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Abstract. Multidimensional scaling maps a set of n-dimensional objects into a 
lower-dimension space, usually the Euclidean plane, preserving the distances 
among objects in the original space. Most algorithms for multidimensional scal-
ing have been designed to work on numerical data, but in soft sciences, it is 
common that objects are described using quantitative and qualitative attributes, 
even with some missing values. For this reason, in this paper we propose a ge-
netic algorithm especially designed for multidimensional scaling over mixed 
and incomplete data. Some experiments using datasets from the UCI repository, 
and a comparison against a common algorithm for multidimensional scaling, 
shows the behavior of our proposal. 
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1 Introduction 

Multidimensional scaling consists in finding points, usually in the Euclidean plane, 
that represent objects from another space with higher dimension; in such a way that 
distances between points in the Euclidean plane coincide, as much as possible, with 
distances between original objects[1]. Applying multidimensional scaling, over high 
dimensional objects, allows visualizing how original objects are distributed on the 
original space. 

MDSCAL[2], ISOMAP[3] and LLE[4] are among the most common algorithms 
for multidimensional scaling. These algorithms use classical optimization techniques, 
as gradient methods, but using these techniques could lead to local optima.  Besides, 
these algorithms were designed for numerical data. However, in soft sciences like 
medicine, geology, sociology, etc, there are data analysis problems were objects could 
be described through quantitative and qualitative attributes (mixed data); moreover, 
some attribute values could be unknown (mixed and incomplete data). Therefore, 
current algorithms cannot be directly applied. 

For these reasons, in this work we introduce a genetic algorithm for multidimen-
sional scaling over mixed and incomplete data. Using genetic algorithms allows es-
caping from local optima, allowing a wider exploration of the search space. In this 
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way, it is possible to find a better representation of the original high dimensional ob-
jects over the Euclidean plane. In order to reach this objective, in this work, we also 
introduce new mutation and crossover operators; specifically designed for multidi-
mensional scaling. 

The rest of this document is organized as follows. Section 2 provides a brief de-
scription of previous algorithms for multidimensional scaling. Section 3 describes 
those functions that are commonly used for evaluating how good a representation 
obtained by a multidimensional scaling algorithm is; additionally, in this section, the 
used distance functions are shown. Section 4, introduces the proposed genetic algo-
rithm, as well as, the new mutation and crossover operators. Section 5 shows some 
experiments and a comparison against other multidimensional scaling algorithm. Fi-
nally, section 6 exposes our conclusions. 

2 Related Work 

For multidimensional scaling, several algorithms have been proposed; for example: 
MDSCAL[2], ISOMAP[3], LLE[4], HiperMap[5], FastMap[6], etc. In this section, 
we describe some of the most common algorithms for multidimensional scaling. 
These algorithms could be divided according to the way they use for facing the multi-
dimensional scaling problem; i.e., using the global structure of the original data, as, 
for example, MDSCAL[2] and the algorithm proposed in this paper; or using a local 
approach through neighborhoods, as, for example, ISOMAP[3] and LLE[4]. 

2.1 MDSCAL 

MDSCAL, proposed by J. B. Kruskal[2], is based on the work of Shepard[7]. 
MDSCAL uses the gradient optimization algorithm in order to minimize the STRESS 
function, which evaluates the quality of the Euclidean plane representation (see sec-
tion 3). The gradient optimization method consists in: starting from an arbitrary initial 
configuration, to improve this solution by moving it in the direction where the objec-
tive function decreases fastest, which is known as the negative gradient direction. 
This process is repeated until reaching a point that is not possible to improve, ideally 
when all partial derivatives are zero, which indicates that this point is a local mini-
mum, but it may not be a global minimum. 

2.2 ISOMAP 

Tenenbaum[3], introduces an algorithm called ISOMAP, which tries to discover the 
intrinsic structure of a data set, by mean of preserving the local structure. This charac-
teristic is considered as an advantage over algorithms as MDSCAL that are designed 
to maintain the global structure of the whole dataset.  

ISOMAP is based on MDSCAL. The main idea is estimating geodesic distances 
between distant points using only the distances in the original space. For obtaining 
distances between close points, the geodesic distance can be used in a simple way; 
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and for distant points, the geodesic function can be approximated by a sequence of 
jumps to close points. These jumps can be efficiently computed through a search of 
shortest paths in a graph G with edges connecting each point with its close neighbors.   

ISOMAP consists of three steps: First, the neighbors of each point are determined; 
this can be done by relating each point with all points into a neighborhood with fixed 
radius r, or relating each point with its K nearest neighbors. These relations are 
represented as a weighted graph, where weights represent the distance between 
neighbors. After, the geodesic distances among every pair of points are approximated 
by computing the shortest paths in the graph G, using the Dijkstra algorithm[8]. Final-
ly, in order to build a representation on the Euclidean plane, ISOMAP applies 
MDSCAL over the distance matrix obtained from the graph G.  

2.3 LLE 

LLE, proposed by Roweis and Lawrence[4], tries to reduce the dimensionality 
through local structures, mapping objects using local neighborhoods. LLE uses the 
nearest neighbors of each point Ԧܺ௜, assigning weights Wij to each neighbor Ԧܺ௝. Then, it 
tunes the weights by minimizing the function (1), using the least-squares method.  ࣟ ሺܹሻ ൌ ෍ |XሬሬԦ௜ െ ෍ ௜ܹ௝ Ԧܺ௝௝ |ଶ                                                    ሺ1ሻ௜  

After, LLE computes those points ሬܻԦ௜, in the Euclidean plane, that best rebuilds the 
neighborhood. The points ሬܻԦ௜ are obtained by minimizing function (2), also using the 
least-squares method. 

Φሺܻሻ ൌ ∑ | ሬܻԦ௜ െ ∑ ௜ܹ௝ ሬܻԦ௝௝ |ଶ                                                        ሺ2ሻ௜   

3 Evaluation and Distance Functions 

In this section, we describe some functions that are commonly used for evaluating 
how good a representation obtained by a multidimensional scaling algorithm is. 

3.1 Evaluation Functions 

In the literature, there are some measures for evaluating how good a representation of 
a high dimensional dataset on the Euclidean plane is. The mean square error (MSE), 
the STRESS[9] function and a variant of the last called SSTRESS[10], are among the 
most common evaluation functions used for multidimensional scaling. 

The mean square error (MSE) is defined as: ܧܵܯ ൌ 1݉ଶ ෍ሺ݀௜௝ െ ௜௝ሻଶ                                                         ሺ3ሻ௜௝ܦ  

whereܦ௜௝  is the distance between the n-dimensional objects oi and oj; ݀௜௝is the dis-
tance between the points in the Euclidean plane representing the objects oi and oj; and 



 Genetic Algorithm for Multidimensional Scaling over Mixed and Incomplete Data 229 

m is the number of n-dimensional objects to be mapped on the Euclidean plane. 
Smaller values of the MSE measure correspond to better representations. 

The STRESS function is defined as: 

ܵܵܧܴܶܵ ൌ ඨ∑ ሺ݀௜௝ െ ௜௝ሻଶ௜௝ܦ ∑ ݀௜௝ଶ                                                ሺ4ሻ 

where݀௜௝  andܦ௜௝are defined as before. Again, smaller values of the STRESS function 
correspond to better representations. 

A variant of the STRESS function is the SSTRESS function, which is defined as: 

ܵܵܧܴܶܵܵ ൌ  ඨ∑ ሺ݀௜௝ ଶ െ ௜௝ܦ ଶሻଶ௜௝ ∑ ሺ݀௜௝ଶ ሻଶ௜௝                                            ሺ5ሻ 

where݀௜௝  andܦ௜௝ are defined as before. Also, smaller values of the SSTRESS function 
correspond to better representations. 

3.2 Distance Functions 

In this section, we define the distance functions used for comparing n-dimensional 
objects, as well as, points on the Euclidean plane. For numerical data we used the 
Euclidean distance [1] and for mixed data we used the Heterogeneous Overlapped 
Euclidean Measure (HEOM)[11]. This function was designed for directly comparing 
objects described by quantitative and qualitative attributes, where some values could 
be unknown (mixed and incomplete data). Let {O1, O2, O3, ... ,Om} be a set of m n-
dimensional objects. 

൫ܯܱܧܪ ௜ܱ, ௝ܱ൯ ൌ ඩ෍ ݀௔ሺݔ௔, ௔ሻଶ௡ݕ
௔ୀଵ                                               ሺ6ሻ 

whereݔ௔ and ݕ௔, ܽ=1,...,n, represent the values of the attributes of the objects ௜ܱ  
and ௝ܱ, respectively. 

݀௔ሺݔ, ሻݕ ൌ ቐ1                        ݌݈ܽݎ݁ݒ݋ሺݔ, ,ݔௗ௜௙௙௔ሺ݊ݎሻݕ ሻݕ  ሺ7ሻ                                      ݁ݒ݅ݐܽݐ݅ݐ݊ܽݑݍ ݏ݅ ܽ ݂݅      ݁ݒ݅ݐܽݐ݈݅ܽݑݍ ݏ݅ ܽ ݂݅݃݊݅ݏݏ݅݉ ݁ݎܽ ݕ ݎ݋ ݔ ݂݅

,ݔሺ݌݈ܽݎ݁ݒ݋ ሻݕ ൌ ቄ01݂݅ ݔ ൌ ݁ݏ݅ݓݎ݄݁ݐ݋    ݕ                                                                    ሺ8ሻ 

,ݔௗ௜௙௙௔ሺ݊ݎ ሻݕ ൌ ݔ| െ ௔ݔܽ݉|ݕ െ  ݉݅݊௔                                                                            ሺ9ሻ 

where ݉ܽݔ௔ and ݉݅݊௔ are the maximum and minimum values of the attribute a. 
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4 Proposed Method 

Genetic algorithms are heuristic optimization and search methods, which try to follow 
the natural evolution process. These algorithms maintain a set (population) of possible 
solutions (individuals), usually initialized in a random way, which are combined using 
genetic operators (mutation, crossover, etc.), during some iterations (generations). In 
each generation, all individuals from the population are evaluated (fitness) and some 
of the best individuals are selected for the population of the next generation. Genetic 
algorithms have the ability of escaping from local optima, since the mutation operator 
allows a wider exploration of the search space. Algorithm 1 shows the generic genetic 
algorithm used in this work, which is based on the basic genetic algorithms[14]. 

For the above mentioned reasons, we have chosen genetic algorithms for solving the 
multidimensional scaling problem over mixed and incomplete data. However, common 
mutation and crossover operators are designed to solve general optimization problems; 
but for some problems, like multidimensional scaling, they produce a slow conver-
gence rate, or sometimes avoid finding a suitable solution. Therefore, in our approach, 
we propose new mutation and crossover operators, specially designed for speeding up 
the search of a suitable solution for multidimensional scaling avoiding to fall in local 
optima. Additionally, we consider that it is important to start from a non-completely 
random population, in order to reduce the number of generations needed to find a good 
solution. Thus, we also propose a new way for selecting the initial population. 

 
Algorithm 1: Generic genetic algorithm 

1. POPULATION=create_Initial_Population( P_SIZE) 

2. For i=1 to G-generations 
3.  Evaluate fitness of each individual in POPULATION 

4.  NEXT_POPULATION←Best K individuals form POPULATION 

5.  For j=1 to P_SIZE-K 
6.   Randomly choose two individuals P and Q from POPULATION 
7.   (R,S)=Crossover(P,Q); 
8.   if ( mutation_probability(R,S) ) 
9.    then 
10.     R’=Mutation(R) 
11.     S’=Mutation(S) 

12.     NEXT_POPULATION ← NEXT_POPULATION  ∪ {R’,S’} 

13.    else 

14.     NEXT_POPULATION ← NEXT_POPULATION ∪ {R,S} 

15.  POPULATION ←NEXT_POPULATION 

16. End 

4.1 Individual Representation 

Individuals in our approach for multidimensional scaling will be a sequence of real 
numbers; where each consecutive pair corresponds with the representation on the 
Euclidean plane of an object in the original n-dimensional space (see Fig. 1). 



 Genetic Algorithm for Multidimensional Scaling over Mixed and Incomplete Data 231 

n-dimensional objects 

 
 
Points on the Euclidean plane 

O1 O2 , . . . , Om 

↓ ↓      ↓ 

(X1 Y1) (X2 Y2) , . . . , (Xm Ym) 

Fig. 1. Individuals of the proposed genetic algorithm 

4.2 Initial Population 

The objective of creating a non-completely random initial population is to have a 
better initial approximation, which allows getting a good solution in less iterations. 
We propose to generate the initial population using bidimensional projections of the 
original n-dimensional objects.  For objects described by n attributes, it is possible to 
build ݊ሺ݊ െ 1ሻ/2 bidimensional projections. First, we build all bidimensional projec-
tions (see Fig. 2). Then, in order to know how good each projection is for representing 
the original n-dimensional objects, each bidimensional projection is evaluated using 
the STRESS function,. The best K projections are included in the initial population. 
Additionally, we add to the initial population those individuals obtained by moving 
each point of the best bidimensional projection, around a neighborhood with a given 
radius r. 

 
    

(a) Tridimensional objects 
with attributes X,Y,Z. 

(b) Projection using  
attributes  X,Z. 

(c) Projection using  
attributes X,Y 

(d) Projection using  
attributes Y,Z 

Fig. 2. Bidimensional projections of tridimensional objects 

4.3 Mutation 

In order to speedup the search of good representations, we propose a new mutation 
operator based on locally positioning 3 randomly selected points, such that the dis-
tances among these 3 points coincide exactly with the distances of the corresponding 
n-dimensional objects. 

We randomly select tree points a,b,c from an individual, that represent the n-
dimensional objects A,B,C. Then, in order to generate the new points a’,b’,c’, we 
move each point in a different way, as follows (see Fig. 3): 

 
a) To allow exploring different parts of the search space, the point a is randomly 

moved to the position a’ into a neighborhood with a given radius r(see Fig.3b). 
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b) Point b is moved to its correct position regarding a’, i.e., the distance between a’ 
and b’ must be the same than the distance between the objects A and B in the 
original n-dimensional space. In order to obtain the new position b’, we move 
the point b in the direction of the straight line connecting b with a’(see Fig. 3c) 

 
c) Point c is moved to its correct position regarding a’ and b’, i.e., the distance be-

tween c’ and a’, as well as, between c’ and b’, must be the same as the distance, 
in the original n-dimensional space, between the objects A and Band the objects 
B and C, respectively. (see Fig. 3d) 

 

(a) n-dimensional objects 
A, B, C 

(b) Point a is randomly 
moved to a’ 

(c) Point b is moved to its 
correct position b’ re-
garding a’ 

(d) Point c is moved to its 
correct position c’ re-
garding a’ and b’ 

Fig. 3. Mutation operator 

4.4 Crossover 

The main objective of the crossover operator is to combine the best characteristics 
from two individuals in order to produce new individuals that could be a better solu-
tion. Following this idea, given a set of n-dimensional objects O={O1,O2,...,Om} and 
two individuals P={(x1,1,x1,2), (x2,1,x2,2) , ... , (xm,1,xm,2)} and 
Q={(y1,1,y1,2),(y2,1,y2,2),...,(ym,1,ym,2)}, as well as their respective distance matrices 
M(O), M(P) and M(Q). In order to obtain an offspring from P and Q, first we obtain 
the sum of each column in the distance matrices (see Fig. 4) 

ሺܱሻܯ  ൌ ቎ ଵ,ଶܦଵ,ଵܦ ڮ ڭଵ,௠ܦ ڰ ௠,ଶܦ௠,ଵܦڭ ڮ ௠,௠቏ܦ ሺܲሻܯ ൌ ൥ ݀௫భ,భ݀௫భ,మ ڮ ݀௫భ,೘ڭ ڰ ௫೘,భ݀௫೘,మ݀ڭ ڮ ݀௫೘,೘൩ ሺܳሻܯ ൌ ቎ ݀௬భ,భ݀௬భ,మ ڮ ݀௬భ,೘ڭ ڰ ௬೘,భ݀௬೘,మ݀ڭ ڮ ݀௬೘,೘቏ 

 S(O1) S(Om) S(P1) S(Pm) S(Q1) S(Qm) 

Fig. 4. Distance matrices for a set of n-dimensional objects O={O1,O2,...,Om} and two individu-
als P={(x1,1,x1,2),(x2,1,x2,2),...,(xm,1,xm,2)} and Q={(y1,1,y1,2),(y2,1,y2,2),...,(ym,1,ym,2)} 

Then, we choose those points that their sum of distances to all other points is more 
similar to the sum of the distances from the corresponding n-dimensional object to all 
other objects. This is, for selecting the point that will represent the n-dimensional 
object Oi in the offspring, we choose the corresponding point from P iff |S(Oi)-
S(Pi)|≤|S(Oi)-S(Qi)|, otherwise we choose the corresponding point from Q (see Fig. 5). 
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(a) n-dimensional  
objects 

(b) An individual P 
STRESS= 0.4080 

(c) An individual Q 
            STRESS=0.3766 

(d) Offspring obtained 
from P and Q 

            STRESS=0.1868 

Fig. 5. Crossover operator 

5 Experiments 

In our experiments, we used five datasets from the UCI[12] repository, four with 
mixed data and one numerical dataset (see Table 1). The last was included to evaluate 
the performance of the proposed genetic algorithm in numerical datasets. We compare 
the results of the proposed genetic algorithm against MDSCAL[2], which follows a 
global approach as the proposed genetic algorithm. We did not compare against 
ISOMAP[3] and LLE[4],because these algorithms follow a local approach. Since 
genetic algorithms have a random component, the results of our algorithm correspond 
to the average of 10 executions. All experiments were done on a PC computer with 
an1.6GHzAMD processor, with 2GB of RAM, running Windows 7. The proposed 
algorithm was implemented in MATLAB 7.10.0. For MDSCAL, we used the imple-
mentation included in MATLAB 7.10.0. 

In our proposed genetic algorithm, we used those parameter values suggested  
by Schaffer in [13], i.e., 30 individuals in the initial population, 0.95 for crossover 
probability, and 1.0 for mutation probability. The last choice is because the proposed 
mutation operator allows fixing the relative distances of tree points; and applying it 
repeatedly would lead to improve the global representation. For the radius, we made 
tests using r=1.0, r=0.5 and r=0.01, in order to evaluate the sensitiveness of the pro-
posed genetic algorithm to different values of the radius. We fix the maximum number 
of generations to 20, since empirically we realize that increasing the number of genera-
tions do not contribute to obtain better solutions for the multidimensional scaling prob-
lem. For comparing objects in the mixed and incomplete datasets we used the HEOM 
distance function, and for the numerical dataset we used the Euclidean distance. 

Table 1. Databases used for the experiments 

Datasets objects attributes 
quantitative 

attributes 
qualitative 
attributes 

objects with 
missing values 

Balloons 16 4 0 4 0 
Servo 162 4 2 2 0 
Post operative 79 9 1 8 3 
Pittsburgh bridges 80 13 3 10 38 
Hayes roth 133 6 6 0 0 

1, 1

1, 2 2, 2

2, 1
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0 1 2 3
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1.5
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0 1 2 3
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, 1
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0.2)

(2, 
1.2)

0

1

2

3

0 1 2 3

(1,1) (2,1) 

(2,2) (1,2) 

(3,0.8) (0.75,1) 
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(0.75,1) 

(2,1.9) 
(1.1,1.9) 
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Table 2 shows the results obtained by the proposed genetic algorithm, for each ra-
dius, and MDSCAL. From this table, we can notice that for mixed and incomplete 
datasets, our algorithm obtained better quality representations than MDSCAL in most 
of the cases, mainly using r=0.5. The only dataset where MDSCAL obtained better 
results was Balloons, which is a very small dataset where traditional optimization 
techniques can reach good results. For the numerical dataset, as it was expected, 
MDSCAL obtained the best result, but the difference with the proposed method was 
1.4×10-3. Also, it can be noticed that our genetic algorithm gets different performance 
for different values of r. In general, too small values could lead to slow convergence 
rates avoiding finding good solutions in a few iterations; on the other hand, too big 
values could lead to instability, which also could produce less quality solutions. 

Table 2. Comparison of the proposed GA against MDSCAL 

Dataset Fitness GA r=1 GA r=0.5 GA r=0.01 MDSCAL 

Balloons Stress 0.3383 0.3248 0.3606 0.3149 
Servo Stress 0.4077 0.4027 0.4338 0.6456 
Post operative Stress 0.3840 0.3701 0.4222 0.6424 
Pittsburgh bridges Stress 0.4051 0.4113 0.4050 0.9984 
Hayes roth Stress 0.0062 0.0062 0.0052 0.0038 
Average  0.3083 0.3030 0.3254 0.5210 

6 Conclusions 

In this paper, we have introduced a genetic algorithm for multidimensional scaling 
over mixed and incomplete data. In order to speed up the search, we proposed to gen-
erate the initial population using bidimensional projections of the original n-
dimensional objects also introduced new mutation and crossover operators, which 
were specially designed for multidimensional scaling. 

From the experiments, we can conclude that, for mixed and incomplete datasets, 
our algorithm allows getting better results that MDSCAL, obtaining representations 
with up to 60% smaller STRESS values. For numerical datasets our algorithm per-
forms well obtaining results very similar to those obtained by conventional algorithms 
for multidimensional scaling. 

As future work, based on the results presented in this paper, we will study new mu-
tation and crossover operators, which could improve even more the efficiency and 
efficacy of the genetic algorithm. Another research line could be studying the sensi-
tivity of the proposed algorithm to the radius parameter. 
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