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Abstract

While we cannot efficiently emulate quantum algorithms on classical architectures, we can move the weight of complexity
from time to hardware resources. This paper describes a proposition of a universal and scalable quantum computer emulator,
in which the FPGA hardware emulates the behavior of a real quantum system, capable of running quantum algorithms while
maintaining their natural time complexity. The article also shows the proposed quantum emulator architecture, exposing a
standard programming interface, and working results of an implementation of an exemplary quantum algorithm.
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1 Introduction

It has been over 30years since the idea of using quantum
circuits to perform computational tasks was first proposed.
In spite of the rapid growth of our knowledge in quan-
tum physics, a fully workable quantum computer of a
desired scale still remains outside our reach. Many different
approaches have been taken, from nano-scale superconduct-
ing circuits to ion-traps. Yet, we are still far from running
most of the already developed quantum algorithms in a useful
scale. What cannot be denied, however, is the great poten-
tial and power of quantum computing. This is what drives
researchers around the world to develop new algorithms for
machines that we cannot be sure will ever come to existence.

The praised quantum speedup of many famous algorithms
comes from massive parallelism in quantum computation.
However, as it was suggested by Richard Feynman and
stated by the Quantum Strong Church-Turing Thesis, only
quantum machines are capable of efficient emulation of
quantum circuits [1]. In other words—there is no physical
way to achieve the quantum speedup on classical, sequential
machines. Emulation of any quantum algorithm on a standard
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computer will often require exponentially more time than it
would on a quantum machine. While we cannot bypass that
need for resources when emulating quantum circuits, we can
shift the weight from time to hardware complexity. This is
where field-programmable gate arrays, or FPGAs, come to
help us.

This paper describes an approach to build a very scalable,
easily parametrized and programmable universal quantum
computer emulator, reflecting natural behaviors of real quan-
tum circuits. We designed the hardware to physically emulate
qubits, with quantum manipulation methods provided by uni-
tary matrices and a randomizer to introduce the uncertainty
of quantum systems (as seen in FPGA section in Fig. 1).

Our primary objectives included:

— Natural parallelization—every gate can be applied to the
state in a single operation/clock-tick, regardless of the
number of emulated qubits

— Universality—rather than pre-implementing gates, our
design can run any gates sent by the user to the processor

— Code-level scalability—modifying a single parameter in
our code is enough to change the emulated qubits count,
numerical precision and other processor parameters.

Our implementation can be viewed as a reproduction of a
physical, universal quantum computer, where our hardware
qubits replace ion traps or particle spins, and manipulation
matrices imitate precise lasers or magnetic field generators.
The created system is capable of running any quantum algo-
rithm completely in hardware (only limited by available
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Fig.1 Quantum system overview

FPGA resources), while maintaining time complexity and
reflecting natural behaviors of quantum circuits, including
parallelism. The processor exposes a standard programming
interface, allowing the user to design and use any quantum
gates from the software level, without any hardware modifi-
cation.

2 Motivation

Today, we are at the very beginning of a quantum revolu-
tion. Companies such as IBM [2], Rigetti [3] or D-Wave
[4] are investing in building physical quantum computers
and exposing programmable interfaces to users around the
world through cloud solutions. At the same time, real quan-
tum machines still have a long way to go before they become
truly universal, stable and scalable. Many of today’s architec-
tures are specifically tailored to run specialized algorithms,
such as quantum annealing [5]. Furthermore, spontaneous
decoherence, state preparation and measurement faults, or
the engineering challenge of creating entangled states, are
serious problems that we are learning to solve in the real
world. For these reasons, quantum emulators are still being
designed and built to help on different frontiers of the quan-
tum revolution.

The goal of our work described in the article was to build a
quantum computer emulator, which from user’s perspective
would behave like a real quantum computer. The primary
focus was to ensure that every operation is naturally paral-
lelized, and therefore every transformation on the n-qubit
state is completed in a single clock-tick.

However, it was not our intention to simulate actual phys-
ical phenomena that would take place in a physical quantum
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machine. Instead, we wanted to provide users with the com-
fort of running a universal emulator that delivers results
practically as fast as a quantum machine would, but without
having to pay attention to error correction and other unde-
sired side-effects. Therefore, the current design of our system
emulates a quantum computer composed of perfect qubits.

Thanks to this approach, we hoped to enable users to
design, test and iterate on quantum algorithms without the
need to own, run and maintain an actual quantum computer.
With this in mind, we considered spontaneous decoherence,
state setup uncertainty and measurement faults to be imper-
fections of today’s real quantum systems and, therefore, did
not implement them in our design.

Because of the complexity of the problem, as well as
hardware limitations (small available FPGA chips), we had
to compromise on some of the important implementation
details. In the end we were only able to synthesize a two-
qubit system. One of the most significant settlements was
to use fixed-point number representation (based on [28]),
which allowed us to dramatically reduce the need for FPGA
resources, while limiting precision to a point that may be
problematic for certain algorithms. We have not described
this problem extensively, however, as the modular design
allowed us to abstract the implementation of number repre-
sentations, and we plan on replacing it with a much more
precise floating-point engine in the future. The synthesized
10-bit fixed-point number representation was sufficient for
the tested Deutsch Algorithm, as described in Sect. 8.

Another implementation choice driven by the need for
simplicity in the first iteration was to implement quantum
state processing as matrix—vector multiplications. The uti-
lized approach is correct and universal, reflecting a traditional
mathematical way of representing a quantum system’s evo-
lution. It is also easy to scale from code level, as described in
Sect. 6.4, which was one of our main objectives. However,
much more efficient computing methods for quantum state
evolution, including those proposed by Nikahd et al. [26] or
Viamontes et al. [27], already exist. Our choice allowed us to
achieve our initial goals in the first iteration, and we plan to
research and implement a more efficient method in the future
versions, while keeping the universality and code-level scal-
ability of the current solution.

Thanks to code-level scalability and modularity, the pro-
posed architecture is designed to be easily extendable and
flexible, allowing for simple iterative improvements. As
larger FPGA chips become available, changing single param-
eters in our code enables growing the number of emulated
qubits or improving numerical precision. Examples of easily
scalable code include state transformation parametrized by
emulated qubit count (as described in Sect. 6.4) or numer-
ical type definition abstracted and defined in a single place
(as described in Sect. 6.2). Furthermore, any of the existing
modules, such as those responsible for state transforma-
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tion or measurement, can be easily adjusted or replaced
through modifying single, isolated pieces of code. It should
be emphasized that we have described the first iteration of
our approach, which was focused on building and verifying
the architecture in practice, and thanks to our design it can
be progressively improved in future iterations.

While our emulator utilizes the massive parallelism of an
FPGA chip, it does so to emulate natural quantum paral-
lelism, rather than to achieve the speed-up itself. Because
every transformation in our design takes a single clock-tick,
we can speed the design up by increasing the clock frequency
as far as our FPGA hardware allows us. With every additional
emulated qubit, if we can maintain the clock-frequency, our
design gains an exponential advantage over sequential soft-
ware emulators, thanks to an asymptotically faster hardware
architecture. At the same time, we have not analysed the
emulation speed, as it was not one of our initial objectives in
itself.

To keep the design simple, universal and cross-compatible
(including for future FPGA chips), we resigned from direct
use of specialistic (and quite often custom) computational
and memory modules, such as DSP or BRAM, available
in today’s FPGAs. Of course, it does not mean the mod-
ules are not used in our synthesized hardware—we left it
for the compiler and synthesizer to decide where and when
such improvements will be applied, using various available
resources of the target chip. This way our architecture is com-
pletely independent of the hardware and truly universal.

3 Existing work

There are many approaches to emulate or simulate quantum
computers. Many of them are built around GPU processors,
multiprocessor systems or even supercomputers and focused
on reducing the time necessary to emulate quantum algo-
rithms on classical architectures [6—9]. While these solutions
often provide useful tools to simulate outcomes of running
quantum algorithms, they do not offer the time-complexity
obtained by using real quantum computers.

FPGA technology provides an attractive opportunity to
leverage its massive parallelism to completely emulate the
time-speedup of quantum machines. There are many pro-
posed emulator architectures based on FPGA circuits, but
none of them are fully focused on simple, naturally parallel
emulation of quantum circuits.

VHDL library proposed by Khalid et al. [10] puts empha-
sis on efficient computation of quantum circuits through
analyzing code and ensuring it is implemented in the most
efficient way on the FPGA. In their solution, the authors
decided to model quantum circuits from pre-implemented
gates, that are designed for fast execution on FPGAs and pro-
vided as a VHDL library. Therefore, the quantum circuit to be

emulated must be known before synthesis. In our approach,
hardware is built to run any quantum gates that can be rep-
resented by complex number matrices. Transformations are
dynamically loaded from the software level, while the pro-
cessor itself is gate-agnostic and universal. Furthermore, in
our implementation, quantum measurement is fully paral-
lelized and performed in hardware, as opposed to a software
solution utilized by the authors of [10]. Finally, our design is
built to emulate a quantum processor connected to a classi-
cal machine, allowing to run complete quantum algorithms in
hardware, consisting of any number of gates, including state
preparation, computation and measurement. This stands in
contrast to using VHDL to synthesize hardware to speed-up
parts of quantum algorithms, as described in [10].

Goto and Fujishima [11] designed a solution making use
of unitary macro-operations, allowing memory-efficient sim-
ulation of quantum circuits on FPGA and corresponding to
classical processors’ behavior. Their approach was concen-
trated on decomposing macro-operations in software to some
pre-designed hardware operations, and then running them in
parallel on hardware, rather than trying to emulate physical,
universal quantum computers.

Lee et al. [12] conducted extensive research on existing
solutions and prepared a software—hardware system to emu-
late quantum computation with high precision and efficiency.
The authors took an innovative approach of mixing paral-
lel and serial processing on FPGA, which allowed them to
achieve desired speedups without hardware resources’ expo-
nential growth. While this design provides great tools for
quantum algorithm analysis, it was not focused on reflect-
ing natural, fully parallelized behaviors in hardware. Every
quantum operation emulated in our system is completely par-
allelized, which contributes to exponential growth of required
hardware resources with every emulated qubit, but provides
a closer reflection of natural quantum systems.

Problems with exponential growth of space and time com-
plexity during simulation of larger quantum circuits were
also addressed by Franka et al. [13]. They designed and
conducted empirical complexity measurements of a working
software prototype of a quantum computer simulator avoid-
ing excessive space requirements. Rather than to emulate
quantum systems in hardware, its purpose was to provide a
space-efficient model for running quantum algorithms, with
agreement for some space—time tradeoffs.

Negovetic et al. [18] has proposed a software—hardware
system for emulating quantum circuits on FPGAs. They pre-
sented two approaches: one where a software preprocessor
converts quantum netlists into HDL that can be then syn-
thesized and ran on FPGA, and an evolvable one, where
software generates a netlist satisfying problem constraints,
and then gets it translated into hardware as in the first case.
The authors also considered moving the netlist generation
entirely to hardware. While both of the described solutions
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utilize FPGA parallelism to speed-up quantum computation
emulation, they require re-synthesizing hardware according
to generated HDL for every algorithm. This stands in contrast
to our design, where software dynamically loads gate matri-
ces to hardware to emulate any quantum algorithm without
resynthesis. Furthermore, our architecture allows quantum
gate matrices of any size, only limited by the number of emu-
lated qubits, compared to only 1- and 2-qubit gates proposed
in [18].

Fujishima et al. [19,21] proposed a very interesting
approach of utilizing FPGAs for high-speed quantum com-
puting emulations with small memory requirements. The
described architecture was designed to solve search-based
problems. Utilizing the fact that initial state amplitudes
would be always either O or Lm, where m is the number
of possible solution candidates, the proposed logic quantum
processor represents initial amplitudes with single bits, rather
than complex numbers, contributing to large memory savings
and computation speed. The emulator also included stochas-
tic bit error simulation to help emulate quantum systems’
behavior. Fujishima et al. [20,22] proposed an improved
design, where rather than storing the entire quantum state
vector, the architecture includes a quantum index proces-
sor, which only keeps track of the indices of bits set to 1
in the state. This resulted in even greater memory savings,
which allowed for synthesis of a massive 75-qubit emulator.
While the proposed architectures have proven to be very fast,
the emulated quantum operations are restricted to Walsh—
Hadamard and C-NOT gates, and a non-quantum INQUIRY
operation is added to enable emulation of certain algorithms
(like Shor’s factorization algorithm [25].) The architecture
proposed in our paper is less optimized for fast emulations,
but is fully universal and capable of running any quantum
gates and algorithms, limited only by the number of emu-
lated qubits.

Aminian et al. [23] has described a universal and effi-
cient method of emulating quantum circuits on FPGAs. The
authors proposed an efficient way to emulate a universal set
of quantum gates on FPGA hardware and tested multiple
algorithms constructed from gates in the set. This interest-
ing and scalable approach focuses on emulating particular
gates in hardware and using them to emulate quantum algo-
rithms. However, it does not allow direct usage of any desired
quantum gate in hardware without increasing circuit depth,
as opposed to our solution, where any gate matrix can be
dynamically loaded into hardware without resynthesis.

There is also an interesting proposition of QuIDE software
solution [14], providing a quantum computer simulator with
an integrated development environment. It has been designed
to create quantum programs with code (C# QulDE library),
as well as with a graphical circuit designer. The authors are
working on a bridge between the IBM-Q environment [2] and
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their own QuIDE simulator. Software tools such as QuIDE
are focused on providing tools for easier quantum algorithm
design and not on any form of emulating quantum speedup.
However, there are also many other quantum computer emu-
lators for PCs, including QDD emulation library for C++
[24], focusing on optimal use of memory and processing
power for the fastest emulation of quantum circuits on clas-
sical, sequential architectures.

In general, existing approaches can be divided into three
categories:

— Efficient emulation of quantum algorithms from a pre-
built set of operations focused on time and/or hardware
resources used, rather than reflecting physical behav-
ior and universality of a quantum computer. Proposed
designs included HDL libraries, often together with pre-
processing software, as well as CPU-like solutions

— Emulating behavior of chosen physical quantum cir-
cuits. Those solutions were mostly focused on reflecting
physics of a selected group of synthesized circuits,
built from tools provided in HDL libraries, rather than
constructing a processing unit with a universal set of
instructions and able to execute any quantum algorithm

— Tools for designing and running quantum algorithms on
classical architectures. Proposed tools are focused on
providing the user the ability to write and run quantum
algorithms on their classical machines, without focusing
on emulating natural massive parallelism characteristic
for quantum computers.

In our approach, we decided to design a universal archi-
tecture, providing a standard programming interface (set of
instructions), while emulating physical quantum circuits in
hardware. Our design for FPGA consists of modules respon-
sible for emulation of parts of quantum circuits, such as
quantum state, gates and measurement hardware, while being
easily programmable by code sent from a connected PC (as
shown in Fig. 1). Although in some cases it may not be the
most efficient in terms of FPGA resources or emulator-PC
data transfer time, proposed solution fully reflects mathe-
matical representation of a quantum computer’s behavior, is
capable of running any quantum gates loaded from software
while maintaining a computation’s natural time complexity
and is usable in a way similar to classical CPUs.

While many hardware—software systems for quantum
computing emulation already exist, they are mostly focused
on using software to utilize hardware more efficiently (as in
[10-12,18]). In contrast, our approach decouples hardware
from software, and the latter is only used to provide program-
ming abstraction for the former. Our processor is designed to
run entire quantum algorithms, including state preparation,
evolution and measurement, completely in hardware, while
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software allows the programmer to focus on the algorithm,
rather than the use of machine interfaces.

4 Theoretical background

To emulate quantum algorithms using classical hardware, we
needed to decide which quantum computer phenomena we
need to implement and how to do so. The goal of this sec-
tion is to briefly introduce some of the most important ideas
behind quantum computing, before describing our approach
to reflect them in our solution.

4.1 Quantum versus classical information

The fundamental difference between quantum and classi-
cal computation lies in information representation. Classical
information science uses bits to describe the world, where
each bit represents a single value: O or 1. Deterministic infor-
mation processing is, in essence, a manipulation of such
binary values. Probabilistic computation introduces proba-
bilistic bits, which return O or 1 with some probabilities pg
and p1, respectively. Classical probabilistic computing can
be viewed as manipulating those probabilities for every out-
put bit. Quantum information is stored in quantum bits, or
qubits, which can make use of some unique phenomena only
encountered in quantum physics. State of a single qubit can
be described by a pair of complex numbers, as quantum state
descriptions belong to some vector space over complex num-
bers with inner product of vectors (usually called Hilbert
space).

4.2 Quantum bits

There are three main phenomena that are unique for quantum
bits:

— Superposition—every qubit can be represented as a mix-
ture of two base states, |0) and |1), with certain complex
amplitudes. In other words, a qubit can be both 0 and 1
at the same time, but only one of those values will be
returned when the qubit’s value is checked (during an
operation called measurement).

— Entanglement—multiple qubits can be entangled, form-
ing a single coherent quantum state that can only be
interfered with as a whole. Entangled qubits react to
changes together, even if we interfere with just a single
qubit and the whole system is spread across great dis-
tances (this is what Albert Einstein described as ”spooky
action at a distance”).

— Interference—because entangled qubits form a coherent
system, changes made to one of them causes shifts in
amplitudes of all the others.

Utilizing all three of these in quantum information repre-
sentation and processing allows us to achieve extreme, even
exponential, speedups in computation.

4.3 Quantum circuit model

While a Turing machine is probably the most popular model
of computation, another commonly used one is the circuit
model. Information processing can be viewed as a series of
operations performed by a set of gates on a group of par-
allel binary inputs, flowing through some paths (wires). A
widely used model for quantum computing is an analogy to
the latter and is called a quantum circuit (or quantum gate)
model of computation. In this case, we envision algorithms
as series of unitary transformations performed by quantum
gates on some quantum state register, rather than qubits flow-
ing through the gates via some paths (which would hardly
reflect physical possibilities).

It should be noted that one of the requirements in quantum
computing is reversibility of computation (which comes from
laws of quantum mechanics). Because all quantum gates rep-
resent unitary operations, this is naturally fulfilled, so that for
an output of any quantum gate we can determine what the
input was [15].

In mathematical notation, we may represent a quantum
state with a vector of complex values (amplitudes of all pos-
sible states), and quantum gates as unitary matrices of such.
Therefore, computation may be viewed as series of matrix—
vector multiplications.

5 Emulating quantum circuits

According to the Quantum Strong Church-Turing Thesis,
only quantum computers can effectively simulate them-
selves. As every qubit can represent both 0 and 1 at the
same time, n qubits are capable of carrying a state of 2"
numbers. This leads to an easy observation that emulating
quantum systems using classical information representation
requires exponentially more resources than it would on a
quantum computer. Apart from clear memory restrictions
(storing state of a system consisting of a few tens of qubits
quickly becomes impractical, if not impossible), processing
such a state is problematic itself.

Software emulators simply unroll quantum parallel trans-
formations and perform them sequentially, in single steps.
For every possible quantum state (and for n emulated qubits
there are 2" possible states), an amplitude must be com-
puted. Of course, time complexity of such an approach makes
it hardly possible to emulate transformation of as little as
30 qubits (which corresponds to series of multiplications of
square matrices sized 23% by 239 and a complex vector of size
1 by 23%). FPGA circuits allow us to parallelize this compu-
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tation, which leads to massive performance improvements.
However, we cannot run away from the Quantum Strong
Church-Turing Thesis, and this speedup comes at a cost of
exponential hardware resources.

Depending on the approach, there are designs parallelizing
the whole process or just parts of it, which results in differ-
ent balances between time and resource requirements. An
often-overlooked part is the implementation of quantum mea-
surement, which in reality also relates to exponential amount
of operations performed simultaneously, as measurement of
a single qubit may affect all other qubits in the state. Many
designs chose to perform it sequentially to save limited hard-
ware resources.

In our solution, every operation of the emulated quantum
computer is represented by a single instruction in the pro-
cessor, fully parallelized and performed in one clock-tick.
The natural parallelism of quantum operations is, therefore,
reflected in our design, at the cost of exponential hardware
resources used. Because of the FPGA’s size limitations, such
a model will never compete with physical quantum comput-
ing systems. However, it might be very useful in analysing
quantum algorithms, as well as understanding the quantum
model of computation in general.

6 Hardware representation of qubits

As mentioned earlier, a single qubit can be represented by a
pair of complex numbers. This corresponds to the fact that
we need to store amplitudes for all possible base states of any
given qubit. In quantum computing, we are usually interested
in two base states—|0) and |1). Therefore, when emulating n
qubits, we have 2" possible base states of the system, which
requires us to store f2" complex numbers.

6.1 Synthesizable real numbers

In our solution, we started by designing our own synthe-
sizable definition of complex numbers in VHDL hardware
description language. We decided to build it on top of IEEE
VHDL Fixed-point Package [28]. The choice of fixed, rather
than floating-point arithmetic came from two important fac-
tors:

— Both real and imaginary parts of a quantum state’s ampli-
tude are real numbers in the range [0, 1], so we only
require one bit for the integer part

— A fixed-point arithmetic operations’ hardware implemen-
tation is simple, compared to floating-point, and therefore
much more resource efficient
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Table 1 Quantum state representation in VHDL

subtype QReal is

sfixed (INT_BIT downto FRACBIT);
type QComplex is record
al0) + 3[1) RE, IM : QReal;
a,feC end record;

type state_vector is
array (QUBITINDEX downto 0)
of QComplex;

Using the standard package, we defined real numbers as
fixed-point numbers of parametrized constant size. To pre-
vent additional growth of required hardware resources, we
decided to fix the size of every real number represented in the
system. Every arithmetic operation on one or more real num-
bers represented by n bits returns an n-bit result, rather than
one resized to hold all possible outputs. While this approach
might lead to precision loss, especially during multiplica-
tion, it is the only simple scalable option. Enabling scale
adjustment was one of our main focuses, and resizing results
would lead to gigantic number representations after a series
of multiplications.

Our design is easy to adjust—a single parameter defines
the number of bits used to represent every real number. More-
over, because of a modular approach, the entire system is
based on interfaces. Therefore changing the representation of
real numbers only requires code modifications in one place.

6.2 Complex numbers and quantum state
representation

Complex numbers are defined as VHDL records, containing
real and imaginary parts, both represented by real numbers
of our implementation. All necessary operations, including,
but not limited to, addition, multiplication, division, absolute
value and square-root, were designed and implemented to suit
our needs.

Quantum state is represented by arrays of complex num-
bers of our implementation. Similarly, quantum gates are
defined as two-dimensional arrays of complex numbers of
our implementation. The VHDL code for these types is pre-
sented in Table 1.

Like every part of our design, the size of state and gates is
easily adjusted by modifying a single parameter representing
the number of emulated qubits. All structures will be changed
to specified sizes at compilation time. Quantum state is rep-
resented by arrays of 2" complex numbers, while quantum
gates are stored as arrays of 2" x 2" complex numbers, where
n is the parameter defining the number of emulated qubits.
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6.3 Preparing initial state

Every quantum algorithm begins with an initial quantum state
vector. Our solution enables this in two ways:

— Loading the desired initial state directly from software,
as a vector of complex numbers

— Loading the initial state of all qubits set to |0) and then
using quantum gates to prepare the desired state

The latter may sound more feasible in physical quantum
computers, but we wanted to leave the possibility of rep-
resenting quantum algorithms in our hardware like they are
often described in theory - with some assumptions about the
initial state. It should also be noted that in reality preparing
a definite quantum state is really hard. Most of the time we
cannot be entirely sure that measurement of a just-prepared
qubit would return an expected value. We decided to remove
that uncertainty from our system and simplify the initializa-
tion process.

6.4 Transforming states and entanglement

In order to avoid complex addressing while operating on
selected qubits, in our approach every transformation is prop-
erly modified and applied to the entire state. This corresponds
to the fact that leaving a qubit untouched is equivalent to
transforming it with an identity gate. Therefore, for every
transformation on any selected qubit or qubits, we can define
a transformation for the whole state, such that all unaf-
fected qubits are transformed through identity. We utilize
this approach in our solution, and every transformation is
performed as a multiplication of a matrix representing a gate
for all qubits and the entire state vector.

The described method also allows us to easily achieve
entanglement of any qubits in the represented state. Any
entangling transformation will modify the whole state to
reflect entanglement of desired qubits. For example, we can
achieve a pair of entangled qubits within a 3-qubit state by
using 2-qubit Hadamard (H) and Identity (/) gates, and a
3-qubit CNOT gate as presented in Eq. (1).

1 1
1000) - I @ H® I — —2|000) + —2|01o>

\/_ \/_
1 1
—1000) + —<1010) - I @ CNOT
ﬁ' >+J§| ) I® -
1 1
—1000) + —1011). 1
ﬁ' >+J§| ) ey

In our processor, the same transformation would be repre-
sented by a series of matrix—vector multiplications, as shown
in Eq. (2).
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Transformations (or quantum gates) are applied to the state
through multiplying selected gate’s matrix and the state vec-
tor. The result replaces the input state vector in its register, to
reflect physical operations on a quantum register (as shown
in Fig. 2). The transformation module performs matrix multi-
plication as a single operation, in one clock-tick. Amplitudes
of all possible states are considered and recomputed simul-
taneously, which mimics quantum parallelism.

For the transformation module to be easily scalable, we
wanted a single parameter to change the entire structure. The
hardware is, therefore, defined with nested VHDL parallel
“for” loops (example shown in Table 2).

It is sufficient to change a constant defining the number
of emulated qubits for the whole code to adapt.

6.5 State measurement

An often-overlooked problem in quantum circuits emulation
is measurement complexity. Measuring a single qubit affects
amplitudes of all possible states in a quantum system. In
reality, the entire state is affected instantly, which requires
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Table 2 Quantum state transformation in VHDL

for row in 0 to QUBITINDEX loop
for col in 0 to QUBITINDEX loop
temp_value(row) := temp_value(row) +
(gate_in (row, col) = state_in(col));
end loop;
state_out (row) <= temp_value (row);
end loop;

exponential resources to emulate with classical devices (as
we need to process 2" amplitudes for n qubits.)

As states’ amplitudes correspond to probabilities of mea-
suring them, another important factor is random value
generation, allowing to emulate qubit’s behavior during mea-
surement. To reflect nature, we provided a hardware circuit,
which sets measured qubit’s state to either O or 1 with regard
to corresponding states’ amplitudes.

Qubit measurement in our design is implemented as
the Von Neumann measurement. The following procedure
describes computational steps preformed by the hardware:

1. Probability of measuring O is computed based on the
entire state

2. A pseudo-random real number of our implementation is
generated

3. If the number from step 2. is greater than the probability
from step 1., qubit’s measured value is setto 1. Otherwise,
the qubit’s measured value is set to 0

4. Amplitudes of all impossible states (ones where selected
qubit’s value is different than measured) are set to 0

5. All amplitudes are normalized so that )", (ampli tude;)?
=1

Just like transformations, this procedure is designed as a
single operation, performed in one clock-tick. An example
measurement for a 3-qubit system is shown in Fig. 3.

As measuring a single qubit changes values of amplitudes
for the entire system, some information that was stored before
measurement gets destroyed. Amplitudes of all states for
which the value of the measured qubit was different from
actually read are set to 0. Therefore, information stored in
those amplitudes gets erased. This behavior represents real
quantum system measurement, which also involves destruc-
tion of unread states.

Because of the randomized factor, the nature of computa-
tion in our system is probabilistic and separate measurements
of the same quantum state may bring different results. The
desired output may be destroyed during measurement, and
actually read bit-sequence may be useless. Therefore, just
like with an actual quantum machine, to get accurate infor-
mation from quantum algorithm’s result, it may be necessary
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Fig.3 Steps of quantum measurement implementation, 3-qubit exam-
ple

to run it multiple times and compare the returned values
later.

7 Quantum system architecture

Our system is divided into hardware and software parts.
Hardware, specified in VHDL, is designed to serve as a
universal quantum computer, emulating a set of qubits, pro-
viding methods to manipulate the quantum state and exposing
an instruction interface. Software, developed with C#, pro-
vides an abstraction layer, allowing an easy and efficient
interaction with the quantum emulator.

The hardware part is designed to be very easily
parametrized and scalable from code-level. As mentioned
before, changing single parameters in VHDL can modify
all hardware to emulate a desired number of qubits, or be
more or less precise in number representation. Software is
prepared to be aware of that setup, so that scaling hardware
does not require any modifications in software, and any spe-
cial tuning should be done through extension (creating new
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Fig.4 Quantum processor emulator architecture

gates or result interpretation methods), rather than modifica-
tion.

7.1 Architecture of the quantum processor emulator

In our VHDL CPU design, we decided to specify three sep-
arate blocks: computing core, communication and processor
(as shown in Fig. 4).

The first contains hardware for emulating quantum pro-
cesses, including computing and state measurement. The
second one implements communication modules, allowing
software running on PC to access hardware implemented
on FPGA through a specified port. Last block provides an
instruction interface to former blocks, allowing the program-
mer to interact with hardware in a standard way.

7.1.1 Computing core

The core consists of a state register, a transformation unit,
gate memory and a measurement module. During initializa-
tion, the starting state is set in the state register and gates are
loaded to the gate memory. Once that process is finished, the
core is ready to operate. In a single cycle, a gate is loaded
into the transformation unit, which then uses it to transform
the state register. An instruction counter keeps track of which
gate to use. Once all transformations from the memory have
been applied to the state, the instruction counter sets a flag,
marking that the computation has been finished and the result
is ready to be read from the register.

The measurement module is independent of the transfor-
mation unit, as we decided it should not be obligatory to
read the state once the computation is finished (state may
just as well be omitted or destroyed). In our implementa-
tion, the processor module waits for the ready flag to be set
by the computing core, to then run the measurement. A sin-
gle qubit’s measurement, which modifies amplitudes of the
entire state, is also fully parallelized and takes one clock-tick
to complete.

For reasons mentioned in previous sections, we need to
generate some pseudo-random values to emulate qubit mea-
surement. We used a simple linear-feedback shift register,

which shifts with every clock-tick, rather than on request.
This provides slightly better randomness, as returned values
vary depending on time elapsed from system startup. Thanks
to modular architecture, this can be easily replaced with any
generator adjusted to return real numbers of our implemen-
tation.

7.1.2 Communication

In order to make our hardware usable on a higher level, we
designed it to be used with software running on a connected
PC. The communication module is responsible for receiving
and sending data between hardware and software parts.

To keep our design simple, we implemented communica-
tions on top of simple UART transmitter/receiver elements.
On the lowest level, data are sent byte-by-byte, with little-
endian ordering. Using those procedures, we built abstraction
layers allowing hardware to send and receive real and com-
plex numbers of our implementation, as well as entire
matrices representing gates or input state configurations.

The connection was built using USB on the PC side and
two GPIO with one GND pins (for RX, TX and Zero ref-
erence) on the FPGA board. Because of speed limitations
of serial port communications, in some cases the process of
loading information to the core might take a significant part
of the whole operating time. This was not our concern though,
as we were focused on making the computation behave like
one on a real quantum computer, rather than the entire system
to be used in fast emulations.

7.1.3 Processor

The last hardware module encloses previous modules and
drives all computation. It is designed as a finite state machine,
working in a simple cycle:

1. Receive an instruction from the PC using the communi-
cation module

2. Recognize the instruction and send a proper code, con-
firming execution of a given instruction or informing that
it was invalid

3. Run the desired operation using the computing core (for
ex. load initial state, load gates, compute and measure
results etc.)

4. Send results, if any, back to the PC

5. Send “operation complete” confirmation back to the PC

At the end of every instruction, a confirmation is sent to the
software part. This allows for unified use of all instructions,
regardless of their returning any results (such as computation
and measurement) or not (like setting initial state). Software
always waits for the final confirmation before taking next
actions.

@ Springer



338

Journal of Computational Electronics (2019) 18:329-342

Table 3 Processor instructions

Code

Instruction

Description

0000
0001

OK
RECEIVE GATE

Used for confirmation of various requests from the processor

Signals the intention to load quantum gate matrices. The processor will expect gate data after receiving
this instruction

Every gate is received as a series of complex numbers, describing matrix values left-right, top-bottom.
As gates should process the entire state (as described in Sect. 6.4), the processor expects a fixed size
of the gate equal to 2" by 2", where n is the number of emulated qubits

After receiving a single gate, the processor sends it back to the user, and expects a confirmation the
data is correct in order to minimize the risk of a transmission error. Confirmation is expressed with

an instruction OK
0010 GATES FINISHED
0011 RECEIVE STATE

Signals that no more gates should be expected after this instruction

Signals the intention to load initial quantum state. Just like the gates, it is received as a series of

complex numbers of our implementation, and sent back to verify its correctness

0100 COMPUTE

Signals the processor to execute the program stored in its memory. The gates will be applied to the

state one-by-one, in the order in which they were received. The finished computation is signalled to

the user with an OK response

0101 MEASURE

Signals the intention to receive the index of the qubit to be measured. The state is then measured,

causing the chosen qubit to take one of the base values, 0 or 1 (which, of course, can affect the entire

state)
0110 SEND RESULTS

Signals the processor to send the measured state back to the user. The state will be sent as a sequence

of bits, one for every qubit measured. If MEASURE instruction was not received first,
SEND_RESULTS will measure all qubits in the state before returning the result

0111 SEND SPECS

Signals the processor to send back its specifications. This includes number of emulated qubits, number

precision in bits and the gate memory size

1000 RESET
1111 ERROR

Signals the processor to clear the gate memory, reset all qubits and get to idle mode

Signals the processor that there has been an error in transmission, or an unexpected operation has been

performed. This will result in halting the current operation and returning to idle mode

7.2 Interacting with the processor

From the user’s point of view, hardware can be treated as a
quantum computer exposing a programming interface. There
are nine instructions recognized by the processor, represented
by 4-bit integers. The list of available instructions is listed in
Table 3.

A computation could be, therefore, viewed as sending and
receiving signals to and from the processor. An exemplary
simple algorithm could be executed as follows:

1. Send RESET signal to guarantee that we operate on a
fresh state.

2. Send SEND_SPECS signal to receive information about

available resources. Based on this information we know

how to prepare our gates.

Send RECEIVE_GATES signal.

4. Send data describing the gates we want to use. For
example, if we wanted to use a 1-qubit gate for a single-
qubit state, we would have to send 4 complex numbers
corresponding to matrix indices [0, O], [0, 1], [1, O]
and [1, 1].

5. Receive the data back from the processor, and verify it
is equal to what we sent. If it is, send OK signal and

et
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continue. Otherwise, send ERROR signal and go back to
step 3.

6. Send GATES_FINISHED signal to the processor.

7. If we want to set a specific initial state, we should send
RECEIVE_STATE signal to the processor, and follow by
sending appropriate data and confirmation.

8. Send COMPUTE signal. Await for OK response from the
processor.

9. Send SEND_RESULTS signal to the processor to mea-
sure the entire state. Receive a string of bits equal in
length to the number of qubits, representing the result of
our computation.

The current implementation provides a communication
module, described in Sect. 7.1.2, which allows for interac-
tion with the processor through sending and receiving 8-bit
integer data packages.

However, it should be noted that it is not obligatory to
use our processor through UART. Thanks to the modular
architecture, we can interact directly with the CPU, using its
4-bit instruction-set and appropriate interfaces for gate and
state data input and output.

Therefore, our architecture is not only easy to interact with
using any computer with UART communication capability,
but also to use directly as a processor in other designs.
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7.3 Software part

While any software capable of sending integers through
UART can be used to interact with our processor, we have
designed a solution to interact with the core in a seamless
way. Our goal was to allow the programmer to think in terms
of quantum gates and states, rather than processor codes.

During initialization, our software requests information
about emulated qubit count and precision of real num-
bers from the core, using the SEND_SPECS instruction (as
described in Table 3). Based on those constants, the PC
adjusts the information sent to the core.

Gates in our software are designed to scale to differ-
ent qubit counts and number precisions, providing a useful
abstraction that can be used regardless of the constants with
which the core has been synthesized. The programmer can
design desired gates by implementing our interfaces, and
then run their algorithms on our processor directly from
their code. A library of ready methods, including ones for
preparing state, applying gates, measurement and interpret-
ing results, allows for easy, high-level use of the powerful
hardware architecture.

8 Example results

Our hardware performs quantum algorithms with the same
time complexity as a real quantum computer, at the cost of
exponential hardware resources. For that reason, every addi-
tional emulated qubit causes rapid growth of required FPGA
size.

Emulating two qubits with our solution requires 8k adap-
tive logic modules (ALMs) after synthesis with Altera
Quartus II software. However, to emulate three qubits, over
25k ALMs would be necessary. With an Altera Cyclone V
FPGA chip used for testing purposes, we were capped at
18k ALMs and could only implement a 2-qubit variant in
hardware (as shown in Fig. 5).

To test our solution, we decided to implement and run the
Deutsch algorithm, using the entire created system. Software

0) — H T H

0) — 1)
Ve Dr

Fig.6 Deutsch algorithm’s quantum circuit

part was launched on a PC computer connected through serial
port to an FPGA board, with our code synthesized to emulate
a 2-qubit quantum computer.

The Deutsch algorithm is a procedure proposed by David
Deutsch in 1985 [16]. It is designed to check if some func-
tion f(x) defined on {0, 1} — {0, 1} is constant (always
returns O or always returns 1) or balanced (returns O for half
of input arguments and 1 for the other half). This computa-
tion is, of course, easy to conduct on classical computers, as it
requires just two evaluations of f(x) (for O and 1) to provide
the answer. However, Deutsch quantum algorithm needs to
evaluate the tested function just once, giving a deterministic
answer.

While the speedup may not be too impressive, the algo-
rithm does show the potential of quantum computing and its
parallel power, allowing us to check multiple inputs at once.
In fact, the algorithm was improved by Deutsch and Jozsa in
1992 [17] to answer the same question but for f(x) defined
on {0, 1}* — {0, 1}. In that variant, we observe a superpoly-
nomial speedup, compared to the classical solution, as the
quantum algorithm requires just a single evaluation of f(x)
to produce the answer, compared to 6 (2") evaluations needed
by the classical deterministic algorithm.

Unfortunately, to run the Deutsch-Jozsa algorithm we
would need to emulate at least three qubits, which was not
possible due to our test hardware limitations.

The quantum routine from Deutsch algorithm can be pre-
sented by a quantum circuit shown in Fig. 6.

In the presented circuit, H (Hadamard gate) and D ; (Deutsch
algorithm gate) represent quantum gates, which can be
described by the unitary operators shown in Eq. (3).

1
H|0) = E(IO)—I—II))

1
HIl) = EUO) — 1)

Dy(lx)|y) = [x)y & f(x)) 3

where @ represents exclusive alternative (XOR) operation.
The triangle symbol at the end of the top circuit line in Fig. 6
symbolizes qubit measurement. It can be proven that for the
inputs shown in Fig. 6, the measurement of the control qubit
will always return O if f(x) is constant, or 1 if f(x) is bal-
anced.
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In our system, the Deutsch algorithm’s circuit for f(x) =
1 is represented and computed as a multiplication of the gate
matrices and the state vector, as shown in Eq. (4).

1 1
A
o - o L||_L 1
1 ‘(? —1 ? V2l g2
V2 V2 0 2,
o L o =L 0 -2
; V2 V2
0 1 0 0][ 37 -1
100 0f|=3|_1|3
000 1]} 1 )
1 1
[0 0 1 0f[-1] !
- ' -
o | i ) I
o L o L||1 1
1 ‘(/)i -1 ‘g Ll | V2
viooovi || 0
_0 «/_2 0 \/_E_ 2 0

The multiplication results in the state vector are presented in
Eq. (5):

—1

1
|3 &
—1 1
—4100) + 5[01).

0 0] .

Only the states where control qubit (one to be measured)
is set to 0 have non-zero amplitudes. Therefore, we can be
sure that the measurement of the control qubit will always
return 0.

To run the computation described above, in our soft-
ware environment we prepared classes representing neces-
sary transformations (2-qubit Hadamard®Idenity gate and
Deutsch algorithm gate) and result interpreters. The code
responsible for sending and receiving data through serial
port is provided out-of-the-box. The procedure of running
an algorithm in our system consists of the following steps:

1. A connection with the hardware core is established.

2. Hadamard®Identity and Deutsch gates are instantiated,
al.ld the. initial state of ﬁ|00) ﬁ|01) (like sho.le .1n
Fig. 6) is created as a byte array. Both gates and the initial
state are sent to the core.

(a) Every instruction sent to the core is confirmed with
an OK reply code from the hardware.

(b) All data sent to the core are afterwards sent back to
the software part, which then confirms correctness or
flags transmission error and retries the operation.

3. Instructions to perform the computation and send back
the results are sent to the core. Received result is pro-
cessed and saved.
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with f(x) = 1

Table4 Results of 20 measurements for the Deutsch algorithm run for

fi(x) =1land f(x) =x

Measurement no. fix)y=1 Hx)=x
1 1(01b) 2(10b)
2 1(01b) 3(11b)
3 1(01b) 2(10b)
4 0(00b) 2(10b)
5 1(01b) 3(11b)
6 0(00b) 2(10b)
7 0(00b) 3(11b)
8 1(01b) 3(11b)
9 1(01b) 2(10b)
10 1(01b) 3(11b)
11 1(01b) 2(10b)
12 0(00b) 3(11b)
13 1(01b) 3(11b)
14 1(01b) 2(10b)
15 1(01b) 3(11b)
16 1(01b) 2(10b)
17 0(00b) 2(10b)
18 1(01b) 2(10b)
19 0(00b) 3(11b)
20 1(01b) 2(10b)

4. Step 3. is repeated 20 times. Results are interpreted and
returned to the user.

Figure 7 shows the overview of the synthesized test-case
system just before the computation (after initialization).
We ran our algorithm for two functions: constant fj(x) =

1 and balanced f,(x) = x. The results returned by our system
are presented in Table 4.
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For Deutsch gate testing function fj(x) = 1, the num-
ber 1 was returned 14 times and 0 was returned six times
(meaning we measured states |[01) and |00) 14 and six
times, respectively). The software results interpreter cor-
rectly logged constant function. For Deutsch gate testing
function f>(x) = x, the number 2 was returned 11 times
and 3 was returned nine times (meaning we measured states
[10) and |11) 11 and nine times, respectively). The software
results interpreter correctly logged balanced function.

The results also reveal randomness in the returned values,
based on the pseudo-random number generator used in the
module. This is an important observation, as randomness is
one of the intrinsic traits of quantum computing.

9 Conclusions and future work

We have proposed, designed and implemented an easily
scalable universal quantum computer emulator, focused on
reflecting natural quantum processes in hardware, while
maintaining the time complexity of quantum algorithms and
exposing an instruction-set interface. As an exemplary use-
case result, we have created a hardware—software system
capable of running and correctly interpreting results of the
Deutsch quantum algorithm.

The next steps for our solution include optimizing code,
where possible, so that required hardware size would
decrease by some constant, without affecting the clarity and
scalability of the current design. One of the main areas of
focus will be implementing a more efficient way of computa-
tion for quantum state evolution, perhaps utilizing proposals
described in [26] or [27]. We also want to synthesize the code
on a larger FPGA chip to emulate more qubits and run more
sophisticated algorithms. More hardware resources would
also allow us to change the number implementation from
fixed to floating-point, which would benefit heavy numerical
computations’ accuracy.

To increase efficiency of a particular implementation of
our design, at the cost of making it specific for a chosen
FPGA, itis worth considering using DSPs explicitly to speed-
up the computation.

Finally, supporting mixed states and implementing some
state preparation and measurement imperfections could con-
tribute towards the tool being more useful for real-world
quantum computation emulations.
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