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1 Introduction

In modeling of dynamical systems, Takagi-Sugeno (T-S)
fuzzy systemsm provide an alternative approach to the
control of plants that are complex, uncertain, and ill-
defined. In the last two decades, with wide applications
from consumer products to industrial processes, T-S fuzzy
model® ! is proven to be effective universal approxima-
tions over differential geometric and differentiable algebraic
methods. By making use of simple fuzzy reasoning rules
and fuzzy inference methods, it provides a basis for devel-
opment of systematic approaches to stability, stabilization,
H,, control and filtering problems(®~13.

Time delays are often encountered in many industrial and
engineering systems such as chemical processes, rolling mill
systems, networked control systems, etc. It is well known
that time delays can cause poor performance or instability.
Therefore, the problem of delay-dependent stability analy-
sis and controller synthesis for T-S fuzzy systems with time
delays have received great efforts by many researchers in
recent years. Moreover, delay-dependent approaches(® %> 4]
are generally less conservative than delay-independentm
ones when the sizes of time delays are small. Re-
cently, the delay-dependent stabilization and Hs control
of T-S fuzzy systems with interval time-varying delay are
discussed™® %1, Robust stability, stabilization and He, con-
troller design of discrete and distributed time delays with
or without fuzzy systems are considered!'” 19

In the past few years, stochastic nonlinear systems have
received much attention since stochastic modeling has come
to play an important role in many branches of science and
engineering applications. For instance, stabilization, Heo
control, and H filtering problems for linear and nonlinear
stochastic systems have been considered°=2%. The con-
trol technique based on the so-called T-S fuzzy model has
attracted lots of attention. Recently, some attempts have
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been made to use T-S fuzzy model based control technique
for stochastic nonlinear systems?”"~3%. Very recently, the
delay-dependent robust Hso control for uncertain stochastic
T-S fuzzy systems with time delays have been discussed in
[31, 32]. However, to the best of our knowledge, the delay-
dependent robust stabilization and Hs control for uncer-
tain stochastic T-S fuzzy systems with discrete interval and
distributed time-varying delays have not yet been fully in-
vestigated and this will be the goal of this paper.

In this paper, we investigate the problem of the delay-
dependent robust stabilization and Hs control for uncer-
tain stochastic T-S fuzzy systems with discrete interval and
distributed time-varying delays. The uncertainties are as-
sumed to be norm bounded and time-varying. For the ro-
bust stabilization problem, a state feedback fuzzy controller
is designed such that the closed-loop system is mean-square
asymptotically stable for all admissible uncertainties, while
for the robust H., control problem, a state feedback fuzzy
controller is designed such that the closed-loop system is
not only mean-square asymptotically stable but also guar-
antees a prescribed Ho, performance level. Sufficient con-
ditions for the solvability of these problems are obtained,
and desired state feedback controllers can be constructed
by solving certain LMIs. Further, two numerical examples
are given to illustrate the effectiveness of the proposed ap-
proach.

Throughout this paper, notation X > Y (respectively,
X > Y) where X and Y are symmetric matrices, means
that X — Y is positive semidefinite (respectively, positive
definite). I denotes the identity matrix of appropriate di-
mension. L2[0,00) is the space of square integrable vector.
Moreover, let (2, F, {Ft}+>0, P) be a complete probability
space with a filtration {F;}:>¢ satisfying the usual condi-
tions (i.e., the filtration contains all P-null sets and is right
continuous). The symmetric elements of the symmetric ma-
trix will be denoted by *. Matrices, if their dimensions are
not explicitly stated, are assumed to have compatible di-
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mensions for algebraic operations.

2 Problem formulation

Consider the following uncertain stochastic T-S fuzzy
model with discrete and distributed time-varying delays de-
scribed by

Plant rule é: If 01(¢) is 71 and 602(t) is 72 and --- and
ep(t) is Nip,

then

() : da(t) =
(Ai + AA;()z(t) + (Agi + AAgi(t)) x (t — 7(£))+

t

(B1i + AB1:(t)u(t) + Bo,,v(t) + Bay, /

t—d(t)

x(s)ds] de+
[(ci £ AC(1)z(t) + (Cai + ACa (1)) X 2(t — (1)) +

t

(B2i+ABai(t))u(t)+ Bu,; v(t) + By, /t_d(ta)v(s)ds] dw(t

1)
2)
3)

2(t) = D;z(t) + Daix(t — 7(t)) + Bsiu(t)
z(t) = ¢(t), Vte[-7,0], i=1,2,---,r

where 7;; is the fuzzy set, 01(t),02(t), -+ ,0p(t) are the
premise variables, r is the number of IF-THEN rules of
T-S fuzzy model, z(t) € R" is the state, u(t) € R™ is
control input, v(t) € RP is a disturbance input which be-
longs to L2[0, o0), z(t) € R? is controlled output vector,
and w(t) € R" is a one-dimensional Brownian motion de-
fined on the probability space (Q, F, {Fi}izo, P) sat-
isfying £{dw(t)} = 0, £{dw(t)?} = dt. In the above
system (E), Ai, Adi, B, Bvli, Bdli’ Ci, Cdi, Bai, va.,
Ba,;, Di, Dg; and Bs; are known real constant matrices
with appropriate dimensions. AA;(t), AAqg(t), AB1i(t),
AC;(t), ACq;(t) and ABy;(t) are unknown matrices repre-
senting time-varying parameter uncertainties, 7(¢) and d(t)
are bounded continuous time-varying delays satisfying

)
(
(
(

OnggT(t)<T1W7 T(t)g/ﬁ<00, Ogd(t)ng (4)
where 7,,, Ta, 1 and dar are real constant scalars. Let 7 =
max{7ar, dn }. ¢(t)is real valued continuous initial function
on [—7,0]. In this paper, the parameter uncertainties are
assumed to be of the form

AAi(t) AAgi(t) ABi(t) ACi(t) ACu(t) ABgi(t)] =
EiFi(t) [Hus Hai Has Hyi Hsi Hoi (5)

where F;, Hy;, H2;, Hs;, H4;, Hs; and Hg; are known real
constant matrices with appropriate dimensions, and Fj(t)
is an unknown real time-varying matrix function satisfying

Fr(t)Fy(t) < I. (6)

It is assumed that all elements of F;(t) are Lebesgue mea-
surable. AAl(t), AAdi(t), ABu(t), ACZ (t), ACdl (t) and
ABj;(t) are said to be admissible if both (5) and (6) hold.

By using center average defuzzifier, product inference and
singleton fuzzifier, the global dynamics of the T-S fuzzy

system (X) can be inferred as

(31) : da(t) =
> hz(G(t)){ [(Az- + AA(1)z(t)+

(Agi + AAg(t)x(t — 7(t)) + (Bis + AB14(t))u(t)+

Bv“’(}(t) + Bdli /

x(s)ds] di+
t—d(t)

{(ci + AC;(1)x(t) + (Cai + ACw (£))a(t — 7(£))+

(B2i + ABai(t))u(t) + Buy,v(t)+

Ba.,. z(s)ds|dw 7
o [ #o)d]au) )
A =3 hi(e(t)){Dix(t) ¥ Daz(t — (1)) + Bgiu(t)}

) (8)
2(t) = (), Vie[-70] 9)

where hi(6()) = <O w(0(1) = TI2_yms; (65(1),
and 7;;(0;(t)) is the grade of membership value of 0;(t)
in n;;. In this paper, we assume that v;(6(t)) > 0 for
i=1,2,---,r and > [_, v:((t)) > 0 for all t. Therefore,
hi(0(t)) > 0 (for i =1,2,--- ,r), and >.;_, hi(0(t)) =1 for
all . In the sequel, for simplicity, we use h; to represent
hi (6(t)).

Based on the parallel distributed compensation schemes,
a fuzzy model of a state feedback controller for the system
(X1) is formulated as follows:

Control rule i: If 01 (t) is n;1 and 02(¢) is m:2 and - -+ and
0, (t) is nip, then

u(t) = Kiz(t), i1=1,2,---,r. (10)

The overall state feedback fuzzy control law is represented
by

u(t) = Z h,Kla:(t) (11)
i=1
where K; (i = 1,2,--- ,r) are the local control gains. Under

control law (11), the overall closed-loop system is obtained
as

(S2) : da(t) =

[Asce(t) + Aas(t — 7(6)+ Buyvo(t) + Bay / t v(s)ds] dt-+
t—d(t)

[CKx(t)+Cdx(t—7(t))+Bv2v(t)+Bd2 / t x(s)ds]dw(t)
t—d(t)

(12)

2(t) = Dxx(t) + Dax(t — 7(¢)) (13)
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z(t) =¢(t), Vte|[-T,0] (14)

where
A = Z Z hihj (AZ + Blin + AAZ(t) -+ ABli(t)Kj)

i=1 j=1

4= i hi(Agi + AAg(t))

i=1

1= Z htiu
=1

di = Z hiBay,
1=1

Ckg = Z Z hzhj (C; =+ BQin =+ ACz(t) + ABgi(t)Kj)

i=1j=1

Cqy= zT: hi(Ca; + AC4i(t))

i=1

B 5 = i h'iBU2i
=1
Bg, = Z hiBa,,
i=1
Dk =Y hihj(Di + BsiK;)

i=1 j=1

Dy = hiDa;.

i=1

Let us introduce the following definition and lemmas that
are useful for the development of our results.

Definition 1%, The nominal system (7) and (9) with
u(t) = 0 and v(¢t) = 0 is said to be mean-square stable if for
any € > 0, there exists §(¢) > 0 such that £{|z(t)|*} < ¢
when

sup_ E{|g(s)*} < d(e).

—7<s<0
In addition,
Jim E{lzt)]*y =0

for any initial conditions, then the nominal system (7) and
(9) with u(t) = 0 and v(¢) = 0 is said to be mean-square
asymptotically stable. The uncertain stochastic system (7)
and (9) is said to be robustly stochastically stable if the
system associated to (7) and (9) with u(t) = 0 and v(t) =
0 is mean-square asymptotically stable for all admissible
uncertainties AA;(t), AAqi(t), AB1:i(t), AC;(t), ACu(t)
and ABQl(t)

In this paper, our aim is to develop techniques of ro-
bust stochastic stabilization and robust H., control for the
stochastic fuzzy system (X2). More specifically, we are con-
cerned with the following two problems:

1) Robust stabilization problem: Design a state feedback
controller (11) for the system (7) and (9) with v(¢) = 0
such that the resulting closed-loop system (12) and (14)
with v(¢) = 0 is mean-square asymptotically stable for all
admissible uncertainties. In this case, the system (12) and
(14) with v(t) = 0 is robustly stochastically stablilizable.

2) Robust Hs control problem: Given a scalar v > 0,
design a state feedback controller in the form of (11) for
system (21) such that, for all admissible uncertainties, the
resulting closed-loop system (X2) is mean-square asymp-
totically stable, and for any non-zero v(t) € L2[0, 0),
l2(#) |l < vllv(2)]|2 is satisfied under zero initial condition.
In this case, the system (32) is robustly stochastically sta-
bilizable with disturbance attenuation level ~.

Lemma 131, For any vectors z, y € R"™, matrices
PeR"™", DeR"W, Ee€R"*™ and F € R"*"f
with P >0, || F ||< 1, and scalar £ > 0, we have

1) 22Ty <2TP 'z +yT Py,

2) DFE+ETFTDT < 'DDT +¢ETE.

Lemma 2. For any constant matrix M > 0, any
scalars a@ and b with a < b, and a vector function z(t) :
[a,b] — R" such that the integrals concerned are well de-
fined, the following holds:

[/ab:v(s)ds}TM[/ab m(s)ds] <(b-a) /ab

Lemma 327, For any real matrices Xi; for 4,j =
1,2,--- ,r and A > 0 with appropriate dimensions, we have

i=1 j=1 k=1 I=1 i=1 j=1

z" (s)Max(s)ds.

where h; (
t

> i1 ha(6(

1 < ¢ < r) are defined as h;(0(t)) > 0,
) =1.
3 Robust stochastic stabilization

In this section, we shall present a sufficient condition for
the uncertain stochastic fuzzy system (12) and (14) with
v(t) = 0 to be robustly stochastically stabilizable in terms
of LMIs. The design of the fuzzy controller is to determine
the local feedback gains K;(i = 1,2,---,7) such that the
system (12) and (14) with v(¢) = 0 is robustly stochastically
stabilizable. When there are no parameter uncertainties
in the system (12) and (14) with v(¢) = 0, Theorem 1 is
specialized as follows.

Theorem 1. For given scalars 7., 7ar, dn and p, the
time-varying delays satisfying (4), the closed-loop stochas-
tic fuzzy system (12) and (14) with v(¢t) = 0 and AA;(t) =
AAgi(t) = AB1(t) = AC;(t) = ACq(t) = ABai(t) =0
is stochastically stabilizable if there exist matrices X >
0, Qs >0 (s=1,2,3), R >0 (=1,234), Z>0and
real matrices Ny;;, Miij, Suj, Y3 (1=1,2, 1<i<j<r)of
appropriate dimensions such that the following LLMIs hold:
=6 =% =

* =09 0 <0, 1<i<r (15)

* * 533
=i =i =l e A = O~V L
—11 —12 —13 —11 —12 —13
522 0 + * 522 0 < 0,
* * =33 * * =33
1<i<j<r (16)



P. Balasubramaniam and T. Senthilkumar / Delay-dependent Robust Stabilization and H., Control for - - - 21

where
ij v a
* o dgy Mg =52 0
—=ij * * —)2 0 0
—11 — Q

11]1 ‘1511]2 Mlij —glij Bg,; X
* * * -Qs 0

oo —dlag{ X, _TMR1, —?RQ, —T]MR37 —?é4}
=33 :diag{ — 2t X —‘rTMRl, 27X -|—7_']~{27
—4?X+7:R1+7_'R27 —2X-|—R3, —2X-|—R4,

—4X 4+ R3 + R4}
with

7 =Q1+ Q2+ Qs + Nuij + Nijj +
(AiX + BuY;)" +duZ

i =515 — Nuij + Naij — My + Aai X

so == (1= ) Q1 = Naij — Nagj +S2ij + 5245 — Maij — M,

(A: X + Bu:Y;)+

T
=|AiX +B,Y; AuX 0 0 BdhX]

N T
cr = [CX—i—Ble CuX 0 0 delx]
_ _ T

[ T ON&, 00 0]

_ —- T - T T

Sij:[SlT,-j SE. 0 0 O]T

Moreover, the state feedback gain can be constructed as
Kj :i/jX_l (.]: 1727"' 7T)'
Proof. Let

A =3 " hihj(Ai + BuK;)

i=1 j=1

Ag = zrj hiAai
i—1

:Z hinli
i—1

Cx = Z Z hih;(Ci + B2 Kj)

i=1 j=1

Cq= i hiCa;

=1
T
= E hinm‘
=1

then the closed-loop nominal system (12) with v(t) = 0 can
be represented as

dz(t) = f(t)dt + g(t)dw(t) (17)
where
F(8) = Axca(t) + Aqz(t = 7(8) + Bay [ g,y 2(s)ds
g(t) = Cra(t) + Cax(t — 7(t)) + Ba, ft ai) & (s)ds.
Choose a Lyapunov-Krasovskii functional candidate as
V(e t) =Va(ze, t) 4+ Vo, t) + Va(ae, £)+
Vi(ze, t) + Vs (2, t) (18)
where

Vi(xe, t) =27 (t)Px(t)

Va(ze,t) :/ 2" (5)Qrz(s)ds + /tl " (5)Qox(s)ds+

t—1(t)

t
/ (s)Qsx(s)ds
t—Tr
0 ¢
Va(xt,t) :/ fT(s)R1f(s)dsd0+
—7n S0
o 0
/ (s)Rzf(s)dsdd
TM t+
0
w(me, / / g s)Rsg(s)dsdf+
—7n S0
/ m/ gt $)Rag(s)dsdd
- t40

5(Te,t / / s)dsdf
det) Jt+e

where P, Qs (s = 1,2,3), R (I = 1,2,3,4) and Z are
symmetric positive definite matrices with appropriate di-
mensions.

By using It6's formulal®¥!

, we have

AV (ze,t) = LV (24, t)dt + 22" (£) Pg(t)dw(t) (19)

where



22 International Journal of Automation and Computing 10(1), February 2013

It is easy to know

LVi(ze,t) =227 (1) P(t) + ¢" (t)Pg(t) =

22" ()P (Axca(t) + Aaw(t - 7(t)+

¢
By, / a:(s)ds)
t—d(t)

() Qua(t)— (1 — p)a’
zt (1) Qa2(t) —
2" (1) Qs (t) —

+9g" (t)Pg(t)

LV(w,t) < (t—7(@)Qz(t—7(t))+

2T (t — 7)) Qo (t — T )+
2" (t — 7o) Qax(t — Tar)
LV3(ze,t) =mar fT(#) Ry f () — /t tTM T (s)Ry f(s)ds+
= r)f ORg O [ R
£ViGaist) =mug ORag(0) — [ ACLCE
(rar = 7)a” (O Rag(0) — | m 4 (5) Rag(s)ds

LVs(ze,t) <dara” () Za(t) — /tt o z" (s)Zx(s)ds.

From the Newton-Leibnitz formula, the following equalities
are true for matrices Ny;;, Miij, Si; (I = 1,2) with appro-
priate dimensions:

0 2ZZhh[

=1 j=1

Nh] +x (t — T(t))Ngij] X

e s v~ [ seas— [ gsauis)]
(21)

02233 hity [ (

=1 j=1

MMJ +x (t — T(t))MQZ‘]} X

[m(t—rm)—x(t—r(t))—/tgrmf(s)ds — /tj:rmg(s)dw(s)}

= (t) (®) (22)
22

0_2ZZhh[

=1 j=1

Slzj +x (t — T(t))SQij] X

t—7(t)

[az(t—T(t)) —x(t—TM)—/

t—Tr

f(s)ds— /:Jr(t)g(s)dw(s)} .
o (23)

By Lemma 1 1), for matrices B; > 0 (I = 1,2,3,4), the

following inequalities hold:

t
Nij / f(s)ds <
t—7(t)

i=1 j=1
t

TMZZ hihi€" (t)Nij Ry ' N5€ () +

i=1 j=1 t—(t)

—2) Y hihig (1)

FH(s)R1f(s)ds

(24)

=23 Y hihet (1)

" t—Tm
Mij / f(S)dS <
Jt—7(t)

i=1 j=1
505 b€ () My R MTE() + / T"; £ (5 Raf(s)ds
i=1 j=1 v (t
(25)
,QZZh hie™( s” e f(s)ds <
7Y N hahie"(1)Si (Rl + R2) _ISiTjE(t)ﬂL
t—7(t)
[ (B R fs)as (26)
- 2iihiha‘§T(t)Nij /t g(s)dw(s) <
i=1j=1 t—7(t)
Z Z hih;€T (t)Ni; Ry ' NS (t)+
=1 j=1
t T t
(), o) m( [ ae)u) (21)
23 Ym0 [ glduts) <
i=1 j=1 t—7(t)
Z Z hih; €T (t)Mi; Ry " MS€(t)+
=1 j=1
t—Tm T t—Tm
([ o) mal [ o) e
T T t—1(t)
— 22 Z hihi €T (t)Ss; / g(s)dw(s) <
i=1 j=1 =M
SN hihyet ()8, (R3 + R4) T STe(t)+
i=1 j=1
=7 (2) T t=r (1)
</t— g(s)dw(s)) (Rg + R4) (/ti g(s)dw(s))
(29)
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where

W =] "(t—rt) 2 (t—rm) aT(t—7u)
L

|
( /t o s)ds)T]

= [Niy; N3y 0 0 o]
= [M%; M, 0 0 o]
Sij= [S5; S3; 0 0 0o
T= TM — Tm-
Using Lemma 3, one can derive that
R0 (maRy+ 7R2) £(2) = [Axca(t) + Aaa(t — m(8)+

By, /ttdm w(s)ds] ' (TMRl + 7"R2> X

[AKJI(t) + Agz(t — (1)) + Ba, /t id(t) x(s)ds} -

ZZZZh h; hkhl§ ) ij (TMR1 +7’R2)Akl§( ) <

i=1 j=1 k=1 l=1

503 hine

i=1 j=1

A (TMRI + TRz) Aiz&(t) (30)

where
NT T
Ay = [A,L +BuK; Az 0 0 Bgy,
Similarly
T _
g (1) (P +uRs + TR4)9(t) S

DD hahi€'(t)

e (P + v Rs + 7_'R4)éijf(t) (31)
i=1 j=1
where

. T
Cij:{ci+BZin Cai 0 0 Bay,

Then, it follows from Lemma 2, that

t
—/ 2" (s)Zx(s)ds <
t—d(t)

t

_ di/f (/tid(t) x(s)ds)TZ< /tid(t) $(8)ds), (32)

Combining (20) to (32), we get

HEE(t)+

Vient) <305 hihg€" (¢

=1 j=1

/tt7<z) g(s)dw(s))TR3 ( /:T(t) g(s)dw(s))—l—

@) Ral [ gle)au(s))+

—7(¢)

s))T (Rg + R4) X

du(s)) - /;M 97 () Rsg(s)ds—

)(Rs + Ra) g(s)ds (33)

where

29 =0 4+ C”PC” + TMA”RlAU + TA”RQA”+

ijé;rjRgéij + ?G$R4éij + TN Ry NT

iyt
?MinQIME + fSij(Rl + Rz)ils;?—‘r

NijR3"Nj5 + My Ry " M5 + Si;(Rs + Ra) ™S}

iJ

4 v Mu; —Su;  PBay,
P Mai;  —Sa 0

\1121]1 _ * * —Q2 0 0
* * * —-Qs 0
1
* * * * -7
dn
with

P =Q1 + Q2 + Qs + Nuij + N + P(A; + BiiK;)+
(As +B11K) P+duZ
— Niij + Nay,

i =S4 — Muij + PAai

h=-0-

w)Q1 — Naij — N;Fij + S2i;+
S3i; — Maij — May;.
It can be known that

t

S{ ( /ttT<t) Q(S)dw(S))TRg ( /tiT(t) g(s)dw(s))} —

5{ /ttﬂt) gT(s)Rgg(s)ds} (34)
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t—Tm

5{(/H(t)' g(s)dw(s))TRzl(/tiT(t)/ gs)du(s)) } =

e | () 4" () Rag(s)ds) (35)
and
t=(t) T tr(t)
e{( /HM g(s)dw(s)) (Rs+Ra)( /HM g(s)du(s))} =

5{ /:7T(t> g (s) <R3 + R4)g(5)ds}. (36)

— T

Taking the mathematical expectation on both sides of
(33) and using (34)—(36), we get

{Zzhhg

=1 j=1

5{.cv e, t } ””f(t)}- (37)

If 2% < 0for 1 <i<randZ7+E" <0 forany 1<
1< j < r,it yields E{ﬂV(mt,t)} < 0. Employing the Schur

complement, Z* < 0 and EY 4 E7* < 0 are equivalent to

E9 427 <0 (38)
for any 1 < i < j <7, where
N Uy U Wi
=Y = * oo 0
* * \1133
with

\1111]27[0 P rnAL FAL ruClE ?C’E]

\Iflljg :[T]\/[Nij TM;; 7_'Sij Ni; M;; Sij }
Woy = — diag{P, Ry, TRy, TmR3 !, fRZl}

Wss =—diag{rMRl, 7Ra, 7(Ri+R2), Rs,Ra, (RS+R4>}

and \I”l is defined previously.

Pre- and post-multiply (38) by diag{X, X, X, X, X, X,
1,11, X, X,X,X, X,X} and its transpose, respectively,
and applying the change of variables such that P = X!
XQsX = Qs (s = 1,2,3), XZX = Z, XN;;; X = Ny,
XMlin = M“‘j, XS“]'X = Slij (l = 1,2), then it gives

242 <0 (39)
for 1 < i< j < r, where
=t =i gl
3 =11 =12 <a3
=Y = *  Hoo 0
* * é33

Eao :diag{ X, —tuRy', —7R;', —tmR5 ", —fR;l}

B33 :diag{ — i XRi X, —TXRoX, —7X(R1 + R2)X

— XRsX, ~XR4X, —X(Rs + R4)X}

and 2%, =% =% are defined in statement of Theorem 1.

It follows from inequalities

XRIX —2X + Ry =(X — Ry HRI(X — R >0

that

92X +R'>—-XRX, 1=1,2,3,4.

Let us assume that Rl_1 =R (I =1,2,3,4). Then, LMI
(39) is equivalent to the LMIs defined in (15) and (16).
Therefore, by Definition 1 and [35], the closed-loop nominal
stochastic fuzzy system (12) and (14) is stochastically stable
with v(t) = 0. O

In the following part, using Lemma 1 2), we extend the
above result to the uncertain stochastic fuzzy system (12)
and (14) with v(¢) = 0 to obtain a delay-dependent criterion
as stated in the following theorem by means of the feasibility
of LMIs.

Theorem 2. For given scalars 7, Tar, dar and p, the
time-varying delays satisfying (4), and the closed-loop un-
certain stochastic fuzzy system (12) and (14) with v(t) =0
is robustly stochastically stabilizable, if there exist matrices
X >0, Q>0 (s=1,2,3), R,>0(z:1,2,3,4), Z >0,
and real matrices Ny;;, My, Suj, Y; (I = 1,2) of appro-
priate dimensions and scalars €155 > 0, €2;5 > 0 (1 < @ <
j < r) such that the following LMIs hold:

I3 =il =it =11
11 —12 —13 =14

=
=

* Hoo 0 =4 .
<0, 1<:i< 40
* * 533 0 ’ " ( )
* * * =i
—ij =i =i =i —ji  mji mji =g
=11 =12 13 <14 =11 =12 =13 <14
* 522 0 E;{l + * 522 0 E;Z < 07
* * =33 0 * * =33 0
* * * Eﬁ * * * Eﬁ
1<i<yj<r (41)
where
[ e1w;Ei 0 XH{;,+Y;"H3, XH{ + Y, "Hg,
0 0 XHY, XHE
Eﬁ = 0 0 0 0
0 0 0 0
L 0 0 0 0
I 0 EQijEi 0 0
EujTMEi 0 0 0
= = €14, TE; 0 0 0
0 €2¢jTME7; 0 0
L 0 521‘]‘7_'Ei 0 0

= —dlag{ —evigl, —e2izl, —e1i51, 752”[}
=Y, =Y, Y, Zu and Zj3 are defined in Theorem 1.

Moreover, the state feedback gain can be constructed as
K; :Yj)f1 (j=1,2,---,7).
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Proof. For the sake of presentation and simplicity, de-
note

T
QM:[ Ef 0 0 0 0 0 7uE" 7E' 0Oixs ]
T T T T
in = |: 01><5 El 0 0 TME'L %Ez 01><6 :|
Q3i]’ = [ Hi; X + H3in Hy X 0Oix14 ]

Q4ij - [ H41'X + HGZ'Y;' HsiX 01><14 ] .

Replacing A;, Aqi, Bii, Ci, Cai, and Bg; in Theorem 1
AC;(t), Cai + ACqi(t), and Ba; + ABa;(t) respectively,
we obtain the following corresponding uncertain stochastic
fuzzy system (12) and (14) with v(t) =0

=i =i gl

=11 —12 —13
Boo 0 | +QuiF(t)Qsi; + Q3 F (0)QT+
* * Ha3
Qi Fi(t)Quij + Qi Fi (£)Q3; < 0. (42)

By Lemma 1 2), we have

=t =i =i

11 —12 —13

Zay 0 + EujQMQE + 5E;Q;j93i1+
* *  Hs3
€205 Q2i2; + €215 Qi Quij < 0. (43)

By Schur complement, we obtain (40) and (41). Then,
by Theorem 1, the closed-loop uncertain stochastic fuzzy
system (12) and (14) is robustly stochastically stable with
v(t) = 0. O

In the case of u(t) = 0, v(t) = 0, Bq,; = Ba,, = 0,
AC;(t) = 0 and ACy;(t) = 0, the system (7) is reduced to
the following model

dz(t) =

> maOW){ [ (A + AAD)2(t) + (Asi + Adu(t))x

ot — T(t))] dt + [C’im(t) + Caa(t — T(t))] dw(t)} (44)

z(t) = (1),

where the time-varying delay 7(¢) satisfies

vVt € [—TM,O] (45)

0<7(t) <t <00, (1) < p<oo (46)

with 7ps and p are real constant scalars. In the system (44),
the parameter uncertainties are assumed to be of the form
AAdi(t) = EQiFQi (t)Hzi (47)
where F1;, F2;, H1; and Hz; are known real constant ma-
trices with appropriate dimensions, Fi;(t) and F»;(t) are
unknown real time-varying matrix function satisfying
FE@®FL(t) <1
Foi(t) Fai(t) < 1. (48)

When there are no parameter uncertainties in the sys-
tem (44), the following corollary can be obtained by using
Theorem 1.

Corollary 1. For given scalars 7ps and p, the time-
varying delays satisfying (46), the nominal stochastic fuzzy
system (44) is asymptotically stable in the mean square
sense if there exist matrices P > 0, Q1 > 0, Q3 > O,
R1 >0, R3 > 0, and real matrices N;; and Si; (I =1,2) of
appropriate dimensions such that the following LMI holds:

iy P, Py
* [P 0 <0, 4=1,2,---,7r (49)
* * @33
where
, ¢ ¢z —Su
1= * ¢ao  —Sai
* *  —Qs
[ ¢'P tmATRy 7mCFRs
32 = C;{;P T]L{AdTiRl ’TMCC’ZI;-RQ}
0 0 0
. [ 7 Nv TSu Nio S
13 =| TmN2i TmS2i Niui Sz
0 0 0 0
Doy :diag{ — P, —Tm Ry, _TMRS}
P3s :diag{ —T1mR1, —tmR1, —Ra3, —RB}
with

@1 =PAi+ AT P + Q1 + Q3 + Ni; + Ny;
¢§2 =PAg; — Ni; + N;; + S1:

¢hy = — (1 — )Q1 — Nag — Nag; + Sa; + Sa;.

Remark 1. Choose the following Lyapunov-Krasovskii
functional candidate as in (18) with Q2 =0, R2 =0, R4 =
0, Z = 0, replacing Ny;; and Sy;; (I = 1,2) with N;; and
S (1=1,2) in (21) and (23) respectively, and taking M;;
as zero in (22), the proof of Corollary 1 is easily obtained
from Theorem 1.

For the system (44), the robust stability conditions can
be obtained as stated in the following Corollary 2 by ex-
tending the proof of Corollary 1.

Corollary 2. For given scalars 7as and p, the time-
varying delays satisfying (46), the uncertain stochastic
fuzzy system (44) is robustly asymptotically stable in the
mean square if there exist matrices P > 0, Q1 > 0, Q3 > 0,
Ri >0, Rs > 0, real matrices N;; and Si; (I = 1,2) of ap-
propriate dimensions, and scalars €1, > 0 and €2; > 0 such
that the following LMI holds:

oy @i, Py Py
* (1)22 0 @724
* * (1333 0

* * * G4

<0, i=1,2,--
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where
‘ o ?32 —S1i
= * P50 —S2
* * -Q3
[ PE,; PE»;
Dy = 0 0
0 0
[0 0
24 =| T™mR1E1; TmMRi1E2
0 0
i [ —e1id 0
b, =
44 . o]
with

¢y =PAi+ ATP + Q1+ Qs+ Nui 4+ Ny; + e Hi Huy

Phy = — (1 —p)Q1 — No; — Ny + Sa; + Sa; + €2: Hyy Hai.

Further, ®i,, ®i;, P2, P33 and @i, are defined in Corol-
lary 1.

4 Robust stochastic H,, control

In this section, a delay-dependent sufficient condition for
the solvability of robust H, control problem is proposed,
and an LMI approach for designing a desired state feedback
fuzzy controller is developed. The second main result is
stated as follows.

Theorem 3. For a prescribed v > 0, given scalars
Tm, Tm, duv and g, the time-varying delays satisfying (4),
there exists a fuzzy control law (11) such that the closed-
loop uncertain stochastic fuzzy system (X32) is robustly
stochastically stabilizable with attenuation ~ if there exist
matrices X >0, Q. >0 (s=1,2,3), B, >0 (I =1,2,3,4),
Z > 0, real matrices Nlij, Mlij, Slij, Y; (I = 1,2) of
appropriate dimensions, and scalars €155 > 0, €2;5 > 0
(1 <i<j<r) such that the following LMIs hold:

11 12 13 14
* Yo 0 54 .
<0, 1<i<r (51)
* * Y33 0
i
* * * Y

(%} (%3 ij 1] Ji Ji J1 J1
Th T Yo T14 T T Yo T1_4
i, i

* TQQ O T2‘74 * TQQ 0 T%4

<0,
* *  Ysz3 0 + * *  Ts3 0
* * * TZL * * * Tii
1<i<yj<r (52)

where
[ ¢Y ¢ih My —Si; Bu,  BaX ]
* ¢l2‘72 M2ij —521']' 0 0
- * * —Qz 0 0 0
T1J1 = * * * 7Q3 0 0 ’
* * * * —721 0
1 =
-7
| x * * * * pv
T =[ ¢F AL 7AL rCE 703 |,
T;]:), = |: T]\/Iﬁz] TM'L] %gzg Nu Mu gzg D’LJ ] )
- =tJ » -
T?ﬁl = 84 ) Yoo = 5227 ngél = E;J47
Hz 0 T
T33—[ o -1 |’ T, =E4
with

T
AT =[A;X + BiY; AuX 0 0 B, Bd“X]

T
Cr=[C;X + By, CuX 0 0 B, Bd%x]

— _ _ T
Ny =[N N3 0 0 0 0

|
|
DY =[DiX + By; Dux 0 0 0 o]
|
|
| T

T D= S="7 BENtY BtY By -

Further, 2y, Za2, E5}, E33, Ej), ¢11, ¢ra, Pgp and T are

defined as in Theorem 2. Moreover, the state feedback gain

can be constructed as K; = ;X! (j=1,2,---,7).
Proof. For convenience, we set

ft) =Akx(t)+Aqx(t — 7(t))+ Bv,v(t)+ Ba, /t7d<t)w(s)ds

g(t) =Crx(t)+Cax(t — 7(t))+ Bu,v(t) + Ba, /id( )m(s)ds.

By (51) and (52), it is easy to see that the LMIs in (40)
and (41) hold. Therefore, it follows from Theorem 2 that
the closed-loop system (X2) is robustly stochastically sta-
ble. Now, we show that under the zero initial condition,
system (32) satisfies ||z(t)]le, < 7||v(¢)||2 for all non-zero
v(t) € L2[0,00). Choose a Lyapunov-Krasovskii functional
candidate as defined in (18) and utilizing It6's formula, we
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have
LViant \iihw YT+
</tt7—(t) g(S)dw(S))TR3(/ttT(t) g(s)dw(s))_|_
(/tt:: 9(8)dw(8))TR4(/::: g(s)dw(s))+
</ti:‘f(t) g(S)dw(s)) <R3 + R4>
(/t;:t) g(S)dw(S)) _/ttm)g(s) Rsg(s)ds—
/ T g Ragls)ds-
t—r(t)
::(t) ()" (Ra + Ra)g(s)ds (53)
where

T =YY + C5 () PCij(t) + T A (£) Ri A (1) +

FAL () RaAis (t) + s O () RsCij (1) +
7FC5(#)RaCij(t) + Tar Ny RY  Nys + 7 Mi; Ry " M5+
7S5i;(R1 4 R2) 'S5 + NijR3 ' N5+

M”RZlMg + Sij(Rg + R4)71A§’$

[ v M2 Mi;  —Su; PBy,  PBay,
. * * 7Q2 0 0 0
Tijl = * * * —Qs3 0 0
* * * * 0 0
1
| * * * * * 2 ]
with

VI = Q14 Qo+ Qs + Nuij + N5, + P(Ai(t)+
Bii(t)K;) + (Aqi(t) + Bli(t)Kj)TP +dmZ
Yi% =S1ij — N1ij + Nag; — Muij; + PAu(t)
'Y;]z =—(1— Q1 — Naij — Ngij + Sai5+
Saij — Maij — My,

T
AL =[4i®) + BuK; Au®) 0 0 B, Bua,]

~ T
Cg(t)Z[Ci(t)JrB%(t)Kj Cai(t) 0 0 By, dei]

Ny =[Nl Ni; 0 0 0 O]T

T T
Ny =M M35 0 0 0 0]

N T
Sy =[st sk 0 0 0 0
T=TM — Tm
mT(t—TM)

() :[mT(t) &t —7(t) & (t—Tm)

v (t) </tid(t)x(s)ds)T].

It can be known that

2(t) = Z Z Z Z hihjhehi¢T

i=1 j=1k=11=1

SN hini ¢ (#) DY Dij (1) (54)

i=1 j=1

() D5 Dc(t) <

where
~ T T
D = [Di+ BaK; Dai 0 0 0 0]

Now, we set

I =¢f /0 [T ()2(5) — Pl (p()ds)  (55)

0 under the zero initial

where ¢t > 0. Because V(¢(t),0) =
t € [—7,0], then by It6's formula,

condition, i.e., ¢(¢t) = 0fort €
it follows that

J(t) =
5{/ 2(5) = 70" (5)u(s) + LV (s, 5)]ds } -
5{ (20t }
5{/ 2(s) = "v (S)U(s)+£V(xs,s)}ds} <
o [ ey o0

where
P + DlTJng + diag{O, 0, 0,0, _72]7 0}'

Then, considering LMIs (51) and (52), following similar
line as in the proof of Theorem 2, we have T < 0 and T¥ +
Y7* < 0, which imply that J(t) < 0 for t > 0. Therefore,
we have [[2(t)[le, <7llv(t)]l2- O

Remark 2. We mention that Theorem 3 provides a
delay-dependent Ho, control problem for a class of uncer-
tain stochastic fuzzy systems with discrete interval and dis-
tributed time-varying delays. Note that, by Theorem 3, the
problems of finding the maximum allowable upper bound of
the delays are 7as, dar, for given v, u and 7, or the small-
est v for given 7,,, Tar, p and das can be easily solved. For
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instance, the smallest « for given 7,,, 7ar, p and das ob-

tainable from Theorem 3 can be determined by solving the

following convex optimization problem:
min

st. X >0, Qs >0(s=1,2,3),

Ri>0(1=1,2,3,4), Z>0,
Elij>0, Ezij>0(1<i<j<7“)

and LMIs (51) — (52) with x =~

Remark 3. By setting Bg, = 0, Bg, = 0 in Theorems
2 and 3, the delay-dependent robust stabilization and Hoo
control for uncertain stochastic fuzzy system with interval
time-varying delay criteria can be obtained, corresponding
proof is similar to Theorems 2 and 3 and hence omitted.

In the case when there is no parameter uncertainties in
the system (X22), Theorem 3 is specialized as follows.

Corollary 3. For a prescribed v > 0, given scalars
Tm, T™m, du and p, the time-varying delays satisfying (4),
there exists a fuzzy control law (11) such that the closed-
loop stochastic fuzzy system (X2) with AA;(t) = AAqg(t) =
ABii(t) = AC;(t) = ACqi(t) = ABa;i(t) = 0 is stochasti-
cally stabilizable with a disturbance attenuation =, if there
exist matrices X > 0, Qs > 0 (s = 1,2,3), R >0 (I =
1,2,3,4), Z > 0 and real matrices Ny;;, Myj, Sij, Y; (1=
1,2, 1 < i < j <r) of appropriate dimensions such that
the following LMIs hold:

11 12 ,123
* T22 0 < O, 1 < 7 g T (57)
* * T33
[y Th vy ] T T T
Yoo 0 + * Yoo 0 <0,
* * Y33 * * Y33
1<i<j<r (58)

where Y, T%, Y, Y22 and Y33 are defined in Theorem
3. Moreover, the state feedback gain can be constructed as
Kj :Y'J'X_l (.]: 1727"' 7T)'

5 Numerical examples

In this section, we provide illustrative examples to
demonstrate the effectiveness of the method proposed in
the previous section.

Example 1. Consider the uncertain stochastic T-S fuzzy
system (44) with parameters as follows

|23 0 ], [0 01 ]
0 —57 0.1 —129
05 —0.1 0.2 05

Ag = Ay —

a { 0.7 —06 | 7% [ 2 07 } ’

o e R e R
—0.1 0.1 03 05
05 0.3 2 02
Car = { 0.2 0.4 ] » Caz = { 0.1 0.1 ] '

Ey; =0.11, By = 0.21, Hy = 0.1,
Fu(t) :diag{ sin(t), cos(t)} (1=1,2 i=1,2).

For this example, according to Corollary 2, system (44)
is robustly asymptotically stable in the mean square. The
maximal allowable upper bound of the time delay 7as for
various g are shown in Table 1. Obviously, our result
is less conservative than the method in [27]. Assuming
T = 0.1328 and p = 0.3, solving LMI (50) in Corollary
2 by the Matlab LMI toolbox, we have the following feasi-
ble solutions:

P [ 4.5595 0.7706
~ | 0.7706 6.3112
0 [ 197757 4.0450
T 4.0450  68.0995
0 [ 24992 —0.1721 |
7| 01721 0.3803
po_| 47269 03315 ]
T —03315  0.0349
po_ | 199805 —13832 |
7| —1.3832  0.4812

The time varying delay is assumed as 7(¢t) = 0.13 +
0.0028sin(t). For a membership function hi(z1(t)) =
m, h2(z1(t)) = 1—hi(z1(¢)), and an initial func-

tion #(t) = [—3, 3]T, the simulation results of the state
response of the system are plotted in Fig. 1.

Table 1 Maximal allowable delay 7y, for various p

M 0 0.3 0.6 > 0.9
Theorem 227 0.0813 0.0099 — -
Corollary 2 0.2530 0.1328 0.1069 0.1017
3
i —x,(0
2 —x )

x(f)

(oY

Time (s)

Fig.1 State response of the system
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Example 2. Consider the uncertain stochastic T-S fuzzy

system (32) with parameters as

A=

Aar

Bll

V11

Bdu

BQI

B‘U21

Bd21

D,

D

B3

By

Hoy

Hs

2 1 -1
CAae 15 0 7
01 -3 0 -2
01 0 A, _|0os 0
01 —03 | 7% 04 —0.3 |’
—02 0 02 0
5 BlQ = P
~0.1 0.1 0 —02
—04 0.1 ~01 0
) BU12
0 —08 —05 02
0 02 5 _| 0 05
01 —02 |” """ | 02 —03 |’
~02 0 02 0
0 0.2}’02_{ 0 —0.2}’
—01 0 ~0.1 05
0 —0.1 } » Caz = { 0.2 —05
02 0 | 03 0
5 BQQ = P
0.1 0.1 0 —06
02 01 | ~02 0.1
) BU22 9
0 —02 02 0.1
03 02 | 04 03
5 dez = 5
0 —03 0.2 03
~0.03 0 003 0
, Do =
0 003 0  0.03
003 0 ~0.13 0.2
) Dd2 =
0  0.003 } { 0 04
0.1 —0.2 ~0.3 0.3
) BBQ =
—04 02 02 —0.2
003 0 003 0
3 E2 =
0  —0.03 0  —0.03
~0.15 0.2 ~0.15 0.2
, Hia =
0 03 0 0.3
0.05 —0.35 0.05 —0.5
, Hog =
0.7 0.5 0.7  0.45
—0.11 0.2 ~0.1 0.1
) H32 =
0 001 } { 0 015

[ —0.15 02 —0.15 0.2
H = H =
H 0 03 ] e { 0 0.3 } '
oy | 005 035 | [ 01 02
0.7 0.45 0 001
[ —021 03 ~0.05 0.35
Hﬁl = 5 H62 - )
0 031 0.7 045

Fi(t) =F(t) = diag{ sin(t), cos(t)}.

In this example, our aim is to design a state feedback
fuzzy controller such that, for all admissible uncertainties,
the closed-loop system is robustly stochastically stable with
disturbance attenuation v = 0.2. The maximum allowable
upper bounds of the time delay 7 (for 7as = dar) are ob-
tained for different 7,, and various p from Theorem 3 which
are shown in the Table 2. For 7, = 0.1, u = 0.2, the time
delay 7as = 0.3432, and das = 0.3432, solving the LMIs (51)
and (52) through Matlab LMI control toolbox, the feasible
solutions are given by:

| 294343 172m2] 5[ 224363 —8.5634

Tl 1722 78654 |0 1T | —8.5634  16.7466 |
s — [ 0.0678 0.0114 0, — | 20366 0.0603

>~ 1 00114 0.0027 |7 " | 0.0603 0.5159 |’
B [50.0733  4.1912 £ | 587164 34330

YT 41912 129957 |0 72T | 34330 15.7265 |
B [ 29.2726  1.0348 7. _ | 553803 26179
37 1.0348 84426 |7 YT | 26179 155254 |’
5| 807522 116452

T | 11.6452  5.4140

Table 2 Maximal allowable delay of 7 with given 7, and for

various p
I 0 0.2 0.4 0.6 > 0.8
Tm = 0.1 0.3960 0.3432 0.2696 0.2206 0.2134
Tm = 0.3 0.4726 0.4077 0.3405 0.3181 0.3174

By Theorem 3, we can obtain the desired state-feedback
fuzzy controller as

K~ { ~0.3980 —0.9984 ]

—0.0288 —0.3490

—0.4021  0.5118

K> = .
|: —0.2922 —0.8733

Define the membership functions as hi(zi(t)) =
M and ha(z1(t)) = M The time-varying
delays are assumed as 7(t) = 0.34 + 0.0032sin(¢) and
d(t) = 0.34 4 0.0032sin(¢), with an initial condition ¢(t) =
[-3, 2.5]T. The disturbance input is assumed to be vy (t) =

L and we(t) = Fig. 2 shows the state response

1
0.2+12 142
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of the closed-loop system. Figs.3 and 4 show the graphical
representation of the control input and controlled output
respectively. From the above, it can be seen that the de-
signed Hoo, controller satisfies the specified requirements.

3 T T T T

—x,(0)
- xf1)

x(0)

0 10 20 30 40 50
Time (s)

Fig.2 State response of the closed-loop system

—u ()

-l

0.5}

u(t)

-0.5

-0.1
0 10 20 30 40 50

Time (s)

Fig.3 Control input

—z,()
AU

0.6

=(t)

2
|
0.8
i
i
'
!
!
:
:
:

0.4

10 20 30 40 50
Time (s)

Fig.4 Controlled output

6 Conclusions

In this paper, some sufficient conditions have been de-
rived for the solvability of problems of delay-dependent
robust stabilization and H., controller design for uncer-
tain stochastic T-S fuzzy systems with discrete interval and
distributed time-varying delays. These conditions are ex-
pressed in terms of LMIs, which can be easily tested by
using Matlab control toolbox. It has been shown that a de-
sired state feedback controller can be constructed when the

LMIs are feasible. Finally, two numerical examples have
been given to illustrate the effectiveness of the developed
techniques.
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