, MCK classifiers (SVM and ELM) are
implemented to replace the softmax layer for the final classification step, which simultaneously achieve
multi-sensor data fusion and classification.

It is believed that the HSI imaging process is inherently nonlinear [26], so the success of CNN
feature extraction mostly relies on the fact that networks progressively learn invariant information,
and allows us to extract high-level abstract features, which are more reliable due to their independence
from the most local details of input data. Furthermore, the consideration of spatial neighborhood
information during CNN feature extraction could lead to higher capability in handling image noise
problems such as the salt and pepper noise.

2.4. Data Fusion Using Multisensor Composite Kernels

The concept of the kernel method is using a nonlinear mapping function Φ (·) to transfer the
input data xi from the original feature spaceH into a higher Hilbert kernel feature spaceH′ , while the
nonlinear problem of feature spaceH could be transferred into a linear problem ofH′ . This theoretical
elegance of the kernel trick makes it an effective tool for HSI analysis due to its insensitivity to the
Hughes phenomenon [45].

With respect to the multi-sensor data fusion, heterogeneous features obtained by different sensors
would mostly have different scales, attributes, dimension channels and statistical significances [46],
while this fact also leads to the use of the multi-sensor composite kernels scheme that could treat
heterogeneous data sets separately. Based on the kernel concept, composite kernels (CK) can be
regarded as a multiple kernel learning (MKL) method, where the multi-sensor data could be implicitly
fused in a high-dimensional feature space. It is believed that learning from multiple kernels could
provide better similarity generating performance. For instance, by involving multi-scale RBF kernels
with different scale parameters σ, the best kernel with an optimal discriminating capability would
be derived [47]. In addition, it is also possible to embed the MCK method with machine learning
classifiers (such as SVM) in order to simultaneously optimize both different kernels parameter like:
σ and SVM’s hyperplane parameter C during the training step [19,24].

In terms of heterogeneous features, like spectral, spatial and elevation features, they may have
different contributions in the classification task. So, coupling different multi-sensor features to construct
multi-scale composite kernels can help to refine these contributions and promote the adoption of
complementary information from these heterogeneous features. It is necessary to clarify that CK mainly
contains three types: simple summation kernels, weighted summation kernels, and cross-information
kernels. Among three different types, simple summation kernels combining heterogeneous features
naturally come from the concatenation of individual transformations of multi-sensor information.
Although weighted summation kernels introduce a trade-off between heterogeneous features aiming
at better discriminating capability, an additional prior knowledge might be required, which remains
unknown in most case [48]. In this context, to balance the effect of different features, simple summation
composite kernels are implemented in the proposed framework.
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Let xw
i , xs

i and xe
i be the output of CNN spectral, spatial, and elevation features in their original

feature spaces H, respectively, which correspond with three nonlinear feature mapping functions
Φ1 (·), Φ2 (·), and Φ3 (·) into Hilbert space H′1, H′2, and H′3. Then, the following transformation
is generated:

Φ (xi) = {Φ1 (xw
i ) , Φ2 (xs

i ) , Φ3 (xe
i )} , (9)

A three-stream composite kernels could be then calculated with the dot product of Φ (xi):

K
(
xi, xj

)
=
〈
Φ (xi) , Φ

(
xj
)〉

= Kw

(
xw

i , xw
j

)
+ Ks

(
xs

i , xs
j

)
+ Ke

(
xe

i , xe
j

)
,

(10)

Here, the CK is formulated as the sum of positive definite matrices [49] independent from the
spectral, spatial and elevation components. As for the dimensionality, dim

(
xw

i
)
= Nw, dim

(
xs

i
)
= Ns,

and dim
(
xe

i
)
= Ne, dim (K) = dim (Kw) = dim (Ks) = dim (Ke). Importantly, solving optimization

problems in composite kernels requires the same number of constraints as in conventional SVM and
ELM algorithms. Therefore, no additional computational burden is introduced during the classification
process. Moreover, the nonlinear feature mapping functions in SVM and ELM could have different
constructions. For more details, please refer to [48,50].

For convenience reason, the following denotations are used in the experiment section: HSI shows
the classification accuracy of the hyperspectral data. EPHSI and EPLiDAR show the classification
accuracy of EMEP and EPs applied to hyperspectral images and LiDAR-derived images, respectively.
EPHSI + EPLiDAR denotes the classification accuracy of the stack of EPHSI and EPLiDAR.

3. Experiment

3.1. Data Descriptions

To evaluate the performance of our proposed fusion framework, two data sets containing both
hyperspectral and LiDAR data were carefully investigated in this paper.

The first data set is from an urban area of Houston, USA, which was originally distributed for the
2013 GRSS Data Fusion Contest [51]. The image size of the HSI and LiDAR-derived data is 349 × 1905
with a 2.5 m spatial resolution. The HSI data has in total 144 spectral bands, which ranges from
0.38 to 1.05 µm. Here, the HSI data is cloud-shadow removed (The enhanced data set was provided
by Prof. N. Yokoya from Technical University of Munich). Figure 5 shows a false color HSI together
with the corresponding training and test samples. The number of training and test samples are shown
in Table 1.

The second data set is from a rural area of Trento, Italy. The area of interest is in the southern area
of the city. Trento data set is composed of an HSI and LiDAR-derived DSM as well, which is the same
as in the Houston data set. The image size is 166× 600 pixels. The HSI data were obtained by the AISA
Eagle sensor, and the LiDAR DSM data were captured by the Optech ALTM 3100EA sensor, with a
spatial resolution of 1 m. The HSI consists of 63 bands ranging from 0.40 to 0.98 µm and a spectral
resolution of 0.09 µm. Figure 6 demonstrates a false color HSI together with the corresponding training
and test samples, and the number of training and test samples is shown in Table 2.
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Figure 5. Houston data set, from top to bottom: false color image, training samples image, and test
samples image.

Figure 6. Trento data set, from top to bottom: false color image, training samples image, and test
samples image.

3.2. Algorithm Setup

With respect to the EPs of hyperspectral and LiDAR-derived data used in this work, it is only
necessary to set up the number of desired extrema, then the generation of profiles will be fully
automatic. Since EPs are naturally data independent, this allows us to use a uniform parameter setting
for co-registered multi-sensor data such as HSI and LiDAR-derived data. Here, the setup followed the
same as suggested in [23]. For EMEP of HSI, we considered first three informative components of ICA
with EPs for area, volume, height, standard deviation and diagonal of the bounding box while the
values of n are automatically denoted by

[
3j], where j = 0, 1, . . . , s− 1, with s equals to seven in our

case. All the EPs were produced using the four-connected connectivity rule.
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As for CNN feature extraction, the CNN architecture shown in Figure 7 was taken into account.
three similar architecture networks have been trained for each individual data set, namely spectral
net, spatial net, and elevation net. The size of the sampling neighborhood window was set to 28× 28,
the pooling window to 2× 2, and all data were linearly mapped into [−0.5, 0.5]. In consideration of
getting sampling image patches, all images input to CNN were padded with a mirror edges with
14 pixels. By classifying every pixel with a sliding window method, all images kept constant sizes
during CNN feature extraction. Having the limited number of training samples and the small input
patches size, the CNN was restrained to only three convolution layers, and pooling layers were
followed as well. For training CNN from scratch, the mini-batch size was set to 100, and the training
epoch number was 120. To build a robust network, sparse-based regularization techniques, like batch
normalization (BN) and rectified linear unit (ReLU), were considered as well [52,53].

Figure 7. Detailed information on CNN designs, which lists the feature map size of each layer.
Kernels size, number, and weights are also explained in detail. P is the input feature map number and
M is the number of classes.

For SVM and ELM classifiers, SVM with an RBF kernel was used in this work, and the
optimal hyperplane parameters C and σ were tuned in the range of C = −4,−3,−2, . . . , 16 and
σ = −12,−11, . . . , 3 using the fivefold cross-validation algorithm. Then, ELM with the sigmoid
activation function was adopted, and the hidden layer parameters ai and bi were randomly generated
based on uniform distribution from the range [−1, 1]. Meanwhile, the number of hidden nodes L was
set to 1000, as suggested in [36].

4. Discussion

4.1. Classification Results

Tables 1 and 2 list the overall accuracy (OA), average accuracy (AA), and Kappa coefficient (K)
for the Houston and Trento data sets, which indicated the performance of our proposed framework.

As shown in Table 1, morphological EPLiDAR can significantly outperform in classification
accuracy compared with the results which the classifiers SVM and ELM are applied directly to
LiDAR, which improves OA by 28.96% and 36.26% for SVM and ELM, respectively. Otherwise,
HSI achieves less improvement compared to EPHSI. The possible reasons could be that the EMEP
used for EPHSI only consider the first three independent components, which cannot fully consider the
rich spectral information consisted in HSI. Due to this fact, HSI could better classify several classes
(e.g., Grass Healthy, Grass Stressed, and Tree) than EPHSI. Moreover, it can be seen that the joint use
of spectral, spatial, and elevation information derived from HSI and LiDAR data outperforms the
individual use of each single data source. For instance, EPHSI + EPLiDAR improves EPLiDAR by 10.99%
and 14.52% using SVM and ELM, respectively. Similarly, EPHSI + EPLiDAR slightly outperforms EPHSI
in OA, AA, and K, which further confirms the superior classification performance by considering
the complementary information from HSI and LiDAR. The proposed framework obtains the best
classification performances in Houston data set, which achieves to the best OA over 92%. In case of
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ELM, our proposed framework significant improves EPHSI + EPLiDAR by 8.34% in OA and 5.95% in
AA. Due to the fact that most morphological-level features (such as, EMEP and EPs) are naturally
redundant and require further invariant feature extraction, so this improvement could be attributed to
the advantages of simultaneously making use of low-level morphological features and high-level deep
features. In addition, experiments were also conducted based on the deep fusion method proposed
in [10]. In this case, instead of applying the implicit MCK fusion scheme in kernel space, deep features
were explicitly concatenated and then fed into a Softmax classifier. The proposed framework improves
the deep fusion method by 1.97% in terms of OA, which confirms that the consideration of MCK fusion
scheme could outperform the feature stacking strategy. By including all three streams information into
one MCK fusion framework, the proposed framework reports the best classification result in 8 classes
for Grass Stressed, Soil, Residential, Commercial, Road, Parking Lot 1, Parking Lot 2 and Tennis Court.

As shown in Table 2, the effectiveness of EPs features is further confirmed that EPs can significantly
improves HSI and LiDAR in terms of OA, AA, and K for both SVM and ELM results. This fact confirms
that the consideration of contextual information extracted by EPs is beneficial in both urban and
rural areas. In addition, EPHSI + EPLiDAR shows the same superior performance with respect to the
individual EPHSI and EPLiDAR. Due to the fact that rural areas as Trento data set are of less complex land
cover classes structures than Houston data set, the fused profiles EPHSI + EPLiDAR could be already
satisfying enough to derive classification results with OA over 97%, while the proposed framework
could further promote the classification performance in both OA, AA, and K. Moreover, compared to
the deep fusion method [10], the proposed framework reports better classification accuracy in 5 classes
for Apple trees, Buildings, Ground, Wood, and Vineyard. In this context, the effectiveness of our
proposed framework has been fully demonstrated in both urban and rural scenes.

To sum up, the classification results from Houston and Trento data sets show that the proposed
framework outperforms either the individual data source or the fused EPs profiles in terms of
classification accuracy, and also confirm the robustness of the proposed three-stream CNN feature
extraction based on EPs features in both urban and rural areas. Moreover, the consideration of MCK
fusion scheme is proven to be more effective than common feature stacking method, which achieves
multi-sensor data fusion by establishing and training the corresponding composite kernels.

Figures 8–11 give a demonstration of the selected classification maps that are reported in
Tables 1 and 2 in the following order: Flase color image together with ground truth mask, (a) is the
SVM output on HSI data, (b) is the SVM output on the stack of EPHSI + EPLiDAR data, (c) is the
proposed fusion framework output using an SVM classifier, (d) is the ELM output on HSI data, (e) is
the ELM output on the stack of EPHSI + EPLiDAR data, and (f) is the proposed fusion framework
output using an ELM classifier. In case of Figure 8, for the Houston data set, it is obvious to
see that the joint use of hyperspectral and LiDAR data can extract more land cover details about
inter-classes areas. For instance, the left part of Houston has been misclassified to Residential by the
individual use of HSI, while the fused EPHSI + EPLiDAR can better distinguish between Residential and
Commercial. In addition, the adoption of EPs can reduce the salt and pepper noise and homogenize
the classification map compared to HSI with a certain degree. As can be seen, the proposed framework
can further mitigate this salt and pepper phenomena and provide the most homogeneous classification
maps. This improvement can be attributed to the design of the three-stream CNN feature extractors,
which considers the spatial neighboring information by involving a series of convolution and pooling
operations during networks training steps. In the meantime, it is evident that the proposed framework
can extract more precise shapes of different class objects, which is of great importance in accurate
classification, especially in complex urban scenes.
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Table 1. Classification results of Houston data set using SVM and ELM. The best result is shown in bold.

HSI LiDAR EPHSI EPLiDAR EPHSI + EPLiDAR Proposed Framework Deep Fusion [10]

Classes Train/Test SVM ELM SVM ELM SVM ELM SVM ELM SVM ELM SVM ELM Softmax

Grass Healthy 198/1053 84.14 90.98 38.89 6.36 76.45 72.27 58.88 62.30 78.16 80.82 76.92 76.92 81.58
Grass Stressed 190/1064 95.68 97.65 42.27 34.59 83.65 79.42 57.71 42.58 80.73 84.77 96.33 98.40 92.11
Grass Synthetic 192/505 100.00 100.00 98.61 71.09 100.00 100.00 99.01 85.54 100.00 100.00 89.50 90.50 93.07

Tree 188/1056 98.96 94.70 61.84 29.64 81.82 81.91 68.94 62.97 96.02 88.35 93.75 96.12 94.22
Soil 186/1056 97.82 99.62 61.84 10.32 96.02 95.36 80.87 76.42 96.40 98.67 95.64 99.62 98.77

Water 182/143 95.10 88.81 74.83 66.43 95.80 92.31 76.92 76.92 95.80 95.80 95.10 95.80 97.90
Residential 196/1072 78.82 82.92 44.31 48.51 75.75 65.11 80.41 64.83 72.48 74.44 92.26 95.15 89.27
Commercial 191/1053 44.54 77.02 44.54 60.87 85.66 46.44 72.65 70.56 91.45 78.16 93.35 94.59 91.17

Road 193/1059 74.88 65.16 55.34 40.60 65.82 68.18 57.41 57.79 68.78 69.08 87.25 93.20 87.63
Highway 191/1036 79.83 77.61 9.07 36.39 75.77 66.22 67.95 64.00 73.65 74.13 85.04 88.42 90.06
Railway 181/1054 89.28 72.87 32.26 0 87.86 95.16 99.72 99.53 87.86 92.12 95.35 93.83 96.49

Parking Lot 1 192/1041 63.11 41.02 33.62 0 79.54 75.31 74.26 77.23 84.05 82.90 92.03 92.41 84.63
Parking Lot 2 184/285 75.79 68.42 34.04 39.30 81.40 75.09 55.09 65.61 77.89 78.95 79.65 84.56 81.75
Tennis Court 181/247 100.00 99.19 26.32 95.95 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Running Track 187/473 98.10 98.73 32.56 95.56 99.37 98.73 73.78 86.89 99.15 98.73 77.59 87.74 86.26

OA(%) 82.66 81.80 44.80 33.45 82.77 77.27 73.76 69.71 84.75 84.23 90.22 92.57 90.60
AA(%) 79.75 77.06 43.52 39.73 80.19 80.77 70.56 72.68 81.47 86.53 84.36 92.48 85.31

K 0.8123 0.7939 0.4019 0.3826 0.8133 0.7939 0.7156 0.7073 0.8347 0.8557 0.8938 0.9193 0.8981

Table 2. Classification results of Trento data set using SVM and ELM. The best result is shown in bold.

HSI LiDAR EPHSI EPLiDAR EPHSI + EPLiDAR Proposed Framework Deep Fusion [10]

Classes Train/Test SVM ELM SVM ELM SVM ELM SVM ELM SVM ELM SVM ELM Softmax

Apple trees 129/3905 91.52 89.55 41.25 0 100.00 100.00 99.05 95.29 98.80 99.80 99.59 94.11 99.28
Buildings 125/2778 84.67 78.04 84.88 65.08 98.78 99.42 96.22 73.72 99.32 99.60 99.89 100.00 90.03
Ground 105/374 96.52 94.12 37.70 0 96.52 92.25 58.29 61.50 32.62 69.79 71.93 73.80 54.01
Wood 154/8969 96.43 86.41 93.77 87.85 100.00 100.00 97.38 95.55 99.87 100.00 99.97 100.00 99.72

Vineyard 184/10317 78.32 56.50 74.07 97.96 99.64 99.12 61.11 67.12 99.88 95.95 99.62 99.93 99.34
Roads 122/3252 67.92 74.02 66.48 0 70.97 74.51 70.02 69.79 84.93 88.96 90.83 85.29 97.80

OA(%) 85.35 74.35 75.49 67.34 96.70 96.89 81.43 80.37 97.27 97.18 97.91 97.33 97.83
AA(%) 73.63 79.77 56.88 35.84 80.84 94.22 68.87 67.16 73.63 92.66 79.47 92.19 77.17

K 0.8067 0.7573 0.6740 0.3018 0.9558 0.9306 0.7646 0.7259 0.9634 0.9119 0.9729 0.9063 0.9710
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Figure 8. Houston: Classification maps, (a–c) SVM result on: HSI, EPHSI + EPLiDAR, and Proposed
fusion framework; (d–f) ELM result on: HSI, EPHSI + EPLiDAR, and Proposed fusion framework.

To have a more detailed visual comparison in the Houston area, the classification maps of two
sub-areas are shown in Figure 9. The undesirable misclassification can be seen when adopting HSI
only, where two sub-areas are misclassified to either Residential or Railway, which results in poor
classification accuracy. By taking advantage of the complementary information of HSI and LiDAR,
as well as the discriminant capability of morphological EPs features, EPHSI + EPLiDAR can better
differentiate different objects and yield more detailed spatial pattern. The reduction of salt and pepper
noise is till not satisfying enough, especially in the transitional region of different classes. In this
context, our proposed fusion framework can further outperform the fused EPs features due to the
consideration of CNN feature extraction based on morphological EPs, which makes use of the spatial
neighboring information by adopting convolution and pooling layers. To this end, such consideration
could further lead to superior performances in both the reduction of noise and the preservation of
spatial patterns. The above-mentioned fact confirms that the attempt of combining low-level features
and high-level features in the proposed framework is more effective when considering better noise
reduction and higher classification accuracies.
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Figure 9. Houston: Close classification maps of two sub-areas, (a–c) SVM result on: HSI, EPHSI + EPLiDAR,
and Proposed fusion framework; (d–f) ELM result on: HSI, EPHSI + EPLiDAR, and Proposed fusion
framework.

Figure 10. Trento: Classification maps, (a–c) SVM result on: HSI, EPHSI + EPLiDAR, and Proposed
fusion framework; (d–f) ELM result on: HSI, EPHSI + EPLiDAR, and Proposed fusion framework.
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Figure 11. Trento: Close classification maps of two sub-areas, (a–c) SVM result on: HSI, EPHSI + EPLiDAR,
and Proposed fusion framework; (d–f) ELM result on: HSI, EPHSI + EPLiDAR, and Proposed fusion
framework.

Figure 10 illustrates the classification maps obtained by different methods on the Trento data
set. From the visual comparison, one can obtain the same conclusion as for the Houston data
set that the proposed framework significantly reduces the salt and pepper noise, and leads to
better classification accuracy at the meantime. As can be seen in the first sub-area of Figure 11,
either HSI or the fused EPHSI + EPLiDAR classifies the large Vineyard area into Building by mistake,
while the proposed framework shows a significant improvement in obtaining more homogeneous
and accurate classification results. However, the proposed framework slightly outperforms the
fused EPHSI + EPLiDAR in terms of the classification accuracy (see Table 2). This outperformance in
noise reduction confirms the advantage of our proposed framework in producing more homogeneous
classification maps without degrading the classification accuracy. By taking this advantage, the proposed
framework can also help to save the post-processing effort.

4.2. Comparison to State-of-the-Art

With respect to the widely used Houston data set, which focuses on more challenging complex
urban areas, Table 3 compares the classification accuracy of the proposed fusion framework with
the state-of-art methods introduced in [8–12]. Since in all those works, exactly the same sets of
training and test samples were used, therefore the obtained results are fully comparable. From Table 3,
our proposed fusion framework improves the graph-based feature fusion (GBFF [6]) method based
on EPs and CNN in [8], the EPs fusion method introduced in [12], the deep two-stream fusion
method introduced in [10], the sparse and low-rank method introduced in [9], and the low-rank and
total variation method introduced in [11] in terms of OA by 1.55%, 1.25%, 2.64%, 1.27%, and 0.12%,
respectively. Our proposed fusion framework also achieves the highest Kappa coefficient and the
second highest AA among these state-of-art methods. There are two main reasons for this superior
performance: First, this improvement is due to the benefits of invariant features learned by combining
high-level CNN feature extraction and low-level morphological EPs, which are of great importance for
the following fusion and classification steps. Next, compared to different feature fusion strategies
introduced in the aforementioned papers [8–12], the proposed MCK fusion scheme takes advantage of
multiple kernel learning methods and allows us to integrate multi-sensor data in a more robust and
effective way, which eventually leads to further accuracy improvement.
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Table 3. Classification results of Houston data set using standard training and test samples. The best
result is shown in bold.

Method in [8] Method in [12] Method in [9] Method in [10] Method in [11] Proposed

HSI + LiDAR GBFF EPs Fusion SLRCA Deep Fusion OTVCA

OA(%) 83.33 91.02 89.93 91.30 91.32 92.45 92.57
AA(%) 82.21 91.82 91.02 91.95 91.96 92.69 92.48

K 0.8188 0.9033 0.8910 0.9056 0.9057 0.9181 0.9193

5. Conclusions

In this paper, a novel framework is proposed for the fusion of multi-sensor HSI and LiDAR-derived
data based on convolution neural networks and composite kernels. Using the extinction profiles of HSI
and LiDAR data, as well as the original HSI data, a three-stream CNN feature extraction approach is
carefully designed to extract abstract and invariant features from different spectral, spatial, and elevation
data, respectively. Then, the MCK fusion scheme is implemented to fuse the outputs of CNN feature
extraction to produce the final classification results. Results from two data sets confirm the effectiveness
and robustness of our fusion framework in both urban and rural areas. The proposed framework
reports the highest OA of 92.57% and 97.91% and Kappa coefficient of 0.9193% and 0.9729% for Houston
and Trento data sets, individually. Especially for Houston data set, the proposed fusion framework
reports competitive classification performance compared to state-of-the-art, which leads to general
OA improvements of around 2%. Moreover, the proposed fusion framework achieves a significant
improvement in terms of noise reduction for both data sets by producing homogeneous classification
maps. Although simple summation of the composite kernels are implemented for the purposed of
classifying multi-sensor data, the proposed method achieves superior classification performances on
two widely used data sets. This encourages researchers to consider more sophisticated approaches
such as the generalized composite kernels in [19] to further improve the classification accuracy in
future works. Moreover, the proposed fusion framework can be regarded as a general data fusion
framework, which can be easily applied to other data sets containing both hyperspectral and LiDAR
data. Last but not least, the attempt of combining low-level hand-crafted features (obtained by EPs)
with high-level deep features (obtained by the proposed CNN FE) shows great potentials for HSI
feature extraction and noise reduction.
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