
Research Article
Video Data Integrity Verification Method Based on
Full Homomorphic Encryption in Cloud System

Ruoshui Liu , Jianghui Liu , Jingjie Zhang, and Moli Zhang

Information Engineering College, Henan University of Science and Technology, Luoyang 471003, China

Correspondence should be addressed to Jianghui Liu; jihua@haust.edu.cn

Received 1 August 2018; Accepted 16 September 2018; Published 22 October 2018

Guest Editor: Yuanlong Cao

Copyright © 2018 Ruoshui Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cloud computing is a new way of data storage, where users tend to upload video data to cloud servers without redundantly local
copies. However, it keeps the data out of users' hands which would conventionally control and manage the data. Therefore, it
becomes the key issue on how to ensure the integrity and reliability of the video data stored in the cloud for the provision of video
streaming services to end users.This paper details the verification methods for the integrity of video data encrypted using the fully
homomorphic crytosystems in the context of cloud computing. Specifically, we apply dynamic operation to video data stored in the
cloud with the method of block tags, so that the integrity of the data can be successfully verified.The whole process is based on the
analysis of present Remote Data Integrity Checking (RDIC) methods.

1. Introduction

In the current era of rapid development of the Internet
and big data technologies [1–5], the emergence of cloud
computing becomes inevitable. Cloud computing provides
large enterprises with an on-demand solution that enables
companies to lease cloud service in the form of infrastructure
or software to conduct tasks, e.g., data management, busi-
ness expansion and service provision [6]. Cloud computing
also provides individuals with a variety of cloud services.
Typically, cloud provisions of video services have greatly
improved the user experience [7]. Video data stored in
the cloud share some common characteristics, e.g., large
volume, high redundancy, and fast real-time requirement.
The compressed video data requires functions such as data
location indexing and controllable coding rate. However,
cloud computing has been controversial regarding its security
since its inception, and users cannot be guaranteed the
security of video data in the cloud. In other words, tenants
cannot fully trust cloud service providers [8]. Firstly, in
multitenant resource sharing environment, tenants normally
express concern about their video data which could be
leaked, falsified, and unauthorizedly spread by cloud service
providers or other tenants. Secondly, there is a risk of illegal
access because virtual machines cannot be effectively and

securely isolated. Thirdly, data and processes in cloud com-
puting often exist in a distributed manner; data belonging to
multiple parties needs to be shared with assurance of leakage
free and verified integrity [9]. These characteristics of video
data determine that video data encryption should generally
meet the following requirements.

(i) Security. Security is the primary requirement for data
encryption. It is generally accepted that when the cost of
deciphering the password is greater than that of directly
purchasing the video, the cryptosystem is secure. Since the
video data can also be regarded as ordinary binary data,
conventional passwords can be used in video encryption. In
addition, the large amount of video data gives rise to the
increased level of difficulty when code-breakers inevitably
perform a large number of decoding operations on the
encrypted data. Therefore, some typical and fast encryption
algorithms can be applied to ensuring security.

(ii) Compression Ratio. Generally speaking, the amount of
data before and after encryption and decryption remains
unchanged, so the compression ratio keeps unaltered.
This feature is called compression rate invariability. Data
encryption using the algorithm with the compression
rate invariability does not change the physical space in

Hindawi
International Journal of Digital Multimedia Broadcasting
Volume 2018, Article ID 7543875, 9 pages
https://doi.org/10.1155/2018/7543875

http://orcid.org/0000-0001-9521-0286
http://orcid.org/0000-0003-4201-4913
http://orcid.org/0000-0002-5132-6719
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/7543875

2 International Journal of Digital Multimedia Broadcasting

storage. The transmission rate of encrypted data remains the
same.

(iii) Real-Time. As it is required for real-time transmission
and access of video data, the use of encryption and decryption
algorithms cannot insert too much delay. Therefore, the
encryption and decryption algorithms need to be fast.

(iv) Data Format Invariability. The invariability of the data
format defined here means that the format of the video data
before encryption and after decryption remains unchanged.
This feature brings a number of advantages. The important
one is to make the time positioning of video data possible.
This enables the support of the addition, deletion, cut, and
paste operations to the video data.

(v) Data Operability. In some cases, it is required to directly
operate on the encrypted data without having to perform
the cumbersome process of decrypting and then encrypting.
These operations include rate control, image block clipping,
addition, and deletion. The algorithms with which some
operations become still operable after data is encrypted is said
to have data operability.

In the past ten years, there have been many encryption
algorithms applied to MPEG video streams [10]. All algo-
rithms can meet different levels of security requirements.
Most of the algorithms ensure the real-time nature of video
streaming and display processing. Some of them guaran-
tee that the compression ratio is unchanged. In addition,
compatibility, operability, abnormality [11], and routing [12,
13] have been also addressed in other algorithms. Based
on the difference between the encryption algorithm and
the compression coding process, we divide the existing
algorithms into the following categories [14]. The first is the
direct encryption algorithm inwhich video data is considered
as ordinary data to be directly encrypted. Therefore, the
algorithms in this category do not have compatibility. The
second is called the selective encryption algorithm in which
video data is partially and selectively encrypted, and those
algorithms are compatible. The third is called the encryption
algorithm with compression function. The algorithms in this
categories combine encryption process, the compression and
encoding process together, so that they embraces the features
of being compressive, compatible, and operable.

This paper proposes a video data integrity checking
method based on homomorphic encryption. The user can
verify the integrity of the data and support public verification
and data dynamics. Using homomorphic tags can greatly
reduce the bandwidth requirement for video data integrity
checking solution. The proposed method and implemented
services are deployed on the cloud system, which reduces the
cloud user’s communication and computational overhead.
It is proved to be feasible through security analysis and
performance analysis with experimental results.

2. Related Work

Resource monitoring is an important part for resource man-
agement of cloud platform. It provides the basis for resource

allocation, task scheduling and load balancing [15]. Since
the cloud computing environment has the characteristics
of transparent virtualization and resource flexibility, it is
infeasible to apply conventional methods to protect the data
security in the cloud platform. Additionally, the collection,
transmission, storage, and analysis of a large number of
monitored datawill bringmuch cost.Therefore, it is of critical
importance to develop new tools suitable for monitoring data
in the cloud.

The cryptographic protocol is an essential part of most
security modules [16]. In a broad sense, all cryptographic
protocols are a special case of securemultiparty computation.
They are widely used inmany fields, such as financial trading,
social networking, real-time monitoring, and information
management. Conventional cryptographic protocols often
include multiple participants, who may be trusted parties
(e.g., the user and authenticated participants) or untrusted
parties (unauthenticated participants). Theoretically, all pro-
tocols with untrustworthy parties have the potential for
the adoption of full homomorphic encryption. Therefore,
most applications of all-homomorphic encryption can be
considered as a secure multiparty computation. Fully homo-
morphic encryption allows various operations to be carried
out to encrypted data without a private key. This enables
computing of sensitive datawith encryption to be outsourced,
so that data security and privacy problems in the current
development of cloud computing can be effectively solved
[17].The general application framework of all-homomorphic
encryption is shown in Figure 1.

The homomorphic encryption algorithm is the data
obfuscation algorithm in code obfuscation [18]. The data in
the program not only contains numbers but also characters.
It is insufficient to use homomorphic encryption to numbers
only. Moreover, the execution efficiency of the program will
be slowed down after the code is obfuscated. The Fourier
transform can reduce the amount of calculation and the
length of the ciphertext. It can also improve the operational
efficiency of the program while ensuring security. The data
obfuscation in code obfuscation includes polynomial obfus-
cation, data conversion obfuscation, etc. Their disadvantage
is that the data is easily exposed during encryption and
decryption. The relationship between reverse engineering
and obfuscation algorithms is shown in Figure 2.

The homomorphic encryption algorithm operates inter-
nally, and it can be processed without decryption. As the
increase in demand for information security becomes appar-
ent, especially in the applications of cloud computing and e-
commerce, research on homomorphic encryption algorithms
is constantly deepening [18].

It has been found that not only homomorphic encryption
can be applied to cloud computing, a number of computing
functions that satisfy multiple additions and few multiplica-
tions are also useful for privacy-preserving cloud services.
For example, averaging does not require multiplication.
Standard deviation requires only one multiplication, and
some predictive analysis such as logistic regression requires
very few multiplications. In the homomorphic encryption
schemes [19], schemes like RSA satisfy the multiplicative
homomorphism [20] and others like Pailer satisfy the

International Journal of Digital Multimedia Broadcasting 3

User

Homomorphic
Encryption/

Decryption Scheme

Cloud Service Application

Data Processing Algorithm

Untrusted Memory

Cloud Service
Cooperation

CooperationApplication

Trusted Party Untrusted Party Other Participants

Clear
Text

Encrypted
Text

Load
Save

ProcessedProcessed
Not

Request
Response

Request

Figure 1: General application framework of fully homomorphic scheme.

Code obfuscation Reverse
Engineering

Pay attention to the internal
information of the program

opposition
The internal information

of the program is not acquired
Get program

internal information
Protection

effect
Attack effect

Figure 2: The relationship between obfuscation algorithm and reverse engineering.

additive homomorphism [21]. FHE has the property of finite
homomorphic operations and is more efficient. In addition,
it has a shorter ciphertext size.

When using the protocol based on the homomorphic
algorithm to check the integrity of the cloud video files,
the network bandwidth resources are consumed much less
during the execution process. This is because the servers
only need to transfer the integrity evidence to users without
returning actual video files. Therefore, it enables users to
timely detect whether the video files stored in the cloud are
corrupted or lost. It saves users more time for data recovery
[20]. However, the data integrity verification protocol based
on the homomorphic algorithm usually involves multiple
large integer exponentiation operations or multiplication
operations on the elliptic curve.This fact gives rise to a larger
amount of computation. Specifically, for users with limited
computing power [22], it takes a long time for homomorphic
tags to be generated for video file blocks before uploading
video files to the cloud. The computation of the validity of

the integrity evidence also requires more time. Although
the cloud servers have powerful computing capability, they
will consume many resources while performing integrity
verification for a number of users.

3. Video Data Integrity Verification Scheme

3.1. SecurityModel. In the process of checking the integrity of
cloud video files using a protocol based on a homomorphic
algorithm, the cloud storage server sends users the integrity
proof without including a subset of video files or video
files after calculation. After receiving the integrity proof,
users perform verification locally to determine whether the
target data block is intact in the cloud. The Diffie-Hellman
system [23], RSA system [24], and bilinear pairings [25] are
common homomorphic algorithms in this type of protocol.
The execution process of these protocols can be mainly
divided into the following 7 steps:

4 International Journal of Digital Multimedia Broadcasting

Step 1 (initialize parameters). The user and the cloud server
negotiate a set of parameters that are shared by both par-
ties.

Step 2 (initialize keys). Keys are usually asymmetric in the
algorithm.The public key is disclosed after the user initializes
the key, but the private key is kept by the user.

Step 3 (generate homomorphic tags). The user firstly breaks
the video file into blocks with the certain size before upload-
ing the video file to the cloud server.Then the user generates a
homomorphic tag locally for each video file block. The video
file block and the user’s private key are taken as input, and the
homomorphic tag is the output.

Step 4 (store video files and tags). The user will store and
manage the video file and the tag. Then the user uploads the
video file to the cloud for online storage. The local copy is
deleted to release the local storage space after the transfer is
completed. The homomorphic tag can be stored locally, or it
cannot be uploaded to the cloud server until it is encrypted
using a symmetric encryption algorithm.

Step 5 (the user initiates a verification challenge). The user
generates randomnumbers locally and constructs a challenge
message. Then the user transmits the message to the server.

Step 6 (produce evidence of integrity). The server parses the
challenge message and reads the corresponding video file
block. The algorithm of producing the integrity evidence
consists of three inputs, i.e., the video file block, the chal-
lenge message, and the parameter obtained in Step 1. The
output is the integrity evidence of the video file block. The
server returns the resulting integrity evidence to the challenge
initiator.

Step 7 (verify the integrity evidence). The user verifies the
legitimacy of the integrity evidence after receipt. The algo-
rithm used in this step usually consists of three inputs, i.e.,
integrity evidence, homomorphic tag and user public key.The
output is a Boolean value, representing whether the integrity
evidence is valid.

The formal definition and security definition of data
integrity verification are based on full homomorphic encryp-
tion. The security model used in this article is shown as
follows:

Step 1 (initialize). Challenger runs initialization algorithm
and enters related security parameters 𝑘, 𝜆𝑝, 𝜆𝑞, 𝑚, and 𝑠.
He will obtain the homomorphic key 𝐾 and private key𝑠𝑘, pass the public key to the opponent. The expression is
KeyGen(1𝑘, 𝑙𝑝, 𝑙𝑞, 𝑚, 𝑠) 󳨀→ (𝐾, 𝑠𝑘), where 𝑚 is the number
of message sectors and 𝑠 is a random seed.

Step 2 (generate). This stage is performed by the data owner
to generate the tag for the video file. The user inputs the
homomorphic key 𝐾, the private key 𝑠𝑘, and the video file𝐹 to output tag set 𝑇, which is the sequential set of tags for
each block. The expression is TagGen(𝐾, 𝑠𝑘, 𝐹) 󳨀→ 𝑇.

Step 3 (challenge). The data owner executes the algorithm to
generate challenge information by blocks as input.

Step 4 (guess). Cloud Storage Service (CSS) executes the
algorithm to generate integrity verification by taking inputs
of video file, tag set, and challenge.

Step 5 (prove). The data owner executes the algorithm, using
the validation 𝑝 returned by CSS to check the integrity of
the video file. The owner takes inputs of the homomorphic
key 𝐾, the private key 𝑠𝑘, challenge 𝑐ℎ𝑎𝑙𝑙, and verification 𝑝.
He obtains the output 1 if 𝑝 is correct, and 0 otherwise. Its
expression is Verify(𝐾, 𝑠𝑘, 𝑐ℎ𝑎𝑙𝑙, 𝑝) 󳨀→ {1, 0}.
3.2. Video Integrity Verification Method Based on Fully Homo-
morphic Encryption. The video file is stored in blocks, and
the data block is used as the minimum unit in the later
stages of label generation and evidence verification. In the
initialization phase, a series of initialization parameters are
generated for the establishment of the hash function. The
encryption is performed using the fully homomorphic
encryption function.The algorithmKeyGen(𝜆p , 𝜆q, 𝑚, 𝑠) 󳨀→
𝑘 is applied to obtain the homomorphic key 𝑘 = (𝑝, 𝑞, 󳨀→𝑔).
In the tag generation phase, the client uses a pseudorandom
number generator to generate a series of pseudorandom
numbers and then multiplies the video file blocks with
pseudorandom numbers to obtain the 𝑡𝑎𝑔. The client sends
the video file blocks 𝑏𝑖, 𝑡𝑎𝑔, 𝑝, and 𝑞 to the server but saves
the generator 󳨀→𝑔 , the hash parameter 𝐺, and the 𝑠𝑒𝑒𝑑 used
by the pseudorandom number generator. In the challenge
phase, the client uses a pseudorandom number generator
to generate 𝑛 random challenge blocks and then sends it
to the server. During the evidence generation phase, the
server computes evidences 𝑏𝑐 and 𝑡𝑐 for the data block and
label, respectively; they are later returned to client. In the
evidence verification phase, the client uses 𝑠𝑒𝑒𝑑 to regenerate
the corresponding pseudorandom number and verifies that
the 𝑡𝑐 returned by the server is same as the client-specified𝑡𝑐. It also verifies whether 𝑡𝑐 corresponds to the correct 𝑏𝑐.
Finally, it is required to conduct security analysis to this
verification scheme. In the challenge phase, the challenger
randomly generates k challenge blocks and sends them to
A. A generates the integrity verification P of the challenge
block. If P passes the verification, then A is considered to
have completed a successful deception. Suppose A deletes the
challenger’s data block and it returns any data block and its
corresponding label to the challenger. It can be verified that
the returned 𝑏𝑐 and 𝑡𝑐 are the correct counterparts, but A does
not know the randomnumber used to construct tag.What the
challenger does is to homomorphically hash the received data
block and then generate the pseudorandom number with the
same seed as the one used to generate tag. The tag is recon-
structed and compared with the tag returned by A. The data
blocks and tags returned by A are specified by the challen-
ger.

The video file 𝐹 is represented as a matrix of 𝑚 × 𝑛, and
each cell in the matrix is an element in 𝑍𝑝. The choice of

International Journal of Digital Multimedia Broadcasting 5

(1) Function KeyGen(𝜆p, 𝜆q, 𝑚, 𝑠).
(2) do
(3) 𝑞 󳨀→ 𝑞 ⋅Gen(𝜆𝑞).
(4) 𝑝 󳨀→ 𝑝 ⋅ Gen(𝑞, 𝜆𝑝).
(5) while 𝑝 = 0 done
(6) do
(7) 𝑥 ←󳨀 𝑓(𝑝 − 1) + 1.
(8) 𝑔𝑖 ←󳨀 𝑥(𝑝−1)/𝑞 mod 𝑝.
(9) while 𝑔𝑖 = 1 done
(10) return (𝑝, 𝑞, 󳨀→𝑔)
(11) end

Algorithm 1: Initialization parameter generation algorithm.

(1) Function 𝑞 ⋅ Gen(𝜆𝑞).
(2) do
(3) 𝑞 ←󳨀 𝑓(2𝜆𝑞).
(4) while 𝑞 is not prime done
(5) return 𝑞.
(6) Function 𝑝 ⋅Gen(𝑞, 𝜆𝑝)
(7) for 𝑖 = 1 to 4𝜆𝑝
(8) 𝑥 ←󳨀 𝑓(2𝜆𝑞).
(9) 𝑐 ←󳨀 𝑋 mod 2𝑞.
(10) 𝑝 ←󳨀 𝑋 − 𝑐 + 1.
(11) if𝑝 is prime then return done
(12) return 𝑝.
(13) esle
(14) return 0.
(15) end.

Algorithm 2: Fully homomorphic tag generation algorithm.

guarantees that each element is less than 𝑚 and therefore less
than 2𝜆𝑞−1.It is shown in

𝐹 = (𝑏1𝑏2 ⋅ ⋅ ⋅ 𝑏𝑛) = [[[[
[

𝑏11 ⋅ ⋅ ⋅ 𝑏1𝑛... ...
𝑏𝑚1 ⋅ ⋅ ⋅ 𝑏𝑚𝑛

]]]]
]

. (1)

The column 𝑗 of𝐹 is only related to the 𝑗-thmessage block
of the video file 𝐹 and is written as 𝑏𝑗 = (𝑏1,𝑗, . . . , 𝑏𝑚,𝑗). The
addition of the 2 video file blocks is to add the corresponding
column vectors directly.

𝑏𝑖 + 𝑏𝑗 = (𝑏𝑖,𝑖, +𝑏𝑖,𝑗, . . . , 𝑏𝑚,𝑖 + 𝑏𝑚,𝑗) mod 𝑞. (2)

Algorithm 1 shows the algorithm of initialization param-
eter generation, while Algorithm 2 shows the algorithm of
fully homomorphic tag generation.

3.3. Security Analysis. In order to verify the security of this
scheme, a data-holding game is created. If the opponent 𝐴
wins the game, 𝐴 can get all ciphertext data blocks and
signature label information correctly. The security of this
scheme is based on collision resistance of hash function [26]
and the difficulty of Diffie-Hellman problem [27].

Theorem 1. If the hash function and the homomorphic hash
function are nonconflicting, the data integrity checking method
in the paper is safe.

Proof. Given the challenged video file 𝐹, the file 𝐹 is divided
into 𝑛 blocks marked as 𝐹 = (𝐹1, 𝐹2, . . . , 𝐹𝑛). Then 𝐹𝑖 is
divided into 𝑚 sectors marked as 𝐹𝑖 = (𝑓1𝑖, 𝑓2𝑖, . . . , 𝑓𝑚𝑖). The
game between challenger 𝐶 and opponent 𝐴 is described as
follows.

𝑆tep 1 (generate key).Theuser executes the algorithmKeyGen
to obtain the homomorphic key𝐾 and the private key 𝑠𝑘, both
of them are kept in secret by 𝐶.
𝑆tep 2 (tag query). At any time, the opponent 𝐴 can query
the label of any block 𝐹𝑖 (1 ≤ 𝑖 ≤ 𝑛). 𝐶 maintains a list of
groupswith a value of (𝑖, 𝐹𝑖, 𝑇𝑖), named𝑇𝑎𝑏1.When𝐴 sends a
query label (𝑖, 𝐹𝑖),𝐶will checkwhether the columnof (𝑖, 𝐹𝑖, ∗)
exists in 𝑇𝑎𝑏1. If (𝑖, 𝐹𝑖, ∗) ∈ 𝑇𝑎𝑏1, then 𝐶 indexes (𝑖, 𝐹𝑖, ∗)
and returns 𝑇𝑖 to 𝐴. Otherwise, 𝐶 computes 𝑇𝑖 using TagGen
algorithm and adds (𝑖, 𝐹𝑖, 𝑇𝑖) to 𝑇𝑎𝑏1 and returns 𝑇𝑖 to 𝐴.
𝑆tep 3 (proof verification query). At any time, 𝐴 can start
a certification verification query to 𝐶. 𝐴 adaptively select
several blocks. The labels of the blocks are queried from 𝐶.
A certificate is generated for the selected block. 𝐴 sends the
certificate to 𝐶 and requests 𝐶 to response. 𝐶 calls the Verify
algorithm to check the proof and returns the verification
result to 𝐴.
𝑆tep 4 (challenge). 𝐶 randomly selects two values 𝑘1, 𝑘2 ∈ 𝑍∗𝑞
and challenge block number 𝐶. It is required that each pair(𝑙, 𝐹𝑙) should exist in 𝑇𝑎𝑏1, where l ∈ {𝜋𝑘1, i | 1 ≤ i ≤ c}.
Then 𝐶 sends the challenge 𝑐ℎ𝑎𝑙𝑙 = {𝑐, 𝑘1, 𝑘2} to 𝐴, and asks𝐴 to have proof 𝑃 of the data of the challenged block.

𝑆tep 5 (forgery). 𝐴 generates a proof 𝑃󸀠 = (𝐹󸀠, 𝑇󸀠) based on
challenge 𝑐ℎ𝑎𝑙𝑙 = {𝑐, 𝑘1, 𝑘2} and sends it to 𝐶, where 𝐹󸀠 =
(𝐹󸀠1, . . . , 𝐹󸀠𝑚). 𝐴 wins if 𝑃󸀠 = (𝐹󸀠, 𝑇󸀠) can pass verification. 𝐴
cannot obtain valid proof if it does not have a challenge block.
Thenwewill prove that if𝐴does notmaintain the entire video
document, then chances of 𝐴 winning a data-holding game
are negligible.

𝑆tep 6 (output). Assuming the opponent 𝐴 wins, this means
that 𝑃󸀠 = (𝐹󸀠, 𝑇󸀠) can be proved correct by (3).

If both CSS and the data owner actually perform this
scheme, its correctness can be demonstrated as follows:

(𝑐∏
𝑖=1

ℎ𝑎𝑖V𝑖 ⋅
𝑚∏
𝑡=1

𝑔𝐹𝑡𝑡)
𝑠𝑘

mod 𝑝

= (𝑐∏
𝑖=1

ℎ𝑎𝑖V𝑖 ⋅
𝑚∏
𝑡=1

𝑔∑𝑐𝑖=1 𝑎𝑖𝑓𝑡V𝑖𝑡)𝑠𝑘 mod 𝑝

= (𝑐∏
𝑖=1

ℎ𝑎𝑖V𝑖 ⋅
𝑐∏
𝑖=1

𝑚∏
𝑡=1

𝑔𝑎𝑖 ⋅𝑓𝑡V𝑖𝑡)𝑠𝑘 mod 𝑝

6 International Journal of Digital Multimedia Broadcasting

= (𝑐∏
𝑖=1

(ℎV𝑖 ⋅
𝑚∏
𝑡=1

𝑔𝑓𝑡V𝑖𝑡)𝑎𝑖)𝑠𝑘 mod 𝑝

= 𝑐∏
𝑖=1

((ℎV𝑖 ⋅
𝑚∏
𝑡=1

𝑔𝑓𝑡V𝑖𝑡)𝑠𝑘)
𝑎𝑖

mod 𝑝

= 𝑐∏
𝑖=1

(𝑇V𝑖)𝑎𝑖 mod 𝑝 = 𝑇
(3)

3.4. Computation Complexity Analysis. Four stages con-
tribute to the computation overhead mainly: tag generation,
checking request generation, verification information gener-
ation, and integrity verification.(1) In the tag generation phase, tag information is
generated for 𝑛 blocks of data. The computational com-
plexity is 𝑂(𝑛). According to Euler’s theorem, gcd(𝑒,𝑁),
then 𝑒𝜙(𝑁) mod 𝑁 = 1. Since modulo operations are much
more efficient than exponential operations, only the overhead
of the exponentiation operation is considered. Therefore,
the computation cost of the tag generation stage is (𝑛 +1)𝑘 × Texp(|N|,N), where 𝑛 is the number of data blocks,𝑛 × 𝑘 denotes the basic block number, and Texp(len, num)
represents the computational time cost of amodulo operation
with an exponent of 𝑙𝑒𝑛 bits and a module of 𝑛𝑢𝑚 for an
integer.(2) In the checking request generation phase, the com-
putational complexity of two random numbers (𝑟, 𝑒) is 𝑂(1),
and the computational overhead is 𝑇𝑝𝑟𝑛𝑔(|𝑁| + 𝑇𝑝𝑟𝑛𝑔(𝑘)).𝑇𝑝𝑟𝑛𝑔(𝑙𝑒𝑛) indicates the computational overhead time of
generating 𝑙𝑒𝑛 bits pseudorandom number.(3) In the verification information generation phase,
the computational complexity is 𝑂(𝑛). The cloud server
first computes 𝑒𝑟 = 𝑒𝑟 mod 𝑁, which performs a modulo
operation with a computing time of Texp(|𝑁|,𝑁). Then it
is necessary to generate multiple pseudorandom numbers,
where 𝑛 × 𝑘 times large multiplication calculations are
required in ∑𝑖=𝑛,𝑗=𝑘𝑖=1,𝑗=1 𝑚𝑖,𝑗ℎ(𝑚𝑖,𝑗)𝑓𝑖(𝑗)𝑓(𝑖). The length of 𝑓𝑖(𝑗)
and 𝑚𝑖 is 𝑑 bits, while the length of ℎ(𝑚𝑖,𝑗) is ℎ bits. Each
𝑚𝑖,𝑗ℎ(𝑚𝑖,𝑗)𝑓𝑖(𝑗)𝑓(𝑖) and ∑𝑖=𝑛,𝑗=𝑘𝑖=1,𝑗=1 𝑚𝑖,𝑗ℎ(𝑚𝑖,𝑗)𝑓𝑖(𝑗)𝑓(𝑖) are cal-
culated. The total computational overhead of the verification
information generation phase is 𝑇exp(|𝑁|,𝑁) + (𝑛 × 𝑘 +𝑛)𝑇𝑝𝑟𝑛𝑔(𝑑) + 𝑛× 𝑘×𝑇𝑚𝑢𝑙(2𝑑 + 𝑙 + ℎ) + 𝑛× 𝑘×𝑇𝑎𝑑𝑑(2𝑑 + 𝑙 + ℎ),
where the computational overhead of𝑇𝑚𝑢𝑙(𝑙𝑒𝑛) represents the
multiplication of several 𝑙𝑒𝑛 bits, and 𝑇𝑎𝑑𝑑(𝑙𝑒𝑛) represents
the computational overhead of the addition of several 𝑙𝑒𝑛
bits.(4) The computational complexity of the verification
integrity phase is 𝑂(𝑛). The cloud storage server requires𝑛 + 1 times of modulo operation and 𝑛 − 1 times of modular
multiplication operation. The calculated overhead for the
entire phase is (𝑛 + 1)𝑇exp(𝑑,𝑁) + (𝑛 − 1)𝑇𝑚𝑢𝑙(|𝑁|,𝑁), where𝑠𝑢𝑚×𝑇𝑚𝑢𝑙(𝑙e𝑛, 𝑛𝑢𝑚) denotes the time cost ofmodularization𝑛𝑢𝑚 for 𝑛𝑢𝑚 integers of 𝑙𝑒𝑛 bits.

Table 1: The experimental environment.

parameters values
CPU 2.4GHz Intel(R) Core i7-4712MQ
Internal Memory Storage 8 GB
Operating System (OS) Windows 7
Exploitation Environment VMwareWorkStation 10

Table 2: File integrity check results.

document names checking results
A fail
B fail
C success

4. Experimental Results and Analysis

The experiment was run on a PC computer with the configu-
ration shown in Table 1.

This paper uses MIRACL library to implement the
prototype of the proposed RDPC scheme in C language,
and the implementation is based on Pairing-Based Cryp-
tography (PBC) library and GNU multiarithmetic precision
(GMP) library. The homomorphic encryption algorithm is
implemented under the framework of VMware WorkStation
10. The scheme in [24] was implemented in simulation for
efficiency comparison. Four experiments are performed in
the followings according different requirement setup of the
proposed scheme.

In order to check the performance of data integrity
verification, four metrics are considered, which are security,
storage overhead, communication overhead, and computa-
tional cost. Security means that each scheme has different
security level with different technology.The storage overhead
refers to the data block size occupied by metadata in the
scheme, and the communication overhead refers to the
overhead caused by the communication between the user and
the cloud storage server.Thismainly exists in the challenging-
response link between CSS and TPA. These three conditions
determine the computational overhead in data preprocessing
stage, integrity proof generation stage, and verification stage.

Experiment 1, three 10MB files (files A, B, and C) are
processed, signed, and stored. Then, 10% of the file A is
deleted, 10% of the file B is modified, and the file C remains
unmodified. Finally, the integrity of the three files is verified.
The results are shown in Table 2.

The experimental results show that when the file is deleted
or tampered, the integrity of the data cannot be passed by the
proposed scheme, but the unmodified file can be verified. It
proves the feasibility of this method.

Experiment 2, firstly, a 10MB file is processed and stored
in blocks. Then it is tampered with the proportion of 0.1%,
0.2%, 0.4%, 0.6%, 0.8%, 1%, and 1.5%, respectively. Finally,
the integrity of the file was verified, and the experiments
with each setting were carried out 10, 20, 40, 60, 80, and 100,
respectively. The result is shown in Table 3.

The experimental results show that the 10MB file with
tampering rate above 0.6% has the success rate of file

International Journal of Digital Multimedia Broadcasting 7

Table 3: The relationship between the proportion of tampered files and the efficiency of the algorithm.

Number of experiments Tampering rate (%)
0.1 0.2 0.4 0.6 0.8 1.0 1.5

10 8 9 0 10 10 10 10
20 15 17 19 20 20 20 20
40 32 36 37 38 40 40 40
60 55 57 58 60 60 60 60
80 72 73 75 77 79 80 80
100 91 93 94 97 99 100 100

Table 4: Relationship between data block and efficiency of algorithm.

Number of experiments Data blocks
50 100 150 200 250 300 400

10 7 8 9 10 10 10 10
20 16 17 19 20 20 20 20
40 33 36 37 38 40 40 40
60 52 54 57 59 60 60 60
80 72 73 76 77 79 80 80
100 93 95 96 97 99 100 100

integrity checking which is 100, and the algorithm checking
becomes highly efficient with the increase in the number of
experiments runs. This suggests that the integrity of the file
can be accurately detected.

Experiment 3, firstly, a 100MBfile is processed and stored
in chunks. Then data blocks of 50, 100, 150, 200, 250, 300,
and 400 for multiple integrity verification are conducted.The
experimental results are shown in Table 4.

The experimental results show that the data integrity
verification which has the highest data integrity verification
has the higher number of successful rate with the increase of
in number of data blocks and number of experiment runs.
This becomes obvious when the number of data blocks is 200
and above.

Experiment 4, firstly, the time cost of establishing the
algorithm is evaluated. This is determined mainly by the
parameters p and q. The size of the block is set to 16 kb, the
size of the sector is set to 256 bits, |𝑞| = 257, and |𝑝| = 512.
Thenwemainly consider the installation time cost of different
sizes of p. In order to improve accuracy, we run simulations
of different cycles from 1 to 100. The results are shown in
Figure 3.

Experimental results show that when |𝑝| = 512 and|𝑝| = 1024, the installation time costs are relatively stable
at 0.16s and 1.28s, respectively. The cost is acceptably low.
An experimental evaluation of the computational cost of tag
generation is performed. In the experiment, |𝑝| = 1024,|𝑞| = 257. In both scenarios, each block has the same number
of sectors. The result is shown in Figure 4.

Experimental results show that the relationship between
the computational cost and number of sectors for two
schemes is approximately linear. For example, comparison
scheme results in the time cost of about 1.4s to generate a
block label with 512 sectors, and the proposed scheme only
needs 0.42s. In addition, the computational cost of the label

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Se
tu

p
Ti

m
e

11 21 31 41 51 61 71 81 911
Operational Cycle Time

Ｊ
=1024

Ｊ
=512

Figure 3:The setup time cost.

generation in the comparison program is significantly higher
than the proposed program with the increase of number of
sectors.Therefore, it can be seen that our proposed scheme is
more computational cost effective and feasible.

Finally, the number of sectors per block is set to 512. Since
the computational cost of proof generation and verification
is mainly determined by the number of challenged blocks,
comparison experiments are conducted for different number
of challenged blocks. Figures 5 and 6 show the computational
cost of proof generation and verification when the parameters
are set to |𝑝| = 1024, |𝑞| = 257.

The experimental results show that the cost of verification
and proof generation rises with the increase of the number
of challenged blocks. Our proposed scheme has a greater

8 International Journal of Digital Multimedia Broadcasting

0

500

1000

1500

1 2 3 4 5

C
os

t o
f T

ag
 G

en
er

at
io

n

Section Number

Comparison Scheme
Proposed Scheme

Figure 4: Tag generation computational cost.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5

C
om

pu
ta

tio
n

C
os

t o
f P

ro
of

 G
en

er
at

io
n

Block Number

Comparison Scheme
Proposed Scheme

Figure 5: Computation cost of proof generation.

advantage to the comparison scheme in terms of compu-
tation cost, especially with the increase in the number of
blocks. When the number of blocks challenged is less than
approximately 220, the cost of our scheme is slightly greater
than the comparison scheme in Figure 6. However, with the
increase of the number of challenge blocks, the overhead
of the comparison scheme has grown rapidly, exceeding the
proposed scheme. It greatly exceeds the proposed scheme.
According to studies, 1% of the errors per 460 blocks occurs
for a 1GB video file. This gives rise to a confidence level of
99%. In the comparison scheme, in order to challenge 460
blocks, the proof generation takes 3.1s and the verification
takes 1.2s, respectively. In our scheme, they only take 0.52s
and 0.8s, respectively. Therefore, our proposed scheme is
more feasible.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9

C
om

pu
ta

tio
n

C
os

t O
f V

er
ifi

ca
tio

n

Block Number

Comparison Scheme
Proposed Scheme

Figure 6: Computation cost of verification.

5. Conclusion

Cloud services have exploded in the era of cloud computing,
and various intrusion activities have put information security
at risk. This paper studies the integrity of video data in
cloud systems, and we propose a method for verification of
video data integrity based on full homomorphic encryption.
Firstly, the homomorphic encryption technology is used to
initialize the video data, which reduces the time complexity.
Secondly, the feasibility of the method was verified through
security analysis and performance analysis. The final simu-
lation results show that the proposed scheme is superior to
comparison schemes in all aspects, and it suggests that the
proposed scheme is serving better for the video data integrity
verification purpose in the cloud environment.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (NSFC) under Grants no.
61602155 and no. 61370221 and in part by the Industry
University Research Project of Henan Province under Grant
no. 172107000005.

References

[1] W. Quan, Y. Liu, H. Zhang, and S. Yu, “Enhancing crowd
collaborations for software defined vehicular networks,” IEEE
Communications Magazine, vol. 55, no. 8, pp. 80–86, 2017.

[2] B. Feng, H. Zhang, H. Zhou, and S. Yu, “Locator/Identifier Split
Networking: A Promising Future Internet Architecture,” IEEE

International Journal of Digital Multimedia Broadcasting 9

Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2927–
2948, 2017.

[3] H. Zhang, W. Quan, H.-C. Chao, and C. Qiao, “Smart identifier
network: A collaborative architecture for the future internet,”
IEEE Network, vol. 30, no. 3, pp. 46–51, 2016.

[4] C. Yuan, Z. Xia, and X. Sun, “Coverless image steganography
based on SIFT and BOF,” Journal of Internet Technology, vol. 18,
no. 2, pp. 209–216, 2017.

[5] F. Song, Z. Ai, J. Li et al., “Smart Collaborative Caching for
Information-Centric IoT in Fog Computing,” Sensors, vol. 17,
no. 11, p. 2512, 2017.

[6] Q. Wu, M. Zhang, R. Zheng, Y. Lou, and W. Wei, “A QoS-
Satisfied Prediction Model for Cloud-Service Composition
Based on a Hidden Markov Model,”Mathematical Problems in
Engineering, vol. 2013, Article ID 387083, 7 pages, 2013.

[7] J. Li, W. Yao, Y. Zhang, H. L. Qian, and J. G. Han, “Flexible and
fine-grained attribute-based data storage in cloud computing,”
IEEE Transactions on Services Computing, vol. 10, no. 5, pp. 785–
796, 2017.

[8] Q. Wu, X. Zhang, M. Zhang, Y. Lou, R. Zheng, and W. Wei,
“Reputation Revision Method for Selecting Cloud Services
Based on Prior Knowledge and a Market Mechanism,” The
Scientific World Journal, vol. 2014, Article ID 617087, 9 pages,
2014.

[9] Z. Fu, K. Ren, and J. Shu, “Enabling personalized search over
encrypted outsourced data with efficiency improvement,” IEEE
Transactions on Parallel Distributed Systems, vol. 27, no. 9, pp.
2546–2559, 2016.

[10] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomor-
phic encryption from (standard) LWE,” in Proceedings of the
IEEE 52nd Annual Symposium on Foundations of Computer
Science (FOCS ’11), pp. 97–106, Palm Springs, Calif, USA,
October 2011.

[11] R. Zheng, J. Chen, M. Zhang, Q. Wu, J. Zhu, and H. Wang, “A
collaborative analysis method of user abnormal behavior based
on reputation voting in cloud environment,” Future Generation
Computer Systems, vol. 83, pp. 60–74, 2018.

[12] M. Zhang, M. Yang, Q. Wu, R. Zheng, and J. Zhu, “Smart
perception and autonomic optimization: A novel bio-inspired
hybrid routing protocol for MANETs,” Future Generation Com-
puter Systems, vol. 81, pp. 505–513, 2018.

[13] M. Zhang, C. Xu, J. Guan, R. Zheng, Q. Wu, and H. Zhang, “A
Novel Physarum-Inspired Routing Protocol forWireless Sensor
Networks,” International Journal ofDistributed SensorNetworks,
vol. 2013, Article ID 483581, 12 pages, 2013.

[14] R. L. Rivest, L. Adleman, and M. L. Dertouzos, On Data Banks
And Privacy Homomorphism Proc of Foundations of Secure
Computation, Academic Press, New York, NY, USA, 1978.

[15] M. Liu and W. An, “Fully Homomorphic Encryption and Its
Application,” Journal of Computer Research&Development, vol.
51, no. 12, pp. 2593–2603, 2014.

[16] H. Yan, G. Chen, and T. Han, “Scope of application of homo-
morphic encryption algorithm and improvement of efficiency
and application,” Computer Engineering and Design, vol. 38, no.
2, pp. 318–322, 2017.

[17] H. Demin and Y. Xing, “Dynamic cloud storage data integrity
verifying method based on homomorphic tags,” Application
Research of Computers, vol. no. 5, pp. 1362–1365, May 2014.

[18] Y. Zhu, H. Wang, Z. HU et al., Cooperative Provable Data
Possession, Peking University and Arizona University, Beijing,
China, 2010.

[19] X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and N. Hanley,
“Optimised multiplication architectures for accelerating fully
homomorphic encryption,” Institute of Electrical and Electronics
Engineers. Transactions on Computers, vol. 65, no. 9, pp. 2794–
2806, 2016.

[20] J. Chen, H. Ma, and D. Zhao, “Private data aggregation with
integrity assurance and fault tolerance for mobile crowd-
sensing,”Wireless Networks, vol. 23, no. 1, pp. 131–144, 2017.

[21] S. Wang, J. Zhou, and J. Liu, “An Efficient File Hierarchy
Attribute-Based Encryption Scheme in Cloud Computing,”
IEEE Transactions on Information Forensics Security, vol. 11, no.
6, pp. 1265–1277, 2016.

[22] A. Li, S. Tan, and Y. Jia, “A method for achieving provable data
integrity in cloud computing,” The Journal of Supercomputing,
pp. 1–17, 2016.

[23] Y. Yu, M. H. Au, G. Ateniese et al., “Identity-Based Remote
Data Integrity Checking with Perfect Data Privacy Preserving
for Cloud Storage,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 4, pp. 767–778, 2017.

[24] Q. Li, J. Ma, R. Li et al., “Secure, efficient and revocable multi-
authority access control system in cloud storage,” Computers &
Security, vol. 59, no. C, pp. 45–59, 2016.

[25] L. Ferretti, M. Marchetti, M. Andreolini, and M. Colajanni, “A
symmetric cryptographic scheme for data integrity verification
in cloud databases,” Information Sciences, vol. 422, pp. 497–515,
2018.

[26] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and
Y. Li, “Cloud computing resource scheduling and a survey of its
evolutionary approaches,”ACM Computing Surveys, vol. 47, no.
4, article 63, 2015.

[27] K. Xue, Y. Xue, J. Hong et al., “RAAC: Robust and Auditable
Access Control with Multiple Attribute Authorities for Public
Cloud Storage,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 4, pp. 953–967, 2017.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

