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ABSTRACT

After decades of research and development, the WSR-88D (NEXRAD) network in the United States was upgraded with
dual-polarization capability, providing polarimetric radar data (PRD) that have the potential to improve weather observations,
quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded
with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally
and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of
PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to
regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical
weather prediction (NWP) models.

In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD
usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting
based on statistical retrieval with physical constraints where prior information is used and observation error is included. This
approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis
of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and
development for future weather observation.

Key words: weather radar polarimetry, radar meteorology, numerical weather prediction, data assimilation, microphysics
parameterization, forward operator

Citation: Zhang, G. F., and Coauthors, 2019: Current status and future challenges of weather radar polarimetry: Bridging the
gap between radar meteorology/hydrology/engineering and numerical weather prediction. Adv. Atmos. Sci., 36(6), 571-588,
https://doi.org/10.1007/s00376-019-8172-4.

Article Highlights:

e The current status/limitations and future challenges/opportunities of weather radar polarimetry are reviewed.

e The gaps between the radar meteorology/hydrology/engineering and NWP communities are revealed, and possible ap-
proaches to bridge them discussed.

e New methods and technologies that advance weather radar polarimetry to meet future needs are explored.

* Corresponding author: Guifu ZHANG
Email: guzhangl @ou.edu

@ The Author(s) 2019. This article is published with open access at link.springer.com.



572

1. Introduction and motivation

Radar is a very important tool in weather observations
and forecasts, and there is an increasing need for faster data
updates and more informative measurements to advance the
atmospheric sciences, as stated by Bluestein et al. (2014).
While faster data updates can be realized with phased ar-
ray radar (PAR) technology, multi-parameter weather mea-
surements can be made by radar polarimetry. Weather radar
polarimetry aims to obtain more detailed weather informa-
tion from radars with polarization diversity (Doviak and
Zrni¢, 1993; Bringi and Chandrasekar, 2001; Zhang, 2016).
Through decades of research and development, radar po-
larimetry has matured and been implemented on the network
of Weather Surveillance Radars—1988 Doppler in the United
States (WSR-88D), also referred to as NEXRAD (Next Gen-
eration Radar) (Doviak et al., 2000). Doppler weather radars
in China and other countries have also been, or are be-
ing, upgraded with dual-polarization capability. Polarimetric
radar data (PRD) are now available nationally and globally.
The dual-polarization upgrade is an important and impera-
tive milestone in weather radar technology because the addi-
tional information it provides about the shape, composition,
and phase of hydrometeors is much needed for further under-
standing, quantifying, and predicting weather.

A single-polarization Doppler radar can only measure
the reflectivity factor (also called reflectivity: Z or Zy), ra-
dial velocity (v;), and spectrum width (oy or SW). The
Doppler measurements of v, and o, respectively represent
the mean and standard deviation (including shear) of the ra-
dial velocity of scatterers, i.e., the dynamic motion. Only the
reflectivity directly provides microphysics information, but
this one measurement is obviously insufficient to fully char-
acterize the complex cloud and precipitation microphysics.
For example, cloud microphysics is normally represented in
convective-scale numerical weather prediction (NWP) mod-
els not by the one observed parameter, Z, but by several to
over a dozen state variables used in microphysics parame-
terization schemes. These variables include the water mix-
ing ratios and number concentrations for the five or six hy-
drometeor species (cloud water, cloud ice, rain, snow, and
hail/graupel) used in many double-moment or multi-moment
schemes (e.g., Milbrandt and Yau, 2005a, b; Morrison et al.,
2005, 2009). There can be ten times more unknowns if spec-
trum bin microphysics is used (Khain et al., 2015).

Because reflectivity alone cannot fully characterize cloud
microphysics, efforts and attempts have been made to in-
crease the number of independent radar measurements to bet-
ter understand and characterize weather conditions through
frequency/wavelength and/or polarization diversities. For ex-
ample, the Global Precipitation Measurement core observa-
tory carries the space-borne Ku/Ka-band Dual-frequency Pre-
cipitation Radar (https://pmm.nasa.gov/GPM/flight-project/
DPR), which was advanced from the Tropical Rainfall Mea-
suring Mission single-frequency precipitation radar (Huff-
man et al., 2007). While a multi-frequency radar can pro-
vide more information, it is essentially multiple radars and
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therefore expensive to build (Eccles and Atlas, 1973; Gos-
set and Sauvageot, 1992). The data from a multi-frequency
radar are also complicated to analyze. For ground-based re-
mote sensing, radar polarimetry is both cost-effective and ef-
ficient in providing more microphysical information (Seliga
and Bringi, 1976; Seliga et al., 1979; Zrnic and Aydin, 1992).

In addition to the single polarization radar measurements
of Z, v, and o, a polarimetric radar can produce: differential
reflectivity (Zpr)—the ratio of reflectivity between the hori-
zontally and vertically polarized waves; the co-polar correla-
tion coefficient (ppy); the differential phase (®pp) and/or its
range derivative—specific differential phase (Kpp); the linear
depolarization ratio (LDR); and the correlation coefficients
between co-polar and cross-polar signals (pxn and pxy). Radar
polarimetry is normally implemented in one of two modes:
(i) dual-polarization (simultaneous transmission and simulta-
neous reception: STSR) mode, or (ii) full-polarization (alter-
nate transmission and simultaneous reception: ATSR) mode.
For practical reasons, as stated in section 4 of Doviak et
al. (2000), most operational weather radars, including WSR-
88D, use the dual-polarization STSR mode and produce PRD
of Z, vy, 0y, ZDpR, pnv, and ®pp/Kpp. Nevertheless, these
PRD contain information about hydrometeor size, shape, ori-
entation, and phase/composition, allowing for better charac-
terization of cloud and precipitation microphysics (e.g., Zr-
nic and Ryzhkov, 1999). PRD have enormous, but as yet not
fully tapped, potential to improve severe weather detection
and warnings, as well as quantitative precipitation estimation
(QPE) and forecasting (QPF).

Currently, we use PRD in severe weather observation
and detection, hydrometeor classification, winter precipita-
tion applications, and QPE. In observational studies, certain
polarimetric radar signatures, such as the Zpr arc, ppy ring,
and Kpp foot are identified and connected to certain micro-
physical processes (Kumjian and Ryzhkov, 2008; Romine et
al., 2008). In hydrometeor classification (HC), a set of PRD
is used in a fuzzy logic classification algorithm whereby the
membership function of a radar variable for a species is estab-
lished based on experience, and then the membership values
are combined to make a decision as to which class the set
of PRD represents (Vivekanandan et al., 1999; Straka et al.,
2000; Park et al., 2009; Chandrasekar et al., 2013; Dolan et
al., 2013). The classification results are used to detect severe
weather and to select radar estimators to improve QPE (Gi-
angrande and Ryzhkov, 2008). These uses of PRD in severe
weather observations and detection have utility in the weather
forecasting community. For example, the Warning Deci-
sion Training Division of the U.S. National Weather Service
(NWS) offers a Radar and Applications Course as the initial
training on the use of the WSR-88D for severe weather op-
erations (http://training.weather.gov/wdtd/courses/rac/). The
application of PRD is a fundamental part of the course due
to the recent upgrade of the WSR-88D network to dual-
polarization. The course includes training on the following
topics: base PRD, HC, the melting layer algorithm, QPE
rainfall products, severe hail detection, supercell morphol-
ogy, and the tornado debris signature (TDS), as well as winter
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weather applications.

The use of PRD can provide vital real-time information to
forecasters, thus helping to improve severe weather detection
and warnings, but many of the methods are oftentimes sub-
jective and empirical, and have limitations in realizing the full
potential of PRD. In QPE, deterministic power-law relations
are used for rain estimation from PRD (Zhang et al., 2016;
Chen et al., 2017), which may not be optimal. Also, uncer-
tainties of radar-derived products have not been accurately
quantified and provided together with the products. More im-
portantly, the community has not begun to regularly derive
from PRD the state parameters used in convective-scale high-
resolution NWP models, such as water mixing ratios and
number concentration. The question is: How should we effi-
ciently utilize PRD to improve severe weather detection, avi-
ation weather services, QPE, and QPF?

Ideally, PRD should be used to determine cloud and pre-
cipitation physics state variables and to improve microphys-
ical parameterization in NWP models, which in turn are ex-
pected to improve the accuracy of weather quantification and
to shorten the spin-up time of the NWP model forecast. Un-
fortunately, this cannot be done easily for several reasons: (i)
the number of independent pieces of information from PRD is
limited and is usually less than the number of state variables
that are used in NWP models in the case of multi-moment
and/or multi-species microphysics, resulting in underdeter-
mined problems; (ii) relationships between state variables
and polarimetric radar variables are not linear, and some-
times they are not entirely known, especially for ice-phase
and mixed-phase species; (iii) there are errors in radar mea-
surements of PRD and in the forward operators that connect
model state variables to the radar variables; (iv) there are
large errors and uncertainty in convective-scale NWP model
physics and parameterization when NWP model constraints
are used in retrieval through data assimilation (DA), and these
prevent the PRD from substantially contributing to the model
initialization and prediction; and (v) there is a disconnect be-
tween the radar meteorology and NWP communities in their
use of PRD.

Although it is difficult and challenging, the efficient use
of PRD and advancing radar technology for severe weather
detection and warnings, QPE, and QPF, are still the main
goals, which is the motivation behind the writing of this arti-
cle. Specifically, we discuss and explore the following issues:

e The limitations of current PRD usage;

e The gaps between the radar meteorology/hydrology

and NWP communities;

e The difficulty in assimilating PRD into NWP models;

e The development status of new radar technology and

PAR polarimetry, to meet future needs.

Only once these shortcomings are realized and these chal-
lenges tackled can the optimal usage of PRD and efficient ad-
vancement of radar technology be achieved. The rest of this
paper is organized as follows:

Section 2 shows examples of PRD and PRD usages/
products from WSR-88D. The issues and limitations of cur-
rent PRD usage and the gaps between the radar meteorology
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and the NWP communities are discussed in section 3. Section
4 suggests a unified statistical approach to using PRD. An ex-
ample of an NWP model-based analysis of PRD is shown in
section 5. Section 6 discusses the status and challenges of
research and development of polarimetric PAR technology.
The paper concludes with a summary in section 7.

2. Current status of PRD usage

After the dual-polarization upgrade completed in 2013,
archived PRD from WSR-88D became available at NOAA’s
National Centers for Environmental Information (https://
www.ncdc.noaa.gov/nexradinv/index.jsp) in level II and level
III format, which is summarized in Fig. 1. Level II data (left
column) are base data estimated from pulsed radar signals,
from which level III data/products are derived. The dashed
boxes are the single polarization radar data and their derived
products, and the solid boxes are for dual-polarization data
and PRD-derived products. Compared with that over a dozen
of single polarization products (middle column), the PRD-
derived products (right) are still very limited—only three, in-
dicating future challenges exist and opportunities are to be
explored. In this section, we discuss the current usage of PRD
for weather observation, HC, and QPE.

2.1. PRD for weather observation and forecasting

As shown in the left column of Fig. 1, WSR-88D level
IT data contain six variables, consisting of three existing
single-polarization variables (Z, v;, oy) and three added dual-
polarization variables (Zpr, pnyv, and ®pp), which contain a
wealth of information about cloud and precipitation micro-
physics.

Each dual-polarization variable has specific proper-
ties/characteristics with regard to different weather or non-
weather radar echoes, and, together with Z, they reveal the
microphysical properties of clouds and precipitation. Zpg is
a measure of the reflectivity weighted shape of the scatter-
ers and tends to increase for more oblate scatterers (within
the Rayleigh regime). py, represents the similarity between
the horizontal and vertical polarization signals, and it is re-
duced when there is increased randomness and diversity be-
tween the horizontally and vertically polarized backscattered
waves, especially for non-Rayleigh scattering. Finally, ®pp
is the difference in phase shift between horizontally and ver-
tically polarized waves, including both differential scattering
phase (6) and differential propagation phase (¢pp). Gpp in-
creases rapidly for heavy rain because the horizontally po-
larized wave propagates slower than the vertically polarized
wave, as its polarization is in the direction of the larger di-
mension of oblate particles.

When used in conjunction with ground-based observa-
tions and storm reports (when available), their understand-
ing of the storm morphology, and the near-storm environ-
ment (i.e., mesoanalysis), meteorologists who serve as warn-
ing forecasters at the U.S. NWS use radar data to make warn-
ing decisions on whether a thunderstorm is capable of pro-
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Fig. 1. WSR-88D data and their derived products after the dual-polarization upgrade. The data
and products in the dashed boxes are for single polarization.

ducing severe weather (> 26 m s~ winds and/or > 2.54 cm
hail) and/or a tornado. If a forecaster has enough confidence
for severe weather and/or a tornado, the forecaster can is-
sue a severe thunderstorm warning or tornado warning with
the potential hazards (i.e., estimated maximum hail size, es-
timated maximum wind speed, and tornado damage threat).
The addition of PRD gives forecasters additional informa-
tion on the storm morphology, which can assist in warning
decision-making.

An example from a warm-season event is used to demon-
strate the PRD and its utility in weather observations and
warnings. Figure 2 shows the plan position indicator (PPI)
images of these data at an elevation of 1.3° for a tornadic
supercell event observed by the S-band polarimetric WSR-
88D (KFDR) radar in southwest Oklahoma at 2243 UTC 16
May 2015. Six PPI images represent the polarimetric Doppler
weather radar measurements of Z (Fig. 2a), v; (Fig. 2b), and
oy (Fig. 2c), as well as the added dual-polarization measure-
ments of Zpr (Fig. 2d), pny (Fig. 2e), and Opp (Fig. 2f). The
red polygon is a tornado warning that was issued by NWS
Norman, Oklahoma, Weather Forecast Office (WFO).

The storm is a classic supercell with a hook echo. At the
tip of the hook (on the southwest flank of the storm), a meso-
cyclone is sampled by the radar, as indicated by a cyclonic
velocity couplet. On the forward flank of the supercell, along
with the reflectivity gradient on the southern edge, there is an
increase in Zpgr. This feature is known as a Zpgr arc, which
occurs due to size-sorting in a supercell that occurs because
of vertical wind shear (Kumjian and Ryzhkov, 2008). North-
west of the Zpg arc, @pp increases markedly with range. This
is due to very heavy rainfall in the forward flank downdraft
(FFD) of the supercell. Immediately to the west-northwest
of the hook, there is a reduction in Zpr and ppy within an
area of high reflectivity. These measurements are likely due
to the presence of hail mixing with rain. The final signature

to note is a local minimum in the pp, and Zpg at the center
of the velocity couplet, which is coincident with reflectivity
> 40 dBZ. The low ppy and Zpr indicates the presence of
non-meteorological targets. This signature, known as a TDS,
exists due to debris being lofted by a tornado (Ryzhkov et
al., 2005; Kumjian and Ryzhkov, 2008; Kumjian, 2013; Van
Den Broeke and Jauernic, 2014). In this event, the presence
of a TDS resulted in the NWS Norman WFO issuing a severe
weather statement (i.e., updated tornado warning) where the
hazard in the warning became “damaging tornado” and the
source for the warning became “radar confirmed tornado.”
In this example, the PRD had an important role in warning
decision-making by providing information that heightened
the wording of the warning statement.

Though the previous example is a warm-season event,
PRD have applications in the cold season too (Zhang et al.,
2011; Andri¢ et al., 2013), including melting-layer detection
and precipitation type transition zones (Brandes and Ikeda,
2004; Giangrande et al., 2008; Bukov¢i¢ et al., 2017), and in
the study of ice microphysical processes (Griffin et al., 2018).
Polarimetric radars have also been successfully used in the
study of tropical meteorology (Rauber et al., 2007; May et
al., 2008; Brown et al., 2016; Didlake and Kumjian, 2017).

2.2. PRD products
22.1. HC

While it is informative to look at the individual polari-
metric variable images, it is more scientific, rigorous, and ef-
ficient to systematically and automatically use the PRD for
accurate weather measurements and forecasting (Straka and
Zrnié, 1993; Straka, 1996). The first such use was in hydrom-
eteor (or echo) classification based on a fuzzy logic algorithm
(Vivekanandan et al., 1999; Liu and Chandrasekar, 2000).
An updated version of the HC algorithm (HCA) described
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Fig. 2. Polarimetric variables at the S-band radar KFDR for a supercell observed in southwest Oklahoma, USA, at 2243
UTC 16 May 2015: (a) reflectivity (Z); (b) radial velocity (v;); (c) spectrum width (o ); (d) differential reflectivity
(ZpRr); (e) copolar correlation coeflicient (pyy); and (f) differential phase (®pp). The radar (not shown) is located south-
east of the supercell. The white lines are county or state borders, and the orange and brown lines are roadways. Plotted

using GR2Analyst software.

by Park et al. (2009) is implemented on the WSR-88D. Its
input parameters are Z, ZpRr, Phy, the logarithm of Kpp, the
standard deviation of Z, and the standard deviation of ®pp.
Its output is ten classes of radar returns (light/moderate rain,
heavy rain, rain/hail mix, big drops, dry snow, wet snow,
crystals, graupel, biological, and ground clutter) plus “no
echo” and “unknown”, and the elevation-based HC is avail-
able as one of the WSR-88D level III products. A hybrid
version of the HC product (called HHC), derived from the
elevation-based HC, is created for the dual polarization QPE.
Recent modifications to the HCA include a hail size discrim-
ination for the rain/hail mix category (Ryzhkov et al., 2013a,
b; Ortega et al., 2016): large hail (at least 2.54 cm in diameter

but less than 5.08 cm) and giant hail (greater than or equal to
5.08 cm). Using the graupel classification from the HCA as
a primary input, the WSR-88D algorithm suite now also in-
cludes an icing hazard level product that is used by the Fed-
eral Aviation Administration to detect regions of icing aloft.
Figure 3a shows the HCA output from the KFDR radar
for the event depicted in Fig. 2. Although it is not easy to
verify the HCA output by comparisons with in-situ measure-
ments, the results of the classification in Fig. 3a fit the ac-
cepted microphysical understanding of a severe super-cell
storm. As expected, the area of high reflectivity with reduced
Zpr and pyy is classified as rain and hail (HA: red). Heavy
rain (HR: dark green) is identified in the FFD region, consis-
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Fig. 3. (a) Hydrometeor classification product generated from the NSSL hydrometeor classification algorithm at 2243
UTC 16 May 2015, and (b) dual-polarization radar estimated hourly rainfall accumulation. The radar is located south-
east of the supercell (not shown). The white lines are county or state borders, and the orange and brown lines are
roadways. These were plotted using GRLvel3 software. The echo class notations are: biological scatterers (BI); ground
clutter (GC); ice crystals (IC); dry snow (DS); wet snow (WS); light/moderate rain (RA); heavy rain (HR); big drops
(BD); graupel (GR); and rain and hail (HA). Purple areas represent unknown classification.

tent with the rapid increase in ®pp noted in the previous sub-
section. Light and moderate rain (RA: light green) are iden-
tified at the southwest edge of the storm. The leading side
of the storm is classified as big drops (BD: brown), which
is reasonable due to size sorting. It is also reasonable to see
biological scatterers (BI: light gray) identified ahead of the
storm near the radar where insects normally appear.
However, a couple of issues presently exist and are being
addressed. The melting layer with high reflectivity has often
been misclassified as graupel and big drops. A recent ver-
sion of HCA classifies more hydrometeors within the melting
layer as wet snow. Also, the current melting layer detection
algorithm (MLDA) does not perform well with cool-season
precipitation where the melting layer is close to the ground
and where there are mixed-phase hydrometeors. An improved
MLDA that allows for microphysically based variations in the
heights of the top and bottom of the melting layer is under de-
velopment (Reeves, 2016). It uses several inputs from a rapid
refresh forecast model. A recent advancement in HCA with
PRD is to use an objective approach to derive statistical rela-
tions based on cluster analysis (Wen et al., 2015, 2016).

222. QPE

Whereas HCA is very successful in systematically utiliz-
ing PRD for revealing cloud and precipitation microphysics,
it is qualitative and empirical rather than quantitative. One
of the main motivations to develop weather radar polarimetry
was to improve QPE with polarimetric measurements, such
as Zpr (Seliga and Bringi, 1976; Seliga et al., 1979; Ul-
brich and Atlas, 1984) and Kpp (Sachidananda and Zrnic,
1987; Ryzhkov and Zrnié, 1996), because polarimetric mea-
surements depend on the shape of hydrometeors, and rain-
drop shape is monotonically related to the drop size. Hence,
radar rain estimators with different combinations of Z, Zpg,
and Kpp were developed using simulated or measured rain
drop size distributions (DSDs) and electromagnetic scattering
models (Jameson, 1991; Vivekanandan et al., 1991; Ryzhkov

and Zrnié, 1995). The improvement of QPE with PRD has
been demonstrated with real data in a subtropical environ-
ment (Brandes et al., 2002), in the Southern Great Plains re-
gion (Giangrande and Ryzhkov, 2008), and in a tropical re-
gion (May et al., 1999; Chang et al., 2009), as well as in
Europe (Figueras i Ventura and Tabary, 2013). It is generally
accepted that the estimation error decreases from 30% to 40%
uncertainty for a single polarization reflectivity to about 15%
error for polarimetric measurements (Brandes et al., 2002).

A synthetic polarimetric radar rain estimator that com-
bines different estimators based on HCA results was initially
adapted by the dual-polarization WSR-88D to produce level
III QPE products (Giangrande and Ryzhkov, 2008). The
dual-polarization QPE products are currently generated based
on the five primary rain estimators:

R(Z) = 0.0172°7* (Z =300R'*) ; )
R(Kpp) = 44/Kpp|"***sign(Kpp) ; (@)
R(Z,Zy) = 0.01422°77 7, 167, (3)
R(Z,Z4) = 0.00672%9%7 7343 ; (4)
R(Kpp) = 27|Kpp|***sign(Kpp) . ()

Here, sign(Kpp) allows for negative Kpp values and both Z
and Zg; are in linear units instead of logarithmic values for
Z/Zy and Zpr. The three rain estimators are used/chosen
based on HCA results. For example, if the echo is classified
as light to moderate rain, Eq. (3) or Eq. (4) of R(Z,Zy,) is
used to estimate the rain rate, depending whether an operator
chooses a “continental” or “stratiform/tropical” relationship,
respectively; if the echo is classified as heavy rain, Eq. (2) of
R(Kpp) is used; if the echo is classified as hail-rain mixture,
Eq. (5) of R(Kpp) is used to mitigate hail contamination. Most
classifications within and above the melting layer use Eq.
(1), usually with a multiplier of R(Z), such as 0.6 X R(Z) for
wet snow. Figure 3b shows the dual-polarization radar-based
QPE result that has much less contamination from anoma-
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lous propagation clutter and biological scatterers. The dual-
polarization QPE, based on Z, Z;, and Kpp, provided im-
proved precipitation estimates over the previous single polar-
ization QPE in warm-season events where the freezing level
was high. However, it has relatively large random errors due
to its sensitivity to errors in Zg;, which are significant at times.
The dual-polarization QPE also suffers from discontinuities
and some biases near the melting layer. The R(Kpp) estima-
tor can produce a negative rain rate, which is physically im-
possible, if Kpp is estimated from ®pp using a least-squares
fit, as is currently used for WSR-88D. A recent advancement
is to improve Kpp estimation for better QPE by using a hy-
brid method of combining linear programming (also called
linear optimization) and physical constraints (Giangrande et
al., 2013, Huang et al., 2017), which yields the best match
with observed ®pp while ensuring positive Kpp estimates.
The latest developments also include the use of specific atten-
uation for rainfall estimation (Ryzhkov et al., 2014; Zhang et
al., 2017). There is also interest in using X-band polarimet-
ric radar networks to improve QPE and low-level coverage
(Chen et al., 2015).

3. Issues with current PRD usage

As discussed in the last section, it is informative and in-
tuitive to observe polarimetric radar signatures for detection
and warning of severe storms and aviation hazards, exciting
to see PRD HC results reveal cloud and precipitation micro-
physics, and satisfactory to improve QPE with PRD. PRD
can serve the community better and its potential can be bet-
ter realized if the issues and limitations of the current usage
of PRD are acknowledged and resolved. These issues are as
follows:

As noted in the introduction, the independent information
of PRD is still limited, and the relative errors of polarimet-
ric measurements can be large. The number of independent
pieces of information varies depending on the hydrometeor
species: ~ 1 for drizzle or dry snow; 3—4 for melting snow or
hail. The relative error of Zpr and Kpp can be 100% for light
rain due to the small intrinsic values. Furthermore, system
uncertainty and bias affect the accuracy of polarimetric mea-
surements (Zrnic et al., 2006). Even with a well-calibrated
radar system, the overall uncertainty of the bias/error has his-
torically been greater than the required tolerance (e.g., 0.1 dB
bias for Zpg), limiting the quantitative usage of PRD (Ice et
al., 2014).

Severe weather (such as hail and tornado)-related obser-
vation studies with PRD have been highly subjective and em-
pirical. It is difficult to automatically use and expand the sub-
jectively decided polarimetric signatures/knowledge for op-
erational usage in severe weather detection, prediction, and
warning. It would be beneficial to warning forecasters if there
are products that utilize PRD to better quantify potential haz-
ards, such as maximum hail size or tornado damage threat.
As shown in Fig. 1, there is no severe weather detection
product that has been generated in WSR-88D level-1II PRD
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products (with the exception of the hail size discriminator
in the latest HCA), compared with many reflectivity-derived,
velocity-derived products. This is because not all the weather
science has been fully understood, and rigorous relations be-
tween weather states and PRD have not been fully estab-
lished. Therefore, further research and development needs to
be done.

Classifications have been successful, but are still quali-
tative, and some severe weather conditions (e.g., TDS) are
not in the HCA output. Also, a dominant contributor to PRD
may not necessarily be the main contributor to microphysics
states/processes. For example, a hydrometeor class deter-
mined from PRD may not necessarily have the highest wa-
ter mixing ratio or evaporation rate if other classes exist in
the radar resolution volume. This is because radar measure-
ments are mainly determined by higher DSD moments (e.g.,
approximately 6th moment for reflectivity) dominated by a
few large particles rather than the large number of small drops
which have important effects on microphysical processes,
thermodynamics, and storm development.

Power-law-type polarimetric radar rain estimators [e.g.,
Egs. (1)—(5)] may not be optimal, because it is difficult to use
prior information and measurement errors in rain estimation
once a power-law estimator is chosen. True relations (if they
exist at all) between rain rate and radar variables may not
necessarily be in power-law form. For example, if rain DSDs
are exponentially or gamma distributed, the analytically de-
rived R(Z,Zg;) is not in power-law form [see Zhang, 2016,
Eq. (6.26)]. The power-law form was used for simplicity be-
cause it becomes a linear function after taking the logarithm
of both sides; this makes for an easy fit to data. Even if the
functional form is acceptable, the least-squares fitting with a
constant weight for all data points is optimal only if the errors
are Gaussian-distributed in the logarithm domain. Otherwise,
least-squares fitting does not yield the minimal error. Further-
more, a minimal error in the logarithm domain does not nec-
essarily yield a minimal error in the linear domain for rain
estimation. Also, the HC-based QPE can cause discontinu-
ity in rain estimation because the chosen estimator switches
relations discretely according to subjectively determined con-
ditions, even though the underlying microphysical condition
has evolved only continuously. Furthermore, model errors,
measurement errors of the involved radar variables and rain
rate, and data sampling/collection issues are not considered
in the formulation and fitting procedure, yielding uncertainty
in QPE results.

Another issue—Ilikely the most important—is the diffi-
culty involved in using the current PRD or PRD products
to improve NWP. The difficulty comes from: (i) the large
variety/uncertainty in storm-scale NWP models and model
parameterization (discussed further in section 5); and (ii) a
disconnect between model basic state variables (e.g., wa-
ter mixing ratio and number concentration) and polarimet-
ric variables. Efforts have been made to develop PRD sim-
ulators (i.e., forward operators) to connect model variables
with PRD variables through cloud/precipitation microphysics
rooted in drop/particle size distribution (DSD/PSD), N(D),
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and other physical and statistical properties such as shape,
orientation, and composition reflected in scattering matrix
elements, as in Doviak and Zrni¢ (1993, section 8.5.2.2),
Bringi and Chandrasekar (2001, section 3.10.1) and Zhang
(2016, section 4.2.6). Based on scattering calculations with
the T-matrix method (Waterman, 1965; Vivekanandan et al.,
1991), Jung et al. (2008a, 2010), Pfeifer et al. (2008), and
Ryzhkov et al. (2011) all developed different forward opera-
tors, and were able to simulate realistic PRD signatures from
NWP model output. The computer code in Fortran language
for PRD operators is posted on the University of Oklahoma
website (http://arps.ou.edu/downloadpyDualPol.html). There
is also a freely available Cloud Resolving Model Radar Simu-
lator (http://radarscience.weebly.com/radar-simulators.html)
developed by a group of scientists from Stony Brook
University and Brookhaven National Laboratory. Colorado
State University and NASA’s Goddard Space Flight Center
also developed the Polarimetric Radar Retrieval and Instru-
ment Simulator (https://cloud.gsfc.nasa.gov/POLARRIS)).
Still, efficient and accurate PRD operators, like the one in
Mahale et al. (2019) for rain, are still lacking and in need for
ice- and mixed-phase species to make PRD assimilation more
feasible and efficient.

The current status of using PRD is due to the PRD and
products thereof having been generated from radar engineer-
ing and meteorological points of view, with little influence
from the NWP community thus far. Rigorous retrieval meth-
ods developed from the information theory and NWP com-
munities have not been successfully adapted. Radar mete-
orology and NWP fields developed and evolved from their
communities independently from each other. Radar meteorol-
ogy was developed based on the theory/model of electromag-
netic wave scattering by hydrometeors, and by observing and
relating radar measurements for understanding and estimat-

State variables
x: [N(D), Y, p, (6,9)]

Forward: y=H(x)
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ing weather with empirical relations. NWP, on the other hand,
is formulated from a set of physical, dynamic and thermo-
dynamic conservation equations. There has not been enough
connection between the two research areas. This disconnect
is reflected in the different variables commonly used to rep-
resent the weather state [e.g., the water mixing ratio (g) in
NWP models, but the rain rate (R) in radar meteorology], the
difference of unit usage between NWP state and radar vari-
ables, and the different values used to characterize PRD er-
rors for two different realities in the two communities. For
example, it is generally accepted by the radar meteorology
community that the measurement error for Z is about 1.0 dB,
which is usually ignored in direct observation retrieval; how-
ever, a 2.0-5.0 dB error is usually used in the NWP commu-
nity. The gaps between radar meteorology and NWP need to
be bridged, and the approaches adapted to use PRD need to
be aligned for optimal results.

4. A unified statistical approach

Since the purpose of both radar meteorology and NWP
is to understand and predict weather, one way to advance
the usage of PRD is to improve model parameterizations and
initialization for more accurate weather forecasts and warn-
ings. Considering that radar measurements contain errors,
weather states vary, observational information is not enough
and not uniformly available across the atmosphere, and phys-
ical constraints and prior information are needed to facilitate
retrieval, a statistical approach is warranted. In this frame-
work, both state variables and radar measurements are treated
as random variables, and both the prior background and ob-
servations are used.

As shown in Fig. 4, let x be the state vector and y the po-
larimetric radar variable vector; and they are related by the

Pol. radar variables:
Y: [Z4, Zpr, Prv: Porl

Z,(dB2)

70 50, == z 8

; Polarimetric
Radar

v
Meridional distance (km)

Inverse: x=H-1(y)

Meridional distance (km)

&
S

Ex4

- 03
-50 0 50

Zonal distance (km)
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Fig. 4. Sketch of the weather physics state variables of DSD [N(D)], axis ratio (), density (o), and orientation angles (6, ¢)

versus polarimetric radar measurables.
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forward operator as: y = H(x). An optimal retrieval involves
finding the state vector x that has the best match with a given
prior background, xp, and a set of observations, y,, while ac-
counting for their given uncertainties. This is equivalent to
minimizing the cost function J,

J=(x=xp) B~ (x=xp) + [y, — Hx)TO [y, — H(x)], (6)

where B and O represent the background error covariance
and observation error covariance, respectively, and H(...)
is a forward observation operator. This serves as the ba-
sis for variational (VAR) analysis and ensemble Kalman
filter (EnKF) analysis (Lorenc, 1986). The VAR approach
has been used in improving QPE and microphysics re-
trieval with PRD in Hogan (2007), Cao et al. (2010, 2013),
Yoshikawa et al. (2014), and Chang et al. (2016), in which the
background information is obtained from previous measure-
ments/knowledge. In EnKF analysis, the forward operator is
assumed to be linear, the flow-dependent covariance B is es-
timated from a limited number of ensemble forecasts, and the
analyzed state vector is solved from Eq. (6) iteratively, whose
application in data assimilation (DA) with PRD is presented
in section 5.

The procedure to derive Z—R relations is a special case
of the VAR approach, in which background information is
lacking [the first term in Eq. (6) is ignored], only the Z ob-
servations are used, and each data point is normally equally
weighted to fit with a power-law relation (Z = aR?) in the log-
arithm domain to determine the coefficients a and b. Hence,
the Z—R relation highly depends on data collection/selection,
filtering, and the weighting and fitting procedure used, which
is obviously not optimal because the data quality and weight-
ing issues cannot be taken into account in rain estimation
once a Z—R relation is chosen. Therefore, the statistical ap-
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proach represented by Eq. (6) is more fundamental and com-
plete in formulating PRD-based retrieval, and has the poten-
tial to achieve optimal usage because the prior background
information can be used and measurement error effects are
included. Since it is already in use in the NWP community
for radar data assimilation, the statistical approach is one way
to align the radar meteorology/hydrology and NWP commu-
nities, and is applicable to both observation-based and DA-
based retrievals.

While the statistical retrieval approach has been formu-
lated and successfully used in the data assimilation commu-
nity (Rodgers, 2000; Kalnay, 2003), it has seen little success
in the optimal usage of PRD due to its complexity. The rea-
son for this is that there are many issues in optimally utilizing
PRD for improving QPE and QPF, as discussed in the previ-
ous section (section 3). Importantly, there are large uncer-
tainties in storm-scale NWP models and model microphysics
parameterization (further discussed in section 5). These large
errors in NWP that DA depends on as background informa-
tion [first term of Eq. (6)], and large uncertainty and nonlin-
earity in PRD operators prevent the substantial positive im-
pact of limited information from PRD [2nd term of Eq. (6)].

Considering all aforementioned issues, the vision for op-
timal utilization of PRD with different components is mod-
ified from Zhang (2016, Fig. 7.14) and shown in Fig. 5. As
sketched in the top row (red) of the figure, observation-based
studies and retrievals are normally conducted in radar me-
teorology, which deals with in-situ measurements and pro-
cessing, PRD observation, HC and precipitation estimation
through empirical relations, and PRD quality control (QC)
and error characterization to determine O. The direct and em-
pirical methods have been used in observation-based studies,
but the error covariance and prior information are usually ig-

PRD
observation,
classification &
estimation

In-situ
measurement,
processing &

analysis

Obs-based
retrieval

MP modeling
EM modeling

Fd obs. operators

Ret. algorithm:
Bayesian,
VAR, EnKF

NWP model
selection &
advancement

Microphysical

parameterization
selection & imp.

error estimation

DA-based
retrieval

Background

Fig. 5. Sketch of the different components for optimal utilization of PRD and connections between
observation-based retrieval (red) that can be used in radar meteorology and DA-based retrieval (blue)
used in NWP. Acronyms/abbreviations are: polarimetric radar data (PRD); quality control (QC); mi-
crophysics (MP); electromagnetic (EM); forward observation operators (Fd obs. operators); variational
(VAR); Ensemble Kalman filter (EnKF); quantitative precipitation estimation (QPE); quantitative pre-
cipitation forecasting (QPF), numerical weather prediction (NWP); data assimilation (DA).
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nored in the retrieval. As shown in the bottom row (blue)
of Fig. 5, DA-based retrieval/analysis is used by the NWP
community. It involves selection and improvement of micro-
physical parameterization schemes and NWP models, as well
as estimation of B. The stochastic nature of microphysical
variables contributes significantly, which is ignored in most
current model parameterizations, and should be included in
future improvements (Finlon et al., 2016). As sketched in
the middle row (brown), the forward operators, which re-
sult from microphysics modeling and electromagnetic model-
ing, and statistical retrieval algorithms, are required for both
observation-based and DA-based retrievals. Each of the re-
trievals needs to have compatible microphysics models, such
as DSD/PSD models, and shape/density relations, electro-
magnetic modeling and calculations, etc., as well as statis-
tical retrieval algorithms that can handle measurement error
and background information and covariance, such as the one
presented earlier in this section. To achieve best possible re-
sults, all the components need to be accurately determined
and selected, and used in conjunction and cross-verified with
each other in the statistical retrieval algorithms as depicted in
the figure.

The statistical retrieval allows observation errors and
prior information to be characterized and included, and it
reduces to the direct retrieval when the observation errors
are zero and the prior information is absent. The optimal
usage of PRD is to find the balance between the measure-
ments used and the prior information obtained for a specific
application as well as errors in the measurements and infor-
mation used and characterized. Since observation errors are
included, the contribution from each measurement is auto-
matically weighted differently based on its relative informa-
tion compared with the error to produce optimal estimates, as
done in Mahale et al. (2019) for rain microphysics retrieval,
without having to empirically change one estimator to an-
other, as in Egs. (1)-(5). To include flow-dependent back-
ground information in the retrieval, assimilating PRD into an
NWP model is needed, which is discussed next.

5. An example of DA analysis with PRD

It is accepted that one of the main uses of radar obser-
vations, including PRD, is the assimilation of these obser-
vations into a convective-scale NWP model. It was realized
that the assimilation of reflectivity data helps reduce the spin-
up problem (Sun and Crook, 1997, 1998; Hu et al., 2006;
Gao and Stensrud, 2012), and a variety of real case stud-
ies have shown these data help improve QPF (Jung et al.,
2012; Ge et al., 2013; Yussouf et al., 2013, 2015; Putnam et
al., 2014, 2017a; Wheatley et al., 2014; Snook et al., 2016).
However, many issues still exist because although reflectiv-
ity has proven to be useful, reflectivity alone is insufficient
to analyze all the state variables included in advanced multi-
moment microphysics schemes (e.g., hydrometeor mixing ra-
tios and number concentrations). PRD may help resolve these
issues with additional information about cloud microphysics
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and physics processes (Vivekanandan et al., 1999; Zhang et
al., 2006; Ryzhkov et al., 2013a, b; Kumjian et al., 2014, Car-
lin et al., 2016).

Several studies have been conducted to initialize an NWP
model with PRD (Wu et al., 2000; Jung et al., 2008b; Li
and Mecikalski, 2010; Posselt et al., 2015, Li et al., 2017).
However, in those studies, polarimetric data were assimilated
indirectly (e.g. Wu et al., 2000; Li and Mecikalski, 2010),
assimilated directly but in the observing system simulation
experiment framework (Jung et al., 2008b), or using a single-
moment microphysics scheme, which is unable to simulate
size sorting (e.g., Posselt et al., 2015; Li et al., 2017). Re-
cently, there was a more advanced PRD assimilation of Zpr
in addition to Z and v; using an EnKF and a multi-moment
microphysics scheme for the 20 May 2013 Newcastle-Moore
tornadic supercell case, as shown in Fig. 6. The analysis
with differential reflectivity increased the low-level Zpgr val-
ues with fewer, larger raindrops along the right forward flank
of the supercell adjacent to the updraft in the vicinity of
the observed Zpr arc polarimetric signatures (Kumjian and
Ryzhkov, 2008). The Zpr values are lower downshear in the
forward flank in the storm in the transition region between
and the supercell immediately to its north. Additionally, the
gradient of hail mean mass diameter was larger aloft and sim-
ilar to hail patterns studied in Dawson et al. (2014, see their
Fig. 17), which demonstrated the importance of size sorting
of rimed-ice in producing a low-level Zpr arc, further indi-
cating the positive impact of PRD assimilation.

There is some evidence that PRD also contains informa-
tion about storm dynamic and moisture information, which
can also be used to initialize NWP models (Snyder et al.,
2015; Carlin et al., 2017). Such studies indicate that Zpgr
columns can be used to identify regions of positive temper-
ature perturbations from latent heat release due to condensa-
tion and/or freezing. Realizing this, Carlin et al. (2017) ex-
plored the impact of assimilating real PRD through a mod-
ified cloud analysis (Hu et al., 2006). Preliminary findings
suggested a marked improvement in analyzed updraft loca-
tion. Quantitative analysis of Equitable Threat Score for Z
also revealed improved performance when using the modi-
fied cloud analysis routine in several experiments with the
ZpRr column than that of the control experiment without us-
ing the Zpr column. The study is also very preliminary.

Many challenges still remain for PRD assimilation. The
20 May study demonstrated how the number of predicted mo-
ments in model microphysics schemes affect microphysical
processes, where excessive size sorting known to occur with
double moment microphysics schemes (Dawson et al., 2010;
Morrison and Milbrandt, 2011; Dawson et al., 2015) had a
significant impact on the effectiveness of PRD data assimila-
tion. Also, the forward operators and microphysics schemes
must be improved, specifically in regard to the treatment of
frozen hydrometeors as well as mixed-phase hydrometeors,
which most microphysics schemes do not predict. Addition-
ally, the choice of model resolution has a significant impact
on the detailed polarimetric patterns and signatures that can
be resolved. The 20 May study used a 500-m grid spacing,
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Meteorological Society; used with permission].

and continuing advances in computer power can allow for
even higher resolution experiments. PRD assimilation is still
in its infancy, but the additional microphysical information
provided can help to improve our understanding of current
model deficiencies, both through assimilation experiments
like those referenced here and direct simulation comparisons
similar to Johnson et al. (2016) and Putnam et al. (2017b).

6. Polarimetric PAR technology

While radar polarimetry allows for more microphysical
information measured, there is increasing need for faster data
updates. To timely detect and predict fast evolving weather
phenomena such as tornadoes and downbursts, it is desirable
to rapidly acquire volumetric radar data at intervals of one
minute or less, as opposed to the current five minutes with
WSR-88D. For this reason, rapid scan PAR with agile beam
scanning capability was recently introduced to the weather
community (Weber et al., 2007; Zrnic et al., 2007; Heinsel-
man and Torres, 2011). Simulation experiments demonstrate
assimilation of PAR observations at 1-min intervals over a
short 15-min period yields significantly better analyses and
ensemble forecasts than those produced using WSR-88D ob-
servations (Yussouf and Stensrud, 2010). Thus, there is the
potential to increase the tornado warning lead time beyond
the present 10 to 15 minutes.

Another motivation behind introducing PAR technology
is the MPAR (multifunction PAR) and SENSR (Spectrum
Efficient National Surveillance Radar) initiatives to use one
radar network to replace the four radar networks in the United
States of the (1) National Weather Surveillance Radar (WSR-
88D), (2) Terminal Doppler Weather Radar (TDWR) for de-
tecting low altitude wind shear; (3) Airport Surveillance
Radar (ASR) for air traffic control; and (4) Air Route Surveil-
lance Radar (ARSR) for long-range air surveillance (Stailey
and Hondl, 2016). Since all the radars share the same prin-
ciple in detecting electromagnetic wave scattering from tar-
geted media, it is efficient to use a single radar network to
service all the missions. To do so, PAR fast scanning capabil-
ity is needed. Because WSR-88D has dual-polarization capa-
bility, future PAR for weather observation needs to have po-
larimetry capability as well, i.e., polarimetric PAR (PPAR).

PPARSs have been developed for satellite and military ap-
plications, but with limited scanning angles (Jordan et al.,
1995). For ground-based weather measurements, it is chal-
lenging to develop the PPAR technology because of the re-
quirements of wide angle scan and high accuracy for polari-
metric measurements (Zpr error < 0.2 dB, pyy error < 0.01,
wpp error < 3°). Nevertheless, the challenges and difficulties
have not curbed the enthusiasm and efforts of the commu-
nity to formulate PPAR theory and design and develop PPAR
systems for future weather observation and multi-missions
(Zhang et al., 2009).
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Several PPAR configurations and systems have been at-
tempted, including: (1) a planar PPAR (PPPAR) with one-
dimensional (1D) electronic scan capability antenna mounted
on a mechanically steerable platform, e.g., the Collaborative
Adaptive Sensing of the Atmosphere phase tilted radar (Hopf
et al., 2009); (2) a two-dimensional (2D) electronic scan PP-
PAR, like the National Severe Storms Laboratory (NSSL)
ten-panel demonstrator (shown in Fig. 7a); and (3) a cylindri-
cal PPAR (CPPAR) demonstrator (Fig. 7b) being developed
jointly by the University of Oklahoma (OU) and the NSSL
(Zhang et al., 2011, Karimkashi and Zhang, 2015, Fulton
et al., 2017). Each of these PPARs can cover the volume
more quickly than a mechanically steered beam due to beam
agility, versatility in beam shape, speed of changing point-
ing direction, and/or four radars operating simultaneously.

(a) NSSL TPD

(b) OU-NSSL CPPAR

1B

Aiadt

Fig. 7. Pictures of polarimetric PARs that are under develop-
ment: (a) NSSL 2D ten-panel planar PPAR (PPPAR) demon-
strator (TPD); and (b) OU-NSSL cylindrical PPAR (CPPAR).
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Although a considerable amount of effort has been put
into developing PPPAR, no satisfactory polarimetric weather
measurements have appeared in the literature. Initial testing
results of CPPAR are promising, but still preliminary, as doc-
umented in a technical report by Byrd et al. (2017). A set
of CPPAR measurements compared to the WSR-88D KTLX
measurements are duplicated in Fig. 8. Since the CPPAR has
a lower power (< 2 kW) and smaller aperture (< 2 m in diam-
eter), the lower sensitivity is expected, yielding less data cov-
erage than KTLX. It is promising to see the similar features in
ZpR, and Zy appear in both with the CPPAR and the KTLX
measurements. However, pyy is low and not up to expecta-
tions due to the antenna beam mismatch and other system in-
stability issues. The beam mismatch is being addressed by a
redesign of the frequency-scan dual-polarization column an-
tennas (Saeidi-Manesh et al., 2017). The CPPAR electronics
is also being redesigned and rebuilt to have a stable system so
that many CPPAR related issues such as commutating scan,
sector-to-sector isolation, surface wave effects, and accurate
weather measurements can be addressed/demonstrated.

Achieving comparable or better accuracy in the polari-
metric measurements than on the WSR-88D is challenging.
It is most difficult for the 2D PPPAR with multiple faces be-
cause the polarization basis for a planar array changes and be-
comes coupled for a pair of radiators and can cause bias/error
that is much larger than the maximum allowed error. The
1D PPPAR with a mechanical scan in azimuth is feasible
because of its relative simplicity in maintaining polarization
purity and azimuthal scan invariant beam characteristics, but
needs to be demonstrated. CPPAR is an alternative solution
for accurate polarimetric PAR measurements, which scans in
the azimuth by commutating its beam position to achieve the
high performance beam characteristics like the 1D PPPAR.
Further research and development are needed to realize this
potential.

7. Conclusions and discussion

This paper reviews the status of weather radar po-
larimetry, identifies the limitations and challenges of using
PRD, and proposes possible solutions and unification of ap-
proaches. Also discussed and explored are the challenges, re-
search and development for future weather observation using
PAR polarimetry technology. The main objective of this pa-
per is to raise these issues and generate consensus for finding
a path forward.

Collaborative efforts between the radar engineering/
meteorology/hydrology and NWP communities are neces-
sary to develop feasible new technology and to more effi-
ciently utilize the existing PRD to better monitor, quantify,
and forecast weather. Although radar data are becoming a
dominant factor and PRD are useful in short-term forecast-
ing and warning, PRD alone do not guarantee accurate short-
term forecasts. Other measurements such as satellite remote
sensing data and cellular communication signals (Overeem
et al., 2013) can be included to enhance the information con-
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Fig. 8. Comparison of polarimetric weather measurements between the CPPAR demonstrator located at the
pink circle and the WSR-88D KTLX radar at the red asterisk. The data were collected at 0413:47 UTC 10
September 2016 for CPPAR and 0413:50 UTC 10 September 2016 for KTLX. Data points with Z < 20 dBZ
were excluded. There are echoes in the KTLX data, but not in the CPPAR data, because CPPAR has a much
lower sensitivity due to its smaller antenna and lower transmitted power.

tent. On the other hand, NWP model microphysics parame-
terizations need to be improved so that the utilization of PRD
can make substantial contributions to improving the accu-
racy of weather forecasts. Direct comparisons between NWP-
simulated PRD and polarimetric radar measurements open
a feasible way to reveal model deficiencies and to improve
model physics and microphysics parameterizations. Assimi-
lation of PRD and data from other in-situ and remote sensors,

such as satellites, into high-resolution convective-scale NWP
models, together with judicious interpretation by meteorolo-
gists, is required to produce further improvements of QPE,
QPF, and severe weather warning lead time.
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