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Abstract: This paper provides tight bounds on the Rényi entropy of a function of a discrete random
variable with a finite number of possible values, where the considered function is not one to one.
To that end, a tight lower bound on the Rényi entropy of a discrete random variable with a finite
support is derived as a function of the size of the support, and the ratio of the maximal to minimal
probability masses. This work was inspired by the recently published paper by Cicalese et al.,
which is focused on the Shannon entropy, and it strengthens and generalizes the results of that paper
to Rényi entropies of arbitrary positive orders. In view of these generalized bounds and the works by
Arikan and Campbell, non-asymptotic bounds are derived for guessing moments and lossless data
compression of discrete memoryless sources.

Keywords: Majorization; Rényi entropy; Rényi divergence; cumulant generating functions;
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1. Introduction

Majorization theory is a simple and productive concept in the theory of inequalities, which also
unifies a variety of familiar bounds [1,2]. These mathematical tools find various applications in diverse
fields (see, e.g., [3]) such as economics [2,4,5], combinatorial analysis [2,6], geometric inequalities [2],
matrix theory [2,6–8], Shannon theory [5,9–25], and wireless communications [26–33].

This work, which relies on the majorization theory, has been greatly inspired by the recent
insightful paper by Cicalese et al. [12] (the research work in the present paper has been initialized
while the author handled [12] as an associate editor). The work in [12] provides tight bounds on the
Shannon entropy of a function of a discrete random variable with a finite number of possible values,
where the considered function is not one to one. For that purpose, and while being of interest by its own
right (see [12], Section 6), a tight lower bound on the Shannon entropy of a discrete random variable
with a finite support was derived in [12] as a function of the size of the support, and the ratio of the
maximal to minimal probability masses. The present paper aims to extend the bounds in [12] to Rényi
entropies of arbitrary positive orders (note that the Shannon entropy is equal to the Rényi entropy of
order 1), and to study the information-theoretic applications of these (non-trivial) generalizations in
the context of non-asymptotic analysis of guessing moments and lossless data compression.

The motivation for this work is rooted in the diverse information-theoretic applications
of Rényi measures [34]. These include (but are not limited to) asymptotically tight bounds on
guessing moments [35], information-theoretic applications such as guessing subject to distortion [36],
joint source-channel coding and guessing with application to sequential decoding [37], guessing with
a prior access to a malicious oracle [38], guessing while allowing the guesser to give up and declare an
error [39], guessing in secrecy problems [40,41], guessing with limited memory [42], and guessing under
source uncertainty [43]; encoding tasks [44,45]; Bayesian hypothesis testing [9,22,23], and composite

Entropy 2018, 20, 896; doi:10.3390/e20120896 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-5681-1273
http://www.mdpi.com/1099-4300/20/12/896?type=check_update&version=1
http://dx.doi.org/10.3390/e20120896
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 896 2 of 25

hypothesis testing [46,47]; Rényi generalizations of the rejection sampling problem in [48], motivated
by the communication complexity in distributed channel simulation, where these generalizations
distinguish between causal and noncausal sampler scenarios [49]; Wyner’s common information in
distributed source simulation under Rényi divergence measures [50]; various other source coding
theorems [23,39,51–58], channel coding theorems [23,58–64], including coding theorems in quantum
information theory [65–67].

The presentation in this paper is structured as follows: Section 2 provides notation and essential
preliminaries for the analysis in this paper. Sections 3 and 4 strengthen and generalize, in a non-trivial
way, the bounds on the Shannon entropy in [12] to Rényi entropies of arbitrary positive orders (see
Theorems 1 and 2). Section 5 relies on the generalized bound from Section 4 and the work by Arikan [35]
to derive non-asymptotic bounds for guessing moments (see Theorem 3); Section 5 also relies on the
generalized bound in Section 4 and the source coding theorem by Campbell [51] (see Theorem 4) for
the derivation of non-asymptotic bounds for lossless compression of discrete memoryless sources
(see Theorem 5).

2. Notation and Preliminaries

Let

• P be a probability mass function defined on a finite set X ;
• pmax and pmin be, respectively, the maximal and minimal positive masses of P;
• GP(k) be the sum of the k largest masses of P for k ∈ {1, . . . , |X |} (note that GP(1) = pmax and

GP(|X |) = 1);
• Pn, for an integer n ≥ 2, be the set of all probability mass functions defined on X with |X | = n;

without any loss of generality, let X = {1, . . . , n};
• Pn(ρ), for ρ ≥ 1 and an integer n ≥ 2, be the subset of all probability measures P ∈ Pn such that

pmax

pmin
≤ ρ. (1)

Definition 1 (Majorization). Consider discrete probability mass functions P and Q defined on the same (finite
or countably infinite) set X . It is said that P is majorized by Q (or Q majorizes P), and it is denoted by P ≺ Q,
if GP(k) ≤ GQ(k) for all k ∈ {1, . . . , |X | − 1} (recall that GP(|X |) = GQ(|X |) = 1). If P and Q are defined
on finite sets of different cardinalities, then the probability mass function which is defined over the smaller set is
first padded by zeros for making the cardinalities of these sets be equal.

By Definition 1, a unit mass majorizes any other distribution; on the other hand, the equiprobable
distribution on a finite set is majorized by any other distribution defined on the same set.

Definition 2 (Schur-convexity/concavity). A function f : Pn → R is said to be Schur-convex if for every
P, Q ∈ Pn such that P ≺ Q, we have f (P) ≤ f (Q). Likewise, f is said to be Schur-concave if − f is
Schur-convex, i.e., P, Q ∈ Pn and P ≺ Q imply that f (P) ≥ f (Q).

Definition 3 (Rényi entropy [34]). Let X be a random variable taking values on a finite or countably infinite
set X , and let PX be its probability mass function. The Rényi entropy of order α ∈ (0, 1) ∪ (1, ∞) is given by

Hα(X) = Hα(PX) =
1

1− α
log

(
∑

x∈X
Pα

X(x)

)
. (2)

Unless explicitly stated, the logarithm base can be chosen by the reader, with exp indicating the inverse function
of log.
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By its continuous extension,

H0(X) = log
∣∣{x ∈ X : PX(x) > 0}

∣∣, (3)

H1(X) = H(X), (4)

H∞(X) = log
1

pmax
(5)

where H(X) is the (Shannon) entropy of X.

Proposition 1 (Schur-concavity of the Rényi entropy (Appendix F.3.a (p. 562) of [2])). The Rényi entropy
of an arbitrary order α > 0 is Schur-concave; in particular, for α = 1, the Shannon entropy is Schur-concave.

Remark 1. [17] (Theorem 2) strengthens Proposition 1, though it is not needed for our analysis.

Definition 4 (Rényi divergence [34]). Let P and Q be probability mass functions defined on a finite or
countably infinite set X . The Rényi divergence of order α ∈ [0, ∞] is defined as follows:

• If α ∈ (0, 1) ∪ (1, ∞), then

Dα(P‖Q) =
1

α− 1
log ∑

x∈X
Pα(x) Q1−α(x). (6)

• By the continuous extension of Dα(P‖Q),

D0(P‖Q) = max
A:P(A)=1

log
1

Q(A) , (7)

D1(P‖Q) = D(P‖Q), (8)

D∞(P‖Q) = log sup
x∈X

P(x)
Q(x)

, (9)

where D(P‖Q) in the right side of (8) is the relative entropy (a.k.a. Kullback-Leibler divergence).

Throughout this paper, for a ∈ R, dae denotes the ceiling of a (i.e., the smallest integer not smaller
than the real number a), and bac denotes the flooring of a (i.e., the greatest integer not greater than a).

3. A Tight Lower Bound on the Rényi Entropy

We provide in this section a tight lower bound on the Rényi entropy, of an arbitrary order
α > 0, when the probability mass function of the discrete random variable is defined on a finite set
of cardinality n, and the ratio of the maximal to minimal probability masses is upper bounded by
an arbitrary fixed value ρ ∈ [1, ∞). In other words, we derive the largest possible gap between the
order-α Rényi entropies of an equiprobable distribution and a non-equiprobable distribution (defined
on a finite set of the same cardinality) with a given value for the ratio of the maximal to minimal
probability masses. The basic tool used for the development of our result in this section relies on the
majorization theory. Our result strengthens the result in [12] (Theorem 2) for the Shannon entropy,
and it further provides a generalization for the Rényi entropy of an arbitrary order α > 0 (recall that
the Shannon entropy is equal to the Rényi entropy of order α = 1, see (4)). Furthermore, the approach
for proving the main result in this section differs significantly from the proof in [12] for the Shannon
entropy. The main result in this section is a key result for all what follows in this paper.

The following lemma is a restatement of [12] (Lemma 6).
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Lemma 1. Let P ∈ Pn(ρ) with ρ ≥ 1 and an integer n ≥ 2, and assume without any loss of generality that
the probability mass function P is defined on the set X = {1, . . . , n}. Let Q ∈ Pn be defined on X as follows:

Q(j) =


ρ pmin, j ∈ {1, . . . , i},
1− (n + iρ− i− 1)pmin, j = i + 1,

pmin, j ∈ {i + 2, . . . , n}
(10)

where

i :=
⌊

1− npmin

(ρ− 1) pmin

⌋
. (11)

Then,

(1) Q ∈ Pn(ρ), and Q(1) ≥ Q(2) ≥ . . . ≥ Q(n) > 0;
(2) P ≺ Q.

Proof. See [12] (p. 2236) (top of the second column).

Lemma 2. Let ρ > 1, α > 0, and n ≥ 2 be an integer. For

β ∈
[

1
1 + (n− 1)ρ

,
1
n

]
:= Γ(n)

ρ , (12)

let Qβ ∈ Pn(ρ) be defined on X = {1, . . . , n} as follows:

Qβ(j) =


ρβ, j ∈ {1, . . . , iβ},
1− (n + iβ ρ− iβ − 1)β, j = iβ + 1,

β, j ∈ {iβ + 2, . . . , n}
(13)

where

iβ :=
⌊

1− nβ

(ρ− 1)β

⌋
. (14)

Then, for every α > 0,

min
P∈Pn(ρ)

Hα(P) = min
β∈Γ(n)

ρ

Hα(Qβ). (15)

Proof. See Appendix A.

Lemma 3. For ρ > 1 and α > 0, let

c(n)α (ρ) := log n− min
P∈Pn(ρ)

Hα(P), n = 2, 3, . . . (16)

with c(1)α (ρ) := 0. Then, for every n ∈ N,

0 ≤ c(n)α (ρ) ≤ log ρ, (17)

c(n)α (ρ) ≤ c(2n)
α (ρ), (18)

and c(n)α (ρ) is monotonically increasing in α ∈ [0, ∞].
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Proof. See Appendix B.

Lemma 4. For α > 0 and ρ > 1, the limit

c(∞)
α (ρ) := lim

n→∞
c(n)α (ρ) (19)

exists, having the following properties:

(a) If α ∈ (0, 1) ∪ (1, ∞), then

c(∞)
α (ρ) =

1
α− 1

log
(

1 +
1 + α (ρ− 1)− ρα

(1− α)(ρ− 1)

)
− α

α− 1
log
(

1 +
1 + α (ρ− 1)− ρα

(1− α)(ρα − 1)

)
, (20)

and

lim
α→∞

c(∞)
α (ρ) = log ρ. (21)

(b) If α = 1, then

c(∞)
1 (ρ) = lim

α→1
c(∞)

α (ρ) =
ρ log ρ

ρ− 1
− log

(
eρ loge ρ

ρ− 1

)
. (22)

(c) For all α > 0,

lim
ρ↓1

c(∞)
α (ρ) = 0. (23)

• For every n ∈ N, α > 0 and ρ ≥ 1,

0 ≤ c(n)α (ρ) ≤ c(2n)
α (ρ) ≤ c(∞)

α (ρ) ≤ log ρ. (24)

Proof. See Appendix C.

In view of Lemmata 1–4, we obtain the following main result in this section:

Theorem 1. Let α > 0, ρ > 1, n ≥ 2, and let c(n)α (ρ) in (16) designate the maximal gap between the order-α
Rényi entropies of equiprobable and arbitrary distributions in Pn(ρ). Then,

(a) The non-negative sequence {c(n)α (ρ)}∞
n=2 can be calculated by the real-valued single-parameter

optimization in the right side of (15).
(b) The asymptotic limit as n→ ∞, denoted by c(∞)

α (ρ), admits the closed-form expressions in (20) and (22),
and it satisfies the properties in (21), (23) and (24).

Remark 2. Setting α = 2 in Theorem 1 gives that, for all P ∈ Pn(ρ) (with ρ > 1, and an integer n ≥ 2),

H2(P) ≥ log n− c(n)2 (ρ) (25)

≥ log n− c(∞)
2 (ρ) (26)

= log
4ρn

(1 + ρ)2 (27)

where (25)–(27) hold, respectively, due to (16), (24) and (20). This strengthens the result in [68] (Proposition 2)
which gives the same lower bound as in the right side of (27) for H(P) rather than for H2(P) (recall that
H(P) ≥ H2(P)).
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For a numerical illustration of Theorem 1, Figure 1 provides a plot of c(∞)
α (ρ) in (20) and (22) as

a function of ρ ≥ 1, confirming numerically the properties in (21) and (23). Furthermore, Figure 2
provides plots of c(n)α (ρ) in (16) as a function of α > 0, for ρ = 2 (left plot) and ρ = 256 (right plot),
with several values of n ≥ 2; the calculation of the curves in these plots relies on (15), (20) and (22),
and they illustrate the monotonicity and boundedness properties in (24).
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Figure 1. A plot of c(∞)
α (ρ) in (20) and (22) (log is on base 2) as a function of ρ, confirming numerically

the properties in (21) and (23).
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Figure 2. Plots of c(n)α (ρ) in (16) (log is on base 2) as a function of α > 0, for ρ = 2 (left plot) and
ρ = 256 (right plot), with several values of n ≥ 2.

Remark 3. Theorem 1 strengthens the result in [12] (Theorem 2) for the Shannon entropy (i.e., for α = 1),
in addition to its generalization to Rényi entropies of arbitrary orders α > 0. This is because our lower bound on
the Shannon entropy is given by

H(P) ≥ log n− c(n)1 (ρ), ∀ P ∈ Pn(ρ), (28)

whereas the looser bound in [12] is given by (see [12] ((7)) and (22) here)

H(P) ≥ log n− c(∞)
1 (ρ), ∀ P ∈ Pn(ρ), (29)

and we recall that 0 ≤ c(n)1 (ρ) ≤ c(∞)
1 (ρ) (see (24)). Figure 3 shows the improvement in the new lower

bound (28) over (29) by comparing c(∞)
1 (ρ) versus c(n)1 (ρ) for ρ ∈ [1, 105] and with several values of n. It is

reflected from Figure 3 that there is a very marginal improvement in the lower bound on the Shannon entropy (28)
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over the bound in (29) if ρ ≤ 30 (even for small values of n), whereas there is a significant improvement over
the bound in (29) for large values of ρ; by increasing the value of n, also the value of ρ needs to be increased for
observing an improvement of the lower bound in (28) over (29) (see Figure 3).

10 0 10 1 10 2 10 3 10 4 10 5

ρ
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4

6

8

10

12

c 1(n
)  (ρ

) 
 [b

its
]

n → ∞
n = 512

n = 128

n = 32

n = 8

Figure 3. A plot of c(∞)
1 (ρ) in (22) versus c(n)1 (ρ) for finite n (n = 512, 128, 32, and 8) as a function of ρ.

An improvement of the bound in (28) over (29) leads to a tightening of the upper bound in [12] (Theorem 4)
on the compression rate of Tunstall codes for discrete memoryless sources, which further tightens the bound by
Jelinek and Schneider in [69] (Equation (9)). More explicitly, in view of [12] (Section 6), an improved upper
bound on the compression rate of these variable-to-fixed lossless source codes is obtained by combining [12]
(Equations (36) and (38)) with a tightened lower bound on the entropy H(W) of the leaves of the tree graph
for Tunstall codes. From (28), the latter lower bound is given by H(W) ≥ log2 n− c(n)1 (ρ) where c(n)1 (ρ) is
expressed in bits, ρ := 1

pmin
is the reciprocal of the minimal positive probability of the source symbols, and n is

the number of codewords (so, all codewords are of length dlog2 ne bits). This yields a reduction in the upper

bound on the non-asymptotic compression rate R of Tunstall codes from dlog2 neH(X)

log2 n−c(∞)
1 (ρ)

(see [12] (Equation (40))

and (22)) to dlog2 neH(X)

log2 n−c(n)1 (ρ)
bits per source symbol where H(X) denotes the source entropy (converging, in view

of (17), to H(X) as we let n→ ∞).

Remark 4. Equality (15) with the minimizing probability mass function of the form (13) holds, in general,
by replacing the Rényi entropy with an arbitrary Schur-concave function (as it can be easily verified from
the proof of Lemma 2 in Appendix A). However, the analysis leading to Lemmata 3–4 and Theorem 1 applies
particularly to the Rényi entropy.

4. Bounds on the Rényi Entropy of a Function of a Discrete Random Variable

This section relies on Theorem 1 and majorization for extending [12] (Theorem 1), which applies
to the Shannon entropy, to Rényi entropies of any positive order. More explicitly, let α ∈ (0, ∞) and

• X and Y be finite sets of cardinalities |X | = n and |Y| = m with n > m ≥ 2; without any loss of
generality, let X = {1, . . . , n} and Y = {1, . . . , m};

• X be a random variable taking values on X with a probability mass function PX ∈ Pn;
• Fn,m be the set of deterministic functions f : X → Y ; note that f ∈ Fn,m is not one to one

since m < n.

The main result in this section sharpens the inequality Hα

(
f (X)

)
≤ Hα(X), for every deterministic

function f ∈ Fn,m with n > m ≥ 2 and α > 0, by obtaining non-trivial upper and lower bounds
on max

f∈Fn,m
Hα

(
f (X)

)
. The calculation of the exact value of min

f∈Fn,m
Hα

(
f (X)

)
is much easier, and it is

expressed in closed form by capitalizing on the Schur-concavity of the Rényi entropy.
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The following main result extends [12] (Theorem 1) to Rényi entropies of arbitrary positive orders.

Theorem 2. Let X ∈ {1, . . . , n} be a random variable which satisfies PX(1) ≥ PX(2) ≥ . . . ≥ PX(n).

(a) For m ∈ {2, . . . , n− 1}, if PX(1) < 1
m , let X̃m be the equiprobable random variable on {1, . . . , m};

otherwise, if PX(1) ≥ 1
m , let X̃m ∈ {1, . . . , m} be a random variable with the probability mass function

PX̃m
(i) =


PX(i), i ∈ {1, . . . , n∗},

1
m− n∗

n

∑
j=n∗+1

PX(j), i ∈ {n∗ + 1, . . . , m}, (30)

where n∗ is the maximal integer i ∈ {1, . . . , m− 1} such that

PX(i) ≥
1

m− i

n

∑
j=i+1

PX(j). (31)

Then, for every α > 0,

max
f∈Fn,m

Hα

(
f (X)

)
∈
[
Hα(X̃m)− v(α), Hα(X̃m)

]
, (32)

where

v(α) := c(∞)
α (2) =


log
(

α− 1
2α − 2

)
− α

α− 1
log
(

α

2α − 1

)
, α 6= 1,

log
(

2
e ln 2

)
≈ 0.08607 bits, α = 1.

(33)

(b) There exists an explicit construction of a deterministic function f ∗ ∈ Fn,m such that

Hα

(
f ∗(X)

)
∈
[
Hα(X̃m)− v(α), Hα(X̃m)

]
(34)

where f ∗ is independent of α, and it is obtained by using Huffman coding (as in [12] for α = 1).
(c) Let Ỹm ∈ {1, . . . , m} be a random variable with the probability mass function

PỸm
(i) =


n−m+1

∑
k=1

PX(k), i = 1,

PX(n−m + i), i ∈ {2, . . . , m}.
(35)

Then, for every α > 0,

min
f∈Fn,m

Hα

(
f (X)

)
= Hα(Ỹm). (36)

Remark 5. Setting α = 1 specializes Theorem 2 to [12] (Theorem 1) (regarding the Shannon entropy).
This point is further elaborated in Remark 8, after the proof of Theorem 2.

Remark 6. Similarly to [12] (Lemma 1), an exact solution of the maximization problem in the left side of (32) is
strongly NP-hard [70]; this means that, unless P = NP, there is no polynomial time algorithm which, for an
arbitrarily small ε > 0, computes an admissible deterministic function fε ∈ Fn,m such that

Hα

(
fε(X)

)
≥ (1− ε) max

f∈Fn,m
Hα

(
f (X)

)
. (37)
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This motivates the derivation of the bounds in (32), and the simple construction of a deterministic function
f ∗ ∈ Fn,m achieving (34).

A proof of Theorem 2 relies on the following lemmata.

Lemma 5. Let X ∈ {1, . . . , n}, m < n and α > 0. Then,

max
Q∈Pm : PX≺Q

Hα(Q) = Hα(X̃m) (38)

where the probability mass function of X̃m is given in (30).

Proof. Since PX ≺ PX̃m
(see [12] (Lemma 2)) with PX̃m

∈ Pm, and PX̃m
≺ Q for all Q ∈ Pm such that

PX ≺ Q (see [12] (Lemma 4)), the result follows from the Schur-concavity of the Rényi entropy.

Lemma 6. Let X ∈ {1, . . . , n}, α > 0, and f ∈ Fn,m with m < n. Then,

Hα

(
f (X)

)
≤ Hα(X̃m). (39)

Proof. Since f is a deterministic function in Fn,m with m < n, the probability mass function of f (X)

is an element in Pm which majorizes PX (see [12] (Lemma 3)). Inequality (39) then follows from
Lemma 5.

We are now ready to prove Theorem 2.

Proof. In view of (39),

max
f∈Fn,m

Hα

(
f (X)

)
≤ Hα(X̃m). (40)

We next construct a function f ∗ ∈ Fn,m such that, for all α > 0,

Hα

(
f ∗(X)

)
≥ max

Q∈Pm : PX≺Q
Hα(Q)− v(α) (41)

≥ max
f∈Fn,m

Hα

(
f (X)

)
− v(α) (42)

where the function v : (0, ∞) → (0, ∞) in the right side of (41) is given in (33), and (42) holds due
to (38) and (40). The function f ∗ in our proof coincides with the construction in [12], and it is, therefore,
independent of α.

We first review and follow the concept of the proof of [12] (Lemma 5), and we then deviate from
the analysis there for proving our result. The idea behind the proof of [12] (Lemma 5) relies on the
following algorithm:

(1) Start from the probability mass function PX ∈ Pn with PX(1) ≥ . . . ≥ PX(n);
(2) Merge successively pairs of probability masses by applying the Huffman algorithm;
(3) Stop the merging process in Step 2 when a probability mass function Q ∈ Pm is obtained (with

Q(1) ≥ . . . ≥ Q(m));
(4) Construct the deterministic function f ∗ ∈ Fn,m by setting f ∗(k) = j ∈ {1, . . . , m} for all

probability masses PX(k), with k ∈ {1, . . . , n}, being merged in Steps 2–3 into the node of Q(j).

Let i ∈ {0, . . . , m− 1} be the largest index such that PX(1) = Q(1), . . . , PX(i) = Q(i) (note that
i = 0 corresponds to the case where each node Q(j), with j ∈ {1, . . . , m}, is constructed by merging at
least two masses of the probability mass function PX). Then, according to [12] (p. 2225),

Q(i + 1) ≤ 2 Q(m). (43)
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Let

S :=
m

∑
j=i+1

Q(j) (44)

be the sum of the m− i smallest masses of the probability mass function Q. In view of (43), the vector

Q :=
(

Q(i + 1)
S

, . . . ,
Q(m)

S

)
(45)

represents a probability mass function where the ratio of its maximal to minimal masses is upper
bounded by 2.

At this point, our analysis deviates from [12] (p. 2225). Applying Theorem 1 to Q with ρ = 2 gives

Hα(Q) ≥ log(m− i)− c(∞)
α (2) (46)

with

c(∞)
α (2) =

1
α− 1

log
(

1 +
1 + α− 2α

1− α

)
− α

α− 1
log
(

1 +
1 + α− 2α

(1− α)(2α − 1)

)
(47)

= log
(

α− 1
2α − 2

)
− α

α− 1
log
(

α

2α − 1

)
(48)

= v(α) (49)

where (47) follows from (20); (48) is straightforward algebra, and (49) is the definition in (33).
For α ∈ (0, 1) ∪ (1, ∞), we get

Hα(Q) =
1

1− α
log

(
m

∑
j=1

Qα(j)

)
(50)

=
1

1− α
log

(
i

∑
j=1

Qα(j) +
m

∑
j=i+1

Qα(j)

)
(51)

=
1

1− α
log

(
i

∑
j=1

Qα(j) + Sα exp
(
(1− α)Hα(Q)

))
(52)

≥ 1
1− α

log

(
i

∑
j=1

Qα(j) + Sα exp
(
(1− α)

(
log(m− i)− v(α)

)))
(53)

=
1

1− α
log

(
i

∑
j=1

Qα(j) + Sα (m− i)1−α exp
(
(α− 1) v(α)

))
(54)

where (51) holds since i ∈ {0, . . . , m− 1}; (52) follows from (2) and (45); (53) holds by (46)–(49).
In view of (44), let Q∗ ∈ Pm be the probability mass function which is given by

Q∗(j) =


Q(j), j = 1, . . . , i

S
m− i

, j = i + 1, . . . , m.
(55)
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From (50)–(55), we get

Hα(Q) ≥ 1
1− α

log

(
i

∑
j=1

(
Q∗(j)

)α
+

m

∑
j=i+1

(
Q∗(j)

)α exp
(
(α− 1) v(α)

))
(56)

=
1

1− α
log

(
m

∑
j=1

(
Q∗(j)

)α
+

m

∑
j=i+1

(
Q∗(j)

)α
(

exp
(
(α− 1) v(α)

)
− 1
))

(57)

= Hα(Q∗) +
1

1− α
log
(

1 + T
(

exp
(
(α− 1) v(α)

)
− 1
))

(58)

with

T :=

m
∑

j=i+1

(
Q∗(j)

)α

m
∑

j=1

(
Q∗(j)

)α
∈ [0, 1]. (59)

Since T ∈ [0, 1] and v(α) > 0 for α > 0, it can be verified from (56)–(58) that for α ∈ (0, 1) ∪ (1, ∞)

Hα(Q) ≥ Hα(Q∗)− v(α). (60)

The validity of (60) is extended to α = 1 by taking the limit α→ 1 on both sides of this inequality,
and due to the continuity of v(·) in (33) at α = 1. Applying the majorization result Q∗ ≺ PX̃m

in [12]
((31)), it follows from (60) and the Schur-concavity of the Rényi entropy that, for all α > 0,

Hα(Q) ≥ Hα(Q∗)− v(α) ≥ Hα(X̃m)− v(α), (61)

which together with (40), prove Items a) and b) of Theorem 2 (note that, in view of the construction of
the deterministic function f ∗ ∈ Fn,m in Step 4 of the above algorithm, we get Hα

(
f ∗(X)

)
= Hα(Q)).

We next prove Item c). Equality (36) is due to the Schur-concavity of the Rényi entropy, and since
we have

• f (X) is an aggregation of X, i.e., the probability mass function Q ∈ Pm of f (X)

satisfies Q(j) = ∑
i∈Ij

PX(i) (1 ≤ j ≤ m) where I1, . . . , Im partition {1, . . . , n} into m disjoint subsets

as follows:

Ij := {i ∈ {1, . . . , n} : f (i) = j}, j = 1, . . . , m; (62)

• By the assumption PX(1) ≥ PX(2) ≥ . . . ≥ PX(n), it follows that Q ≺ PỸm
for every such Q ∈ Pm;

• From (35), Ỹm = f̃ (X) where the function f̃ ∈ Fn,m is given by f̃ (k) := 1 for all
k ∈ {1, . . . , n-m+1}, and f̃ (n − m + i) := i for all i ∈ {2, . . . , m}. Hence, PỸm

is an element
in the set of the probability mass functions of f (X) with f ∈ Fn,m which majorizes every other
element from this set.

Remark 7. The solid line in the left plot of Figure 2 depicts v(α) := c(∞)
α (2) in (33) for α > 0. In view of

Lemma 4, and by the definition in (33), the function v : (0, ∞) → (0, ∞) is indeed monotonically increasing
and continuous.

Remark 8. Inequality (43) leads to the application of Theorem 1 with ρ = 2 (see (46)). In the derivation of
Theorem 2, we refer to v(α) := c(∞)

α (2) (see (47)–(49)) rather than referring to c(n)α (2) (although, from (24),
we have 0 ≤ c(n)α (2) ≤ v(α) for all α > 0). We do so since, for n ≥ 16, the difference between the curves
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of c(n)α (2) (as a function of α > 0) and the curve of c(∞)
α (2) is marginal (see the dashed and solid lines in the

left plot of Figure 2), and also because the function v in (33) is expressed in a closed form whereas c(n)α (2) is
subject to numerical optimization for finite n (see (15) and (16)). For this reason, Theorem 2 coincides with
the result in [12] (Theorem 1) for the Shannon entropy (i.e., for α = 1) while providing a generalization of the
latter result for Rényi entropies of arbitrary positive orders α. Theorem 1, however, both strengthens the bounds
in [12] (Theorem 2) for the Shannon entropy with finite cardinality n (see Remark 3), and it also generalizes
these bounds to Rényi entropies of all positive orders.

Remark 9. The minimizing probability mass function in (35) to the optimization problem (36), and the
maximizing probability mass function in (30) to the optimization problem (38) are in general valid when the
Rényi entropy of a positive order is replaced by an arbitrary Schur-concave function. However, the main results
in (32)–(34) hold particularly for the Rényi entropy.

Remark 10. Theorem 2 makes use of the random variables denoted by X̃m and Ỹm, rather than (more simply)
Xm and Ym respectively, because Section 5 considers i.i.d. samples {Xi}k

i=1 and {Yi}k
i=1 with Xi ∼ PX and

Yi ∼ PY; note, however, that the probability mass functions of X̃m and Ỹm are different from PX and PY,
respectively, and for that reason we make use of tilted symbols in the left sides of (30) and (35).

5. Information-Theoretic Applications: Non-Asymptotic Bounds for Lossless Compression
and Guessing

Theorem 2 is applied in this section to derive non-asymptotic bounds for lossless compression of
discrete memoryless sources and guessing moments. Each of the two subsections starts with a short
background for making the presentation self-contained.

5.1. Guessing

5.1.1. Background

The problem of guessing discrete random variables has various theoretical and operational aspects
in information theory (see [35–38,40,41,43,56,71–81]). The central object of interest is the distribution
of the number of guesses required to identify a realization of a random variable X, taking values on a
finite or countably infinite set X = {1, . . . , |X |}, by successively asking questions of the form “Is X
equal to x?” until the value of X is guessed correctly. A guessing function is a one-to-one function
g : X → X , which can be viewed as a permutation of the elements of X in the order in which they are
guessed. The required number of guesses is therefore equal to g(x) when X = x with x ∈ X .

Lower and upper bounds on the minimal expected number of required guesses for correctly
identifying the realization of X, expressed as a function of the Shannon entropy H(X), have been
respectively derived by Massey [77] and by McEliece and Yu [78], followed by a derivation of improved
upper and lower bounds by De Santis et al. [80]. More generally, given a probability mass function PX
on X , it is of interest to minimize the generalized guessing moment E[gρ(X)] = ∑

x∈X
PX(x)gρ(x) for

ρ > 0. For an arbitrary positive ρ, the ρ-th moment of the number of guesses is minimized by selecting
the guessing function to be a ranking function gX, for which gX(x) = ` if PX(x) is the `-th largest
mass [77]. Although the tie breaking affects the choice of gX , the distribution of gX(X) does not depend
on how ties are resolved. Not only does this strategy minimize the average number of guesses, but it
also minimizes the ρ-th moment of the number of guesses for every ρ > 0. Upper and lower bounds
on the ρ-th moment of ranking functions, expressed in terms of the Rényi entropies, were derived by
Arikan [35], Boztaş [71], followed by recent improvements in the non-asymptotic regime by Sason
and Verdú [56]. Although if |X | is small, it is straightforward to evaluate numerically the guessing
moments, the benefit of bounds expressed in terms of Rényi entropies is particularly relevant when
dealing with a random vector Xk = (X1, . . . , Xk) whose letters belong to a finite alphabetX ; computing
all the probabilities of the mass function PXk over the set X k, and then sorting them in decreasing order
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for the calculation of the ρ-th moment of the optimal guessing function for the elements of X k becomes
infeasible even for moderate values of k. In contrast, regardless of the value of k, bounds on guessing
moments which depend on the Rényi entropy are readily computable if for example, {Xi}k

i=1 are
independent; in which case, the Rényi entropy of the vector is equal to the sum of the Rényi entropies
of its components. Arikan’s bounds in [35] are asymptotically tight for random vectors of length k as
k→ ∞, thus providing the correct exponential growth rate of the guessing moments for sufficiently
large k.

5.1.2. Analysis

We next analyze the following setup of guessing. Let {Xi}k
i=1 be i.i.d. random variables where

X1 ∼ PX takes values on a finite set X with |X | = n. To cluster the data [82] (see also [12] (Section 3.A)
and references therein), suppose that each Xi is mapped to Yi = f (Xi) where f ∈ Fn,m is an arbitrary
deterministic function (independent of the index i) with m < n. Consequently, {Yi}k

i=1 are i.i.d.,
and each Yi takes values on a finite set Y with |Y| = m < |X |.

Let gXk : X k → {1, . . . , nk} and gYk : Y k → {1, . . . , mk} be, respectively, the ranking functions of
the random vectors Xk = (X1, . . . , Xk) and Yk = (Y1, . . . , Yk) by sorting in separate decreasing orders
the probabilities PXk (xk) = ∏k

i=1 PX(xi) for xk ∈ X k, and PYk (yk) = ∏k
i=1 PY(yi) for yk ∈ Y k where

ties in both cases are resolved arbitrarily. In view of Arikan’s bounds on the ρ-th moment of ranking
functions (see [35] (Theorem 1) for the lower bound, and [35] (Proposition 4) for the upper bound),
since |X k| = nk and |Y k| = mk, the following bounds hold for all ρ > 0:

ρH 1
1+ρ

(X)− ρ log(1 + k ln n)
k

≤ 1
k

logE
[
gρ

Xk (Xk)
]
≤ ρH 1

1+ρ
(X), (63)

ρH 1
1+ρ

(Y)− ρ log(1 + k ln m)

k
≤ 1

k
logE

[
gρ

Yk (Y
k)
]
≤ ρH 1

1+ρ
(Y). (64)

In the following, we rely on Theorem 2 and the bounds in (63) and (64) to obtain bounds on the
exponential reduction of the ρ-th moment of the ranking function of Xk as a result of its mapping to
Yk. First, the combination of (63) and (64) yields

ρ

[
H 1

1+ρ
(X)− H 1

1+ρ
(Y)
]
− ρ log(1 + k ln n)

k

≤ 1
k

log
E
[
gρ

Xk (Xk)
]

E
[
gρ

Yk (Yk)
] (65)

≤ ρ

[
H 1

1+ρ
(X)− H 1

1+ρ
(Y)
]
+

ρ log(1 + k ln m)

k
. (66)

In view of Theorem 2-(a) and (65), it follows that for an arbitrary f ∈ Fn,m and ρ > 0

1
k

log
E
[
gρ

Xk (Xk)
]

E
[
gρ

Yk (Yk)
] ≥ ρ

[
H 1

1+ρ
(X)− H 1

1+ρ
(X̃m)

]
− ρ log(1 + k ln n)

k
(67)

where X̃m is a random variable whose probability mass function is given in (30). Please note that

H 1
1+ρ

(X̃m) ≤ H 1
1+ρ

(X),
ρ log(1 + k ln n)

k
−→
k→∞

0 (68)

where the first inequality in (68) holds since PX ≺ PX̃m
(see Lemma 5) and the Rényi entropy is

Schur-concave.
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By the explicit construction of the function f ∗ ∈ Fn,m according to the algorithm in Steps 1–4 in the
proof of Theorem 2 (based on the Huffman procedure), by setting Yi := f ∗(Xi) for every i ∈ {1, . . . , k},
it follows from (34) and (66) that for all ρ > 0

1
k

log
E
[
gρ

Xk (Xk)
]

E
[
gρ

Yk (Yk)
] ≤ ρ

[
H 1

1+ρ
(X)− H 1

1+ρ
(X̃m) + v

(
1

1 + ρ

)]
+

ρ log(1 + k ln m)

k
(69)

where the monotonically increasing function v : (0, ∞)→ (0, ∞) is given in (33), and it is depicted by
the solid line in the left plot of Figure 2. In view of (33), it can be shown that the linear approximation
v(α) ≈ v(1)α is excellent for all α ∈ [0, 1], and therefore for all ρ > 0

v
(

1
1 + ρ

)
≈ 0.08607

1 + ρ
bits. (70)

Hence, for sufficiently large value of k, the gap between the lower and upper bounds in (67)
and (69) is marginal, being approximately equal to 0.08607 ρ

1+ρ bits for all ρ > 0.
The following theorem summarizes our result in this section.

Theorem 3. Let

• {Xi}k
i=1 be i.i.d. with X1 ∼ PX taking values on a set X with |X | = n;

• Yi = f (Xi), for every i ∈ {1, . . . , k}, where f ∈ Fn,m is a deterministic function with m < n;
• gXk : X k → {1, . . . , nk} and gYk : Y k → {1, . . . , mk} be, respectively, ranking functions of the random

vectors Xk = (X1, . . . , Xk) and Yk = (Y1, . . . , Yk).

Then, for every ρ > 0,

(a) The lower bound in (67) holds for every deterministic function f ∈ Fn,m;
(b) The upper bound in (69) holds for the specific f ∗ ∈ Fn,m, whose construction relies on the Huffman

algorithm (see Steps 1–4 of the procedure in the proof of Theorem 2);
(c) The gap between these bounds, for f = f ∗ and sufficiently large k, is at most ρ v

(
1

1+ρ

)
≈ 0.08607 ρ

1+ρ bits.

5.1.3. Numerical Result

The following simple example illustrates the tightness of the achievable upper bound and the
universal lower bound in Theorem 3, especially for sufficiently long sequences.

Example 1. Let X be geometrically distributed restricted to {1, . . . , n} with the probability mass function

PX(j) =
(1− a) aj−1

1− an , j ∈ {1, . . . , n} (71)

where a = 24
25 and n = 128. Assume that X1, . . . , Xk are i.i.d. with X1 ∼ PX, and let Yi = f (Xi) for a

deterministic function f ∈ Fn,m with n = 128 and m = 16. We compare the upper and lower bounds in
Theorem 3 for the two cases where the sequence Xk = (X1, . . . , Xk) is of length k = 100 or k = 1000. The lower
bound in (67) holds for an arbitrary deterministic f ∈ Fn,m, and the achievable upper bound in (69) holds for
the construction of the deterministic function f = f ∗ ∈ Fn,m (based on the Huffman algorithm) in Theorem 3.

Numerical results are shown in Figure 4, providing plots of the upper and lower bounds on 1
k log2

E
[

gρ

Xk (Xk)
]

E
[

gρ

Yk (Y
k)
] in

Theorem 3, and illustrating the improved tightness of these bounds when the value of k is increased from 100
(left plot) to 1000 (right plot). From Theorem 3-(c), for sufficiently large k, the gap between the upper and lower
bounds is less than 0.08607 bits (for all ρ > 0); this is consistent with the right plot of Figure 4 where k = 1000.
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Figure 4. Plots of the upper and lower bounds on 1
k log2

E
[

gρ

Xk (Xk)
]

E
[

gρ

Yk (Y
k)
] in Theorem 3, as a function of

ρ > 0, for random vectors of length k = 100 (left plot) or k = 1000 (right plot) in the setting of
Example 1. Each plot shows the universal lower bound for an arbitrary deterministic f ∈ F128, 16,
and the achievable upper bound with the construction of the deterministic function f = f ∗ ∈ F128, 16

(based on the Huffman algorithm) in Theorem 3 (see, respectively, (67) and (69)).

5.2. Lossless Source Coding

5.2.1. Background

For uniquely decodable (UD) lossless source coding, Campbell [51,83] proposed the cumulant
generating function of the codeword lengths as a generalization to the frequently used design criterion
of average code length. Campbell’s motivation in [51] was to control the contribution of the longer
codewords via a free parameter in the cumulant generating function: if the value of this parameter
tends to zero, then the resulting design criterion becomes the average code length per source symbol;
on the other hand, by increasing the value of the free parameter, the penalty for longer codewords
is more severe, and the resulting code optimization yields a reduction in the fluctuations of the
codeword lengths.

We introduce the coding theorem by Campbell [51] for lossless compression of a discrete
memoryless source (DMS) with UD codes, which serves for our analysis jointly with Theorem 2.

Theorem 4 (Campbell 1965, [51]). Consider a DMS which emits symbols with a probability mass function PX
defined on a (finite or countably infinite) set X . Consider a UD fixed-to-variable source code operating on source
sequences of k symbols with an alphabet of the codewords of size D. Let `(xk) be the length of the codeword
which corresponds to the source sequence xk := (x1, . . . , xk) ∈ X k. Consider the scaled cumulant generating
function of the codeword lengths

Λk(ρ) :=
1
k

logD

(
∑

xk∈X k

PXk (xk) Dρ `(xk)

)
, ρ > 0 (72)

where

PXk (xk) =
k

∏
i=1

PX(xi), ∀ xk ∈ X k. (73)

Then, for every ρ > 0, the following hold:
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(a) Converse result:

Λk(ρ)

ρ
≥ 1

log D
H 1

1+ρ
(X). (74)

(b) Achievability result: there exists a UD source code, for which

Λk(ρ)

ρ
≤ 1

log D
H 1

1+ρ
(X) +

1
k

. (75)

The term scaled cumulant generating function is used in view of [56] (Remark 20). The bounds in
Theorem 4, expressed in terms of the Rényi entropy, imply that for sufficiently long source sequences,
it is possible to make the scaled cumulant generating function of the codeword lengths approach
the Rényi entropy as closely as desired by a proper fixed-to-variable UD source code; moreover,
the converse result shows that there is no UD source code for which the scaled cumulant generating
function of its codeword lengths lies below the Rényi entropy. By invoking L’Hôpital’s rule, one gets
from (72)

lim
ρ↓0

Λk(ρ)

ρ
=

1
k ∑

xk∈X k

PXk (xk) `(xk) =
1
k
E[`(Xk)]. (76)

Hence, by letting ρ tend to zero in (74) and (75), it follows from (4) that Campbell’s result in
Theorem 4 generalizes the well-known bounds on the optimal average length of UD fixed-to-variable
source codes (see, e.g., [84] ((5.33) and (5.37))):

1
log D

H(X) ≤ 1
k
E[`(Xk)] ≤ 1

log D
H(X) +

1
k

, (77)

and (77) is satisfied by Huffman coding (see, e.g., [84] (Theorem 5.8.1)). Campbell’s result therefore
generalizes Shannon’s fundamental result in [85] for the average codeword lengths of lossless
compression codes, expressed in terms of the Shannon entropy.

Following the work by Campbell [51], Courtade and Verdú derived in [52] non-asymptotic
bounds for the scaled cumulant generating function of the codeword lengths for PX-optimal
variable-length lossless codes [23,86]. These bounds were used in [52] to obtain simple proofs of
the asymptotic normality of the distribution of codeword lengths, and the reliability function of
memoryless sources allowing countably infinite alphabets. Sason and Verdú recently derived in [56]
improved non-asymptotic bounds on the cumulant generating function of the codeword lengths for
fixed-to-variable optimal lossless source coding without prefix constraints, and non-asymptotic bounds
on the reliability function of a DMS, tightening the bounds in [52].

5.2.2. Analysis

The following analysis for lossless source compression with UD codes relies on a combination of
Theorems 2 and 4.

Let X1, . . . , Xk be i.i.d. symbols which are emitted from a DMS according to a probability mass
function PX whose support is a finite set X with |X | = n. Similarly to Section 5.1, to cluster the data,
suppose that each symbol Xi is mapped to Yi = f (Xi) where f ∈ Fn,m is an arbitrary deterministic
function (independent of the index i) with m < n. Consequently, the i.i.d. symbols Y1, . . . , Yk take
values on a set Y with |Y| = m < |X |. Consider two UD fixed-to-variable source codes: one operating
on the sequences xk ∈ X k, and the other one operates on the sequences yk ∈ Y k; let D be the size of the
alphabets of both source codes. Let `(xk) and `(yk) denote the length of the codewords for the source
sequences xk and yk, respectively, and let Λk(·) and Λk(·) denote their corresponding scaled cumulant
generating functions (see (72)).
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In view of Theorem 4-(b), for every ρ > 0, there exists a UD source code for the sequences in X k

such that the scaled cumulant generating function of its codeword lengths satisfies (75). Furthermore,
from Theorem 4-(a), we get

Λk(ρ)

ρ
≥ 1

log D
H 1

1+ρ
(Y). (78)

From (75), (78) and Theorem 2 (a) and (b), for every ρ > 0, there exist a UD source code for the
sequences in X k, and a construction of a deterministic function f ∈ Fn,m (as specified by Steps 1–4 in
the proof of Theorem 2, borrowed from [12]) such that the difference between the two scaled cumulant
generating functions satisfies

Λk(ρ)−Λk(ρ) ≤
ρ

log D

[
H 1

1+ρ
(X)− H 1

1+ρ
(X̃m) + v

(
1

1 + ρ

)]
+

ρ

k
, (79)

where (79) holds for every UD source code operating on the sequences in Y k with Yi = f (Xi)

(for i = 1, . . . , k) and the specific construction of f ∈ Fn,m as above, and X̃m in the right side of
(79) is a random variable whose probability mass function is given in (30). The right side of (79) can be
very well approximated (for all ρ > 0) by using (70).

We proceed with a derivation of a lower bound on the left side of (79). In view of Theorem 4,
it follows that (74) is satisfied for every UD source code which operates on the sequences in X k;
furthermore, Theorems 2 and 4 imply that, for every f ∈ Fn,m, there exists a UD source code which
operates on the sequences in Y k such that

Λk(ρ)

ρ
≤ 1

log D
H 1

1+ρ
(Y) +

1
k

, (80)

≤ 1
log D

H 1
1+ρ

(X̃m) +
1
k

, (81)

where (81) is due to (39) since Yi = f (Xi) (for i = 1, . . . , k) with an arbitrary deterministic function
f ∈ Fn,m, and Yi ∼ PY for every i; hence, from (74), (80) and (81),

Λk(ρ)−Λk(ρ) ≥
ρ

log D

(
H 1

1+ρ
(X)− H 1

1+ρ
(X̃m)

)
− ρ

k
. (82)

We summarize our result as follows.

Theorem 5. Let

• X1, . . . , Xk be i.i.d. symbols which are emitted from a DMS according to a probability mass function PX
whose support is a finite set X with |X | = n;

• Each symbol Xi be mapped to Yi = f (Xi) where f ∈ Fn,m is the deterministic function (independent of
the index i) with m < n, as specified by Steps 1–4 in the proof of Theorem 2 (borrowed from [12]);

• Two UD fixed-to-variable source codes be used: one code encodes the sequences xk ∈ X k, and the other
code encodes their mappings yk ∈ Y k; let the common size of the alphabets of both codes be D;

• Λk(·) and Λk(·) be, respectively, the scaled cumulant generating functions of the codeword lengths of the
k-length sequences in X k (see (72)) and their mapping to Y k.

Then, for every ρ > 0, the following holds for the difference between the scaled cumulant generating
functions Λk(·) and Λk(·):

(a) There exists a UD source code for the sequences in X k such that the upper bound in (79) is satisfied for
every UD source code which operates on the sequences in Y k;
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(b) There exists a UD source code for the sequences in Y k such that the lower bound in (82) holds for every
UD source code for the sequences in X k; furthermore, the lower bound in (82) holds in general for every
deterministic function f ∈ Fn,m;

(c) The gap between the upper and lower bounds in (79) and (82), respectively, is at most ρ
log D v

(
1

1+ρ

)
+ 2ρ

k

(the function v : (0, ∞)→ (0, ∞) is introduced in (33)), which is approximately 0.08607ρ logD 2
1+ρ + 2ρ

k ;
(d) The UD source codes in Items (a) and (b) for the sequences in X k and Y k, respectively, can be constructed

to be prefix codes by the algorithm in Remark 11.

Remark 11 (An Algorithm for Theorem 5 (d)). A construction of the UD source codes for the sequences
in X k and Y k, whose existence is assured by Theorem 5 (a) and (b) respectively, is obtained by the following
algorithm (of three steps) which also constructs them as prefix codes:

(1) As a preparatory step, we first calculate the probability mass function PY from the given probability
mass function PX and the deterministic function f ∈ Fn,m which is obtained by Steps 1–4 in the proof
of Theorem 2; accordingly, PY(y) = ∑

x∈X : f (x)=y
PX(x) for all y ∈ Y . We then further calculate the

probability mass functions for the i.i.d. sequences in X k and Y k (see (73)); recall that the number of types
in X k and Y k is polynomial in k (being upper bounded by (k + 1)n−1 and (k + 1)m−1, respectively),
and the values of these probability mass functions are fixed over each type;

(2) The sets of codeword lengths of the two UD source codes, for the sequences in X k and Y k, can (separately)
be designed according to the achievability proof in Campbell’s paper (see [51] (p. 428)). More explicitly,
let α := 1

1+ρ ; for all xk ∈ X k, let `(xk) ∈ N be given by

`(xk) =
⌈
−α logD PXk (xk) + logD Qk

⌉
(83)

with

Qk := ∑
xk∈X k

Pα
Xk (xk) =

(
∑

x∈X
Pα

X(x)

)k

, (84)

and let `(yk) ∈ N, for all yk ∈ Y k, be given similarly to (83) and (84) by replacing PX with PY,
and PXk with PYk . This suggests codeword lengths for the two codes which fulfil (75) and (80), and also,
both satisfy Kraft’s inequality;

(3) The separate construction of two prefix codes (a.k.a. instantaneous codes) based on their given sets
of codeword lengths {`(xk)}xk∈X k and {`(yk)}yk∈Y k , as determined in Step 2, is standard (see, e.g.,
the construction in the proof of [84] (Theorem 5.2.1)).

Theorem 5 is of interest since it provides upper and lower bounds on the reduction in the cumulant
generating function of close-to-optimal UD source codes because of clustering data, and Remark 11
suggests an algorithm to construct such UD codes which are also prefix codes. For long enough
sequences (as k → ∞), the upper and lower bounds on the difference between the scaled cumulant
generating functions of the suggested source codes for the original and clustered data almost match

(see (79) and (82)), being roughly equal to ρ

(
H 1

1+ρ
(X)− H 1

1+ρ
(X̃m)

)
(with logarithms on base D,

which is the alphabet size of the source codes); as k → ∞, the gap between these upper and lower
bounds is less than 0.08607 logD 2. Furthermore, in view of (76),

lim
ρ↓0

Λk(ρ)−Λk(ρ)

ρ
=

1
k

(
E[`(Xk)]−E[`(Yk)]

)
, (85)
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so, it follows from (4), (33), (79) and (82) that the difference between the average code lengths
(normalized by k) of the original and clustered data satisfies

H(X)− H(X̃m)

log D
− 1

k
≤ E[`(Xk)]−E[`(Yk)]

k
≤ H(X)− H(X̃m) + 0.08607 log 2

log D
, (86)

where the gap between the upper and lower bounds is equal to 0.08607 logD 2 + 1
k .
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Appendix A. Proof of Lemma 2

We first find the extreme values of pmin under the assumption that P ∈ Pn(ρ). If pmax
pmin

= 1, then P

is the equiprobable distribution on X and pmin = 1
n . On the other hand, if pmax

pmin
= ρ, then the minimal

possible value of pmin is obtained when P is the one-odd-mass distribution with n− 1 masses equal to
ρpmin and a smaller mass equal to pmin. The latter case yields pmin = 1

1+(n−1)ρ .

Let β := pmin, so β can get any value in the interval
[

1
1+(n−1)ρ , 1

n

]
:= Γ(n)

ρ . From Lemma 1,
P ≺ Qβ and Qβ ∈ Pn(ρ), and the Schur-concavity of the Rényi entropy yields Hα(P) ≥ Hα(Qβ) for all
P ∈ Pn(ρ) with pmin = β. Minimizing Hα(P) over P ∈ Pn(ρ) can be therefore restricted to minimizing
Hα(Qβ) over β ∈ Γ(n)

ρ .

Appendix B. Proof of Lemma 3

The sequence {c(n)α (ρ)}n∈N is non-negative since Hα(P) ≤ log n for all P ∈ Pn. To prove (17),

0 ≤ c(n)α (ρ) = log n− min
P∈Pn(ρ)

Hα(P) (A1)

≤ log n− min
P∈Pn(ρ)

H∞(P) (A2)

≤ log n− log
n
ρ
= log ρ (A3)

where (A2) holds since Hα(P) is monotonically decreasing in α, and (A3) is due to (5) and pmax ≤ ρ
n .

Let Un denote the equiprobable probability mass function on {1, . . . , n}. By the identity

Dα(P‖Un) = log n− Hα(P), (A4)

and since, by Lemma 2, Hα(·) attains its minimum over the set of probability mass functions Pn(ρ),
it follows that Dα(·‖Un) attains its maximum over this set. Let P∗ ∈ Pn(ρ) be the probability measure
which achieves the minimum in c(n)α (ρ) (see (16)), then from (A4)

c(n)α (ρ) = max
P∈Pn(ρ)

Dα(P‖Un) (A5)

= Dα(P∗‖Un). (A6)

Let Q∗ be the probability mass function which is defined on {1, . . . , 2n} as follows:

Q∗(i) =

{
1
2 P∗(i), i ∈ {1, . . . , n},
1
2 P∗(i− n), i ∈ {n + 1, . . . , 2n}.

(A7)
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Since by assumption P∗ ∈ Pn(ρ), it is easy to verify from (A7) that

Q∗ ∈ P2n(ρ). (A8)

Furthermore, from (A7),

Dα(Q∗‖U2n) =
1

α− 1
log

(
2n

∑
i=1

(
Q∗(i)

)α
(

1
2n

)1−α
)

(A9)

=
1

α− 1
log

(
1
2

n

∑
i=1

(
P∗(i)

)α
(

1
n

)1−α

+ 1
2

2n

∑
i=n+1

(
P∗(i− n)

)α
(

1
n

)1−α
)

(A10)

=
1

α− 1
log

(
n

∑
i=1

(
P∗(i)

)α
(

1
n

)1−α
)

(A11)

= Dα(P∗‖Un). (A12)

Combining (A5)–(A12) yields

c(2n)
α (ρ) = max

Q∈P2n(ρ)
Dα(Q‖U2n) (A13)

≥ Dα(Q∗‖U2n) (A14)

= Dα(P∗‖Un) (A15)

= c(n)α (ρ), (A16)

proving (18). Finally, in view of (A5), c(n)α (ρ) is monotonically increasing in α since so is the Rényi
divergence of order α (see [87] (Theorem 3)).

Appendix C. Proof of Lemma 4

From Lemma 2, the minimizing distribution of Hα is given by Qβ ∈ Pn(ρ) where

Qβ =
(

ρβ, . . . , ρβ︸ ︷︷ ︸
i

, 1− (n + iρ− i− 1)β, β, β, . . . , β︸ ︷︷ ︸
n−i−1

)
(A17)

with β ∈
[

1
1+(n−1)ρ , 1

n

]
, and 1− (n + iρ− i− 1)β ≤ ρβ ≤ ρ

n . It therefore follows that the influence of
the middle probability mass of Qβ on Hα(Qβ) tends to zero as n→ ∞. Therefore, in this asymptotic
case, one can instead minimize Hα(Q̃m) where

Q̃m =
(

ρβ, . . . , ρβ︸ ︷︷ ︸
m

, β, β, . . . , β︸ ︷︷ ︸
n−m

)
(A18)

with the free parameter m ∈ {1, . . . , n} and β = 1
n+m(ρ−1) (so that the total mass of Q̃m is equal to 1).

For α ∈ (0, 1) ∪ (1, ∞), straightforward calculation shows that

Hα(Q̃m) =
1

1− α
log

(
n

∑
j=1

Q̃α
m(j)

)

= log n− 1
α− 1

log

(
1 + m

n (ρα − 1)(
1 + m

n (ρ− 1)
)α

)
,

(A19)
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and by letting n→ ∞, the limit of the sequence {c(n)α (ρ)}n∈N exists, and it is equal to

c(∞)
α (ρ) := lim

n→∞
c(n)α (ρ)

= lim
n→∞

(
log n− min

m∈{1,...,n}
Hα(Q̃m)

)
= lim

n→∞
max

m∈{1,...,n}

{
1

α− 1
log

(
1 + m

n (ρα − 1)(
1 + m

n (ρ− 1)
)α

)}

= max
x∈[0,1]

{
1

α− 1
log

(
1 + (ρα − 1)x(
1 + (ρ− 1)x

)α

)}
.

(A20)

Let fα : [0, 1]→ R be given by

fα(x) =
1 + (ρα − 1)x(
1 + (ρ− 1)x

)α , x ∈ [0, 1]. (A21)

Then, fα(0) = fα(1) = 1, and straightforward calculation shows that the derivative f ′α vanishes if
and only if

x = x∗ :=
1 + α(ρ− 1)− ρα

(1− α)(ρ− 1)(ρα − 1)
. (A22)

We rely here on a specialized version of the mean value theorem, known as Rolle’s theorem,
which states that any real-valued differentiable function that attains equal values at two distinct
points must have a point somewhere between them where the first derivative at this point is zero.
By Rolle’s theorem, and due to the uniqueness of the point x∗ in (A22), it follows that x∗ ∈ (0, 1).
Substituting (A22) into (A20) gives (20). Taking the limit of (20) when α→ ∞ gives the result in (21).

In the limit where α → 1, the Rényi entropy of order α tends to the Shannon entropy. Hence,
letting α→ 1 in (20), it follows that for the Shannon entropy

c(∞)
1 (ρ) = lim

α→1
c(∞)

α (ρ)

= lim
α→1

{
1

α− 1
log
(

1 +
1 + α (ρ− 1)− ρα

(1− α)(ρ− 1)

)
− α

α− 1
log
(

1 +
1 + α (ρ− 1)− ρα

(1− α)(ρα − 1)

)}
=

ρ log ρ

ρ− 1
− log e− log

(
ρ loge ρ

ρ− 1

)
,

(A23)

where (A23) follows by invoking L’Hôpital’s rule. This proves (22).

From (17)–(19), we get 0 ≤ c(n)α (ρ) ≤ c(∞)
α (ρ). Since c(n)α (ρ) is monotonically increasing in α ∈ [0, ∞],

for every n ∈ N, so is c(∞)
α (ρ); hence, (21) yields c(∞)

α (ρ) ≤ log ρ. This proves (24).
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