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Abstract 
 

Recent technological advances have made it possible to simultaneously record the activity 

of thousands of individual neurons in the cortex of awake behaving animals. However, the 

comparatively slower development of analytical tools capable of handling the scale and 

complexity of large-scale recordings is a growing problem for the field of neuroscience. We 

present the Similarity Networks (SIMNETS) algorithm: a computationally efficient and 

scalable method for identifying and visualizing sub-networks of functionally similar neurons 

within larger simultaneously recorded ensembles. While traditional approaches tend to group 

neurons according to the statistical similarities of inter-neuron spike patterns, our approach 

begins by mathematically capturing the intrinsic relationship between the spike train outputs 

of each neuron across experimental conditions, before any comparisons are made between 

neurons. This strategy estimates the intrinsic geometry of each neuron’s output space, 

allowing us to capture the information processing properties of each neuron in a common 

format that is easily compared between neurons. Dimensionality reduction tools are then 

used to map high-dimensional neuron similarity vectors into a low-dimensional space where 

functional groupings are identified using clustering and statistical techniques. SIMNETS 

makes minimal assumptions about single neuron encoding properties; is efficient enough to 

run on consumer-grade hardware (100 neurons < 4s run-time); and has a computational 

complexity that scales near-linearly with neuron number. These properties make SIMNETS 

well-suited for examining large networks of neurons during complex behaviors. We validate 

the ability of our approach for detecting statistically and physiologically meaningful 

functional groupings in a population of synthetic neurons with known ground-truth, as well 

three publicly available datasets of ensemble recordings from primate primary visual and 

motor cortex and the rat hippocampal CA1 region. 
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Introduction 
 

The neural computations underlying complex sensory, cognitive, and motor information 

processing are thought to emerge from the interactions of vast networks of functionally 

interrelated neurons. Within these networks, smaller sub-networks of neurons (‘sub-nets’) 

engaged in similar information processing tasks have been proposed to embody the 

computational units that support specific functions including perceptual integration, memory 

storage/retrieval, and dexterous motor control1–3. Identifying functional sub-nets would 

greatly simplify the process of tracking information flow in cortical circuits, modeling 

population-level neural dynamics, and ultimately understanding the general principles of 

neural computation4–7. While it is now possible to record ever larger neural populations, 

detecting functional groupings of neurons and characterizing their computational operations 

has proven notoriously difficult because of the scale of data processing involved and the lack 

of accepted mathematical tools to partition large networks into smaller functional 

components8.  

 

One of the critical challenges lies with the selection of an appropriate quantitative definition 

of ‘functional similarity’ across neurons. Motivated by theories of Hebbian cell assemblies, 

several neuron clustering approaches have relied on using synchrony or firing rate 

covariations to detect functional associations between neurons9–14. One widely discussed 

hypothesis proposes that synchronously-active neurons might serve as an independent 

coding dimension to facilitate perceptual or cognitive integration of the information encoded 

in the firing rates of individual neurons15–17. Although several studies have observed 

synchronous and correlated activity between neurons in multiple brain regions, discrepant 

reports regarding the functional and statistical significance of the features of neural activity 

have led to some doubts regarding the usefulness of this approach for detecting functionally 

relevant ensemble motifs18,19. While focusing on spike-rate and spike-time covariations is 

intuitive, cross-correlation methods do not scale well for large datasets and firing rate 

covariation measures could limit the complexity of the functional relationships that can 

potentially be detected between neurons. More specifically, these methods prioritize 

grouping neurons according to the similarity of their spiking statistics – as opposed to their 

information processing properties.  Although the underlying premise of these methods is that 

similar inter-neuron spike patterns imply similar information processing properties9,11,14,20, a 

growing body of work suggests that this may be an oversimplified view21.  

Recent work has shown that individual neurons in higher-level brain areas22,23, motor areas24–

26, and even primary sensory areas27, can exhibit highly heterogeneous and complex 

responses dynamics, both across conditions and neurons21. Historically, these features of 

single neuron spiking activity were interpreted as biological noise; however, these studies 

suggest that trial-to-trial variability and temporal complexity are important features of the 

information coding operations taking place across the network. This work also suggest that 
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measures of trial-averaged spike rate or spike time covariations may neglect important 

aspects of a neuron’s activity that can reveal a functional association to other neurons within 

in sub-network. Here, we propose a more general strategy for identifying groups of neurons 

with similar information processing properties. 

 

SIMNETS: a novel mathematical framework to identify functional neuronal sub-

ensembles  

 

The SIMNETS algorithm is designed to map a set of spike trains generated by a single 

simultaneously recorded neuron into an abstract metric space in such a way that the structure 

of the space captures the neuron’s information processing characteristics (see below). Rather 

than comparing the spike train outputs between pairs of neurons directly, we compare the 

intrinsic structure27,2 of the neurons’ output state-spaces, i.e., the self-similarity pattern of 

each neuron’s spike trains across conditions8.  

We envision each neuron as performing an unknown operation on a set of high dimensional 

inputs (potentially 1000’s of synaptic inputs carrying sensory and/or time-varying internal 

signals) (Fig 1a). To be useful as a computational element, each neuron should have a 

relatively consistent internal mapping between inputs and outputs, allowing for stochasticity 

in spike generation and the potential to change the mapping over time through learning. 

When examined within the context of the observed population, a neuron may be insensitive 

to certain changes taking place across the network, such that the neuron’s spike train pattern 

appears similar across many different global network patterns. On the other hand, other 

global network patterns may elicit dramatic changes in the neuron’s spike outputs that will 

differ depending on the strength of the synaptic inputs across time. Thus, the observed 

changes in the spike train patterns of a single neuron across different network states will 

highlight the differences between some global network states and generalize over others. The 

key insight is that it is possible to represent the information processing characteristics (i.e., 

the input-output relationship) of a neuron by examining the similarities and dissimilarities 

between its spike train outputs across different points in time. Note that this approach makes 

it possible to compare the operations performed by simultaneously recorded neurons on a 

trial-by-trial basis, without requiring explicit knowledge of the type of function they may be 

computing.  

 

Our neuron sub-net identification strategy is built upon the premise that ‘computationally 

equivalent’ neurons will generalize and differentiate across the same subset of network states 

(i.e., trials). A spike train similarity analysis framework30,31 can be used to project the set of 

activity patterns generated by each neuron into an abstract metric space, such that near-by 

points correspond to similar output states (i.e., similar spike trains) and far-away  points 

correspond to dissimilar output states (i.e., dissimilar spike trains) (Fig. 1b). Mathematically, 

we can represent the relationships between the set of spike trains originating from a given 

neuron across a set of events of interest (e.g., stimulus presentations), using a pairwise 

distance matrix, where each entry represents the similarity between a pair of spike trains 

(Fig. 1c). We  refer this type of matrix as a Spike Train Similarity (SSIM) matrix (see Online 

Methods for more details). The spike train distance matrix can be thought of as a high-

dimensional representation of the relationship between the neuron’s outputs across 

experimental conditions30 (see Supplementary Fig. 1-2 for further demonstrations). This 

general strategy captures the intrinsic geometry of each neuron’s output space and allows us 
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to capture the information processing properties of each neuron in a format that is easily 

compared between neurons (Fig. 1d-f).  

 

Geometric models of similarity data have a long history of application in the field of 

psychology, where they have been used to model the perceptual relationships between 

sensory stimuli, i.e. perceptual metric-space32; however, it is only more recently that this 

approach has found application in the field of Neuroscience, where it has been successfully 

used to model the relational structure of neuronal ensemble activity patterns33–35 and fMRI 

activity patterns36.  

 

Figure 1| Assessing functional relationships between neurons by comparing state spaces generated from 

within-neuron single trial spike train distance measures   

a. Simulated spike train data for three ‘simultaneously recorded’ synthetic neurons (N) during repeated 

presentations of a stimulus: N2 was designed to exhibit similar trial-averaged firing rates to N1 and similar 

trial-to-trial response variability to N3. Top row: trial-averaged firing rate functions for each neuron. Bottom 

row: spike train outputs of each neuron in response to three repetitions of the same stimulus. Note*, both N2 

and N3 exhibit a spike pattern modulation on trial 3 to an ‘unknown’ experimental variable, which is expressed 

as a reduction in spike rate (N2) and a change in the temporal pattern of the output (N3). b. Victor-Purpura 

(VP) spike train metric applied to N3 spike trains: the metric assigns an ‘edit cost’ to spike train pairs in 

accordance to the similarity of their spike patterns. Note that several spike train similarity metrics have been 
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proposed in the literature. c. The relationship between a set of spike trains originating from a common neuron 

is summarized as a pairwise distance matrix; each entry corresponds to the edit-distance between two spike 

trains. We refer to these data structures as spike train similarity (SSIM) matrices d. Visualization of SSIM 

matrix using a graph representation (c); a separate graph is plotted for each matrix. Each point represents a 

spike train from a given neuron and the line connecting pair of points corresponds to the distance values 

assigned to the spike trains. Note that the sizes of the spike train graphs are different across neurons, but that 

shape of N2 and N3 graphs are similar, i.e., covariation in their side lengths. (e) Pairs of single neuron SSIM 

matrices are compared using Pearson’s correlation and represented as a Neuron Similarity (NS) matrix. Note 

that the diagonal represents the comparison of each neuron to itself, and so always equal to one. Each NS matrix 

column (broken line) represents the correlations between one neuron versus all others. Each of these column 

vectors can be used to map a neuron into an N-dimensional neuron space.  f. Scatter plot showing the data 

contained in the NS matrix (e): each point corresponds to a single neuron with coordinates defined by a N 

dimensional vector of correlation values, i.e., the NS matrix column. Note that N2 and N3 are located next to 

each other in the map because of the high correlation between their SSIM matrices, which is ultimately 

dependent upon the geometric similarity of their spike train output spaces.  
 

 

Our proposed algorithm calculates the pairwise spike train distances between all S spike 

trains generated by a given neuron (Fig. 2; step 1), and then compares each neuron’s SxS 

SSIM matrix to that of every other neuron (Fig. 2; step 2). This can be accomplished by 

comparing their SSIM matrices using standard correlation statistics, such as Pearson’s 

correlation. The resulting pairwise correlation measures are represented as a single NxN 

Neuron Similarity (NS) matrix, where each column of the matrix can be viewed as a vector 

that represents the functional similarity of a given neuron to all others N-1 neurons in the 

population (Fig. 2; step 2). Standard dimensionality reduction techniques, e.g. 

multidimensional scaling, t-distributed stochastic neighborhood embedding37 can be used to 

project these neuron similarity vectors into a low-dimensional Neuron Similarity (NS) map 

such that neurons are positioned according to their information processing properties (Fig. 

2; step 3-4). Applying dimensionality reduction makes the data easier to visualize and 

facilitates statistical analysis. Overall, this representation reduces the problem of identifying 

functional sub-nets to one of detecting clusters of neurons within the NS map. This step can 

be accomplished using standard clustering algorithms (e.g. k-means) and validated using a 

shuffle-based statistical test that relies on shuffling the rows/columns of the SSIM matrices 

to avoid false cluster discovery (Fig. 2; inset; see Methods and supplementary Fig. 4 for 

details). We call this new strategy for identifying sub-nets of neurons with similar 

informational properties SIMNETS. Note that there is a wide choice of (1) similarity metrics 

for spike trains, (2) dimensionality reduction algorithms, and (3) clustering algorithms that 

can be employed within the proposed analytical framework.  

 

Unlike methods based on measures of synchronous spiking activity9,38,39, SIMNETS  

identifies neurons with similar functional properties, even if functionally interrelated 

neurons exhibit diverse firing statistics (i.e., different encoding schemes). Critically, unlike 

other pairwise methods 9,11,38, SIMNETS is well suited for studying datasets with large 

numbers of neurons and relatively small numbers of experimental trials. The computational 

cost of the generating the high-dimensional neuron embedding (Fig. 2, step 2) grows nearly 

linearly with the number of neurons (but quadratically with the number of trials). Further, 

SIMNETS can be implemented without a priori knowledge of neural tuning functions or 

trial labels, making it particularly useful for the analysis of complex, naturalistic behaviors.   
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Figure 2|The SIMNETS algorithm can be used to identify functionally related groups of neurons. 

The basic steps of the algorithm (demonstrated using synthetic data) are as follows: Step 1. Generate N Single-neuron Spike 

Train Similarity (SSIM) matrices:  extract S spike train events of equal duration from N simultaneously recorded neurons 

and calculate the pairwise spike train distances between all spike trains using a predetermined metric, e.g., Victor-Purpura. 

Step 2. Neuron Similarity (NS) Matrix: pairwise correlations between single neuron SSIM matrices are used to generate an 

NxN NS matrix. Left Circular Inset: example neuron pair with a low SSIM correlation value indicating dissimilar spike 

train geometries. Right Circular Inset: neuron pair with a high SSIM correlation value indicating similar spike train 

geometries. Step 3: NS Matrix Dimensionality reduction: project the NxN correlation matrix down into a smaller number 

of dxN dimensions using standard techniques, such as t-SNE. Each row represents the coordinates of a single neuron (red 

broken line) in a low-dimensional space. The t-SNE parameter, perplexity, controls the number of effect nearest neighbors 

factored into the mapping of each neuron from the high- to low-dimensional space (see Methods for details). Step 4. 

Visualization of Neuron Similarity (NS) map and Cluster Detection: each colored point represents a single neuron with x, 

y, z coordinates that correspond to a single row of the low-dimensional data structure shown in step 3. Clustering: neuron 

clusters (denoted using color) are detected in a 10-d space using agglomerative clustering methods (e.g., k-means 

clustering). Inset: Optimal cluster number is estimated as the maximum average silhouette value for a range of test cluster 

number, where a high silhouette value indicates good cluster separation. The statistical significance of the estimated optimal 

cluster number is determined from a null-distribution of silhouette values (gray band), which was obtained by repeating 

steps 2 - 3 on shuffled SSIM matrices (step 1) over multiple iterations (see Methods for more details). Neurons assigned to 

same cluster will have similar spike train geometries.   

 

Results 
 

Here, we apply SIMNETS to four different datasets to validate its ability to detect sub-nets 

of functional similar neurons. We first apply the algorithm to a dataset of synthetic neurons 

with known ground-truth functional ensembles. Next, we apply the algorithm to three 

datasets of multi-electrode, extra-cellular single-unit (i.e., neuron) recordings from non-

human primate primary visual cortex (V1)40 and primary motor cortex (M1) 41, as well as the 

rat CA1 hippocampal region42 (see Methods for more details on datasets). For the V1 and 

M1 datasets, the SIMNETS neuron functional maps are validated against the estimated 

computational properties of the neurons calculated using parametric tuning models. We use 

the rat CA1 dataset to demonstrate how SIMNETS can be used for exploring the functional 

properties of neurons when the tuning functions of the neurons that are not easily quantifiable 

or are unknown. Performance of the Synthetic, V1, M1, and CA1 datasets are compared 
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against various alternative neuron similarity measures that representative of traditional 

methods that use compare the spike patterns between neurons directly14,39,43–45. 

 

 

Synthetic Neuron Population — clustering functionally similar neurons exhibiting 

distinct firing patterns  

 

We applied  SIMNETS  to simulated spike train data from a population of 180 synthetic 

neurons comprised of 3 functionally distinct ‘ensembles’ (E1, E2, E3). Each ensemble (n = 

60, neurons) was designed to represent a sub-group of computationally equivalent neurons 

that exhibited heterogenous firing patterns. Sub-groups of neurons within ensemble Ei 

responded to a common ‘preferred’ test condition through either a change in spike rates (n = 

20, neurons), a change in the precise timing of their spikes (n = 20, neurons), or a change in 

both spike rates and spike timing (n = 20, neurons) (Fig. 3a) (see Methods for more details). 

We simulated 30, one-second spike trains for each of the 180 neurons, which included 10 

repetitions of each stimulus (S = 30, spike trains per neuron). 

 

SIMNETS was applied to the resulting NxS spike trains using three different temporal 

accuracy settings for the Victor-Purpura spike train metric: 5ms (q = 200), 100ms (q = 10), 

and pure rate code (q = 0). The temporal accuracy setting dictates the temporal accuracy at 

which two spikes should occur in order to be considered as occurring ‘at the same time’. As 

expected, with a setting of q = 0, the neurons operating with a rate-based encoding scheme 

(‘rate-code’ neurons) and rate/temporal-based coding scheme (‘mixed-code’ neurons) are 

grouped into three functionally distinct clusters in the NS map, while the functionally 

dissimilar ‘temporal-code’ neurons form a single cluster at the center of the map (Fig. 3c). 

As the value of q increases, the algorithm becomes sensitive to differences in spike timing in 

addition to the total number of spikes. Using these settings, SIMNETS correctly groups all 

neurons into three distinct clusters that reflect the ground-truth functional ensemble 

assignments (Fig. 3d). At very high q values, the NR map shows sub-groupings within each 

of the main clusters that reflect the coding properties of the neurons (Fig. 3e); however, the 

optimal number of clusters remain in agreement with the ground-truth functional ensemble 

assignments. By specifying a higher partition value for the k-means clustering step of the 

algorithm (e.g., k = 9), it is possible to confirm that the sub-groupings within the detected 

clusters are defined by the coding properties of the neurons (data not shown). For a 

demonstration of the interaction between the cluster number and the SIMNETS hyper 

parameters, perplexity and q, see Supplementary Fig. 5.  

 

SIMNETS is designed to identify neurons in the same sub-net as being more similar to each 

other than to neurons in a different sub-net. In order to quantify this trend, we compared the 

distribution of similarity estimates (entries in the NS matrix) within and between the 

artificially generated ensembles (Fig. 3f). Within-ensemble similarity was significantly 

higher than between-ensemble values in all cases (Mann-Whitney p<0.001). For q values > 

0, there was no overlap between the two distributions, indicating complete separation of the 

functional classes. Our results demonstrate that the SIMNETS algorithm can accurately 

separate neurons according to their computational properties, even if they employ different 

coding schemes to represent information.   

 

In order to demonstrate the potential pitfalls of traditional approaches that directly compare 
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spike trains between neurons on a trial-by-trial basis14 we applied two additional methods 

that rely on between-neuron spike train comparison to the synthetic data: the ‘Direct 

Comparison (DC) method and the Firing Rate Covariance (FRC)  method44. 

 

 

Figure 3| SIMNETS detects ensembles of functionally similar neurons in population of synthetic neurons 

with mixed coding schemes. 

a.Trial-averaged firing rates for a population of 180 synthetic neurons as a function of three different stimulus condition. 

Neurons are ordered along the y-axis according to ensemble membership and by encoding strategies. Each of the three 

ensembles (E1, E2, and E3) are made up three neuron sub-groups defined by their different encoding formats, i.e., rate-

based coding scheme, temporal-based coding scheme, or a mixed (temporal/rate-based) coding scheme. b. SIMNETS NS 

matrices for three different analysis temporal sensitivity values: rate (q = 0), 100 ms (q = 10), 5 ms (q = 200). Color-bar 

represent a range of correlation values where higher correlation values (light pixels) indicate a high similarity neuron pair 

and low correlation values indicate a low similarity neuron pair. c - e. Low-dimensional NS maps for each of the three 

temporal sensitivity values: q = 0 (c) q = 10 (d), q = 200 (e). Each dot represents a single neuron. Top row:  colors indicate 

the neurons ensemble membership (E1,  red/orange; E2, green; and E3, blue color-hue range) and whether it utilizes a rate, 

mixed, or temporal coding scheme (dark, mid, or light hue, respectively). Top row: colors indicate the neurons ensemble 

membership (E1,  red/orange; E2, green; and E3, blue color-hue range) and whether it utilizes a rate, mixed, or temporal 

coding scheme (dark, mid, or light hue, respectively). Bottom row: same map as top row but colors indicate the neuron’s 

k-means cluster assignments. f. Histograms of normalized ‘Within-’ and ‘Between-ensemble’ correlations from SIMNETS 
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NS matrices (b). Non–overlapping Within/Between distributions (i.e., middle and right column) corresponds to good 

separation between each of the three ground-truth ensembles in the NS Maps (ranksum, p<0.001). 

The DC method also uses Victor-Purpura spike train metrics, but compares spike trains from 

different neurons directly, i.e., without generating SSIM matrices as an intermediate step. In 

this case, each entry of the resulting NxN matrix is the sum of the spike train distances 

between matching trials across a neuron pair. A neuron pair that generates similar spike train 

outputs on matching trials will have a low sum of spike train distances, whereas a neuron 

pair that generates dissimilar spike train outputs on matching trials will have a high sum of 

spike train distance value (Fig. 4a, columns 1-3; see Methods for details).  

 

 

Figure 4| Direct Comparison (DC) method and Firing Rate Covariance (FRC) method fail to detect 

functional ensembles in population of synthetic neurons. 

a. DC NxN distance matrices shown for three different analysis temporal sensitivity values (columns 1-3): rate, 100 ms, 5 

ms, and the FR Covariance NxN correlation matrix (column 4). DC matrix color-bars represent a range of summed spike 

train distance values for a neuron pair, where smaller distance values (dark pixels) indicates a neuron pair with similar trial-

by-trial spike train outputs. The FRC matrix color-bar represent the range of firing rate correlation values for the neuron 

pairs, where higher correlation values (light pixels) indicates a neuron pair with a strong relationship between their trial-

by-trial firing rate outputs.   b. DC and FRC NS maps with neuron-type color labels: low-dimensional representation of the 

NxN matrices (shown in a). Each point represents a single neuron and the different colors indicate each neuron’s ensemble 

membership (E1, E2, or E3) and coding scheme (color notation same as Fig. 3). c.  DC and FRC NS maps with neuron k-

means cluster assignment labels. K-means clusters were detected using the silhouette analysis and shuffle statistical test 

(step 4 of SIMNETS algorithm). d. Histogram of normalized ‘Within-’ and ‘Between- ensemble’ values from DC distance 

matrices (Columns 1-3) and FRC correlation matrix (Column 4) (a) demonstrates a poor cluster separation for neurons 

belonging to different ground-truth ensembles.     
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For the FRC method, each NxN correlation matrix entry represents the between-neuron 

single trial firing rate covariation for a given neuron pair (see Methods; Kiani et al (2015)). 

Neuron pairs that exhibit a strong relationship between their firing rates across individual 

trials will have high correlation values (Fig. 4a, column 4). Dimensionality reduction (Fig. 

4b) and cluster detection (Fig. 4c) was performed on the DC and FRC matrices in accordance 

with steps 3 - 4 of the SIMNETS algorithm (i.e. using t-SNE and k-means).  Overall, the DC 

and FRC method failed to cluster functionally similar neurons into the three ground-truth 

functional ensembles (Fig. 4c). The distributions of similarity estimates for neurons within 

and between ensembles (Fig. 4d) displayed broad overlaps, reflecting the poor separation 

between functional ensembles. However, the FRC method was successful in clustering 

functionally equivalent rate-coding and mixed-coding neurons into their correct functional 

ensembles (Fig. 4d). Our results demonstrate that grouping neurons based on the similarity 

of their spike train outputs or firing rate covariations does not necessarily reflect their 

informational content (and presumed computational properties).   

 
 

 V1 Neuron Population – clustering real neurons with known tuning 

functions 

  

We next analyzed a previously described dataset of 112 Macaque V1 neurons simultaneously 

recorded using a 96-channel electrode array during the presentation of drifting sinusoidal 

gratings 40,46 (Fig. 5). We extracted 1 second of spiking data from the first 30 repetitions of 

each stimulus (S = 360), starting 0.28 seconds after stimulus onset (Fig. 5a). Each neuron’s 

receptive field orientation (‘preferred’ orientation) was estimated by finding the orientation 

that maximizes a Gaussian function fitted to the stimulus-dependent firing rates (Fig. 5b) 

(see Methods for more details). 

We examined the NS map produced using SIMNETS in order to determine if it accurately 

captured the functional relationships between neurons (Fig. 5d-e). A circular-linear 

correlation (rcl) analysis shows a significant positive relationship between preferred 

orientation and neuron location in the map (Pearson, rcl = 0.89; p = 0.001), confirming that 

neurons with similar computational properties are organized in near-by regions of the NS 

map (see Methods for more details). Applying the k-means algorithm to the NS map revealed 

an optimal number of 𝑘 = 3 neuron clusters (ℎ̂= 0.74, max average silhouette value), 

indicating that the neurons may be organized into three separate sub-nets (Fig. 5e, right). 

The statistical significance of the number of estimated optimal clusters was determined using 

the shuffle-based statistical test. The shuffle-test involves generating a null-distribution of 

silhouette values by shuffling each of the N SSIM matrices, calculating a new NS matrix, 

and the associated silhouette value. This procedure is repeated over multiple iterations until 

a distribution of silhouette values is generated. The estimated number of neuron clusters is 

considered statistically significant if the original silhouette value falls outside the 99% 

confidence interval of the null-distribution of silhouette values (see Methods and 

Supplementary Fig. 4 for more details). We examined the computational properties of each 

of the detected clusters by calculating ensemble tuning functions that take into account the 

average activity of all neurons within each identified cluster. Our analysis revealed that sub-

ensembles displayed significant tuning with peaks evenly distributed at Δ60° intervals. (Fig. 
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5h). Tuning strength and direction-of-motion tuning preferences did not appear to contribute 

to the cluster organization (data not shown). 

 

 
Figure 5| V1 neuron population during the presentation of drifting sinusoidal grating at multiple 

orientation 

a. Normalized trial-averaged firing rates of a population of V1 neurons (N = 112, neurons) during the presentation of 12 

different drifting grating stimuli (T = 360, trials). Stimuli were presented for 1.28 s at 6 different orientations (0, 60, 90, 

120, 150 degrees) and 2 drift directions (rightward and leftward drift, orthogonal to orientation). b. Distribution of calculated 

preferred grating orientations for all neurons. c. SIMNETS NS matrix with neurons ordered according to preferred grating 

orientation. Color-bar represent a range of correlation values where higher correlation values (light pixels) correspond to 

greater similarities between neurons. d. SIMNETS NS map with neurons labeled according to preferred orientations. e. 

SIMNETS NS map with neurons labeled according to k-means cluster assignments. Right (g): Average silhouette value for 

NS map as a function of the number of clusters (red filled circle denotes optimal cluster separation), compared to expected 

chance distribution obtained from shuffled data. (bootstrap, p < 0.01). f-g. DC NS map with neurons labeled according to 

preferred directions (f) and k-means cluster assignments (g). Right (g): Average silhouette value for DC NS map as a 

function of the number of clusters (red filled circle denotes optimal cluster separation), compared to expected chance 

distribution obtained from shuffled data. h. Ensemble orientation tuning functions, computing by taking the normalized 

mean firing rates, for each of the SIMNETS neuron clusters (e) with significant peaks around 0, 60, 120 degrees for clusters 
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1,2, and 3, respectively. Red line and gray band correspond to the mean and 99% confidence intervals of the null-distribution  

calculated using the shuffle-based statistical test (see Main text). 

The SIMNETS algorithm results were compared against the DC method to demonstrate how 

a more traditional approach fails to organize the neurons according to their functional 

properties (Fig. 5f-g). Although neuron clusters were detected using DC, we observed a weak 

and non-significant rcl correlation between neuron location and preferred orientation 

(Pearson, rcl = 0.01; p = 0.56), indicating that the two detected DC clusters (𝑘 = 2; ℎ̂= 0.82) 

were unlikely to exhibit a tuning preference for any particular orientation.  Again, we also 

compared SIMNETS’ performance to the FRC method (Supplementary Fig. 7a) and 

modified cross-correlation (CCH) analysis (Supplementary Fig. 8a-b). The performance of 

the FRC method was comparable to SIMNETS in its ability to organize the neurons 

according to their estimated computational properties (FRC, rcl = 0.86; SIMNETS, rcl = 

0.89), whereas the cross-correlation based method failed to capture the neuron’s estimated 

functional properties (CCH, rcl = 0.16).  

 

M1 Neuron Population – clustering real neurons with known tuning functions 

 

We next applied the SIMNETS algorithm to a dataset of 103 M1 neurons recorded using a 

96-channel electrode array in a macaque performing a planar 8-direction instructed-delay 

reaching task (see Methods).  Each neuron's preferred reach direction was estimated by fitting 

a von Mises distribution47 to the firing rates as a function of direction (Fig. 6b). This dataset 

and task has previously been described  48,49 (see Methods for more details).  

 

We extracted 1-second spike train events (S = 114) from each neuron during all trials where 

the monkey successfully reached the cued target, starting 0.1 seconds before movement 

onset. As with the V1 data, the layout of the neurons in the SIMNETS NS map accurately 

reflected the estimated tuning properties (Fig. 6d - e). A circular-linear correlation analysis 

found a significant positive relationship between preferred direction and mapped location 

(Pearson, rcl = 0.92; p = 0.001). SIMNETS revealed a statistically significant optimal 

number of k̂ = 3 clusters (ĥ= 0.71), indicative of three functional sub-ensembles.  Each 

cluster displayed ensemble-level tuning with significant peaks at 45°, 180°, and  315°. 

Additionally, our results show that neurons are not distributed along a uniform continuum 

within the NS map, but instead form statistically separable clusters in space. These results 

are in agreement with previous findings, supporting the hypothesis that the biomechanical 

constraints of the limb are reflected in an uneven distribution of preferred directions among 

motor cortical neurons 51. 

 

As before, the DC method failed to organize the neurons according to their preferred 

directions (Fig. 6f-g), resulting in weak, non-significant relationship between the neurons’ 

preferred direction and location in the NS map (Pearson, rcl = 0.18; p = 0.56). Again, we 

also compared SIMNETS performance to the FRC method and the modified cross-

correlation analysis (Supplementary Fig. 7b, 8c-d). We found that FRC method performed 

similarly to SIMNETS in organizing the neurons according to their estimated computational 

properties (FRC, rcl = 0.93; SIMNETS, rcl = 0.92) and the CCH method failed to organize 

the majority of the neurons according to their estimated functional properties (CCH, rcl = 

0.40; Supplementary Fig. 8c-d). 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/463364doi: bioRxiv preprint first posted online Nov. 8, 2018; 

http://dx.doi.org/10.1101/463364
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

 

 
Figure 6| M1 neuron population during center-out reaching task 

a. Trial-averaged, normalized firing rates for each neuron (N = 103) as a function of reach direction for a planar 8-directional 

reaching task. b. Histogram of estimated preferred reach direction for the population. c. SIMNETS NS matrix. Color-bar 

represent a range of correlation values, where higher correlation values (light pixels) correspond to greater similarities 

between neurons. d - e. SIMNETS NS map with neurons labeled according to the estimated preferred reach directions (d) 

or k-means cluster assignments (e). Right (e): Average silhouette value for SIMNETS NS map as a function of the number 

of clusters (red filled circle denotes optimal cluster separation), compared to expected chance distribution obtained from 

shuffled data (bootstrap, p < 0.01). f - g. DC NS map with neurons labeled according to preferred reach directions (f) or k-

means cluster assignments (g). Right (g): Average silhouette value for DC NS map as a function of the number of (bootstrap, 

p < 0.01). h. Ensemble tuning functions for each of the SIMNETS neuron clusters (e) with significant peaks around 30, 

180, 315 degrees for clusters 1, 2, and 3, respectively. Red line and gray band correspond to the mean and 99% confidence 

intervals of the bootstrapped null-distribution (see Methods).   
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Hippocampal Dataset – clustering neurons with complex or unknown tuning 

properties 

 

We applied SIMNETS to a publicly available42 dataset of N = 80 rat CA1 hippocampal 

neurons recorded using Multi-site silicon probes while the rat performed left/right-

alternation navigation task in a ‘figure-8’ maze52,53 (Fig. 7a). The rat performed 17 correct 

trials (T = 17, trials) taking on average 4.3 seconds to reach the reward location at either end 

of the arms. The input to the SIMNETS algorithm was obtained by dividing the linearized 

trajectories 42 of the rat’s path along the track into six equal segments and extracting 0.75 s 

spike train events, starting from the time that the rat entered each segment (see Methods for 

more details). This resulted in S = 102 spike train events from each of the N = 80 neurons. In 

order to validate SIMNETS performance against the other tested algorithms (i.e., DC, FRC, 

and CCH), we characterized the CA1 neurons as having place cell-like activity (n = 60 PCs) 

or lacking place cell-like activity (n = 20) based on their spatial firing properties (Fig. 7b and 

Supplementary Fig. 6c for example neurons) and took note of the number and location of the 

significant firing fields (see Methods for more details on neuron characterization and 

exclusion criteria). 

 

Out of the four algorithms examined, SIMNETS was the only method capable of separating 

the non-PC and PC groups into statistically significant sub-groupings in the recorded 

population (Fig. 7c-g). When we evaluated the distributions of distances between the non-

PCs and PCs groups and within the non-PCs for all four NS maps, we observed a significant 

difference between the two distance distributions for the SIMNETS (Fig. 7c) and DC maps 

(Fig. 7e) (ranksum, p<0.001) but not the FRC (Fig. 7f) and CCH maps (Fig. 7g), indicating 

that SIMNETS and DC method organized the two neuron groups into non-overlapping 

regions of the NS maps (see Supplementary Table 1 for summaries of distance distributions 

for all four methods). Interestingly, we observed a strong positive relationship between 

neuron location and average firing rate in the DC neuron map (Spearman’s correlation, rs = 

0.97, p<0.001) but only a weak non-significant correlation for that in SIMNETS map 

(Spearman’s correlation, rs = 0.03, p = 0.74), indicating that although both the DC and 

SIMNETS method organized the non-PCs into a specific sub-region of their respective maps, 

the DM method appeared to organize the neurons along a continuum of firing rates statistics. 

As further evidence to this point, a silhouette analysis and shuffle-based significance test 

confirmed that the DC NS map did not contain any statistically significant neuron clusters 

(shuffle-based statistical test, ĥ = 0.55; see Methods for details). In contrast, a similar 

silhouette analysis and shuffle-based statistical test determined that SIMNETS organized the 

neurons into �̂� = 6 statistically separate clusters (shuffle-significance test, p<0.01). 

Supplementary Table 1 provides a summary for the distance, silhouette, and clustering 

analysis results for all four methods.  

 

An examination of the physiological properties of the SIMNETS clusters revealed that one 

of the putative sub-ensembles was composed almost entirely (95%) of non-PCs, while the 

other five clusters were either entirely or almost entirely (>92%) composed of PCs. An 

inspection of the single neuron and SIMNETS cluster (i.e., ensemble) firing rate maps 

indicates that each of the ‘PC clusters’ were comprised of neurons with overlapping or 

partially overlapping place-fields (Fig. 7h; Supplementary Fig. 6b). PCs with single and 

multiple peaks in their spatial firing maps were found within the same clusters if they shared 

a common peak firing field (for example, see Supplementary Fig. 6c, clusters 2 and 4). 

Interestingly, despite being primarily made up of neurons that lack place-dependent signals, 
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the cluster-6 spatial firing map exhibited a single significant firing field (Fig. 7i, cluster 6; 

see Method for more details). This phenomenon could reflect the contribution of the single 

PC in the  cluster or reflect an emergent feature of the neuron cluster, e.g., ensemble coding 
54. In order to get a better understanding of the computational properties of this cluster in 

relation to the other detected clusters, we examined the ensemble activity patterns of each 

detected cluster using a spike train relational analysis framework 33 (see Methods or Vargas-

Irwin et al (2015) for details).  

 

 
Figure 7|Hippocampal neurons during left-right alternation task. 

a. Maze showing rats position in a ‘figure-8’ maze during left-right alternation task. Red and blue lines show the rat’s 

location during correct right and left trials (T = 18, trials), respectively (similar color convention used throughout b, e-f). 

Gray lines show the rats location during reward and inter-trial interval period. b. Left: Normalized firing rates are shown 

for each neuron (N = 80, neurons) as a function of linearized distance on track (50 mm bins, 150mm Gaussian smoothing) 
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during left and right trials. Neurons were ordered according to the latency of their peak response along the track and 

according to their characterization as a non-place cell (n = 20, non-PC) or a place cell (n = 60, PC). Arrow indicates the 

left/right decision point in maze. Right: Spike rate maps and spike theta-phase spatial maps for one example non-PC (top 

row) and two example PCs (bottom rows). c - d. SIMNETS NS map with neurons labeled as non-PCs (red points) and PCs 

labels (blue points) (c) and k-means clustering labels (d, left) and Silhouette plot (d, right). e - g. NS maps for DM, FRC, 

and CCH methods. Non-PCs and PCs are represented by red and blue dots, respectively. h, i. Example single neurons and 

ensemble spatial firing rate for SIMNETS cluster 1 (h) and cluster 6 (i). Gray bands in ensemble firing maps indicate the 

significant firing fields (rank-sum, p < 0.01, in-field vs. out-of-field comparison) for the left and right trials (blue and red 

asterisks). j - k. Ensemble Activity Similarity map for SIMNETS cluster 1 (j) and cluster 6 (k) showing the similarity 

between ensemble activity patterns on as a function of the rat’s location on the linearized track during individual left and 

right trials (L1 - L14). Each point represents an ensemble activity pattern on a single trial and the distance between points 

represents the similarity of the ensemble spiking patterns for those trial epochs. Different colors correspond to the different 

locations on the left and right track.   

 

An ensemble spike train similarity analysis generates an Ensemble Activity Similarity map 

similar to those presented in Fig. 1c (and Supplementary Figure 1-2) but encompasses the 

activity of multiple neurons rather than just a single neuron. Each point in the ensemble 

Activity Similarity maps (Fig. 7j,k) corresponds to the activity pattern generated across all 

neurons in a particular SIMNETS neuron cluster on a single trial. As expected from the 

previous analysis, the topology of the Ensemble Similarity map for the ‘PC neuron clusters’ 

(Fig. 7j) captured the place-dependent modulation of the sub-net firing patterns as the rat 

traversed the a specific region of the maze. Interestingly, the Ensemble Activity Similarity 

map for the neuron cluster composed primarily of non-PCs (Fig. 7k), had a ‘torus-shaped’ 

topology that exhibited variance along the z-dimension in relation to rat’s position along the 

track (Fig. 7k, view 2), and a periodic variance in the x- and y-dimension (Fig. 7k, view 1) 

according to an unknown variable, or variables. This suggests that the activity of the non-PC 

sub-net displays dynamics that may reflect a non-spatial task-variable or, potentially, the 

intrinsic dynamics of the circuit. The toroid structure of the Ensemble Activity Similarity 

map suggests that the unknown variable is likely to be periodic in nature. Although this 

phenomenon warrants further investigation, it is outside of the scope of the present work. 

These particular results highlight the advantages of applying SIMNETS to neural recordings 

where the tuning properties of the neurons are not readily apparent or known a priori.   

 

 

Computational efficiency and analysis run-time 

 

The SIMNETS algorithm processed each of the synthetic, M1, and Hippocampal datasets in 

fewer than 5 seconds using a standard desktop computer (Intel Xeon® Processor, 24 GB of 

RAM ; see Methods for more details). Because of a larger trial number, the V1 dataset was 

processed in a relatively slower time of around 20 seconds. In general, SIMNETS’ run-time 

for a dataset of 100 neurons, with 100 spike trains per neuron, takes approximately ~4 s (see 

Supplementary Fig. 9a). Importantly, the computational complexity of the algorithm scales 

near-linearly with neuron number and quadratically with the number of spike trains, meaning 

that datasets of up to 1000 neurons can be analyzed in a reasonable amount of time on 

consumer-grade hardware (~ 4 minutes). By comparison, calculating the pairwise cross-

correlation 45,46 for 100 and 1000 neurons would take approximately 6 minutes and 6 hours, 

respectively, using the same hardware (supplementary Fig. 9b).  
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Discussion 
 

Summary of Findings  

 

Advances in multi-electrode recording technology have now made it possible to record or 

image the activity of thousands upon thousands of individual neurons simultaneously 7,55–57. 

By contrast, the development of analytical tools capable of parsing the complexity of large-

scale neural activity patterns have lagged behind advances in recording technology. Here, 

we introduce a computationally efficient and scalable method for characterizing the 

information processing properties of individual, simultaneously recorded neurons, allowing 

us to extract and visualize sub-networks of functionally similar neurons within large neuronal 

ensembles. 

 

The critical component that differentiates the SIMNETS framework from the previous 

methods is our novel application of spike train metrics for capturing the relationship between 

the output states of each individual neurons in a universal format that is easily compared 

across neurons. We emphasize that, unlike other related algorithms, SIMNETS does not 

directly compare spiking responses between neurons; instead, our approach compares 

intrinsic geometry of the output spaces of each neuron (represented by SSIM matrices), 

which reflects information-processing properties in a universal format (i.e. regardless of the 

format of the encoded information). 

 

Our analysis of simulated data with known ground truth demonstrates that SIMNETS can 

organize the neurons into functionally related sub-nets, even when computationally 

equivalent neurons utilize very different encoding schemes (e.g., rate, temporal, or mixed 

encoding schemes). Our analysis of V1 and M1 recordings shows that SIMNETS neuron 

functional maps could recapitulate the computational properties of the neurons without the 

need for imposing stimulus or movement driven parametric tuning models a priori. Our 

results with the hippocampal CA1 data suggest that it will be possible to use this approach 

to identify and separate neurons with complex or unknown tuning functions into distinct 

groups according to the similarities of their information processing properties. Our results 

also suggest that SIMNETS may be able to detect functional sub-ensembles hypothesized to 

support ensemble place-coding58 or complex feature conjunction59. Although it was beyond 

the scope of this report to demonstrate functional significance of the detected putative 

functional sub-ensembles, our results strongly suggest that sub-nets detected using 

SIMNETS are statistically and physiologically meaningful. We also demonstrated that 

SIMNETS can identify groups of neurons with similar functional properties that other 

comparable methods cannot detect using standard statistical approaches. Finally, our 

particular choice of datasets allowed us to demonstrate that this method generalizes well to 

neural recordings from a variety of brain regions (including sensory, motor, and hippocampal 

areas) and across multiple species (including rat and non-human primate).  

 

Collectively, our results demonstrate that estimates of correlation between SSIM matrices 

provide a simple, yet powerful approach for quantifying the functional similarities between 

neurons. Our analysis strategy shifts the emphasis from detecting coincident or correlated 

activation to comparing the intrinsic relational structure of single-trial firing patterns. This 
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critical difference allows our method to detect neurons with similar computational properties 

even if the neurons exhibit diverse firing patterns. The combination of a short processing 

time (< 5 second per 100 neurons) and a computational complexity that scales near-linearly 

with the size of the neuron population makes SIMNETS an extremely efficient and, thus, 

appealing tool for exploring very large-scale neuron populations.  

 

Comparison to existing methods 

 

The concept of a low dimensional embedding that captures the functional relationship 

between neurons was introduced in the seminal papers by Gerstein & Aertsen45,60, where 

they describe ‘Gravitational Clustering’ (GC): a neuron clustering and visualization tool for 

identifying groups of neurons with synchronous spiking patterns. GC is based on an analogy 

of the physics of the gravitational forces governing the dynamics and interactions of 

macroscopic particles. It treats the N neurons as N particles moving within an N-dimensional 

space, where charges that influence the attractive and repulsive interactions between 

particles are dictated by the temporal dynamics of pairwise synchronous spiking activity 

between neurons. The end result is a visualization of particle clusters (and their trajectories) 

that represent dynamically evolving assemblies of synchronously-active neurons. Recent 

formulations of the GC algorithm have improved visualization and sensitivity, but retain the 

same basic strategy11,39. More recent work by Kiani et al. (2015) involves the application of 

the dimensionality reduction techniques (i.e., MDS) to pairwise measures of between-neuron 

spike rate covariations in order to detect ‘natural’ functional modules in a populations of pre-

arcuate and motor cortex neurons. Although, the goal of this method is similar to that of 

SIMNETS – to the extent that it makes use of single trial information to group neurons in an 

unsupervised manner – this approach only takes into account the covariation information 

carried in the absolute firing rates of the neurons’ responses across trials, rather than the 

information carried in the intrinsic geometry of the neurons’ spike train structures across 

trials. For neurons that operate using predominantly rate-based codes, this approach 

generates results roughly equivalent to SIMNETS, as shown in our analysis of rate based 

synthetic data (Fig. 3) as well as MI and V1 ensembles (supplementary Fig. 7b,c). However, 

our analysis of the synthetic neurons using temporal codes (Fig. 3, supplementary Fig 7a), 

as well rat CA1 neurons (supplementary Fig 7d) demonstrates that SIMNETS can detect a 

broader range of meaningful information processing motifs when task information is carried 

in the temporal dynamics of spike train outputs26. Yang et al. (2019) identified functional 

groupings of artificial neurons in a neural network by applying t-SNE to activation-based 

measures of single neuron selectivity across 20 different tasks (i.e., task variance). The 

method is similar to the SIMNETS method in that it maps neurons onto a NS map according 

to the similarity of measures of output variance, however, this method requires knowledge 

of trial labels within tasks in order to group neurons according to the similarities of their 

changes in selectivity across tasks. SIMNETS doesn’t require a prior knowledge about the 

similarities or differences of the information encoded on certain trials (i.e., trial labels), only 

that the trials are recorded under conditions of simultaneity. This feature of SIMNETS is 

particularly valuable when trying to identify groups of functionally similar neurons in 

experiments with awake and freely moving animals, where the assumption of repeatable 

perceptual, cognitive, or behavioral states across trials is not always possible.   

 

Several previous studies have used inter-neuron spike train metrics to identify putative 

functional sub-nets62,63. As with the GC method, these studies have operated under the 

general assumption that the detection of similar sequences of spike patterns across neurons 
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is indicative of a potential functional link63,64. By contrast, our approach is capable of 

detecting neurons with similar informational content even if they employ different encoding 

schemes (i.e. rate vs. precise spike timing). SIMNETS clustered the simulated neurons 

according to their ground-truth functional ensembles and, when we adjusted the tunable 

temporal accuracy parameter, was capable of further sub-dividing the neurons according to 

their distinctive firing characteristic, such as their encoding timescale. This feature of 

SIMNETS could be particularly useful for determining if neurons operating on different 

timescales – such as, different interneuron subtypes – are involved in different information 

processing operations65,66. Additionally, this feature of SIMNETS enabled us to cluster 

known functional groups in the CA1 dataset (i.e. PCs vs. non-PCs) that other algorithms 

missed.  

 

Capturing interactions between pairs of neurons can be accomplished in a more general way 

using information theory, e.g., mutual information67, or by leveraging asymmetries in the 

predictive power of variables at different lags to generate ‘directed’ estimates of functional 

connectivity, e.g., Granger Causality68, Transfer Entropy69, or the Directed Transfer 

Function70,71. These strategies require estimates of joint probability distributions across the 

activity patterns of pairs of neurons. The number of possible activity patterns is very large, 

so this type of calculation can be challenging, even when relatively large amounts of data are 

available. Unlike SIMNETS, the computational cost of this approach grows quadratically 

with the number of neurons examined, making it impractical to process datasets with 

hundreds or thousands of neurons without specialized hardware. 

 

Limitations of SIMNETS 

 

Several important limitations of SIMNETS are worth noting. First, estimates of similarity 

using spike train metrics require that the time windows of interest be of equal length, making 

it difficult to compare neural responses with different time courses. This particular weakness 

is common to all trial-averaging models commonly used in the literature that we are aware 

of. Second, although the SIMNETS framework does not require a priori assumptions about 

the variables potentially encoded by neural activity, experimental design and data selection 

will still have a direct effect on the results obtained. For example, a set of neurons identified 

as a functional sub-net could separate into smaller groups with different computational 

properties when additional task conditions are added to the analysis. Thus, the functional 

properties identified using SIMNETS are only valid within the context of the data examined 

and may not necessarily extrapolate to different experimental conditions. Third, it is likely 

that neuronal sub-nets are constantly re-arranged depending on ethological demands. A 

neuron could potentially be functionally interacting with one group of neurons for one 

computation (or moment in time) and then another group of neurons for another computation 

(or another moment in time). The current version of the SIMNETS algorithm was not 

designed to distinguish between such rapidly changing sub-network memberships. However, 

it is possible to apply the SIMNETS algorithm multiple times over different epochs in order 

to determine if different sub-nets are present across different conditions. Our future work 

will focus on examining the temporal evolution of sub-net clustering using this approach. 

Fourth, SIMNETS may fail to recover certain functional characteristic similarities among 

neurons. For example, the neuronal mechanism underlying receptive field overlap (i.e., 

common synaptic input) is thought to be a major source of synchrony in the cortex72. As 

such, receptive field overlap may be best recovered with the use of cross-correlation based 

methods. However, using SIMNETS to narrow down the sets of neurons evaluated for 
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synchrony could potentially reduce the considerable computational load incurred by 

correlation-based analyses. Fifth, the computations required to generate a SSIM matrix for a 

neuron scales quadratically with the number of trials. Despite this computational cost, 

SIMNETS scales better than methods that require computing power-sets and would thereby 

grow exponentially with the number of neurons. 

 

The role for SIMNETS to mitigate experimenter bias 

 

A considerable amount of research in systems neuroscience has focused on identifying new 

classes of neurons based on their information processing properties. The standard approach 

for many of these experiments involves recording single unit activity while a certain 

experimental variable of interest is manipulated (for example, providing different stimuli, or 

eliciting different movements, etc.). Standard statistical tests (ANOVA, etc.) are then used 

to determine if each neuron displays significant changes in firing rate across the experimental 

conditions. The percentage of significant neurons is usually reported as a functionally 

distinct ‘class’ of neurons sensitive to the variable of interest. It is common to exclude 

neurons that do not reach statistical significance or cannot be fit using a predetermined model 

from further analysis. This approach is prone to both selection and confirmation bias, and 

ultimately produces ‘classes’ of neurons identified based on arbitrary statistical thresholds 

imposed on what are likely continuous distributions of properties73,74. SIMNETS provides a 

way to determine if neurons are functionally organized across a continuum or are organized 

into statistically separable neural sub-nets, there-by mitigating the experimenter’s bias 

inherent in parametric neural discovery methods. In addition to providing a principled way 

to determine if a consistent organization of information processing modules can be found 

across sessions and subjects, we believe that the ability to intuitively visualize relationships 

within networks of neurons will provide a unique perspective leading to new data-driven 

hypotheses and experimental refinement.  
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SIMNETS Algorithm Implementation 
 

Here, we provide a short description of the steps in the algorithm and a detailed description 

of the methods used to implement each step of the SIMNETS framework:  

 

Step 1: Calculate distances between the spike trains generated by each neuron 

Pairwise distances are calculated between spike trains (S) generated by the 

same neuron using a spike train metric. This results in separate SxS Spike 

train Similarity (SSIM) matrices for each neuron. Here, we use the Victor-

Purpura Spike train metric 31,35. 

 

Step 2: Spike train similarity matrix correlation 

Pairwise measures of correlation are calculated between all single-neuron 

SSIM matrices, resulting in a single NxN Neuron Similarity (NS) Matrix. 

Here, we use Pearson’s Correlation.   

 

Step 3: Dimensionality reduction 

The high-dimensional, NxN Neuron Similarity Matrix is projected down into 

a desired number of d dimensions and visualized in a scatter plot, resulting in 

what we refer to as the Neuron Similarity Map. The dimensionality reduction 

step is carried out using t-distributed Stochastic Neighbor Embedding (t-

SNE)37. 

 

Step 4: Cluster detection and statistical test 

Putative functional ensembles are detected in the N×d Neuron Similarity Map  

using the unsupervised k-means clustering algorithm 75. The number of 

clusters in the data is determined using a silhouette analyis76 and the 

significance of the number of detected clusters is determined using a shuffle-

based procedure. 

 

The user selected parameters of the SIMNETS algorithm include: 1) the VP cost function 

constant, q, which operationally defines the temporal resolution over which the similarity of 

two spikes trains are tested,  2) the t-SNE parameter, perplexity, which influences the number 

of effective nearest neighbors (i.e., neurons) included in calculations that results in the low-

dimensional neuron map, and 3) the dimensionality of the NS map. 
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Step 1: Victor-Purpura Spike Train Metric 

 

The Victor-Purpura (VP) metric is a cost-based spike train distance function (D) that 

describes the similarity between pairs of spike trains (common neuron) in terms of their ‘edit-

distances’. A single distance value (d) is assigned to each pair of spike trains through a 

process that involves calculating the minimum total ‘cost’ (c) of the edit-steps needed to 

transform spike train A into spike train B: 

 
 𝒅(𝑨, 𝑩) = 𝒎𝒊𝒏{∑ 𝒄𝒎−𝟏

𝒋=𝟎 (𝒔𝒋,𝒔𝒋+𝟏)}, (1) 

where {S0, S1, ..., Sm} is the series of intermediate spike trains created after performing a 

single edit step. The list of possible edit-steps used in the VP transformation include: (1) 

inserting a spike, (2) deleting a spike, and (3) shifting a spike in time. Inserting or deleting a 

spike has a cost of c = 1, and shifting a single spike in time has a cost proportional to the 

amount of time that it is moved (c =q t). The set of edits-steps associated with the minimum 

total edit-cost defines the shortest path between two points (spike trains) in the neuron’s 

spike train metric-space.  

 

The q parameter influences the relative importance of spike count and spike time differences 

when assessing spike train similarities.  When q = 0, the cost of shifting a spike to a desired 

location will always be cheaper than deleting and re-inserting a spike in a spike train. Thus, 

for D[q=0], the  minimum cost is a function of the difference in the number of spikes between 

the spike trains. As the q value is increased beyond zero, spike time jitter begins to impact 

the cost of matching the spike trains.  For example, if q = 10, shifting a spike by 0.15 s will 

have a cost of c = 1.5, which is still just under the cost of deleting and re-inserting spike, i.e., 

c = 2, making it the more cost effective option. However, if q = 15, the deleting and 

reinserting a spike will become the cheaper option. This means that if we were matching two 

temporally jittered spike trains with a similar number of spikes, the assigned spike train 

distance would jump from a small to a high value as q increases (due to the increasing cost 

associated with shifting a spike). On the other hand, if we were matching two spike trains 

that differed only by spike number, i.e., no temporal jitter, the cost of shifting a spike would 

not impact the total cost of matching the spike trains, and so we would not expect a jump in 

the assigned spike train distances with an increase in q value. In this way, q controls the 

temporal resolution of the spike train comparison.  In the context of the SIMNETS algorithm, 

a low q parameter will bias the algorithm towards groupings neurons based on the 

‘information’ encoded over coarse timescales, whereas a high q parameter will bias the 

algorithm towards groupings neurons based on the information encoded over coarse and fine 

timescales. 

 

 

 

Step 2: Spike Train Similarity Matrix Correlation  

We characterize the functional similarities between neurons by calculating pairwise 

measures of correlation between all pairs of SSIM matrices. We used Pearson’s Correlation 

(r) to compare the SSIM matrices in this report because of its efficiently and empirical 

success, however, other matrix correlation statistics or distances measures may also be used. 

The formula for calculating Pearson’s r between a pair of SSIM matrices, A = (aij) and  B = 

(bij) is given as:  
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                                         𝑟(𝜑) = 𝛽 + ℎ. 𝑒𝑥𝑝(ℎ. 𝑐𝑜𝑠(𝜑 − 𝜇)),                                 (2) 

    

where cov is the covariance and  is the standard deviation. This results in an NxN 

Correlation matrix, where each matrix entry corresponds to the correlation between a given 

pair of SSIM matrices, and each column (or row) of the matrix could be interpreted as the 

intrinsic coordinates of a single neuron in an N-dimensional space.   

  

 

Step 3: t-SNE Dimensionality Reduction algorithm 

In broad terms, the goal of the dimensionality reduction step is to reduce the number 

of variables required to represent each neuron’s N dimensional correlation vector (step 2), 

i.e., its coordinates in the high-dimensional neuron space. This step improves clustering 

performance and allows us to visualize the relationships between neurons in a low-

dimensional map. We used the t-distributed Stochastic Neighbor Embedding (t-SNE) 

dimensionality reduction algorithm, since it is designed to preserve local densities of the 

high-dimensional data, while  revealing global structure such as the presence of clusters at 

several scales 37. These properties make the algorithm particularly well suited for visualizing 

high-dimensional data with varying cluster densities.  

A t-SNE transform is calculated through a process that involves 1) converting the sets of 

high- and low-dimensional correlation/distance measures into sets of joint probability 

distributions that describe the ‘similarity’ between the data points in the respective high and 

low dimensional spaces, and 2) minimizing the Kullback-Leibler divergence77 between the 

sets of joint probabilities in the high-dimensional space and the low-dimensional map via 

gradient descent.  

In the first step, the similarity of the data point wj to wi in the high dimensional space is 

modeled as the conditional probability, pj|i, that wi would pick wj as its neighbor if neighbors 

were (stochastically) picked in proportion to their probability density, Pi, under a Gaussian 

kernel centered at wi. Mathematically, the condition probability pj|i is given by:  

 
𝑝𝑗|𝑖=  𝑒𝑥𝑝

(−||𝑤𝑖−𝑤𝑗||
2

2⁄ 𝜎𝑖
2)

∑𝑘≠𝑖𝑒𝑥𝑝(−||𝑤𝑖−𝑤𝑘||
2

2⁄ 𝜎𝑖
2)

 
(3) 

where σi  is the variance of the Gaussian centered on wi.  Importantly, the variance of the 

Gaussian kernel adapts to the local density of the data around each point to produce a 

probability density (Pi) with a fixed perplexity.  

The perplexity hyper-parameter specifies the number of effective nearest neighbors included 

in the conditional probability calculations, where smaller perplexity values result in maps 

that are biased towards representing local relationships and larger values result in maps that 

represent local relationships with increasing consideration to any global structure that might 

exist. More formally, perplexity is a measure of information describing how well a 

probability distribution predicts a sample and is defined as 2 H(Pi), where H(Pi) is the Shannon 

entropy of Pi measured in bits.  
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The low-dimensional probability (zij) distributions takes a similar form to pji except that a 

long-tailed Students t-distribution replaces the Gaussian distribution. The long-tail of the 

Students t-distribution ensures that moderately close points in the high-dimensional space 

are modeled by larger distance in the low-dimensional space, and as a result, eliminates any 

unwanted attractive forces between moderately dissimilar points that would have otherwise 

resulted in ‘crowding’ 37 in the low-dimensional representation between neighboring clusters 

with very different densities. Additionally, this particular form of the Students t-distribution 

(single degree of freedom) ensures that the low-dimensional representation is (mostly) scale 

invariant, meaning that clusters of points will interact in the same way as individual points. 

The effect is that the functional relationships between neurons are preserved across multiple 

scales of organization37.  

The overall aim of t-SNE is to find a low-dimensional data representation that minimizes 

any mismatch between the high-dimensional joint probability density, P, and the Students-t 

based joint probability distribution, Z. The minimization of the cost function is performed 

via gradient decent, with a gradient given by the equation:   

 𝛿𝐶

𝛿𝑦𝑖
= 4 ∑(𝑝𝑖𝑗– 𝑧𝑖𝑗)

𝑗

(𝑢𝑖−𝑢𝑗) (1 + ‖𝑢𝑖−𝑢𝑗‖
2

)
−1

. 
(4) 

In order to reduce computational complexity of this step, we perform a preliminary round of 

dimensionality reduction using principal component analysis (PCA) to project the N×N 

Neuron Similarity Matrix into smaller dimensional space (e.g., 50-d). The t-SNE algorithm 

then refines the resulting linear transform by minimizing the single Kullback-Leibler 

divergence between P and Q over multiple iterations. Seeding with a low-dimensional PCA 

projection also ensures that the algorithm converges to the same solution across repeated 

runs of the algorithm. This step results in the dxN Neuron Similarity map. 

 

 

Step 4a: k-means Clustering Algorithm  

 

k-means algorithm 

The k-means algorithm is an unsupervised clustering method that partitions data into k 

clusters. We elected to use the k-means algorithm to cluster neurons in the NS map into 

putative functional ensembles because of its efficiency and its empirically evaluated 

performance in detecting functional groupings of neurons.  

 

k-means clustering aims to partition the t-SNE outputs into k number of clusters, such that 

each data point belongs to a cluster with the nearest mean (see next section for selection of 

k value). The algorithm works iteratively to assign each data point (ui) to one of the C 

centroids based on proximity, where the centroids have been initialized at the random 

locations C1, C2..., Cm. After all points are assigned, new centroids are calculated from the 

assigned data points. This procedure is repeated for a specific number of iterations, e.g., 100, 

or until the centroids no longer move between iterations. The algorithm aims to minimize 

the sum of the squared error (SSE) between each data point:  
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𝑆𝑆𝐸 = ∑ ∑ ‖𝑢𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑙

𝑖=1

𝑚

𝑗=1

 

(5) 

   

 

Step 4b: SIMNETS Silhouette Analysis and Significance Test  

 

Silhouette Analysis We used silhouette analysis to assess the quality of the k-means 

clustering partitions across a range of values of k 76, with the goal of finding an optimal 

partition number for the data. A silhouette value (hi) is a measure of how similar point yi is 

to other data points in its assigned cluster cj as compared to other clusters:  
 

 ℎ𝑖 =
(𝑏𝑖−𝑎𝑖)

𝑚𝑎𝑥(𝑎𝑖 ,𝑏𝑖)
 , (6) 

 

where ai is the average distance from ui to other points in its assigned cluster cj, and bi is the 

average distance from ui to points in the other clusters, minimized over all possible cluster 

configurations. An optimal number of clusters 𝑘 is the value of k that maximizes the average 

silhouette (ℎ̂) value for k = 2..., kf. Silhouette values ranges from −1 to +1, where a high 

value indicates that ui is well matched to its own cluster and poorly matched to neighboring 

clusters. In general, a maximized average silhouette below 0.25 indicates data that are not 

structured while a value below 0.5 would indicate poor or potentially spurious clusters 76.  In 

the next section, we outline a procedure for testing the statistical significance of the cluster 

number to determine if the data can be partitioned into statistically meaningful clusters.  

 

Shuffle-based Significance Test We developed a significance test for the purpose of 

determining the likelihood of detecting a given number of clusters by chance under the null 

hypothesis that there is no genuine covariation relationship between the inherent structures 

of the SSIM matrices. The significance test involves generating a null-distribution of 

silhouette values based on shuffled data across a range of k values. In SIMNETS, functional 

similarities are captured by the pairwise measures of correlation between the single neuron 

SSIM matrices. Our test relies on a shuffling procedure that destroys the pairwise 

dependencies between the SSIM matrices, and subsequently, any significant measures of 

correlation in the Neuron Correlation Matrix.  

  

Our approach is inspired by the Mantel test 78, a permutation based procedure that tests the 

significance of the observed correlation between two symmetrical matrices. The intuition of 

a Mantel test is that if a significant relationship exists between the values of matrix A and 

matrix B, then randomizing the rows and columns of one matrix will destroy any existing 

dependencies. As a result, the correlation between the shuffled matrix pair will tend to be 

lower than the original correlation value observed between the un-shuffled matrix pair. The 

probability of observing rA.B is then calculated as the proportion of permutations for which 

the shuffled correlation measures are smaller than or equal to rA.B.  Here, we carry out a 

similar permutation operation on the SSIM matrices, in that we destroy any dependencies 

that exist between the matrices; however, we use the average silhouette value as the test 

statistic, rather than the correlation values, as is the case with the Mantel test.   

 

The procedure involves a symmetrically shuffling of the rows/column of each N SSIM 

matrix separately, and re-calculating the pairwise correlations between the SSIM matrices to 
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generate a new NxN Correlation Matrix. This NxN correlation matrix is then transformed 

into a new NS map using t-SNE (i.e., step 3), and a new set of silhouette values is calculated 

(i.e., step 4) for the range of tested k values. This procedure – SSIM matrix shuffling, steps 

3 and step 4 from SIMNETS – are repeated to generate a null-distribution of average 

silhouette values that is approximately normally distributed (e.g., 1000+ iterations).  If the 

observed maximized average silhouette value ℎ̂ falls above the empirically calculated 

(1 − 𝛼)100% confidence interval, then the detected number of 𝑘 clusters is considered 

statistically meaningful. 

 

Code and Data Availability  

 

C++ optimized Matlab code and tutorial available on GitHub at:  

https://github.com/DonoghueLab/SIMNETS.git 

 

 

 

Explanation of relevant symbols associated with SIMNETS algorithm 

 
Table 1: explanation of relevant symbols  

Symbol Description Calculation/Selection 

q temporal sensitivity value for Victor-Purpura spike train metric  
hyper-parameter (user specified) 

perplexity perplexity: a measure of information that controls the number of 

effective nearest neighbors in t-SNE dimensionality reduction algorithm 

 

 

hyper-parameter (user specified) 

d desired dimensions for low-dimensional Neuron Similarity Map  
hyper-parameter (user specified) 

 

k 

k-means partition number/  
range of cluster numbers to test for during k-means clustering 

range of k-values (user specified) 
 

 

𝑘 

Optimal number of detected clusters  

Estimated from Silhouette analysis over a range of k values 

output (eqt. 6) 

ℎ̂ maximized average silhouette value output (eqt. 7) 

 

 

 

Hardware, Software, and Processing Time 

 

All analyses were run on a Dell PC with an Intel Xeon® Processor and 24 GB of RAM. All 

analyses were run using MATLAB® software from MathWorks, version 9.4, R2018. 

Armadillo, a C ++ linear algebra library (called from within MATLAB) performed some of 

the main matrix operations. 

 

On this hardware, analysis run-time for a dataset of 100 neurons (100 one-second spike trains 

per neuron) takes approximately 3.0 seconds, while 1000 neurons takes approximately 4 

minutes (Supplementary Fig. 9). By comparison, calculating the pairwise cross-correlation 

values (without a jitter/shuffle correction procedure) for 100 or 1000 neurons takes 

approximately 6 minutes and 6 hours, respectively, on the same hardware. The 

computational complexity of the SIMNETS algorithm scales almost linearly with neuron 
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number and exponentially with the number of spike trains Introducing a new neuron only 

requires generating a single new SSIM matrix, however, adding a new trial requires 

generating a new SSIM matrix for each neuron. The low computational cost of adding new 

neurons means that datasets with large numbers of neurons could be functionally categorized 

and clustered in a reasonable amount of time (< 1 hr for 5,000 neurons). 

 

 

Comparison Method Implementation:  
 

 

Direct Comparison (DC) Method 

 

We emphasize that the SIMNETS algorithm does not directly compare the firing patterns 

between different neurons. Instead, pairwise comparisons are performed between common 

spike trains of a single neuron, on a neuron-by-neuron basis.  The between neuron 

comparisons are then made between all pairs of the single neuron SSIM matrices. This allows 

the algorithm to find neurons that generate a set of spike trains with common signature spike 

train geometries (i.e., set of distances), rather than grouping neurons based on the degree of 

coordination between their moment-to-moment firing patterns. In order to evaluate the 

effectiveness of this strategy, we compared the performance of SIMNETS to a representation 

of traditional approaches that directly compare the spike trains of different neurons. 

 

The Direct Comparison (DC) method computes pairwise spike train similarities between 

matching ‘trials’ between neuron pairs. In contrast to the SIMNETS method, the t-SNE 

dimensionality reduction step is applied to an NxN matrix of distance values, rather than 

SSIM correlation values. That is, for a set of neurons N = {n1, n2, … nk}, the DC method 

builds a NxN matrix, M, where each Mx,y entry is the sum of the spike train distances between 

the spike trains of neuron nx, S = {S1, S2, …, Sj},  and the spike trains of neuron ny , U = {U1, 

U2, …, Sj}:  

  

 

 

(7) 

 

    

 

where D is a vector of Victor-Purpura spike train distance of length j (equation 1).  

 

 

 Firing Rate Covariation (FRC) Method 

 

Each matrix element in the Kiani et al (2015) neuron correlation matrix is calculated as the 

Pearson’s correlation between the trial-by-trial firing rate outputs of a neuron pair.  The FRC 

method outlined here is ultimately inspired by the Kiani et al, however, in an effort to present 

a fair assessment of the SIMNETS algorithm, we adjusted the Kiani et al (2015) algorithm 

to make it more directly comparable to the SIMNETS algorithm. Specifically, after 

generating an NxN neuron correlation matrix by calculating the single trial firing rate 

correlation statistics for each neuron pair, we applied the t-SNE dimensionality reduction 
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methods to the correlation matrix, as outlined above in step 3 of the SIMNETS algorithm. 

The FRC method perplexity values were selected to match those used when applying 

SIMNETS to the various datasets. 

 

 

Cross-Correlation Histogram (CCH) Method 

 

A spike train Cross-Correlation histogram79 (CCH) is a function that indicates the probability 

of observing a spike in neuron A given a spike in neuron B across multiple time-lags.  Here, 

we calculated CCHs using 1ms time bins at lags spanning  200 ms. Histograms were 

smoothed with a 5 ms kernel (kernel =  [ 0.05 0.25 0.40 0.25 0.05]), jitter-corrected to 

account for spurious peaks in the histograms80, and normalized by the geometric mean of 

each neuron’s firing rate (see Kohn et al. (2008) for details). To facilitate comparisons across 

methods, the temporal resolution of the jitter correction was set to match the temporal 

resolution of the SIMNETS temporal accuracy parameter, q, for a given dataset,  e.g., when 

q = 20, jitter = 50 ms (1/q).   

A single CCH NxN neuron correlation matrix was generated for the V1, M1, and CA1 

datasets. Each matrix element was calculated as the area under the curve above a 2 STD 

threshold (average of first and last 50 ms in histogram) and between +/- 10 ms (see 

Supplementary Figure 8 for examples). Each CCH neuron correlation matrix was then 

transformed into a low-dimensional NS map using t-SNE (perplexity was similar to that used 

for SIMNETS analyses). For more details on jitter method and cross-correlation analysis, 

see Amarasingham et al. (2012) and Smith and Kohn, (2008). 

 

DM, FRC, CCH Shuffle-based statistical test A shuffle-based statistical test was used to 

assess the significance of the detected clusters in the DM, FRC, and CCH NS maps. In all 

cases, the trials labels were shuffled before calculating the NxN neuron similarities measure 

that make up their respective NxN correlation/distances matrices. The NxN matrices were 

transformed into a new NS map using t-SNE (i.e., SIMNETS step 3), and a new set of 

silhouette values is calculated (i.e., SIMNETS step 4) for the range of tested k values. This 

procedure is repeated to generate a null-distribution of average silhouette values that is 

approximately normally distributed (e.g., 1000+ iterations). If the observed maximized 

average silhouette value ℎ̂ falls above the empirically calculated (1 − 𝛼) 100% confidence 

interval, then the detected number of 𝑘 clusters is considered statistically meaningful. 

 

 

Synthetic Dataset – Data Simulation and Analysis  

Spike train Simulation We simulated the spiking activity of a population of N = 180 synthetic 

neurons that consisted of 3 functionally distinct ‘ensembles’ (E1, E2, E3) of 60 neurons. Each 

functional ensemble was designed to produce similar spike-trains for two non-modulating 

conditions, referred to as the ‘baseline’ conditions, and a different pattern for a third 

condition, referred to as the ‘modulating’ condition. For example, ensemble E1 was 

modulated during condition A and exhibited the same baseline activity spike pattern during 

both conditions B and C, whereas ensemble E2 was modulated during condition B and 
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exhibited the same baseline spike pattern during conditions A and C, etc.  Each Ei ensemble 

was further divided into three sub-groups of n = 20 neurons, where each sub-group altered 

their spike-train patterns between the active and baseline states according to one of three 

different encoding strategies:  

 

(1) Rate coding: firing rate increased by 50% for the modulating condition (all spike 

times were randomly chosen) 

(2) Temporal coding: the two baseline conditions and the modulating condition were 

associated with specific (randomly generated) temporal sequences of spikes. The 

number of spikes was kept constant across baseline and modulating conditions. Spike 

times were jittered by +/- 50 ms for each trial.  

(3) Mixed temporal/rate coding: Similar to the temporal coding, but the spikes were 

jittered in a temporal window of 5 ms. Additionally, the modulating condition 

included 25% more spikes.   

 

In order to simulate stochastic variation in spiking patterns, 50% of the spikes were randomly 

removed for each condition. A total of 30 seconds of simulated recording time was 

generated, with the trial condition changing every second between A, B, and C patterns.  

 

SIMNETS Cluster Characterization We demonstrate SIMNETS’ ability to cluster 

functionally similar neurons in the synthetic dataset by comparing the pairwise similarity 

measures between and within ground-truth functional ensembles. We compare the 

distributions of the pairwise correlation values from the Neuron Similarity/Distance Matrices 

for neurons from the same functional ensemble (‘Within’ ensemble neuron pairs) and 

different functional ensembles (‘Between’ ensemble neuron pairs). Data on the y-axis was 

plotted as the normalized percentage of neurons for the Within-ensemble neurons pairs and 

the Between-ensemble neuron pairs. A rank-sum statistical test was carried out on the Within 

and Between distributions of similarity values, using an alpha value of α = .001.  

 

Neural Datasets – Task Description and Data Analysis  
 

Primate Primary Visual Cortex  

 

Task Description We analyzed a previously described dataset of 112 primary visual (V1) 

single-units (which we refer to as neurons) recorded in an anesthetized Macaca fascicularis 

using a 96-channel microelectrode array 40,46Briefly, sinusoidal gratings were presented at 6 

different orientations 𝜃 = {0°, 30°, 60°, 90°, 120°, 150°} and 2 drift directions (rightward and 

leftward drift, orthogonal to orientation). Each stimulus was presented 112 times for 1.28 

seconds. The position and size of the stimuli was sufficient to cover the receptive fields of 

all recorded neurons. For more details on the data processing and task design, see Smith and 

Kohn (2008) and Kohn and Smith, (2016). 

 

Single Neuron Functional Characterization We characterized the preferred orientation of 

each V1 neuron by fitting a Gaussian distribution to the firing rate function R: 

     

 
𝑅(𝜃) = 𝐴. 𝑒𝑥𝑝

−(𝜃−𝜇)2

2𝜎2  , 
(9) 
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where  is the stimulus orientation, Â is the peak response, μ the mean, and σ2 is variance of 

the Gaussian. The function takes on a maximum value at  = μ, for  = [0, 180), which 

corresponds to the neuron’s preferred orientation. We chose not to use drift-direction 

preferences when characterizing the functional properties of the neurons81,82 as only a very 

small percentage exhibited significant differences in the magnitude of their peak responses 

for drift-direction.   

V1 SIMNETS Analysis We extracted 1 second of spiking data from the first 30 repetitions of 

each stimulus (S = 360, spike trains), starting 0.28 seconds after stimulus onset. Only a small 

fraction of the total number of recorded trials was used in the analysis (25%) as we wanted 

to demonstrate SIMNETS ability to clusters neurons in datasets where only a small number 

of trials are available.  

V1 SIMNETS Map Features We used a circular-linear correlation (rcl) analysis to assess 

SIMNETS’ ability to group neurons according to their functional similarities. The 

correlation between each neuron’s preferred orientation and its location along each 

dimension in the low dimensional map yi was calculated using: 

 

         𝑟𝜃,𝑦 =
𝑐𝑜𝑣(𝜃𝑖,𝑦𝑖)

𝜎𝐴𝜎𝐵
,            (10) 

 

where 𝜎𝐴 and 𝜎𝐵 are the standard deviation of the neurons’ preferred orientations and y 

represents the neurons’ locations in the map. A high correlation value indicates a strong 

relationship between a neuron’s preferred orientation/direction and map location and 

demonstrates that functionally similar neurons were mapped to nearby regions of the map. 

The rcl value for the dimension with the highest value was reported.  

 

V1 SIMNETS Cluster Features We then characterized the functional properties of the 

detected sub-nets by calculating ensemble tuning functions (ETFs). ETFs were calculated by 

normalizing and averaging the joint firing rates across all neurons in each detected 

SIMNETS cluster. A bootstrap resampling method was used to determine the significance 

of the peaks in the ensemble tuning function. The null distribution describing the probability 

of getting the observed peak response by chance was computed from the EFTs of multiple 

sub-sets of neurons, randomly sampled from the population across 10,000 iterations. The 

sample size on each iteration was set to match the number of neurons in the given detected 

cluster. A response that falls above (or below) the 99% confidence interval is considered 

significant.  

 

Primate Primary Motor Cortex 

 

Task Description SIMNETS was applied to previously described dataset of 103 Macaca 

mulatta primary motor (M1) cortex neurons (i.e., single-units) recorded during a planar 8-

direction reaching task 33,41The single-unit activity was simultaneously recorded from the 

upper limb area of primary motor cortex using a chronically implanted microelectrode array. 
The monkey was operantly trained to move a cursor that matched its hand location to targets 

projected onto a horizontal reflective surface. A visual cue was used to signal movement 

direction during a variable duration instructed delay period (1 – 1.6 s) to one of eight radially 

distributed targets on the screen with the associated reach angles of 𝜑 = {0°, 45°, 90°, 135°, 
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180°, 225°, 270°, 315°}. At the end of the instructed delay period, the central target was 

extinguished, instructing the monkey to reach towards the previously cued target. 

 

 

M1 SIMNETS Analysis We analyzed 1 second of neural data from correct trials (S = 114, 

trials), starting 0.1 second before movement onset. Characterization of the detected 

SIMNETS clusters is similar to that described in section 5.1.  

 

We characterized the preferred direction of each M1 neuron by fitting a von Mises 

distribution 47 to the firing rate function R: 

            

         

  𝑟(𝜑) = 𝛽 + ℎ. 𝑒𝑥𝑝(ℎ. 𝑐𝑜𝑠(𝜑 − 𝜇))     (11) 

where 𝛽 is the offset of the function, h is the depth of the tuning, is the reach angle and μ is 

preferred reach direction of the cell. The function takes on a maximum value at  = μ, which 

corresponds to the neuron’s preferred reach angle.  

M1 SIMENTS map and cluster fea 

 

Rat Hippocampal CA1  

 

Task Description We applied SIMNETS to a previously described dataset of rat hippocampal 

neurons52,53 made publicly available by the Collaborative Research in Computational 

Neuroscience (CRCNS) data-sharing repository 42. The neurons were simultaneously 

recorded from the CA1 hippocampal region using multi-site silicon probes while the rat 

performed a spatial navigation task in a maze. Briefly, the rat was trained to run through the 

arms of a ‘figure-8’ maze in a left/right alternating manner in order to receive a reward. The 

left/right track runs were interleaved with a wheel-run period that functionally served as a 

memory delay-period. The rat performed T = 17 correct trials (Tr = 8, left trials; Tl = 9, right 

trials), taking on average 4.3 seconds to reach the rewards located at either end of the arms. 

The rat’s path along each arm of the track was linearized and divided into small (50 cm) or 

large (325 cm) spatial bins for the spatial firing field analysis or SIMNETS analysis, 

respectively (see next section for more details).  

 

CA1 Single Neuron Functional Characterization The rat’s path along each arm of the track 

was linearized and divided into 50 mm spatial bins when generating the spatial firing field 

maps. Bins corresponding to reward locations and the inter-trial activity were excluded from 

the analysis, leaving a total of 39 bins for each of the left and right trajectories, where the 

first 19 spatial bins were common to both trajectories. We generated a separate spatial firing 

map for the left and right trajectories of each neuron by dividing the number of spikes in the 

i-th bin by the rat’s occupancy time ti, and used a Gaussian kernel (width = 3 bins/150 mm) 

to smooth across the firing rates in each bin. Neurons that did not exhibit a 5 Hz firing rate 

in at least 1 spatial bin were not included in the analysis, leaving a total of N = 80 neurons. 

We characterized the neurons as non-place cells (n = 20, nPC) or place cells (n = 60, PC) 

based on their spatial firing properties and an information-theoretic measure of the spatial 

information in their spikes 52,83,84. Neurons were classified as having place cell-like activity 

if the firing rate in three contiguous bins exceeded the mean of all other firing fields by 20% 
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83,85 (using 2.5 STD of the out-of-field firing rate produced similar results52) and if their 

information content exceeded 0.5 bits/spike84 on either the left or right trajectories. The 

spatial information metric, Ispike, is a measure of the extent to which a neuron’s spiking 

activity can be used to predict the rat’s position along the track. The spatial information 

content of the neuron (measured in bits/spike) is defined as:     

             

𝐼𝑠𝑝𝑖𝑘𝑒 = ∑ 𝑃𝑖
𝑙
𝑖=1

𝑣𝑖

𝑉
𝑙𝑜𝑔2

𝑣𝑖

𝑉
,                               (12) 

 

where Pi is the occupancy probability,𝑣𝑖 is the firing rate in the i-th bin, and V is the overall 

mean firing rate of the cell across all bins in trajectory.  

 

CA1 SIMNETS Analysis We divided the T linearized trajectories into six 325 cm spatial bins 

and extracted 0.75 s spike trains beginning at the time that rat entered a given bin. The time 

window duration was selected to capture the smaller receptive fields ~ 0.6 s but still include 

a large portion of the average place field width (1 s – see Pastalkova et al. 2008). The spatial 

bin size corresponds to the approximate distance travelled in this time window. This resulted 

in S = 108 spike train events.  The SIMNETS algorithm was applied to the resulting N x S 

spike train 

 

CA1 NS Map Features - Distance Analysis  We compared the distances between neurons 

characterized as non-PCs and PCs in order to demonstrate the ability of the four tested 

methods to cluster the non-PCs to a specific sub-region of the NS map. The Euclidean 

distances were calculated between all pairs of non-PCs (referred to as ‘Within’ pairs) and 

between pairs of non-PCs and PCs (‘Between’ pairs) in the low dimensional NS map. A 

rank-sum statistical test was carried out on the Within and Between distance distributions 

using a significance threshold of p = 0.001. Summary of distance analysis is shown in 

Supplementary table 1.   

 

CA1 Ensemble Firing Rate Maps were generated for each of the three example SIMNETS 

clusters by averaging across the normalized single neuron firing rate spatial maps for all 

neurons in the i-th cluster. A bootstrap resampling method was used to test for significant 

peaks (p = 0.01) in the ensemble spatial firing map (i.e., place-field cell-assemblies). The 

procedure involved randomly sampling a subset of neurons from the neuron population, 

where each subset was equal in size to the number of neurons in the i-th cluster. A new 

ensemble tuning function was calculated over repeated iterations of this procedure (10000 

iterations). The resulting null distribution describes the probability of getting the observed 

peak response if the detected neuron clusters were selected at random. A response that falls 

above (or below) the 99% confidence interval is considered significant.    

 

CA1 Ensemble Activity Similarity Maps are low-dimensional neural activity state-space 

maps that capture the relationships between neural ensemble activity patterns on individual 

trials. This method of visualizing low-dimensional projections of ensemble activity has 

previously been described by this group 33,49 Generating the low-dimensional Ensemble 

Activity Similarity maps consists of three steps. 1) Calculate the pairwise spike train 

distances between the i-th spike train event of neuron j and all other spike trains belonging 

to that neuron Sj = {S1,j, S2,j, …, Sm,j}. This results in a vector of pairwise spike-train distances 

d(Si,j) of length m. 2) the pair-wise similarity vectors for the i-th trial of all n neurons of a 

given ensemble are concatenated and combined into a matrix, resulting in an m x mn matrix 
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(Densemble). The resulting m x mn pairwise distance matrix constitutes the relational embedding 

of the entire data set. 3) The final step consists of projecting the high-dimensional m x mn 

distance matrix down into a m x d matrix, where d is the desired dimension of the projection.  

 

 
Table 2: Summary of datasets 

Symbol Synthetic 

Dataset 

V1 

Dataset 

M1 

Dataset 

CA1 

Dataset 
N 180 112 103 80 

T                T 30 360 114 18 

S 30 360 114 119 

Spike train duration 

(s) 

1 1 1 0.75 

Abbreviations: N, neuron number; T, trial number; S, spike train events number. 

 

 
Table 3: Summary of SIMNETS Inputs/Outputs for each dataset 

Symbol Synthetic 

Dataset 

V1 

Dataset 

M1 

Dataset 

CA1 

Dataset 
q [0, 10, 200] 20 10 50 

perplexity 50 30 20 15 

d 3 3 3 3 

𝑘 4,3,3 3 3 6 

k 2-15+ 2-15+ 2-15+ 2-15+ 

ĥ 0.5, 0.99, 0.95 0.71 0.68 0.78 

Abbreviations: q, temporal accuracy parameter; perplexity, t-SNE ‘number of nearest neighbors’ parameter; d, 

dimensions;𝑘, optimal number of statistically significant clusters; ĥ, peak average silhouette value. 
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SIMNETS: a computationally efficient and scalable framework 
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Supplementary Figure 1 | Representing the computational properties of three synthetic V1 neurons using 

SSIM matrices. 

a. Spike raster plots showing simulated spike train outputs for three artificial V1 neurons (N1, N2, and N3) in 

response to repeated presentations of four different sinusoidal grating stimuli. Neuron receptive fields were 

modeled as a 2D symmetric Gabors86, such that neurons N1 and N2 were sensitive to differences in either the 

stimulus spatial frequencies or the stimulus orientations, respectively, whereas neuron N3 was sensitive to 

differences in both the stimulus spatial frequencies and orientation. Each grating stimulus has a different spatial 

frequency and orientation combination: stimulus 1 (indicated by red square) and stimulus 2 (blue square) had 

the same spatial frequency (‘spatial fq. A’) but different orientations (i.e., 70 or 90) and stimulus 3 (yellow 

square) and stimulus 4 (cyan square) had the same spatial frequency (‘spatial fq. B’) but different orientations. 

b. Single neuron Spike Train Similarity (SSIM) matrices for each of the simulated neurons. SSIM matrices 

describe the intrinsic relationship between a neuron’s spike train outputs in terms of distance: similar spike 

trains correspond to lower distance values (dark pixels) and dissimilar spike-trains correspond to higher 

distance values (light pixels). Colored bars indicate the stimulus pairings associated with each pixel (similar 

notation to a). Each SSIM matrix can be interpreted as an abstract representation of the neuron’s functional 

input-output mapping across the set of sampled conditions. Note that the ordering of the trials in the SSIM 

matrix is arbitrary, but needs to be consistent across neurons in order to compare one neuron to another in the 

data set. The correlation between pairs of SSIM matrices, can be used to quantify the relative functional 

similarity between the neuron pairs (e.g., Pearson’s, rn1.n3 = 0.13; Pearson’s, rn2.n3 = 0.81). c, Low-dimensional 

representation of the single neuron SSIM matrices.  Dimensionality reduction tools can transform the high-

dimensional SSIM data into a low-dimensional ‘spike train relational maps’.  Individual spike train events are 

represented as colored points and the similarity between spike trains corresponds to the distance between points 

in the space. The topology of the maps captures the essence of how each neuron categorizes the different 

stimulus inputs. 
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Supplementary Figure 2 | The information processing properties of example V1, M1, and Hippocampal 

CA1 neurons are captured in the structure of single neuron SSIM matrices and SSIM spaces.  

a-b. Three single-neuron tuning functions (left column), single neuron SSIM matrices (middle column), and 

SSIM maps (right column) for example neurons from V1 (a) and M1(b) data sets. Each single neuron SSIM 

map, which represents the spike train outputs of a single neuron across each trial trials, was generated by 

applying t-SNE to the SSIM matrices30. Each point in the SSIM map represents an individual spike train 

generated by the neuron on a trial and the colors indicates the visual stimulus conditions (a) or movement 

conditions (b) corresponding to that trial. c. Place-dependent firing vectors, single neuron SSIM matrices, and 

single neuron SSIM map for an example PC and non-PC in CA1 dataset. Red and blue lines represent the 

neuron’s average firing rate for the left and right trials, respectively. Each point in the spike train relational 

map represents individual spike trains and the colors indicate the rat’s location during the left or right track 

runs.  
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Supplementary Figure 3| SIMNETS and Direct Comparison (DC) Neuron Similarity (NS) maps for 

synthetic neuron population generate using alternative dimensionality reduction methods.  

a. SIMNETS NS maps for three tested temporal accuracy values (columns) generated using Principal 

Component Analysis (PCA) (top row) and Multi-dimensional Scaling (MDS) (bottom row). Individual points 

represent single neurons and the colors indicate their ground-truth ensemble assignments/coding properties. b. 

Direct Comparison (DC) NS Maps for three tested temporal accuracy values (columns) generated using PCA 

(top row) and MDS (bottom row).  
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Supplementary Figure 4 | SIMNETS shuffle-based statistical test for assessing clustering number 

significance.  

a. Two single-neuron SSIM matrices (n1 and n2) and scatter plots illustrating SSIM matrix correlation values 

before (top) and after (bottom) shuffling procedure (randomized rows and columns). Red line indicates a high 

correlation SSIM matrix pair (i.e., original) and blue line indicates a low-correlation SSIM matrix pair (i.e., 

shuffled). b. Original NS matrix and three example ‘null’ NS matrices. Each null NS matrix was generated 

from a single iteration of the SSIMS shuffling procedure (independently shuffle all N SSIM matrices) and 

recalculating the NxN pairwise SSIM matrix correlations. c. Left: original (black) and ‘null’ (green) cluster 

silhouette values for a single iteration of the shuffling procedure. The null silhouette values were calculated 

from a low-dimensional projection of NS matrix (i.e., NS map). Note: null silhouette values fall below the 0.5 

mark (indicative of poor cluster separation) and peak around k = 3 in original values (black line) has 

disappeared. Right: distribution of null silhouette values and original silhouette value (red broken line) for k = 

3 clusters.   
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a.  

Supplementary Figure 5 | Parameter sweep: number of SIMNETS clusters as function of perplexity and 

spike train comparison temporal accuracy parameter, q, in a high and low dimensional space. 

a-d. SIMNETS clusters (k) as function of perplexity  and temporal accuracy (1/q) in a 3-d t-SNE projection 

space (left) and a 10-d t-SNE projection space (right) for the synthetic (a), V1 (b), M1 (c), and Hippocampal 

CA1 dataset (d). Color bars indicate the number of detected SIMNETS clusters (determined through a 

silhouette analysis) for a given set of parameters   
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Supplementary Figure 6 | SIMNETS clusters detected in Hippocampal CA1 dataset. 

a. SIMNETS NS Map (top) and the rat’s location in the maze across left (blue line) and right (red line) track 

runs (bottom). b. Place-dependent firing rates for SIMNETS clusters 2-5 (see Fig. 7 for clusters 1 and 6). c. 

Example place-dependent firing field for individual neurons in each of the detected SIMNETS clusters, with 

2D spatial firing maps (right column). Single neuron firing rate maps were average across neurons and 

normalized (see Methods for more details).  
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Supplementary Figure 7 | Comparison of SIMNETS and Firing Rate Covariation (FRC) method 

performance in organizing neurons according to their estimated functional properties. 

a - d SIMNETS NS maps (left column) and FRC NS maps (right column) for the Synthetic (a), V1 (b), M1(c), 

and CA1 neuron datasets (d). Each dot represents a single neuron and the different colors indicate the simulated 

(a) or estimated information processing properties of the neurons (b-d). The FRC method failed to organize 

the Synthetic (a) and CA1 (d) neurons according to their functional properties.  SIMNETS and FRC methods 

performed similarly in their ability to organize the M1(c) neuron populations according to their functional 

properties (SIMNETS rcl = 0.92, p < 0.001 ;  FRC rcl = 0.93, p < 0.001), with SIMNETS marginally 

outperforming the FRC method for the V1 dataset (b) (SIMNETS rcl = 0.89, p < 0.001 ;  FRC rcl = 0.86, p < 

0.001). e - h Histograms showing the distributions for the SIMNETS and FRC NxN correlation values (Kruskal 

Wallis; p <0.001). 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/463364doi: bioRxiv preprint first posted online Nov. 8, 2018; 

http://dx.doi.org/10.1101/463364
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

 

Supplementary Table 1: summary of statistical evaluation of distributions of ‘non-PCs vs non-PCs’ distances 

(within) and ‘non-PCs vs PCs’ distances (between) in the SIMNETS, DM, FRC, and CCH Neuron Similarity 

Maps for the CA1 dataset shows that SIMNETS is the only method capable of detecting statistically significant  

clusters of non-PCs vs. PCs.       

Symbol SIMNETS DM FRC CCH 
Detected statistically significant 

clusters of non-PCs and PCs 

 

Yes 

 

No 

 

No 

 

No 

M±STD: 

within distances 

 

45.5 ± 27.8 

 

18.1 ± 11.8  

 

37.0± 15.8 

 

156.4 ± 102.6 

M±STD: 

between distances 

 

92.8±25.4  

 

34.2±15.5 

 

41.4±7.7 

 

166.9±88.1 

Ratio of the means: 

 between/within distances 

2.04 

(best separation) 

1.89 1.12 1.06 

(worst separation) 

Ranksum test 

within vs. between distances  

 

p = 6.223-64 

 

p = 3.681-29 

 

p =0.002 

 

p = 0.042 

ĥ 0.78 

 (p < 0.01) 

0.55 

(n.s.) 

0.70  

(p < 0.01) 

0.65  

(p < 0.01) 

𝑘 6 - 5 2 

rs 

location (best dim) vs. avg. firing rate 

0.03   

(p = 0.79) 

0.97 

(p< 0.001) 

-0.4 

(p = 0.69) 

-0.4361 

(p = 0.96) 

Abbreviations: ℎ̂, peak silhouette value; 𝑘,  optimal number of statistically significant clusters; n.s., non-significant, rs, 

Spearman’s correlation statistic.  
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Supplementary Figure 8 | Poor recapitulation of the estimated V1 and M1 functional properties when 

t-SNE is applied to NxN cross-correlation matrix. 

a, c. Multiple time-lag cross-correlation histograms (CCHs) for example V1 (a) and M1 (c) neuron pair, 

showing uncorrected CCHs (top) and jitter-corrected CCHs (bottom). Red line indicates the expected (spurious) 

cross-correlation values based on slow time-scale and trial-to-trial firing rate covariations, calculated using a 

jitter resampling procedure80. The AUC (area under the curve; inset) above the 2 STD threshold (blue line) and 

between +/- 10ms for each neuron for the uncorrected and corrected pairwise CCHs. b,d. left: uncorrected and 

corrected CCH matrices for V1 (b) and M1(d) neuron populations were transformed into low-dimensional NS 

maps (right). Individual points represent neurons and the colors correspond to the neurons’ preferred stimulus 

orientation (b) or preferred reach angle (d). Color notation similar to Fig. 5d and 6d. For more details on jitter 

correction and cross-correlation analysis, see Methods, Amarasingham et al. (2012), and Smith and Kohn, 

(2008). 
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Supplementary Figure 9 | Comparison of SIMNETS and cross-correlation analysis (CCH) run-time as 

a function of neuron number 

a. SIMNETS analysis run-time (min) for steps 1 – 4 (without statistical test) for M1 neuron population as a 

function of neuron number. Smaller subsets of the population were used for analyses involving 100 neurons or 

less and multiple concatenated sets of the population were pooled together to generate larger neuron 

populations for analyses involving > 100 neurons. Inset: SIMNETS analysis run-time (s) as a function of neuron 

number (black line) or spike train number (green line). b. CCH analysis run-time (not including Jitter 

correction) as a function of neuron number. Dash line indicates an interval discontinuity in the x-/y-axes. The 

SIMNETS has a computational complexity that is near-linear: O(n1+ε), where ε is infinitesimally small.  
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