
J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2012, LNCS 7329, pp. 226–235, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Genetic Algorithm for Multidimensional Scaling
over Mixed and Incomplete Data

P. Tecuanhuehue-Vera, Jesús Ariel Carrasco-Ochoa,
and José Fco. Martínez-Trinidad

National Institute for Astrophysics, Optics and Electronics
Luis Enrique Erro No. 1, Sta. Maria Tonantzintla, Puebla, Mexico

{pedrish,ariel,fmartine}@ccc.inaoep.mx

Abstract. Multidimensional scaling maps a set of n-dimensional objects into a
lower-dimension space, usually the Euclidean plane, preserving the distances
among objects in the original space. Most algorithms for multidimensional scal-
ing have been designed to work on numerical data, but in soft sciences, it is
common that objects are described using quantitative and qualitative attributes,
even with some missing values. For this reason, in this paper we propose a ge-
netic algorithm especially designed for multidimensional scaling over mixed
and incomplete data. Some experiments using datasets from the UCI repository,
and a comparison against a common algorithm for multidimensional scaling,
shows the behavior of our proposal.

Keywords: Multidimensional scaling, Mixed and incomplete data, Genetic
algorithms.

1 Introduction

Multidimensional scaling consists in finding points, usually in the Euclidean plane,
that represent objects from another space with higher dimension; in such a way that
distances between points in the Euclidean plane coincide, as much as possible, with
distances between original objects[1]. Applying multidimensional scaling, over high
dimensional objects, allows visualizing how original objects are distributed on the
original space.

MDSCAL[2], ISOMAP[3] and LLE[4] are among the most common algorithms
for multidimensional scaling. These algorithms use classical optimization techniques,
as gradient methods, but using these techniques could lead to local optima. Besides,
these algorithms were designed for numerical data. However, in soft sciences like
medicine, geology, sociology, etc, there are data analysis problems were objects could
be described through quantitative and qualitative attributes (mixed data); moreover,
some attribute values could be unknown (mixed and incomplete data). Therefore,
current algorithms cannot be directly applied.

For these reasons, in this work we introduce a genetic algorithm for multidimen-
sional scaling over mixed and incomplete data. Using genetic algorithms allows es-
caping from local optima, allowing a wider exploration of the search space. In this

 Genetic Algorithm for Multidimensional Scaling over Mixed and Incomplete Data 227

way, it is possible to find a better representation of the original high dimensional ob-
jects over the Euclidean plane. In order to reach this objective, in this work, we also
introduce new mutation and crossover operators; specifically designed for multidi-
mensional scaling.

The rest of this document is organized as follows. Section 2 provides a brief de-
scription of previous algorithms for multidimensional scaling. Section 3 describes
those functions that are commonly used for evaluating how good a representation
obtained by a multidimensional scaling algorithm is; additionally, in this section, the
used distance functions are shown. Section 4, introduces the proposed genetic algo-
rithm, as well as, the new mutation and crossover operators. Section 5 shows some
experiments and a comparison against other multidimensional scaling algorithm. Fi-
nally, section 6 exposes our conclusions.

2 Related Work

For multidimensional scaling, several algorithms have been proposed; for example:
MDSCAL[2], ISOMAP[3], LLE[4], HiperMap[5], FastMap[6], etc. In this section,
we describe some of the most common algorithms for multidimensional scaling.
These algorithms could be divided according to the way they use for facing the multi-
dimensional scaling problem; i.e., using the global structure of the original data, as,
for example, MDSCAL[2] and the algorithm proposed in this paper; or using a local
approach through neighborhoods, as, for example, ISOMAP[3] and LLE[4].

2.1 MDSCAL

MDSCAL, proposed by J. B. Kruskal[2], is based on the work of Shepard[7].
MDSCAL uses the gradient optimization algorithm in order to minimize the STRESS
function, which evaluates the quality of the Euclidean plane representation (see sec-
tion 3). The gradient optimization method consists in: starting from an arbitrary initial
configuration, to improve this solution by moving it in the direction where the objec-
tive function decreases fastest, which is known as the negative gradient direction.
This process is repeated until reaching a point that is not possible to improve, ideally
when all partial derivatives are zero, which indicates that this point is a local mini-
mum, but it may not be a global minimum.

2.2 ISOMAP

Tenenbaum[3], introduces an algorithm called ISOMAP, which tries to discover the
intrinsic structure of a data set, by mean of preserving the local structure. This charac-
teristic is considered as an advantage over algorithms as MDSCAL that are designed
to maintain the global structure of the whole dataset.

ISOMAP is based on MDSCAL. The main idea is estimating geodesic distances
between distant points using only the distances in the original space. For obtaining
distances between close points, the geodesic distance can be used in a simple way;

228 P. Tecuanhuehue-Vera, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

and for distant points, the geodesic function can be approximated by a sequence of
jumps to close points. These jumps can be efficiently computed through a search of
shortest paths in a graph G with edges connecting each point with its close neighbors.

ISOMAP consists of three steps: First, the neighbors of each point are determined;
this can be done by relating each point with all points into a neighborhood with fixed
radius r, or relating each point with its K nearest neighbors. These relations are
represented as a weighted graph, where weights represent the distance between
neighbors. After, the geodesic distances among every pair of points are approximated
by computing the shortest paths in the graph G, using the Dijkstra algorithm[8]. Final-
ly, in order to build a representation on the Euclidean plane, ISOMAP applies
MDSCAL over the distance matrix obtained from the graph G.

2.3 LLE

LLE, proposed by Roweis and Lawrence[4], tries to reduce the dimensionality
through local structures, mapping objects using local neighborhoods. LLE uses the
nearest neighbors of each point Ԧܺ௜, assigning weights Wij to each neighbor Ԧܺ௝. Then, it
tunes the weights by minimizing the function (1), using the least-squares method. ࣟ ሺܹሻ ൌ ෍ |XሬሬԦ௜ െ ෍ ௜ܹ௝ Ԧܺ௝௝ |ଶ ሺ1ሻ௜

After, LLE computes those points ሬܻԦ௜, in the Euclidean plane, that best rebuilds the
neighborhood. The points ሬܻԦ௜ are obtained by minimizing function (2), also using the
least-squares method.

Φሺܻሻ ൌ ∑ | ሬܻԦ௜ െ ∑ ௜ܹ௝ ሬܻԦ௝௝ |ଶ ሺ2ሻ௜

3 Evaluation and Distance Functions

In this section, we describe some functions that are commonly used for evaluating
how good a representation obtained by a multidimensional scaling algorithm is.

3.1 Evaluation Functions

In the literature, there are some measures for evaluating how good a representation of
a high dimensional dataset on the Euclidean plane is. The mean square error (MSE),
the STRESS[9] function and a variant of the last called SSTRESS[10], are among the
most common evaluation functions used for multidimensional scaling.

The mean square error (MSE) is defined as: ܧܵܯ ൌ 1݉ଶ ෍ሺ݀௜௝ െ ௜௝ሻଶ ሺ3ሻ௜௝ܦ

whereܦ௜௝ is the distance between the n-dimensional objects oi and oj; ݀௜௝is the dis-
tance between the points in the Euclidean plane representing the objects oi and oj; and

 Genetic Algorithm for Multidimensional Scaling over Mixed and Incomplete Data 229

m is the number of n-dimensional objects to be mapped on the Euclidean plane.
Smaller values of the MSE measure correspond to better representations.

The STRESS function is defined as:

ܵܵܧܴܶܵ ൌ ඨ∑ ሺ݀௜௝ െ ௜௝ሻଶ௜௝ܦ ∑ ݀௜௝ଶ ሺ4ሻ

where݀௜௝ andܦ௜௝are defined as before. Again, smaller values of the STRESS function
correspond to better representations.

A variant of the STRESS function is the SSTRESS function, which is defined as:

ܵܵܧܴܶܵܵ ൌ ඨ∑ ሺ݀௜௝ ଶ െ ௜௝ܦ ଶሻଶ௜௝ ∑ ሺ݀௜௝ଶ ሻଶ௜௝ ሺ5ሻ

where݀௜௝ andܦ௜௝ are defined as before. Also, smaller values of the SSTRESS function
correspond to better representations.

3.2 Distance Functions

In this section, we define the distance functions used for comparing n-dimensional
objects, as well as, points on the Euclidean plane. For numerical data we used the
Euclidean distance [1] and for mixed data we used the Heterogeneous Overlapped
Euclidean Measure (HEOM)[11]. This function was designed for directly comparing
objects described by quantitative and qualitative attributes, where some values could
be unknown (mixed and incomplete data). Let {O1, O2, O3, ... ,Om} be a set of m n-
dimensional objects.

൫ܯܱܧܪ ௜ܱ, ௝ܱ൯ ൌ ඩ෍ ݀௔ሺݔ௔, ௔ሻଶ௡ݕ
௔ୀଵ ሺ6ሻ

whereݔ௔ and ݕ௔, ܽ=1,...,n, represent the values of the attributes of the objects ௜ܱ
and ௝ܱ, respectively.

݀௔ሺݔ, ሻݕ ൌ ቐ1 ݌݈ܽݎ݁ݒ݋ሺݔ, ,ݔௗ௜௙௙௔ሺ݊ݎሻݕ ሻݕ ሺ7ሻ ݁ݒ݅ݐܽݐ݅ݐ݊ܽݑݍ ݏ݅ ܽ ݂݅ ݁ݒ݅ݐܽݐ݈݅ܽݑݍ ݏ݅ ܽ ݂݅݃݊݅ݏݏ݅݉ ݁ݎܽ ݕ ݎ݋ ݔ ݂݅

,ݔሺ݌݈ܽݎ݁ݒ݋ ሻݕ ൌ ቄ01݂݅ ݔ ൌ ݁ݏ݅ݓݎ݄݁ݐ݋ ݕ ሺ8ሻ

,ݔௗ௜௙௙௔ሺ݊ݎ ሻݕ ൌ ݔ| െ ௔ݔܽ݉|ݕ െ ݉݅݊௔ ሺ9ሻ

where ݉ܽݔ௔ and ݉݅݊௔ are the maximum and minimum values of the attribute a.

230 P. Tecuanhuehue-Vera, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

4 Proposed Method

Genetic algorithms are heuristic optimization and search methods, which try to follow
the natural evolution process. These algorithms maintain a set (population) of possible
solutions (individuals), usually initialized in a random way, which are combined using
genetic operators (mutation, crossover, etc.), during some iterations (generations). In
each generation, all individuals from the population are evaluated (fitness) and some
of the best individuals are selected for the population of the next generation. Genetic
algorithms have the ability of escaping from local optima, since the mutation operator
allows a wider exploration of the search space. Algorithm 1 shows the generic genetic
algorithm used in this work, which is based on the basic genetic algorithms[14].

For the above mentioned reasons, we have chosen genetic algorithms for solving the
multidimensional scaling problem over mixed and incomplete data. However, common
mutation and crossover operators are designed to solve general optimization problems;
but for some problems, like multidimensional scaling, they produce a slow conver-
gence rate, or sometimes avoid finding a suitable solution. Therefore, in our approach,
we propose new mutation and crossover operators, specially designed for speeding up
the search of a suitable solution for multidimensional scaling avoiding to fall in local
optima. Additionally, we consider that it is important to start from a non-completely
random population, in order to reduce the number of generations needed to find a good
solution. Thus, we also propose a new way for selecting the initial population.

Algorithm 1: Generic genetic algorithm

1. POPULATION=create_Initial_Population(P_SIZE)

2. For i=1 to G-generations
3. Evaluate fitness of each individual in POPULATION

4. NEXT_POPULATION←Best K individuals form POPULATION

5. For j=1 to P_SIZE-K
6. Randomly choose two individuals P and Q from POPULATION
7. (R,S)=Crossover(P,Q);
8. if (mutation_probability(R,S))
9. then
10. R’=Mutation(R)
11. S’=Mutation(S)

12. NEXT_POPULATION ← NEXT_POPULATION ∪ {R’,S’}

13. else

14. NEXT_POPULATION ← NEXT_POPULATION ∪ {R,S}

15. POPULATION ←NEXT_POPULATION

16. End

4.1 Individual Representation

Individuals in our approach for multidimensional scaling will be a sequence of real
numbers; where each consecutive pair corresponds with the representation on the
Euclidean plane of an object in the original n-dimensional space (see Fig. 1).

 Genetic Algorithm for Multidimensional Scaling over Mixed and Incomplete Data 231

n-dimensional objects

Points on the Euclidean plane

O1 O2 , . . . , Om

↓ ↓ ↓

(X1 Y1) (X2 Y2) , . . . , (Xm Ym)

Fig. 1. Individuals of the proposed genetic algorithm

4.2 Initial Population

The objective of creating a non-completely random initial population is to have a
better initial approximation, which allows getting a good solution in less iterations.
We propose to generate the initial population using bidimensional projections of the
original n-dimensional objects. For objects described by n attributes, it is possible to
build ݊ሺ݊ െ 1ሻ/2 bidimensional projections. First, we build all bidimensional projec-
tions (see Fig. 2). Then, in order to know how good each projection is for representing
the original n-dimensional objects, each bidimensional projection is evaluated using
the STRESS function,. The best K projections are included in the initial population.
Additionally, we add to the initial population those individuals obtained by moving
each point of the best bidimensional projection, around a neighborhood with a given
radius r.

(a) Tridimensional objects
with attributes X,Y,Z.

(b) Projection using
attributes X,Z.

(c) Projection using
attributes X,Y

(d) Projection using
attributes Y,Z

Fig. 2. Bidimensional projections of tridimensional objects

4.3 Mutation

In order to speedup the search of good representations, we propose a new mutation
operator based on locally positioning 3 randomly selected points, such that the dis-
tances among these 3 points coincide exactly with the distances of the corresponding
n-dimensional objects.

We randomly select tree points a,b,c from an individual, that represent the n-
dimensional objects A,B,C. Then, in order to generate the new points a’,b’,c’, we
move each point in a different way, as follows (see Fig. 3):

a) To allow exploring different parts of the search space, the point a is randomly

moved to the position a’ into a neighborhood with a given radius r(see Fig.3b).

232 P. Tecuanhuehue-Vera, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

b) Point b is moved to its correct position regarding a’, i.e., the distance between a’
and b’ must be the same than the distance between the objects A and B in the
original n-dimensional space. In order to obtain the new position b’, we move
the point b in the direction of the straight line connecting b with a’(see Fig. 3c)

c) Point c is moved to its correct position regarding a’ and b’, i.e., the distance be-

tween c’ and a’, as well as, between c’ and b’, must be the same as the distance,
in the original n-dimensional space, between the objects A and Band the objects
B and C, respectively. (see Fig. 3d)

(a) n-dimensional objects
A, B, C

(b) Point a is randomly
moved to a’

(c) Point b is moved to its
correct position b’ re-
garding a’

(d) Point c is moved to its
correct position c’ re-
garding a’ and b’

Fig. 3. Mutation operator

4.4 Crossover

The main objective of the crossover operator is to combine the best characteristics
from two individuals in order to produce new individuals that could be a better solu-
tion. Following this idea, given a set of n-dimensional objects O={O1,O2,...,Om} and
two individuals P={(x1,1,x1,2), (x2,1,x2,2) , ... , (xm,1,xm,2)} and
Q={(y1,1,y1,2),(y2,1,y2,2),...,(ym,1,ym,2)}, as well as their respective distance matrices
M(O), M(P) and M(Q). In order to obtain an offspring from P and Q, first we obtain
the sum of each column in the distance matrices (see Fig. 4)

ሺܱሻܯ ൌ ቎ ଵ,ଶܦଵ,ଵܦ ڮ ڭଵ,௠ܦ ڰ ௠,ଶܦ௠,ଵܦڭ ڮ ௠,௠቏ܦ ሺܲሻܯ ൌ ൥ ݀௫భ,భ݀௫భ,మ ڮ ݀௫భ,೘ڭ ڰ ௫೘,భ݀௫೘,మ݀ڭ ڮ ݀௫೘,೘൩ ሺܳሻܯ ൌ ቎ ݀௬భ,భ݀௬భ,మ ڮ ݀௬భ,೘ڭ ڰ ௬೘,భ݀௬೘,మ݀ڭ ڮ ݀௬೘,೘቏

 S(O1) S(Om) S(P1) S(Pm) S(Q1) S(Qm)

Fig. 4. Distance matrices for a set of n-dimensional objects O={O1,O2,...,Om} and two individu-
als P={(x1,1,x1,2),(x2,1,x2,2),...,(xm,1,xm,2)} and Q={(y1,1,y1,2),(y2,1,y2,2),...,(ym,1,ym,2)}

Then, we choose those points that their sum of distances to all other points is more
similar to the sum of the distances from the corresponding n-dimensional object to all
other objects. This is, for selecting the point that will represent the n-dimensional
object Oi in the offspring, we choose the corresponding point from P iff |S(Oi)-
S(Pi)|≤|S(Oi)-S(Qi)|, otherwise we choose the corresponding point from Q (see Fig. 5).

 Genetic Algorithm for Multidimensional Scaling over Mixed and Incomplete Data 233

(a) n-dimensional
objects

(b) An individual P
STRESS= 0.4080

(c) An individual Q
 STRESS=0.3766

(d) Offspring obtained
from P and Q

 STRESS=0.1868

Fig. 5. Crossover operator

5 Experiments

In our experiments, we used five datasets from the UCI[12] repository, four with
mixed data and one numerical dataset (see Table 1). The last was included to evaluate
the performance of the proposed genetic algorithm in numerical datasets. We compare
the results of the proposed genetic algorithm against MDSCAL[2], which follows a
global approach as the proposed genetic algorithm. We did not compare against
ISOMAP[3] and LLE[4],because these algorithms follow a local approach. Since
genetic algorithms have a random component, the results of our algorithm correspond
to the average of 10 executions. All experiments were done on a PC computer with
an1.6GHzAMD processor, with 2GB of RAM, running Windows 7. The proposed
algorithm was implemented in MATLAB 7.10.0. For MDSCAL, we used the imple-
mentation included in MATLAB 7.10.0.

In our proposed genetic algorithm, we used those parameter values suggested
by Schaffer in [13], i.e., 30 individuals in the initial population, 0.95 for crossover
probability, and 1.0 for mutation probability. The last choice is because the proposed
mutation operator allows fixing the relative distances of tree points; and applying it
repeatedly would lead to improve the global representation. For the radius, we made
tests using r=1.0, r=0.5 and r=0.01, in order to evaluate the sensitiveness of the pro-
posed genetic algorithm to different values of the radius. We fix the maximum number
of generations to 20, since empirically we realize that increasing the number of genera-
tions do not contribute to obtain better solutions for the multidimensional scaling prob-
lem. For comparing objects in the mixed and incomplete datasets we used the HEOM
distance function, and for the numerical dataset we used the Euclidean distance.

Table 1. Databases used for the experiments

Datasets objects attributes
quantitative

attributes
qualitative
attributes

objects with
missing values

Balloons 16 4 0 4 0
Servo 162 4 2 2 0
Post operative 79 9 1 8 3
Pittsburgh bridges 80 13 3 10 38
Hayes roth 133 6 6 0 0

1, 1

1, 2 2, 2

2, 1

0

1

2

3

0 1 2 3

(1.1,
1.9)

(2,
1.9)

(0.75,
1)

(2,
1.2)

0

0.5

1

1.5

2

0 1 2 3

0.75
, 1

1,2.
3

2,
1.9

3,
0.80

1

2

3

0 2 4

(1.1,
1.9)

(2.5,
2)

(0.8,
0.2)

(2,
1.2)

0

1

2

3

0 1 2 3

(1,1) (2,1)

(2,2) (1,2)

(3,0.8) (0.75,1)

(2,1.9)
(1,2.3)

(2,1.2)
(0.8,0.2)

(2.5,2) (1.1,1.9)

(2,1.2)
(0.75,1)

(2,1.9)
(1.1,1.9)

234 P. Tecuanhuehue-Vera, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

Table 2 shows the results obtained by the proposed genetic algorithm, for each ra-
dius, and MDSCAL. From this table, we can notice that for mixed and incomplete
datasets, our algorithm obtained better quality representations than MDSCAL in most
of the cases, mainly using r=0.5. The only dataset where MDSCAL obtained better
results was Balloons, which is a very small dataset where traditional optimization
techniques can reach good results. For the numerical dataset, as it was expected,
MDSCAL obtained the best result, but the difference with the proposed method was
1.4×10-3. Also, it can be noticed that our genetic algorithm gets different performance
for different values of r. In general, too small values could lead to slow convergence
rates avoiding finding good solutions in a few iterations; on the other hand, too big
values could lead to instability, which also could produce less quality solutions.

Table 2. Comparison of the proposed GA against MDSCAL

Dataset Fitness GA r=1 GA r=0.5 GA r=0.01 MDSCAL

Balloons Stress 0.3383 0.3248 0.3606 0.3149
Servo Stress 0.4077 0.4027 0.4338 0.6456
Post operative Stress 0.3840 0.3701 0.4222 0.6424
Pittsburgh bridges Stress 0.4051 0.4113 0.4050 0.9984
Hayes roth Stress 0.0062 0.0062 0.0052 0.0038
Average 0.3083 0.3030 0.3254 0.5210

6 Conclusions

In this paper, we have introduced a genetic algorithm for multidimensional scaling
over mixed and incomplete data. In order to speed up the search, we proposed to gen-
erate the initial population using bidimensional projections of the original n-
dimensional objects also introduced new mutation and crossover operators, which
were specially designed for multidimensional scaling.

From the experiments, we can conclude that, for mixed and incomplete datasets,
our algorithm allows getting better results that MDSCAL, obtaining representations
with up to 60% smaller STRESS values. For numerical datasets our algorithm per-
forms well obtaining results very similar to those obtained by conventional algorithms
for multidimensional scaling.

As future work, based on the results presented in this paper, we will study new mu-
tation and crossover operators, which could improve even more the efficiency and
efficacy of the genetic algorithm. Another research line could be studying the sensi-
tivity of the proposed algorithm to the radius parameter.

References

1. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman & Hall, London (1994)
2. Kruskal, J.B.: Non metric multidimensional scaling: A numerical method. Psychometri-

ka 29(2), 115–129 (1964)

 Genetic Algorithm for Multidimensional Scaling over Mixed and Incomplete Data 235

3. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonli-
near dimensionality reduction. Science 290, 2319–2323 (2000)

4. Roweis, S.T., Lawrence, K.S.: Nonlinear dimensionality reduction by locally linear em-
bedding. Science 290, 2323–2326 (2000)

5. An, J., Xu, Y.J., Ratanamahatana, C.A., Chen, Y.P.P.: A dimensionality reduction algo-
rithm and its application for interactive visualization. Journal of Visual Languages and
Computing 18, 48–70 (2006)

6. Faloutsos, C., Lin, K.L.: FastMap: A Fast Algorithm for Indexing, Data-Mining and Vi-
sualization of Traditional and Multimedia Datasets. In: ACM SIGMOD International Con-
ference on Management of Data, pp. 163–174 (1995)

7. Shepard, R.N.: The analysis of proximities: Multidimensional scaling with an unknown
distance function. Psychometrika 27(2), 125–140 (1962)

8. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathema-
tik 1, 269–271 (1959)

9. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non metric hy-
pothesis. Psychometrika 29(1), 1–27 (1964)

10. Takane, Y., Young, F.W., de Leeuw, J.: Non metric individual differences multidimen-
sional scaling: An alternating least squares method with optimal scaling features. Psycho-
metrika 42, 7–67 (1977)

11. Wilson, D.R., Martinez, T.: Improved heterogeneous Distance Functions. Journal of Ar-
tificial Intelligence Research (JAIR) 6(1), 1–34 (1997)

12. Merz, C., Murphy, P.: UCI repository of machine learning databases. Technical report,
Univ. of California at Irvine, Department of Information and Computer Science (1998)

13. Schaffer, J.D., Caruana, A.R., Eshelman, L.J., Das, R.: A Study of Control Parameters Af-
fecting Online Performance of Genetic Algorithms for Function Optimization. In: Proceed-
ings of the Third International Conference on Genetic Algorithms, pp. 51–60. Morgan
Kaufmann Publishers, San Mateo (1989)

14. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)

	Genetic Algorithm for Multidimensional Scaling over Mixed and Incomplete Data
	Introduction
	Related Work
	MDSCAL
	ISOMAP
	LLE

	Evaluation and Distance Functions
	Evaluation Functions
	Distance Functions

	Proposed Method
	Individual Representation
	Initial Population
	Mutation
	Crossover

	Experiments
	Conclusions
	References

