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Abstract

IT Landscape models are representing the real-world IT infrastructure of a company. They include hardware assets such as
physical servers and storage media, as well as virtual components like clusters, virtual machines and applications. These
models are a critical source of information in numerous tasks, including planning, error detection and impact analysis. The
responsible stakeholders often struggle to keep such a large and densely connected model up-to-date due to its inherent size
and complexity, as well as due to the lack of proper tool support. Even though modeling techniques are very suitable for this
domain, existing tools do not offer the required features, scalability or flexibility. In order to solve these challenges and meet
the requirements that arise from this application domain, we combine domain-driven modeling concepts with scalable graph-
based repository technology and a custom language for model-level queries. We analyze in detail how we synthesized these
requirements from the application domain and how they relate to the features of our repository. We discuss the architecture
of our solution which comprises the entire data management stack, including transactions, queries, versioned persistence and
metamodel evolution. Finally, we evaluate our approach in a case study where our open-source repository implementation
is employed in a production environment in an industrial context, as well as in a comparative benchmark with an existing
state-of-the-art solution.

Keywords Model-driven engineering - Model repositories - Versioning - Graph database - IT landscape

1 Introduction ing engineering areas by applying models as an abstraction

layer. The primary field of application for MDE has tradi-
Model-driven engineering (MDE) is a discipline that aims at ~ tionally always been software engineering [64]. However, the
improving the processes, workflows and products of exist-  key innovations of MDE are not domain specific. The gen-
eral concept of using a metamodel to define a structure and
then instantiating it to create actual objects applies to a wide
range of problems. When comparing different use cases it
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Configuration items typically comprise physical servers,
applications, databases and network infrastructure. We refer
to the collection of all assets in a company as the IT Land-
scape (also known as resource landscape [36]). The IT
Landscapes of major, globally operating companies, can
grow to considerable dimensions. Due to agility require-
ments, they are increasingly subject to frequent evolution
and technology shifts. Recent examples include the exten-
sive usage of virtualization platforms in data centers, the
advent of cloud computing and the emergence of As-A-
Service solutions. Furthermore, even though commonalities
do exist, every company has its own architecture and vision
behind its landscape. The terminology also varies, as there
is no generally accepted definition across all stakeholders
for common terms like Service or Application. Responsible
persons and teams often struggle in their continuous efforts
to properly document these landscapes due to their inherent
size and complexity. The absence of a reliable and up-to-
date documentation can result in slow error detection, loss
of traceability of changes and misguided planning processes
due to poor information situations. Ultimately, these issues
can lead to problems which cause very high costs for the
companies if they remain unaddressed [30,51].

The need for tool support in the area of IT Landscape doc-
umentation is evident, and model engineering is well-suited
to provide the required concepts. However, the existing MDE
tool infrastructure is insufficient when it comes to satisfying
the requirements of this domain. Existing solutions either do
not scale with the number of elements in a real-world IT
Landscape documentation, do not offer the necessary anal-
ysis capabilities, or lack the flexibility needed in long-term
projects. Several state-of-the-art model repositories employ
relational databases, even though the object-relational gap is
well-known to cause additional complexity and performance
overhead. Furthermore, the required commitment to a fixed
schema across all entries impedes the ability to perform meta-
model evolution processes without altering past revisions. In
recent years, the NoSQL family of databases has expanded,
and graph databases in particular are an excellent fit for stor-
ing model data [1,4]. The central research question we focus
on in this paper is how to combine domain-driven model-
ing concepts and technologies with the innovations from the
graph database community in order to build a model reposi-
tory which is suitable for IT Landscape documentation.

In this paper, we present a solution for storing, versioning
and querying IT Landscape models called ChronoSphere.
ChronoSphere is a novel open-source EMF model reposi-
tory that addresses the needs of this domain, in particular
scalable versioning, querying and persistence. It utilizes
innovative database technology and is based on a modular
architecture which allows individual elements to be used
as standalone components outside the repository context.
Even though ChronoSphere has been designed for the IT
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Landscape use case, the core implementation is domain inde-
pendent and may also serve other use cases (see Sect. 9.4).
In our inter-disciplinary efforts to realize this repository, we
also contributed to the state-of-the-art in the database com-
munity, in particular in the area of versioned data storage
and graph versioning. We evaluate our approach in an indus-
trial case study in collaboration with Txture GmbH.' This
company employs our ChronoSphere implementation as the
primary storage back-end in their commercial IT Landscape
modeling tool.

The remainder of this paper is structured as follows. In
Sect. 2, we first describe the IT Landscape use case in more
detail. We then extract the specific requirements for our solu-
tion from this environment and discuss how they were derived
from the industrial context. Section 3 provides a high-level
overview of our approach. In Sects. 4 through 6, we discuss
the details of our solution. In Sect. 7, we present the appli-
cation of our repository in an industrial context. Section 8
evaluates the performance of ChronoSphere in comparison
with other model repository solutions, which is followed by
a feature-based comparison of related work in several differ-
ent areas in Sect. 9. We conclude the paper with an outlook
to future work in Sect. 10 and a summary in Sect. 11. Sec-
tions 4 through 6 consist of a revised, updated and extended
version of the content presented in our previous work, mainly
[25,27,28]. The remaining sections (most notably 2, 7 and 8)
have never been published before.

2 Use case and requirement analysis

The overarching goal in IT Landscape documentation is to
produce and maintain a model which reflects the current IT
assets of a company and their relationships with each other.
As these assets change over time, keeping this model up-to-
date is a continuous task, rather than a one-time effort.
From a repository perspective, the use case of IT Land-
scape documentation is unique because it is both a database
scenario (involving large datasets) as well as a design sce-
nario where multiple users manually edit the model in a
concurrent fashion (see Fig. 1). The amount and quality
of information which is available in external data sources
depends on the degree of automation and standardization in
the company. For companies with a lower degree of automa-
tion, users will want to edit the model manually to keep it
up-to-date. In companies that have a sophisticated automa-
tion chain in place, the majority of data can be imported
into the repository without manual intervention. Typical data
sources involved in such a scenario are listed in Table 1.
After gathering and consolidating the required informa-
tion in a central repository, typical use cases are centered

I www.txture.io.
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Fig.1 The IT landscape environment

around analysis and reporting. A user usually starts a session
with a query that finds all assets that match a list of criteria,
such as “Search for all Virtual Machines which run a Linux
Operating System” or “Search for the Cluster named ‘Pro-
duction 2’ located in Vienna”. Finding an asset based on its
name is a particularly common starting query.

From the result of this initial global query, the user will
often want to analyze this particular asset or group of assets.
Common use cases involve impact analysis and root cause
analysis. The central question in impact analysis is “What
would be the impact to my applications if a given Physical
Server fails” and can be answered by a transitive dependency
analysis starting from the Physical Server and resolving
the path to the transitively connected applications (cross-

Table 1 Common data sources for IT landscape documentation

ing the virtualization, clustering and load balancing layers
in between). Root cause analysis is the inverse question:
given an Application, the task is to find all Physical Servers
on which the application transitively depends. This insight
allows to reduce the search space in case of an incident (rang-
ing from performance problems to total application outage).

Finally, analyzing the history of a single element or the
entire model as a whole are important use cases in IT Land-
scape management. For example, users are interested in the
number of applications employed in their company over time.
Version control becomes essential in such scenarios, because
it allows to formulate queries over time after the actual inser-
tion of the data has happened (whereas for a statistic on a
non-versioned store the query would have to be known in
advance to track the relevant data at insertion time). Per-
element history traces are also important, as they allow to
identify who performed a certain change, which properties
of the asset have been modified, and when the modification
has occurred.

In the remainder of this section, we focus on the most
important influences from the industrial context, how we
derived requirements for our repository from them, and how
these requirements are met by technical features. Figure 2
provides an overview of this process.

2.1 Deriving requirements from the context

IT architectures and their terminology (e.g., the exact def-
inition of general terms like Service or Application) vary
by company. Therefore, the structure of the resulting IT
Landscape models also differs. One solution to these Hetero-
geneous Architectures [C1] is to unify them under a common,
fixed metamodel (e.g., ArchiMate [43]). However, this can

Data source Examples ‘Web URL
SQL databases MySQL www.mysql.com
PostGreSQL www.postgresql.org
Microsoft SQL Server www.microsoft.com/en-us/sql-server
Virtualization platforms VMware VCenter www.vmware.com/products/vcenter-server
OpenStack www.openstack.org
Red Hat Enterprise Virtualization www.redhat.com/en/technologies/virtualization
Enterprise architecture management tools IteraPlan www.iteraplan.de/en
Mega www.mega.com/en/product/enterprise-architecture

Enterprise Architect

Amazon EC2

Microsoft Azure

Cloud Computation Platforms

Google Cloud Compute Engine

Container orchestration mechanisms

Docker Swarm

Google Kubernetes

WWwWw.sparxsystems.eu
https://aws.amazon.com/ec2
https://azure.microsoft.com/en-us
https://cloud.google.com/compute
https://kubernetes.io

https://docs.docker.com/engine/swarm
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Technical Features

‘C1| Heterogeneous Architectures }—{ R1 l User-Defined Meta-Model }—{ F1 l EMF-Compliant Metamodeling ‘

R2 l Versioning F2 l Per-Element-Versioned Storage ‘
‘C2| Large Companies

R3 l Metamodel Evolution F3 lMetamodeI Evolution & Co—Adaptation‘
‘C3| Technological Shifts

R4 l Branching F4 l Lightweight Branching ‘
‘C4| Long-Running Projects R5 l Scalability (Model & History size) F5 l Dynamic (Un-)Loading of Elements ‘

R6 l Concurrent Access F6 l Primary & Secondary Indexing ‘
‘C5| Multiple Stakeholders

R7 l Any Query on any Branch/Version F7 l Historical Archiving ‘
‘C6| Traceability, Auditing, Compliance

R8 l Element History Analysis F8 l ACID Transactions ‘

lC7l Planning

R9 l Consistency (Model & Query Results)

F9 l Branch- & Time-agnostic Queries ‘

Fig.2 Traceability matrix between context, requirements and features

lead to poor acceptance in practice due to its rigidity and
the additional complexity introduced by its generality. From
our past surveys and case studies [17-20,73], we inferred
the requirement that the metamodel should be configurable
by the user [R1]. The companies which utilize IT Land-
scape models the most are usually large companies [C2],
or companies with a strong focus on IT (such as data cen-
ters). This entails that the corresponding models will grow to
considerable sizes, and a repository must offer the necessary
scalability [R5].

Documenting the IT Landscape of a company is a contin-
uous effort. In the industrial context, we are therefore faced
with long-running endeavors [C4] that span several years. In
situations where responsible persons change and team mem-
bers leave while new ones join, the ability to comprehend and
reflect upon past decisions becomes crucial. Versioning the
model content [R2] meets these demands, and also enables
use cases thatinvolve auditing, as well as use cases where ver-
sioning is required for legal compliance [C6]. The underlying
requirement for these use cases is to not only store the version
history, but also to analyze history traces [R8]. During a long-
term documentation project, the metamodel sometimes also
needs to be adapted [R3], for example due to technological
shifts [C3] that introduce new types of assets. Examples for
technological shifts include the introduction of virtualization
technologies in data centers, and the advent of cloud com-
puting. Another direct consequence of long-running projects
is that the change history of individual model elements can
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grow to large sizes [R5] which must be considered in the
technical realization of a repository.

In industrial contexts, several different stakeholders col-
laborate in documenting the IT Landscape. Depending on the
scope of the project, stakeholders can involve a wide vari-
ety of roles, ranging from IT operations experts to database
managers and enterprise architects [C5]. This entails that the
repository must support concurrent access [R6] for multiple
users. Another requirement that follows directly from con-
current access is that the structural consistency of the model
contents must be ensured by the repository [R6, R9] (e.g.,
conformance to the metamodel and referential integrity).
From the analysis perspective, concurrent access is also a
threat to the consistency and reproducibility of query results,
which is required for reliable model analysis [R9]. Apart
from analyzing the current and past states of the model, IT
Landscape models are also used to plan for future transfor-
mations [C7]. The general workflow involves the creation of
“to-be” scenarios based on the current state which are then
compared against each other in order to select the best can-
didate. In order to cope with such use cases, the repository
must support branching [R4]. Branches allow the plans to
be based on the actual model and to change it independently
without affecting the as-is state. Since the comparison of two
model states is an important part of planning (as well as a
number of other use cases), the repository needs to be able
to evaluate an analysis query on any model version and on
any branch [R7] without altering the query.
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2.2 Deriving features from requirements

From the set of requirements, we inferred the technical fea-
tures which our model repository has to support. As we
want our users to be able to provide their own metamod-
els, we employ the standard Eclipse Modeling Framework
(EMF [70]) as our modeling language of choice [F1]. The
fact that the data managed by our repository consists of a
large and densely connected model which has to be put under
version control lead to the decision to employ a per-element
versioning strategy [F2], as a coarse-grained whole-model
versioning strategy would cause performance issues for such
models.

Supporting a user-defined metamodel, element versioning
and metamodel evolution at the same time is a challenging
task. The combination of these requirements entails that our
repository must support metamodel versioning, metamodel
evolution and instance co-adaptation [F3]. From a techni-
cal perspective, it is also inadvisable to create a full copy
of a model version each time a branch is created due to the
potential size of the model. We therefore require a branching
mechanism that is lightweight [F4] in that it reuses the data
from the origin branch rather than copying it when a new
branch is created. Since IT Landscape models can grow to
large sizes and will potentially not fit into the main mem-
ory of the machine which runs our repository, we require a
mechanism for dynamic on-demand loading and unloading
of model elements [F5].

A technical feature which is crucial for efficient query-
ing of the entire model is indexing [F6]. The primary index
allows to locate a model element by its unique ID without
linear iteration over all elements. Secondary indices can be
defined by the user for a given metamodel and can be used
to efficiently find all elements in the model where a property
is set to a specified value (e.g., finding all servers where the
name contains “Production”). In addition, indexing has to
consider the versioned nature of our repository, as we want
our indices to be usable for all queries, regardless of the
chosen version or branch. In other words, even a query on a
model version that is one year old should be able to utilize our
indices. In order for queries to be executable on any branch
and timestamp, we require a framework that allows for the
creation of queries that are agnostic to the chosen branch and
version [F9].

All queries and modifications in our repository are subject
to concurrent access. We meet this requirement by providing
full ACID [38] end-to-end transaction support in our repos-
itory [F8]. Finally, in order to support long histories, we
implement a feature called Temporal Rollover which enables
the archiving of historical entries [F7]. This feature allows for
indefinite growth of element histories and will be explained
in detail in later sections.

3 Solution overview

The overarching goal of our efforts is to provide a model
repository that fulfills the requirements in Sect. 2. Our ini-
tial prototypes were based on standard technology, such as
object-relational mappers and SQL databases. However, we
soon realized that table-based representations were not an
ideal fit for the structure of model data. The main issues we
faced with these solutions were related to scalability and per-
formance [RS5]. The fact that most SQL databases require a
fixed schema also proved to be very limiting when taking
the requirement for metamodel evolution [R3] into consid-
eration.

During our search for alternatives, we were inspired by
approaches such as MORSA [54] and Neo4EMF [4]. We
investigated various NoSQL storage solutions and eventually
settled for graph databases. Graph databases do not require a
fixed schema, offer fast execution of navigational queries and
the bijective mapping between model data and graph data
is both simpler and faster than object-relational mappings.
However, existing graph databases on the market did not offer
built-in versioning capabilities [R2]. Using a general-purpose
graph database (e.g., Neo4j” or Titan®) and managing the ver-
sioning process entirely on the application side has already
been proven by various authors to be possible [8,66,67,71].
However, such approaches greatly increase the complexity of
the resulting graph structure as well as the complexity of the
queries that operate on it. This reduces the maintainability,
performance and scalability [R5] of such systems.

After discovering this gap in both research and indus-
trial solutions, we created a versioned graph database called
ChronoGraph [27], which is the first graph database with
versioning support that is compliant to the Apache Tinker-
Pop standard. ChronoGraph s listed* as an official TinkerPop
implementation and available as an open-source project on
GitHub.? Since graph structures need to be transformed into
a format that is compatible with the sequential nature of hard
drives, we also required a versioned storage solution. Our
explorative experiments with different back-ends of Titan DB
demonstrated that key-value stores are a very suitable fit for
storing graph data. We created ChronoDB [25], a versioned
key-value store, to act as the storage backend for Chrono-
Graph. The full source code of this project is also available
on GitHub.® The resulting repository solution therefore con-

2 https://neodj.com/.
3 http://titan.thinkaurelius.com/.
4 http://tinkerpop.apache.org/.

> https://github.com/MartinHaeusler/chronos/tree/master/org.
chronos.chronograph.

6 https://github.com/MartinHaeusler/chronos/tree/master/org.
chronos.chronodb.
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Fig.3 ChronoSphere data management stack

sists of three layers, allowing for a coherent architecture and
a clean separation of concerns.

Figure 3 shows the data management concepts of Chrono-
Sphere. At the very top, in Fig. 3 Part A, we are working with
EObjects and their corresponding EClasses, EPackages and
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other Ecore elements. It is important that the model and the
metamodel are stored together. This will become a critical
factor when dealing with metamodel evolution. This com-
bined model needs to be persisted and versioned [R1-R4].
ChronoSphere maps it to a property graph representation [58]
for this purpose. This representation is conceptually very
close to the model form. Our model-to-graph mapping is
inspired by Neo4EMF [4]. We will discuss related work in
this area in more detail in Sect. 9.

The property graph management in Fig. 3 Part B is pro-
vided by ChronoGraph. In order to achieve a serial form for
the model data that can be persisted to disk, ChronoGraph
disassembles the property graph into individual Star Graphs,
one for each vertex (i.e., node). A star graph is a sub-graph
that is centered around one particular vertex. Figure 3 Part
C shows the star graph of vertex vl. Creating star graphs
for each vertex is a special kind of graph partitioning. When
linking the star graphs again by replacing IDs by vertices, the
original graph can be reconstructed from this partitioning.
This reconstruction can occur fully or only partially, which
makes this solution very suitable for lazy loading techniques
[RS5].

In the next step, we transform the star graph of each ver-
tex into a binary string using the Kryo’ serializer, and pass
the result to the underlying ChronoDB, our versioned Key-
Value-Store. When the transaction is committed [R6], the
commit timestamp is assigned to each pair of modified keys
and corresponding binary values, creating time-key-value
triples as shown in Fig. 3 Part D. ChronoDB then stores
these triples in a Temporal Data Matrix (Fig. 3 Part E') which
is implemented as a BT-Tree [61]. Each row in this matrix
represents the full history of a single element, each column
represents a model revision, and each cell represents the data
of one particular element for a given ID at a given timestamp.
We will define and discuss this matrix structure in more detail
in the following section.

4 Solution part I: ChronoDB

ChronoDB [25] is a versioned key-value store and the bot-
tom layer in our architecture. Its main responsibilities are
persistence, versioning, branching and indexing. As all other
components in our architecture rely on this store, we for-
malized its data structures and operations during the design
phase.

4.1 Formal foundation

Salzberg and Tsotras identified three key query types which
have to be supported by a data store in order to provide the

7 https://github.com/EsotericSoftware/kryo.
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full temporal feature set [62]. For versioning purposes, this
set can be reused by restricting the features to timestamps
instead of time ranges. This gives rise to the following three
types of possible queries:

— Pure-Timeslice Query Given a point in time (e.g., date
and time), find all keys that existed at that time.

— Range-Timeslice Query Given a set of keys and a point
in time, find the value for each key which was valid at
that time.

— Pure-Key Query Given a set of keys, for each key find the
values that comprise its history.

We use these three core query types as the functional require-
ments for our formalization approach. For practical reasons,
we furthermore require that inserted entries never have to be
modified again. In this way, we can achieve a true append-
only store. In order to maintain the traceability of changes
over time (e.g., for auditing purposes [R8]), we also require
that the history of a key must never be altered, only appended.

The key concept behind our formalism is based on the
observation that temporal information always adds an addi-
tional dimension to a dataset. A key-value format has only
one dimension, which is the key. By adding temporal infor-
mation, the two resulting dimensions are the key, and the
time at which the value was inserted. Therefore, a matrix is a
very natural fit for formalizing the versioning problem, offer-
ing the additional advantage of being easy to visualize. The
remainder of this section consists of definitions which pro-
vide the formal semantics of our solution, interleaved with
figures and (less formal) textual explanations.

Definition 1 Temporal Data Matrix

Let T be the set of all timestamps with 7 C N. Let S denote
the set of all non-empty strings and K be the set of all keys
with K € S. Let B define the set of all binary strings with
B C {0,1}" U {null, €}. Let ¢ € B be the empty binary
string with € # null. We define the Temporal Data Matrix
D € B®X*® as:

D:TxK—DB

We define the initial value of a given Temporal Data Matrix
D as:
Diy:=€¢ VteT,VkekK

In Definition 1, we define a Temporal Data Matrix, which
is a key-value mapping enhanced with temporal information
[R2, R3]. Note that the number of rows and columns in this
matrix is infinite. In order to retrieve a value from this matrix,

a key string and a timestamp are required. We refer to such
a pair as a Temporal Key. The matrix can contain an array of

binary values in every cell, which can be interpreted as the
serialized representation of an arbitrary object. The formal-
ism is therefore not restricted to any particular value type.
The dedicated null value (which is different from all other
bit-strings and also different from the € values used to ini-
tialize the matrix) will be used as a marker that indicates the
deletion of an element later in Definition 3.

In order to guarantee the traceability of changes [RS],
entries in the past must not be modified, and new entries
may only be appended to the end of the history, not inserted
at an arbitrary position. We use the notion of a dedicated now
timestamp for this purpose.

Definition 2 Now Operation
Let D be a Temporal Data Matrix. We define the function
now : B> — T as:

now(D) = max({tlk € K, D; x # €} U{0})

Definition 2 introduces the concept of the now timestamp,
which is the largest (i.e., latest) timestamp at which data has
been inserted into the store so far, initialized at zero for empty
matrices. This particular timestamp will serve as a safeguard
against temporal inconsistencies in several operations. We
continue by defining the temporal counterparts of the put
and get operations of a key-value store.

Definition 3 Temporal Write Operation
Let D be a Temporal Data Matrix. We define the function
put 1 BX*® x T x K x B — B> as:

put(D,t, k,v) =D’
with v # €, > now(D) and

ooy fr=ink=
"/ | D;; otherwise

The write operation put replaces a single entry in a Temporal
Data Matrix by specifying the exact coordinates and a new
value for that entry. All other entries remain the same as
before. Please note that, while v must not be € in the context
of a put operation (i.e., a cell cannot be “cleared”), v can
be null to indicate a deletion of the key k from the matrix.
Also, we require that an entry must not be overwritten. This
is given implicitly by the fact that each put advances the
result of now (D), and further insertions are only allowed
after that timestamp. Furthermore, write operations are not
permitted to modify the past in order to preserve consistency
and traceability, which is also asserted by the condition on
the now timestamp. This operation is limited in that it allows
to modify only one key at a time. In the implementation, we
generalize it to allow simultaneous insertions in several keys
via transactions.
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Definition 4 Temporal Read Operation
Let D be a Temporal Data Matrix. We define the function
get :B®**® x T x K — B as:

D ifu>0AD, 1l
get(D,t, k) := uk U= ) wk 7
€ otherwise

with ¢t < now(D) and
u:=max({x|x € T,x <t, Dy #e}U{-1})

The function get first attempts to return the value at the coor-
dinates specified by the key and timestamp (u = ). If that
position is empty, we scan for the entry in the same row with
the highest timestamp and a non-empty value, considering
only entries with lower timestamps than the request times-
tamp. In the formula, we have to add — 1 to the set from
which u is chosen to cover the case where there is no other
entry in the row. If there is no such entry (i.e., u = — 1) or the
entry is null, we return the empty binary string, otherwise
we return the entry with the largest encountered timestamp.

This process is visualized in Fig. 4. In this figure, each
row corresponds to a key, and each column to a timestamp.
The depicted get operation is working on timestamp 5 and
key ‘d’. As Ds 4 is empty, we attempt to find the largest
timestamp smaller than 5 where the value for the key is not
empty, i.e., we move left until we find a non-empty cell. We
find the resultin D; 4 and return v1. This is an important part
of the versioning concept: a value for a given key is assumed
to remain unchanged until a new value is assigned to it at a
later timestamp. This allows any implementation to conserve
memory on disk, as writes only occur if the value for a key
has changed (i.e., no data duplication is required between
identical revisions). Also note that we do not need to update
existing entries when new key-value pairs are being inserted,
which allows for pure append-only storage. In Fig. 4, the
value v1 is valid for the key ‘d’ for all timestamps between
1 and 5 (inclusive). For timestamp O, the key ‘d’ has value
v0. Following this line of argumentation, we can generalize
and state that a row in the matrix, identified by akey k € K,
contains the history of k. This is formalized in Definition 5. A
column, identified by a timestamp ¢ € T, contains the state of
all keys at that timestamp, with the additional consideration
that value duplicates are not stored as they can be looked up
in earlier timestamps. This is formalized in Definition 6.

Definition 5 History Operation
Let D be a Temporal Data Matrix, and ¢ be a timestamp

witht € T, t < now(D). We define the function history :
B®*® » T x K — 27 as:

history(D,t, k) :={x|x € T,x <t, Dy # €}
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Fig.4 A get operation on a Temporal Data Matrix [25]

In Definition 5, we define the history of a key k up to a
given timestamp ¢ in a Temporal Data Matrix D as the set of
timestamps less than or equal to ¢ that have a non-empty entry
for key k in D. Note that the resulting set will also include
deletions, as null is a legal value for Dy ; in the formula.
The result is the set of timestamps where the value for the
given key changed. Consequently, performing a gef operation
for these timestamps with the same key will yield different
results, producing the full history of the temporal key.

Definition 6 Keyset Operation

Let D be a Temporal Data Matrix, and ¢ be a timestamp
witht € T,t < now(D). We define the function keyset :
B®x® x T — 2K as:

keyset(D,t) :={x|x € K, get(D, t,x) # €}

As shown in Definition 6, the keyset in a Temporal Data
Matrix changes over time. We can retrieve the keyset at any
desired time by providing the appropriate timestamp ¢. Note
that this works for any timestamp in the past, in particular we
do not require that a write operation has taken place precisely
atz in order for the corresponding key(s) to be contained in the
keyset. In other words, the precise column of # may consist
only of € entries, but the key set operation will also consider
earlier entries which are still valid at #. The version operation
introduced in Definition 7 operates in a very similar way, but
returns tuples containing keys and values, rather than just
keys.

Definition 7 Version Operation

Let D be a Temporal Data Matrix, and ¢ be a timestamp
witht € T,t < now(D). We define the function version :
B®X® « T —» 2KXIB3

version(D, t):={(k,v)|k € keyset(D,t),v=get(D,t,k)}
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keyset / version at t=5

Fig. 5 Performing a keyset or version operation on a Temporal Data
Matrix [25]

Table 2 Mapping capabilities to operations [25]

Capability Realization in formalism

Pure-Timeslice Equivalent to keyset operation

Range-Timeslice One get operation per given key

Pure-Key One history operation per given key

Figure 5 illustrates the key set and version operations by
example. In this scenario, the key set (or version) is requested
at timestamp t = 5. We scan each row for the latest non-¢
entry and add the corresponding key of the row to the key set,
provided that a non-€ right-most entry exists (i.e., the row is
not empty) and is not null (the value was not removed). In
this example, keyset (D, 5) would return {a, c, d}, assuming
that all non-depicted rows are empty. b and f are not in the
key set, because their rows are empty (up to and including
timestamp 5), and e is not in the set because its value was
removed at timestamp 4. If we would request the key set at
timestamp 3 instead, e would be in the key set. The opera-
tion version(D, 5) returns {{(a, v0), (c, v2), (d, v4)} in the
example depicted in Fig. 5. The key e is not represented in
the version because it did not appear in the key set.

With the given set of operations, we are able to answer all
three kinds of temporal queries identified by Salzberg and
Tsotras [62], as indicated in Table 2. Due to the restrictions
imposed onto the put operation (see Definition 3), data cannot
be inserted before the now timestamp (i.e., the history of an
entry cannot be modified). Since the validity range of an
entry is determined implicitly by the empty cells between
changes, existing entries never need to be modified when new
ones are being added. The formalization therefore fulfills all
requirements stated at the beginning of this section.

Table 3 Ascending Temporal Key ordering by example [25]

Order Temporal key Key string Timestamp
0 a@0123 a 123
1 a@0124 a 124
2 a@1000 a 1000
3 aa@0100 aa 100
4 b@0001 b 1
5 ba@0001 ba 1

4.2 Implementation

ChronoDB is our implementation of the concepts presented
in the previous section. It is a fully ACID compliant, process-
embedded, temporal key-value store written in Java. The
intended use of ChronoDB is to act as the storage backend
for a graph database, which is the main driver behind numer-
ous design and optimization choices. The full source code is
freely available on GitHub under an open-source license.

4.2.1 Implementing the matrix

As the formal foundation includes the concept of a matrix
with infinite dimensions, a direct implementation is not fea-
sible. However, a Temporal Data Matrix is typically very
sparse. Instead of storing a rigid, infinite matrix structure,
we focus exclusively on the non-empty entries and expand
the underlying data structure as more entries are being added.

There are various approaches for storing versioned data
on disk [15,46,50]. We reuse existing, well-known and well-
tested technology for our prototype instead of designing
custom disk-level data structures. The temporal store is based
on a regular BT-Tree [61]. We make use of the implemen-
tation of B*-Trees provided by the TUPL? library. In order
to form an actual index key from a Temporal Key, we con-
catenate the actual key string with the timestamp (left-padded
with zeros to achieve equal length), separated by an ‘@’ char-
acter. Using the standard lexicographic ordering of strings,
we receive an ordering as shown in Table 3. This implies that
our BT -Tree is ordered first by key, and then by timestamp.
The advantage of this approach is that we can quickly deter-
mine the value of a given key for a given timestamp (i.e., get
is reasonably fast), but the keyser (see Definition 6) is more
expensive to compute.

The put operation appends the timestamp to the user key
and then performs a regular B*-Tree insertion. The temporal
get operation requires retrieving the next lower entry with
the given key and timestamp.

This is similar to regular B*-Tree search, except that the
acceptance criterion for the search in the leaf nodes is “less

8 https://github.com/cojen/Tupl.
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than or equal to” instead of “equal to”, provided that nodes
are checked in descending key order. TUPL natively supports
this functionality. After finding the next lower entry, we need
to apply a post-processing step in order to ensure correctness
of the ger operation. Using Table 3 as an example, if we
requested aa@0050 (which is not contained in the data),
searching for the next-lower key produces a@1000. The key
string in this temporal key (a) is different from the one which
was requested (aa). In this case, we can conclude that the
key aa did not exist up to the requested timestamp (50), and
we return null instead of the retrieved result.

Due to the way we set up the BT-Tree, adding a new
revision to a key (or adding an entirely new key) has the
same runtime complexity as inserting an entry into a regular
BT -Tree. Temporal search also has the same complexity as
regular B-Tree search, which is O(log(n)), where n is the
number of entries in the tree. From the formal foundations
onward, we assert by construction that our implementation
will scale equally well when faced with one key and many
versions, many keys with one revision each, or any distri-
bution in between [R5]. An important property of our data
structure setup is that, regardless of the versions-per-key dis-
tribution, the data structure never degenerates into a list,
maintaining an access complexity of O(log(n)) by means of
regular B*-Tree balancing without any need for additional
algorithms.

4.2.2 Branching

Figure 6 shows how the branching mechanism works in
ChronoDB [R4]. Based on our matrix formalization, we can
create branches of our history at arbitrary timestamps. To
do so, we generate a new, empty matrix that will hold all
changes applied to the branch it represents. We would like to
emphasize that existing entries are not duplicated. We there-
fore create lightweight branches. When a get request arrives
at the first column of a branch matrix during the search, we
redirect the request to the matrix of the parent branch, at
the branching timestamp, and continue from there. In this
way, the data from the original branch (up to the branching
timestamp) is still fully accessible in the child branch.

For example, as depicted in Fig. 7, if we want to answer a
get request for key ¢ on branch branch A and timestamp 4,
we scan the row with key c to the left, starting at column 4.
We find no entry, so we redirect the call to the origin branch
(which in this case is master), at timestamp 3. Here, we
continue left and find the value ¢ on timestamp 1. Indeed, at
timestamp 4 and branch branchA, c is still valid. However,
if we issue the same original query on master, we would
get c4 as our result. This approach to branching can also
be employed recursively in a nested fashion, i.e., branches
can in turn have sub-branches. The primary drawback of this
solution is related to the recursive “backstepping” to the ori-
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Fig.8 Temporal caching principle

gin branch during queries. For deeply nested branches, this
process will introduce a considerable performance overhead,
as multiple B™-Trees (one per branch) need to be opened
and queried in order to answer this request. This happens
more often for branches which are very thinly populated with
changes, as this increases the chances of our get request scan
ending up at the initial column of the matrix without encoun-
tering an occupied cell. The operation which is affected most
by branching with respect to performance is the keySet opera-
tion (and all other operations that rely on it), as this requires a
scan on every row, leading to potentially many backstepping
calls.

4.2.3 Caching

A disk access is always slow compared to an in-memory
operation, even on a modern solid state drive (SSD). For
that reason, nearly all database systems include some way
of caching the most recent query results in main memory
for later reuse. ChronoDB is no exception, but the temporal
aspects demand a different approach to the caching algorithm
than in regular database systems, because multiple transac-
tions can simultaneously query the state of the stored data
at different timestamps. Due to the way we constructed the
Temporal Data Matrix, the chance that a given key does not
change at every timestamp is very high. Therefore, we can
potentially serve queries at many different timestamps from
the same cached information by exploiting the periods in
which a given key does not change its value. For the caching
algorithm, we apply some of the ideas found in the work
of Ramaswamy [57] in a slightly different way, adapted to
in-memory processing and caching idioms.

Figure 8 displays an example for our temporal caching
approach which we call Mosaic. When the value for a tem-
poral key is requested and a cache miss occurs, we retrieve

the value together with the validity range (indicated by gray
background in the figure) from the persistent store, and add
the range together with its value to the cache. Validity ranges
start at the timestamp in which a key-value pair was modified
(inclusive) and end at the timestamp where the next modifica-
tion on that pair occurred (exclusive). For each key, the cache
manages a list of time ranges called a cache row, and each
range is associated with the value for the key in this period.
As these periods never overlap, we can sort them in descend-
ing order for faster search, assuming that more recent entries
are used more frequently. A cache look-up is performed by
firstidentifying the row by the key string, followed by a linear
search through the cached periods.” We have a cache hit if
a period containing the requested timestamp is found. When
data is written to the underlying store, we need to perform a
write-through in our cache, because validity ranges that have
open-ended upper bounds potentially need to be shortened
due to the insertion of a new value for a given key. The write-
through operation is fast, because it only needs to check if
the first validity range in the cache row of a given key is
open-ended, as all other entries are always closed ranges. All
entries in our cache (regardless of the row they belong to)
share a common least recently used registry which allows
for fast cache eviction of the least recently read entries.

In the example shown in Fig. 8, retrieving the value of key
d at timestamp 0 would result in adding the validity range
[0; 1) with value v0 to the cache row. This is the worst-
case scenario, as the validity range only contains a single
timestamp, and can consequently be used to answer queries
only on that particular timestamp. Retrieving the same key at
timestamps 1 through 4 yields a cache entry with a validity
range of [1;5) and value vl. All requests on key d from
timestamp 1 through 4 can be answered by this cache entry.
Finally, retrieving key d on a timestamp greater than or equal
to 5 produces an open-ended validity period of [5; co) with
value v2, which can answer all requests on key d with a
timestamp larger than 4, assuming that non-depicted columns
are empty. If we would insert a key-value pair of (d, v3) at
timestamp 10, the write-through operation would need to
shorten the last validity period to [5; 10) and add a cache
entry containing the period [10; oo) with value v3.

4.2.4 Incremental commits

Database vendors often provide specialized ways to batch-
insert large amounts of data into their databases that allow
for higher performance than the usage of regular transac-
tions. ChronoDB provides a similar mechanism, with the
additional challenge of keeping versioning considerations in

9 In most cases, linear search in main memory is still faster than per-
forming O(log(n)) disk accesses. Also, the cache usually does not
contain all data, so these lists will remain short.
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Fig.9 Incremental commits

mind along the way. Even when inserting large amounts of
data into ChronoDB, we want the history to remain clean,
i.e., it should not contain intermediate states where only a
portion of the overall data was inserted. We therefore need to
find a way to conserve RAM by writing incoming data to disk
while maintaining a clean history. For this purpose, the con-
cept of incremental commits was introduced in ChronoDB.
This mechanism allows to mass-insert (or mass-update) data
in ChronoDB by splitting it up into smaller batches while
maintaining a clean history and all ACID properties for the
executing transaction.

Figure 9 shows how incremental commits work
in ChronoDB. The process starts with a regular transaction
inserting data into the database before calling
commitIncremental (). This writes the first batch
(timestamp 2 in Fig. 9) into the database and releases it from
RAM. However, the now timestamp is not advanced yet. We
do not allow other transactions to read these new entries,
because there is still data left to insert. We proceed with
the next batches of data, calling commitIncremental ()
after each one. After the last batch was inserted, we con-
clude the process with a call to commi t (). This will merge
all of our changes into one timestamp on disk. In this pro-
cess, the last change to a single key is the one we keep. In
the end, the timestamps between the first initial incremen-
tal commit (exclusive) to the timestamp of the final commit
(inclusive) will have no changes (as shown in timestamps
3 and 4 in Fig. 9). With the final commit, we also advance
the now timestamp of the matrix and allow all other trans-
actions to access the newly inserted data. By delaying this
step until the end of our operation, we keep the possibility
to roll back our changes on disk (for example in case that
the process fails) without violating the ACID properties for
all other transactions. Also, if data generated by a partially
complete incremental commit process is present on disk at
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database start-up (which occurs when the database is unex-
pectedly shut down during an incremental commit process),
these changes can be rolled back as well, which allows incre-
mental commit processes to have “all or nothing” semantics.

A disadvantage of this solution is that there can be only one
concurrent incremental commit process on any data matrix.
This process requires exclusive write access to the matrix,
blocking all other (regular and incremental) commits until it
is complete. However, since we only modify the head revi-
sions and now does not change until the process ends, we can
safely perform read operations in concurrent transactions,
while an incremental commit process is taking place. Overall,
incremental commits offer a way to insert large quantities of
data into a single timestamp while conserving RAM without
compromising ACID safety at the cost of requiring exclu-
sive write access to the database for the entire duration of the
process. These properties make them very suitable for data
imports from external sources, or large scale changes that
affect most of the key-value pairs stored in a matrix. This will
become an important factor when we consider global model
evolutions in the model repository layer [R3]. We envision
incremental commits to be employed for administrative tasks
which do not recur regularly, or for the initial filling of an
empty database.

4.2.5 Supporting long histories

In order to create a sustainable versioning mechanism, we
need to ensure that our system can support a virtually unlim-
ited number of versions [R2, R5]. Ideally, we also should
not store all data in a single file, and old files should remain
untouched when new data is inserted (which is important for
file-based backups). For these reasons, we must not constrain
our solution to a single B-Tree. The fact that past revisions
are immutable in our approach led to the decision to split the
data along the time axis, resulting in a series of B-Trees. Each
tree is contained in one file, which we refer to as a chunk file.
An accompanying meta file specifies the time range which
is covered by the chunk file. The usual policy of ChronoDB
is to maximize sharing of unchanged data as much as possi-
ble. Here, we deliberately introduce data duplication in order
to ensure that the initial version in each chunk is complete.
This allows us to answer get queries within the boundaries
of a single chunk, without having to navigate to the previous
one. As each access to another chunk has CPU and I/O over-
head, we should avoid accesses on more than one chunk to
answer a basic query. Without duplication, accessing a key
that has not changed for a long time could potentially lead
to a linear search through the chunk chain which contradicts
the requirement for scalability [R5].

The algorithm for the “rollover” procedure outlined in
Fig. 10 works as follows.
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Fig. 10 The temporal rollover process by example [26]

Algorithm 1: Temporal Rollover [26]

Data: The data chunk containing the “head” revision
Result: An archive chunk and a new “head” chunk
1 time <—getLastTimestamp(head Chunk);,
2 head <—getHeadRevisionFromChunk(headChunk);
3 setValidTo(head Chunk, time);
4 newHeadChunk <—createEmptyChunk(time + 1);
5
6

insertEntriesIntoChunk(head, new Head C hunk);
updateTimeRangelook-up();

In Line 1 of Algorithm 1, we fetch the latest timestamp
where a commit has occurred in our current head revision
chunk. Next, we calculate the full head version of the data in
Line 2. With the preparation steps complete, we set the end
of the validity time range to the last commit timestamp in
Line 3. This only affects the metadata, not the chunk itself.
We now create a new, empty chunk in Line 4, and set the
start of its validity range to the split timestamp plus one (as
chunk validity ranges must not overlap). The upper bound of
the new validity range is infinity. In Line 5 we copy the head
version of the data into the new chunk. Finally, we update our
internal look-up table in Line 6. This entire procedure only
modifies the last chunk and does not touch older chunks, as
indicated by the grayed-out boxes in Fig. 10.

The look-up table that is being updated in Algorithm 1
is a basic tree map which is created at start-up by reading
the metadata files. For each encountered chunk, it contains
an entry that maps its validity period to its chunk file. The
periods are sorted in ascending order by their lower bounds,
which is sufficient because overlaps in the validity ranges
are not permitted. For example, after the rollover depicted
in Fig. 10, the time range look-up would contain the entries
shown in Table 4.

Table 4 Time range look-up [26]

Time range Chunk number
[0...300] 0
[301...1000]

[1001...o0] 2

We employ a tree map specifically in our implementation
for Table 4, because the purpose of this look-up is to quickly
identify the correct chunk to address for an incoming request.
Incoming requests have a timestamp attached, and this times-
tamp may occur exactly at a split, or anywhere between split
timestamps. As this process is triggered very often in prac-
tice and the time range look-up map may grow quite large
over time, we are considering to implement a cache based on
the least-recently-used principle that contains the concrete
resolved timestamp-to-chunk mappings in order to cover the
common case where one particular timestamp is requested
more than once in quick succession.

With this algorithm, we can support a virtually unlimited
number of versions [R6] because new chunks always only
contain the head revision of the previous ones, and we are
always free to roll over once more should the history within
the chunk become too large. We furthermore do not perform
writes on old chunk files anymore, because our history is
immutable. Regardless, thanks to our time range look-up,
we have close to O(logn) access complexity to any chunk,
where 7 is the number of chunks.

This algorithm is a trade-off between disk space and scal-
ability. We introduce data duplication on disk in order to
provide support for large histories. The key question that
remains is when this process happens. We require a metric
that indicates the amount of data in the current chunk that
belongs to the history (as opposed to the head revision) and
thus can be archived if necessary by performing a rollover.
We introduce the Head—History—Ratio (HHR) as the primary
metric for this task, which we defined as follows:

e, ife=nh
HHR(e,h) =1 , )
t otherwise
...where e is the total number of entries in the chunk, and &
is the size of the subset of entries that belong to the head revi-
sion (excluding entries that represent deletions). By dividing
the number of entries in the head revision by the number of
entries that belong to the history, we get a proportional notion
of how much history is contained in the chunk that works for
datasets of any size. It expresses how many entries we will
“archive” when a rollover is executed. When new commits
add new elements to the head revision, this value increases.
When a commit updates existing elements in the head revi-
sion or deletes them, this value decreases. We can employ a
threshold as a lower bound on this value to determine when
a rollover is necessary. For example, we may choose to per-
form a rollover when a chunk has an HHR value of 0.2 or less.
This threshold will work independently of the absolute size
of the head revision. The only case where the HHR threshold
is never reached is when exclusively new (i.e., never seen
before) keys are added, steadily increasing the size of the
head revision. However, in this case, we would not gain any-
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thing by performing a rollover, as we would have to duplicate
all of those entries into the new chunk to produce a complete
initial version. Therefore, the HHR metric is properly cap-
turing this case by never reaching the threshold, thus never
indicating the need for a rollover.

4.2.6 Secondary indexing

There are two kinds of secondary indices in ChronoDB. On
the one hand, there are indices which are managed by Chron-
oDB itself (“system indices”) and on the other hand there are
user-defined indices. As indicated in Table 3, the primary
index for each matrix in ChronoDB has its keys ordered
first by user key and then by version. In order to allow for
efficient time range queries, we maintain a secondary index
that is first ordered by timestamp and then by user key. Fur-
ther system indices include an index for commit metadata
(e.g., commit messages) that maps from timestamp to meta-
data, as well as auxiliary indices for branching (branch name
to metadata). User-defined indices [R5] help to speed up
queries that request entries based on their contents (rather
than their primary key). An example for such a query is
find all persons where the first name is 'Eva’. Since Chron-
oDB stores arbitrary Java objects, we require a method to
extract the desired property value to index from the object.
This is accomplished by defining a ChronoIndexer inter-
face. It defines the index (Object) method that, given
an input object, returns the value that should be put on the
secondary index. Each indexer is associated with a name.
That name is later used in a query to refer to this index. The
associated query language provides support for a number
of string matching techniques (equals, contains, starts with,
regular expression...), numeric matching (greater than, less
than or equal to...) as well as Boolean operators (and, or,
not). The query engine also performs optimizations such as
double negation elimination. Overall, this query language
is certainly less expressive than other languages such as
SQL. Since ChronoDB is intended to be used as a stor-
age engine and embedded in a database frontend (e.g., a
graph database), these queries will only be used internally for
index scans while more sophisticated expressions are man-
aged by the database frontend. Therefore, this minimalistic
Java-embedded DSL has proven to be sufficient. An essential
drawback of this query mechanism is that the number of prop-
erties available for querying is determined by the available
secondary indices. In other words, if there is no secondary
index for a property, that property cannot be used for filtering.
This is due to ChronoDB being agnostic to the Java objects it
is storing. In absence of a ChronoIndexer, it has no way
of extracting a value for an arbitrary request property from
the object. This is a common approach in database systems:
without a matching secondary index, queries require a linear
scan of the entire data store. When using a database fron-
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Table5 Secondary indexing in ChronoDB

# Index Branch Keyspace Key Value From To
1  name master default el “john” 1234 oo
2 name master  default e2 “john” 1234 5678
3  name master default e3 “john” 1234 7890
4 name master default e2 “jack” 5678 oo

tend, this distinction is blurred, and the difference between
an index query and a non-index query is only noticeable in
how long it takes to produce the result set.

In contrast to the primary index, entries in the secondary
index are allowed to have non-unique keys. For example,
if we index the “name” attribute, then there may be more
than one entry where the name is set to “John”. We therefore
require a different approach than the temporal data matri-
ces employed for the primary index. Inspired by the work of
Ramaswamy et al. [57], we make use of explicit time win-
dows. Non-unique indices in versioned contexts are special
cases of the general interval stabbing problem [31].

Table 5 shows an example of a secondary index. As such
a table can hold all entries for all indices, we store the index
for a particular entry in the “index” column. The branch,
keyspace and key columns describe the location of the entry
in the primary index. The “value” column contains the value
that was extracted by the ChronoIndexer. “From” and
“To” express the time window in which a given row is valid.
Any entry that is newly inserted into this table initially has
its “To” value set to infinity (i.e., it is valid for an unlimited
amount of time). When the corresponding entry in the pri-
mary index changes, the “To” value is updated accordingly.
All other columns are effectively immutable.

In the concrete example shown in Table 5, we insert three
key-value pairs (with keys el, e2 and e3) at timestamp 1234.
Our indexer extracts the value for the “name” index, which is
“john” for all three values. The “To” column is set to infinity
for all three entries. Querying the secondary index at that
timestamp for all entries where “name” is equal to “john”
would therefore return the set containing el, e2 and e3. At
timestamp 5678, we update the value associated with key
e2 such that the indexer now yields the value “jack”. We
therefore need to terminate the previous entry (row #2) by
setting the “To” value to 5678 (upper bounds are exclusive),
and inserting a new entry that starts at 5678, has the value
“jack” and an initial “To” value of infinity. Finally, we delete
the key €3 in our primary index at timestamp 7890. In our
secondary index, this means that we have to limit the “To”
value of row #3 to 7890. Since we have no new value due to
the deletion, no additional entries need to be added.

This tabular structure can now be queried using well-
known techniques also employed by SQL. For usual queries,
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Fig. 11 Transaction control with and without versioning [25]

the branch and index is fixed, the value is specified as a search
string and a condition (e.g., “starts with [jo]”) and we know
the timestamp for which the query should be evaluated. We
process the timestamp by searching only for entries where

From < timestamp < To

...in addition to the conditions specified for the other
columns. Selecting only the documents for a given branch is
more challenging, as we need to traverse the origin branches
upwards until we arrive at the master branch, performing
one subquery for each branch along the way and merging the
intermediate results accordingly.

4.2.7 Transaction control

Consistency and reliability are two major goals in ChronoDB.
It offers full ACID transactions with the highest possible read
isolation level (serializable, see [38]). Figure 11 shows an
example with two sequence diagrams with identical transac-
tion schedules. A database server is communicating with an
Online Analytics Processing (OLAP [10]) client that owns
a long-running transaction (indicated by gray bars). The
process involves messages (arrows) sending queries with
timestamps and computation times (blocks labeled with “c’)
on both machines. A regular Online Transaction Processing
(OLTP) client wants to make changes to the data which is ana-
lyzed by the OLAP client. The left figure shows what happens
in a non-versioned scenario with pessimistic locking. The
server needs to lock the relevant contents of the database for
the entire duration of the OLAP transaction, otherwise we
risk inconsistencies due to the incoming OLTP update. We
need to delay the OLTP client until the OLAP client closes
the transaction. Modern databases use optimistic locking and
data duplication techniques (e.g., MVCC [6]) to mitigate this
issue, but the core problem remains: the server needs to ded-

icate resources (e.g., locks, RAM...) to client transactions
over their entire lifetime. With versioning, the OLAP client
sends the query plus the request timestamp to the server.
This is a self-contained request; no additional information or
resources are needed on the server, and yet the OLAP client
achieves full isolation over the entire duration of the transac-
tion, because it always requests the same timestamp. While
the OLAP client is processing the results, the server can
safely allow the modifications of the OLTP client, because it
is guaranteed that any modification will only append a new
version to the history. The data at timestamp on which the
OLAP client is working is immutable. Client-side transac-
tions act as containers for transient change sets and metadata,
most notably the timestamp and branch name on which the
transaction is working. Security considerations aside, trans-
actions can be created (and disposed) without involving the
server. An important problem that remains is how to han-
dle situations in which two concurrent OLTP transactions
attempt to change the same key-value pair. ChronoDB allows
to select from several conflict handling modes (e.g., reject,
last writer wins) or to provide a custom conflict resolver
implementation.

5 Solution part Il: ChronoGraph

ChronoGraph is our versioned graph database which is built
on top of ChronoDB. ChronoGraph implements the Apache
TinkerPop standard, the de-facto standard interface for graph
databases. We first provide a high-level overview over Tin-
kerPop; then, we focus on the concepts of ChronoGraph
itself.

5.1 Apache TinkerPop

The TinkerPop framework is the de-facto standard interface
between applications and graph databases. Its main pur-
pose is to allow application developers to exchange a graph
database implementation with another one without altering
the application source code that accesses the database. The
TinkerPop standard is designed in a modular fashion. The
core module is the property graph API [58] which specifies
the Java interfaces for vertices, edges, properties and other
structural elements.

In a property graph, each vertex and edge can have proper-
ties which are expressed as key—value pairs. According to the
standard, each vertex must have an identifier which is unique
among all vertices, and the same is true for edges. In practice,
database vendors often recommend to use identifiers which
are globally unique in the database. Furthermore, in addition
to the unique ID and the user-defined properties, each vertex
and edge has a label, which is defined to be a single-valued
string that is intended to be used for categorization purposes.

@ Springer
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All user-defined properties are untyped by definition, i.e., no
restriction is imposed on which values a user-defined prop-
erty may have. However, some graph database vendors such
as Titan DB'Y and OrientDB!! offer the possibility to define a
schema which is evaluated at runtime. The only unsupported
value for any user-defined property is the nul1 value. Instead
of assigning null to a property, it is recommended to delete
the property on the target graph element entirely.

Another module in the TinkerPop standard is the graph
query language Gremlin. In contrast to the property graph
API, which is only a specification, Gremlin comes with a
default implementation that is built upon the property graph
API interfaces. This implementation also includes a num-
ber of built-in query optimization strategies. Other modules
include a standard fest suite for TinkerPop vendors, and a
generic server framework for graph databases called Grem-
lin Server.

5.2 ChronoGraph architecture

Our open-source project ChronoGraph provides a fully
TinkerPop-compliant graph database implementation with
additional versioning capabilities. In order to achieve this
goal, we employ a layered architecture as outlined in Fig. 12a.
In the remainder of this section, we provide an overview of
this architecture in a bottom-up fashion.

The bottom layer of the architecture is a versioned key-
value store, i.e., a system capable of working with time—key—
value tuples as opposed to plain key—value pairs in regular
key-value stores. For the implementation of ChronoGraph,
we use ChronoDB, as introduced in Sect. 4.

ChronoGraph itself consists of three major components.
The first component is the graph structure management. It is

10 http://s3.thinkaurelius.com/docs/titan/1.0.0/schema.html.

I https://orientdb.com/docs/last/ Tutorial- Using- schema- with-
graphs.html.
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responsible for managing the individual vertices and edges
that form the graph, as well as their referential integrity
[R9]. As the underlying storage mechanism is a key-value
store, the graph structure management layer also performs
the partitioning of the graph into key-value pairs and the
conversion between the two formats. We present the techni-
cal details of this format in Sect. 5.3. The second component
is the transaction management. The key concept here is that
each graph transaction is associated with a timestamp on
which it operates. Inside a transaction, any read request for
graph content will be executed on the underlying storage
with the transaction timestamp. ChronoGraph supports full
ACID transactions [R6] with the highest possible isolation
level (“serializable”, also known as “snapshot isolation”, as
defined in the SQL Standard [38]). The underlying versioning
system acts as an enabling technology for this highest level of
transaction isolation, because any given version of the graph,
once written to disk, is effectively immutable. All mutating
operations are stored in the transaction until it is commit-
ted, which in turn produces a new version of the graph,
with a new timestamp associated with it. Due to this mode
of operation, we do not only achieve repeatable reads, but
also provide effective protection from phantom reads, which
are a common problem in concurrent graph computing. The
third and final component is the query processor itself which
accepts and executes Gremlin queries on the graph system.
As each graph transaction is bound to a branch and times-
tamp, the query language (Gremlin) remains agnostic of both
the branch and the timestamp, which allows the execution of
any query on any desired timestamp and branch [R8].

The application communicates with ChronoGraph by
using the regular TinkerPop API, with additional extensions
specific to versioning. The versioning itself is entirely trans-
parent to the application to the extent where ChronoGraph
can be used as a drop-in replacement for any other Tinker-
Pop 3.x compliant implementation. The application is able to
make use of the versioning capabilities via additional meth-
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Fig. 13 Star Graph partitioning by example

ods, but their usage is entirely optional and not required
during regular operation that does not involve history analy-
sis.

5.3 Data layout

In order to store graph data in our Temporal Key—Value Store,
we first need to disassemble the graph into partitions that can
be serialized as values and be addressed by keys. Then, we
need to persist these pairs in the store. We will first discuss
how we disassemble the graph, followed by an overview of
the concrete key—value format and how versioning affects
this process.

5.3.1 Partitioning: the star graph format

Like many other popular graph databases, e.g., Titan DB, we
rely on the Star Graph partitioning in order to disassemble
the graph into manageable pieces.

Figure 13 shows an example of a star graph. A star graph
is a subset of the elements of a full graph that is calculated
given an origin vertex, in this case v0. The star graph contains
all properties of the vertex, including the id and the label,
as well as all incoming and outgoing edges (including their
label, id and properties). All adjacent vertices of the origin
vertex are represented in the star graph by their ids. Their
attributes and remaining edges (indicated by dashed lines
in Fig. 13) are not contained in the star graph of v0. This
partitioning was chosen due to its ability to reconstruct the
entire graph from disk without duplicating entire vertices or
attribute values. Furthermore, it is suitable for lazy loading
of individual vertices, as only the immediate neighborhood
of a vertex needs to be loaded to reconstruct it from disk.

5.3.2 Key-value layout

Starting from a star graph partitioning, we design our key—
value layout. Since all graph elements in TinkerPop are
mutable by definition and our persistent graph versions have
to be immutable, we perform a bijective mapping step before
persisting an element. We refer to the persistent, immutable
version as a Record, and there is one type of record for each

Table 6 TinkerPop API to Record Mapping [27]

TinkerPop  Record Record contents

id, label,
PropertyKey — PropertyRecord

In: EdgeLabel —
EdgeTargetRecord

Out: EdgeLabel —
EdgeTargetRecord

id, label,
PropertyKey — PropertyRecord
id of InVertex, id of OutVertex

Vertex VertexRecord

Edge EdgeRecord

Property PropertyRecord PropertyKey, Property Value

— EdgeTargetRecord id of edge, id of other-end Vertex

structural element in the TinkerPop API. For example, the
mutable Vertex element is mapped to an immutable Ver-
texRecord. A beneficial side-effect of this approach is that
we hereby gain control over the persistent format, and can
evolve and adapt each side of the mapping individually if
needed. Table 6 shows the contents of the most important
record types.

In Table 6, all id and label elements, as well as all Prop-
ertyKeys, are of type String. The PropertyValue in the
PropertyRecord is assumed to be in byte array form. An
arrow in the table indicates that the record contains a map-
ping, usually implemented with a regular hash map. An
element that deserves special attention is the EdgeTarge-
tRecord that does not exist in the TinkerPop API. Traversing
from one vertex to another via an edge label is a very common
task in a graph query. In a naive mapping, we would traverse
from a vertex to an adjacent edge and load it, find the id of
the vertex at the other end, and then resolve the target vertex.
This involves two steps where we need to resolve an element
by ID from disk. However, we cannot store all edge informa-
tion directly in a VertexRecord, because this would involve
duplication of all edge properties on the other-end vertex.
We overcome this issue by introducing an additional record
type. The EdgeTargetRecord stores the id of the edge and the
id of the vertex that resides at the “other end” of the edge.
In this way, we can achieve basic vertex-to-vertex traversal
in one step. At the same time, we minimize data duplication
and can support edge queries (e.g.,g . traversal () .E()
in TinkerPop), since we have the full EdgeRecords as stan-
dalone elements. A disadvantage of this solution is the fact
that we still need to do two resolution steps for any query that
steps from vertex to vertex and has a condition on a property
of the edge in between. This trade-off is common for graph
databases, and we share it with many others, e.g., Neo4j. We
will discuss this with a concrete example in Sect. 5.4.

For each record type, we create a keyspace in the underly-
ing key—value store. We serialize the record elements into a
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John Doe Jane Doe
knows (since 1999)
rrrrrrrrrrrrrrrrrrrrrrr ‘f transformationr—r‘frr— transformation ‘f
vertex: { edge: { vertex: {

id: "v0", id: "e0", id: "v1",

label: "Person", label: "knows" label: "Person",

properties: { properties: { properties: {
I:: firstName: "John", since: 1999 firstName: "Jane",
= lastName: "Doe" i lastName: "Doe"
g T outVertex: "v0", T
= | out: { inVertex: "v1" out: { },
w
3 knows: [{ H in: {
< edgeld: "e0", knows: [{
i otherEnd: "v1 edgeld: "e0",
§ bl otherEnd: "v0"

+ 3]

in: {3 ¥

>
Value for key "v0" || Value for key "e0" || Value for key "v1"

Fig. 14 Mapping a graph to key-value format

binary sequence. This binary sequence serves as the value for
the key—value pairs and the id of the element is used as the cor-
responding key. The type of record indicates which keyspace
to use, completing the mapping to the key—value format. The
inverse mapping involves the same steps: given an element ID
and type, we resolve the key—value pair from the appropriate
keyspace by performing a key look-up using the ID. Then,
we deserialize the binary sequence, and apply our bijective
element-to-record mapping in the inverse direction. When
loading a vertex, the properties of the incoming and outgoing
edges will be loaded lazily, because the EdgeTargetRecord
does not contain this information and loading edge properties
immediately would therefore require an additional look-up.
The same logic applies to resolving the other-end vertices of
EdgeTargetRecords, allowing for a lazy (and therefore effi-
cient and RAM-conserving) solution.

Figure 14 shows an example for the translation process
between the Graph format and the Key-Value-Store format.
In this example, we express the fact “John Doe knows Jane
Doe since 1999” in a property graph format. Each graph ele-
ment is transformed into an entry in the key—value store. In
the example, we use a JSON-like syntax; our actual imple-
mentation employs a binary serialization format. Please note
that the presented value structures correspond to the schema
for records presented in Table 6.

5.4 Versioning concept

When discussing the mapping from the TinkerPop struc-
ture to the underlying key—value store in Sect. 5.3, we did
not touch the topic of versioning. This is due to the fact
that our key—value store ChronoDB is performing the ver-
sioning on its own. The graph structure does not need to
be aware of this process. We still achieve a fully versioned
graph, an immutable history and a very high degree of shar-
ing of common (unchanged) data between revisions. This
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Fig. 15 Example: Navigating in a graph version

is accomplished by attaching a fixed timestamp to every
graph transaction. This timestamp is always the same as in
the underlying ChronoDB transaction. When reading graph
data, at some point in the resolution process we perform a
get(...) call in the underlying key—value store, resolving an
element (e.g., a vertex) by ID. At this point, ChronoDB uses
the timestamp attached to the transaction to perform the tem-
poral resolution. This will return the value of the given key,
at the specified timestamp.

In order to illustrate this process, we consider the example
in Fig. 15. We open a transaction at timestamp 1234 and
execute the following Gremlin query:

V("v0").out("e0") .outE("el")

.has ("p", "x").inV{()

Translated into natural language, this query:

—

. starts at a given vertex (v0),

2. navigates along the outgoing edge labeled as €0 to the
vertex at the other end of the edge,

3. from there navigates to the outgoing edge labeled as e/,

4. checks that the edge has a property p which is set to value
X,

5. and finally navigates to the target vertex of that edge.

We start the execution of this query by resolving the vertex
v0 from the database. Since our transaction uses timestamp
1234, ChronoDB will look up the temporal key vO@ 1234,
and return the value labeled as B in Fig. 15.'% Value A is not
visible because it was overwritten by B at timestamp 1203,
and value C is also not visible because it was written after
our transaction timestamp. Next, we navigate the outgoing
edge labeled as e0. Our store does contain information on
that edge, but since the query does not depend on any of
its properties, we use the EdgeTargetRecord stored in B and

12 All circles in Fig. 15 represent serialized vertex records or edge
records.
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directly navigate to vI. We therefore ask ChronoDB for the
value associated with temporal key vI @ 7234, and receive
value G. For the next query step, we have a condition on the
outgoing edge el. Our EdgeTargetRecord in value G does not
contain enough information to evaluate the condition; hence,
we need resolve the edge from the store. Querying the tem-
poral key e/ @ 1234 will return the value H, which is shared
with the previous version because it was not changed since
then. After evaluating the condition that the property “p” on
edge version H is indeed set to the value “x” (as specified
in the query), we continue our navigation by resolving the
target of e/, which is v2. The temporal key v2@ 1234 will
result in the value K being returned.

Note that this final navigation step starts at an element that
was reused from the commit at timestamp 1065 and ends at
the state of v2 that was produced by the commit at timestamp
1203. This is possible because graph elements refer to each
other by ID, but these references do not include the branch or
timestamp. This information is injected from the transaction
at hand, allowing for this kind of navigation and data reuse.
This is a major step toward fulfilling requirement [R8]. As
ChronoDB offers logarithmic access time to any key-value
pair on any version, this is also in line with requirement [R5].

5.5 TinkerPop compatibility and extensions

The Apache TinkerPop API is the de-facto standard inter-
face between graph databases and applications built on top
of them. We therefore want ChronoGraph to implement and
be fully compliant to this interface as well. However, in order
to provide our additional functionality, we need to extend
the default APT at several points. There are two parts to this
challenge. The first part is compliance with the existing Tin-
kerPop API, the second part is the extension of this API in
order to allow access to new functionality. In the following
sections, we will discuss these points in more detail.

5.5.1 TinkerPop API compliance

As we described in Sects. 5.3 and 5.4, our versioning
approach is entirely transparent to the user. This eases the
achievement of compliance to the default TinkerPop APL
The key aspect that we need to ensure is that every transac-
tion receives a proper timestamp when the regular transaction
opening method is invoked. In a non-versioned database,
there is no decision to make at this point, because there is
only one graph in a single state. The logical choice for a ver-
sioned graph database is to return a transaction on the current
head revision, i.e., the timestamp of the transaction is set to
the timestamp of the latest commit. This aligns well with the
default TinkerPop transaction semantics—a new transaction
t1 should see all changes performed by other transactions
that were committed before 71 was opened. When a commit

occurs, the changes are always applied to the head revision,
regardless of the timestamp at hand, because history states are
immutable in our implementation in order to preserve trace-
ability of changes. As the remainder of our graph database, in
particular the implementation of the query language Grem-
lin, is unaware of the versioning process, there is no need
for further specialized efforts to align versioning with the
TinkerPop API.

We employ the TinkerPop Structure Standard Suite, con-
sisting of more than 700 automated JUnit tests, in order to
assert compliance with the TinkerPop API itself. This test
suite is set up to scan the declared Graph Features (i.e.,
optional parts of the API), and enable or disable individ-
ual tests based on these features. With the exception of
Multi-Properties' and the Graph Computer,'* we currently
support all optional TinkerPop API features, which results
in 533 tests to be executed. We had to manually disable 8
of those remaining test cases due to problems within the test
suite, primarily due to I/O errors related to illegal file names
on our Windows-based development system. The remaining
525 tests all pass on our API implementation.

5.5.2 TinkerPop extensions

Having asserted conformance to the TinkerPop API, we
created custom extensions that give access to the features
unique to ChronoGraph. As the query language Gremlin
itself remains completely untouched in our case, and the
graph structure (e.g., Vertex and Edge classes) is unaware
of the versioning process (as indicated in Sect. 5.4), we are
left with one possible extension point, which is the Graph
interface itself. In order to offer queries access to times-
tamps other than the head revision, we need to add a method
to open a transaction on a user-provided timestamp. By
default, a transaction in TinkerPop on a Graph instance g is
opened without parameters. We expand the transaction class
by adding several overrides which accept the desired target
branch and version. Using these additional overrides, the user
can decide the java.util.Dateor java.lang.Long
timestamp on which the transaction should be based, as well
as the branch to operate on. This small change of adding an
additional time argument is all it takes for the user to make
full use of the time travel feature, the entire remainder of
the TinkerPop API, including the structure elements and the
Gremlin query language, behave as defined in the standard.
Opening a transaction without parameters defaults to open-

13 We do not support multivalued properties directly as intended by
TinkerPop. However, we do support regular properties of List or Set
types.

14 The Graph Computer is the entry point to the distributed Online
Analytics Processing (OLAP) API. Support for this feature may be
added in future versions of ChronoGraph.
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ing a transaction on the latest version of the master branch,
which is also in line with the TinkerPop API specification.

In order to provide access to the history of a single Ver-
tex or Edge, we added explicit query methods to our Graph
implementation. These methods allow access to the history
of any given edge or vertex. The history is expressed by an
Iterator over the change timestamps of the element in
question, i.e., whenever a commit changed the element, its
timestamp will appear in the values returned by the iterator.
The user of the API can then use any of these timestamps as
an argument to g. tx () .open (..) in order to retrieve the
state of the element at the desired point in time. The imple-
mentation of the history methods delegate the call directly
to the underlying ChronoDB, which retrieves the history of
the key—value pair associated with the ID of the given graph
element. This history is extracted from the primary index,
which is first sorted by key (which is known in both sce-
narios) and then by timestamp. This ordering allows the two
history operations to be very efficient as only element ID
requires a look-up in logarithmic time, followed by back-
wards iteration over the primary index (i.e., iteration over
change timestamps) until a different ID is encountered (c.f.
Table 3).

The final requirement with respect to versioning capabil-
ities is the demand for an operation that lists all changes
within a given time range, regardless of the affected ele-
ments. In order to meet this requirement, we added another
pair of methods to our Graph implementation. These meth-
ods (one for vertices, one for edges) accept time ranges and
grant access to iterators that return 7TemporalKeys. These keys
are pairs of actual element identifiers and change timestamps.
Just as their element-specific counterparts, it is intended that
these timestamps are used for opening transactions on themin
order to inspect the graph state. Combined calls to next ()
on itl and it2 will yield the complete list of changes
upon iterator exhaustion. Analogous to their element-specific
siblings, these methods redirect directly to the underlying
ChronoDB instance, where a secondary temporal index is
maintained that is first ordered by timestamp and then by
key. This secondary index is constructed per keyspace. Since
vertices and edges reside in disjoint keyspaces, these two
operations do not require further filtering and can make direct
use of the secondary temporal index.

5.6 Transaction semantics

The Apache TinkerPop API is currently available in its third
version. It evolved alongside its implementations, which
range from local graphs (e.g., the in-memory reference
implementation TinkerGraph) to highly distributed systems
(e.g., Titan DB). Due to this diversity, the requirements
toward transaction semantics, in particular behavior under
concurrent access [R6], are specified very loosely in Tinker-
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Pop itself. For example, when iterating over the outgoing
edges of a vertex, TinkerPop only specifies that the iteration
itself should never return a null value and should never
throw a ConcurrentModificationException, but
details regarding the visibility of changes made by other,
concurrent transactions are unspecified.

Since the reference implementation TinkerGraph, which is
provided alongside the API, does not support transactions, '
we had to design the transaction semantics by ourselves.
When we implemented ChronoDB, we envisioned it to be a
system suitable for storing data for analysis purposes, there-
fore the consistency of a view and the contained data is
paramount. As all stored versions are effectively immutable,
we chose to implement a full ACID transaction model in
ChronoDB with the highest possible isolation level (“Seri-
alizable” [38]). As ChronoGraph is based on ChronoDB,
it follows the same transaction model. To the best of our
knowledge, ChronoGraph is currently the only implementa-
tion of the TinkerPop API v3.x that is full ACID in the strict
sense, as many others opt for repeatable reads isolation (e.g.,
OrientDB), while ChronoGraph supports snapshot isolation.
A proposal for snapshot isolation for Neo4j was published
recently [55], but it is not part of the official version. Graph
databases without ACID transactions and snapshot isolation
often suffer from issues like Ghost Vertices'® or Half Edges'’
which can cause inconsistent query results and are very diffi-
cult to deal with as an application developer. These artifacts
are negative side-effects of improper transaction isolation,
and application developers have to employ techniques such
as soft deletes (i.e., the addition of “deleted” flags instead of
true element deletions) in order to avoid them. As Chrono-
Graph adheres to the ACID properties, these inconsistencies
can not appear by design.

5.7 Functionality and usage implications

Our implementation is a stark contrast to existing solutions.
We implement the versioning process at a lower level, in
the generic temporal key—value store ChronoDB. This store
is aware of the semantics of the versioning process, and is
capable of solving the problem of long histories [26] (c.f.
Sect. 4.2), unlike the previously mentioned solutions. There
are no additional mapping steps required in order to achieve
graph versioning, in fact our graph to key-value mapping
is very similar to the algorithm employed by Titan DB. In

15 Transactions are an optional feature in TinkerPop 3.

16 Vertices that have been deleted by transaction ¢/ while being mod-
ified concurrently by transaction 2 do not disappear from the graph;
they remain as Ghosts.

17 Half Edges refer to the situation where an edge is only traversable and
visible in one direction, i.e., the out-vertex lists the edge as outgoing,
but the in-vertex does not list it as incoming, or vice versa.
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particular, no additional auxiliary graph elements are intro-
duced for the purpose of versioning. To the end user, the
versioning process is completely transparent, as our imple-
mentation is fully compliant with the standard TinkerPop
API for non-versioned graphs. There is no need for trans-
lating one graph query into another in order to run it on a
different version of the graph. A developer familiar with the
TinkerPop API can start using ChronoGraph without any
particular knowledge about its versioned nature. By offer-
ing additional methods, which are very much in line with
the intentions of the TinkerPop API, we grant access to
the versioning-related features. Additionally, ChronoGraph
is fully ACID compliant with snapshot isolation for concur-
rent transactions, preventing common artifacts that arise in
other, non-ACID graph databases, such as ghost vertices and
half edges. Our solution is strongly based on immutability
of existing versions, which aids in preserving traceability of
changes and allows extensive sharing of data that remained
unchanged between revisions.

5.8 Conflict resolution

In case of concurrent write transactions, the versioning
engine is sometimes faced with conflicting commits. This sit-
uation occurs when two transactions simultaneously intend
to modify the very same graph element. In this section, we
describe our current conflict resolution approach.

The conflict resolution algorithm implemented in Chrono-
Graph differentiates between addition and removal of entire
graph elements on the one hand and property value changes
on the other hand. Additions of graph elements can never
cause a true conflict: even if two concurrent transactions
add a vertex or edge with the same new identifier (which is
highly unlikely, since we employ universally unique identi-
fiers), then the resulting state in both transactions is identical:
the new vertex or edge exists. They may still differ in their
properties, which we consider at a later stage.

When either side of the conflictis a graph element deletion,
we are faced with two options: either we undo the deletion to
apply the changes from the other side of the conflict, or we
retain the deletion and discard the other changes. In our cur-
rent implementation, the removal of a graph element always
takes precedence over any other conflicting modification on
this element. This may cause the loss of property changes
on the deleted element in the concurrent transaction. How-
ever, the alternative of “undeleting” the graph element is even
more undesirable. In particular if the deleted element was a
vertex, then its adjacent edges have also been deleted, which
would result in a completely isolated vertex if we chose to
undelete it. Isolated vertices are no problem for the storage
engine, but they don’t add much value to the semantics of the
graph, as they will never contribute to the results of traversal
queries (since they are not connected to any other element).

In case of a conflict on property values, it is important
to know that ChronoGraph tracks all modifications on vertex
and edge properties individually. This means that the conflict
resolution algorithm has access to the information whether
or not any given vertex property or edge property has been
modified within the transaction. For example, if two con-
current transactions perform a commit on the same vertex,
and one of them sets the firstname property to John,
while the other sets the 1 astname property to Doe, then the
conflict is resolved by accepting both changes (the resulting
vertex will have a firstname of John and a lastname
of Doe). Only if both transactions modify the same property
on the same graph element, then a true conflict occurs. Here,
we employ the same strategy as for graph elements: if either
side of the conflict is a deletion, the deletion wins. If neither
side is a deletion, then the last writer wins. For example, if
one transaction sets £ irstname to John and a concurrent
transaction sets £ i rstname to Jack on the same graph ele-
ment, then the conflict is resolved by using the firstname
value from the transaction which was committed later in time.

5.9 Limitations and drawbacks

Our approach is tailored toward the use case of having a
versioned graph (as opposed to a femporal graph), which
entails that queries on a single timestamp are the prevalent
form of read access. Even though we support additional aux-
iliary methods for traversing the history of a single vertex or
edge, and listing all changes within a given time range, our
approach is far less suitable for use cases with an empha-
sis on temporal analysis that require time range queries, or
detection of patterns on the time axis (as in graph stream anal-
ysis [47,56]). For example, answering the question “Which
elements often change together?”’, while possible in our solu-
tion, can not be implemented in an efficient way that does
not require linear scanning through the commit logs. Another
example would be the query “List all vertices that have ever
been adjacent to a given one”, which would again involve
linear iteration in our solution. In general, our graph is a
TinkerPop implementation and therefore optimized with the
traversal language Gremlin in mind. As such, it does not lend
itself as well to declarative, pattern-driven search approaches
like Cypher as a dedicated Cypher graph implementation
(e.g., Neo4j) would do.

We are currently also not offering any means for distribut-
ing the graph among multiple machines (see Sect. 10 for
details). This limits the scale of our graph to sizes manage-
able within the physical memory and computing resource
restrictions of a single machine. An essential drawback of
our solution is that, due to the versioned nature of our data,
we cannot rely as much on dictionaries with O(1) access
times (e.g., Hash Maps) as regular general-purpose graph
databases, because of the temporal resolution steps that hap-
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Fig. 16 Conceptual ChronoSphere metamodel [28]

pen on every navigation. Those steps have a complexity of
O(log (n)), which also limits the scalability of our graph.

Finally, we have to acknowledge the fact that Chrono-
Graph is an ongoing work-in-progress research project,
therefore numerous optimization possibilities have not been
exploited yet. For a detailed evaluation of ChronoGraph, we
refer the interested reader to our previous work [27].

6 Solution part lll: ChronoSphere

ChronoSphere is our novel open-source graph-based EMF
model repository. It provides a wide variety of features
known from other solutions, such as querying, persistence,
versioning and branching, and furthermore supports unique
features such as metamodel evolution and snapshot-level
transaction isolation. ChronoSphere does not assume the
presence of a runtime environment such as OSGi,18 but
can be integrated into such frameworks if required. The

software is distributed via standard Maven repositories,

19

which makes it easily accessible for a wide range of modern
dependency management tools such as Gradle, Apache Ivy
or Apache Maven. ChronoSphere is implemented in pure
Java, which allows it to run in any environment compat-
ible with the Java 8 SE standard. This includes a broad
spectrum of scenarios, from single-user desktop applications
to highly concurrent enterprise-level server back-ends. The
only notable exception where ChronoSphere cannot be used
are JVM implementations that do not support Java reflection
(e.g., Android devices) which is required for serialization and
deserialization of objects in the lower levels of ChronoDB. As
ChronoSphere provides its own data store and has no depen-
dencies to an external database, it can be easily embedded
into any EMF-based application.

A conceptual metamodel of ChronoSphere is shown in
Fig. 16. A ChronoSphere instance manages a num-

18 https://www.osgi.org/.

19 https://mvnrepository.com/artifact/com.github.martinhaeusler/org.

chronos.chronosphere.
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ber of named Branches (with master as the predefined
one) [R4], and each Branch refers to its origin (recur-
sively). Each Branch contains any number of Versions
[R8], which in turn contain a user-defined (Ecore-based)
Metamodel and an InstanceModel, which is a col-
lection of EObjects that adhere to the EClasses in
the Metamodel. A ChronoSphere instance can then create
Transactions[R6]ona given Version by starting them on
a transactionTimestamp, which is usually obtained
from a user-provided java.util.Date. This is a fairly
common setup for versioning- and branching-enabled model
repositories. A detail deserving special attention is the fact
that a Version and a Metamodel are bound to each other in a
one-to-one relationship. This is a requirement for metamodel
evolution [R3], which we will discuss in Sect. 6.4.

6.1 Graph layout

In order to store EMF metamodels and their correspond-
ing instance models in our graph database, we need to
define a bijective transformation for each element between its
EMF (in-memory) representation and its (persistent) graph
representation. Our approach to this task is inspired by
Neo4EMF [4] which uses a similar mapping.

Figure 17 shows a small example for our model-to-graph
mapping. Please note that this example is not complete; sev-
eral properties were omitted for visual clarity. As outlined
earlier, we store the Ecore metamodel (EPackages, EClasses,
...) together with the actual instance model (EObjects) in
the same graph in order to support metamodel evolution and
model versioning at the same time. The two vertices at the
top represent two EPackages, with “MySubPackage” being
owned by ‘“MyPackage”. The metamodel also contains two
EClasses, one of which has an EAttribute and an ERefer-
ence attached. Note that, in contrast to regular Ecore, we
attach unique identifiers to every element in the meta- and
instance model. This allows for easier object comparison in
cases where an element was loaded more than once from the
graph.
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id: "c05d38c9-20a9-4580-b033-a4b1db8f2bbb" @

kind: "EPACKAGE"
name: "MySubPackage"

nsURI: "http://www.example.org/mymodel/sub"

nsPrefix: "mymodel.sub"

id: "c7b93a26-f809-45fd-a06c-606595ebca7f"
kind: "ECLASS"
name: "MyClass"

id: "039fd383-b089-4257-b22c-7b57548e9ac4"
kind: "EATTRIBUTE"
name: "name"

id: "102270d6-a0f0-4354-b991-09ac592cdb75"
kind: "EREFERENCE"
name: "myRef"

id: "776835a1-0d1e-4d8e-ba5f-8767b5b8346c"
kind: "EOBJECT"
eAttr_039fd383-b089-4257-b22c-7b57548e9ac4: "MyObject"

Fig. 17 Model-to-graph mapping by example (simplified)

The two vertices with box icons represent actual EOb-
jects. Each EObject vertex is connected with an edge labeled
as “eClass” to the vertex in the metamodel that represents the
EClass of the EObject. References are represented as edges as
well. They use the unique ID of the EReference to which they
belong as the edge label, prefixed with “eRef_". This allows
for efficient identification during the mapping process and
eliminates the possibility of unintentional name clashes on
edges. A similar pattern is applied for attribute values. The
left EObject vertex has a property prefixed with “eAttr_”,
followed by the unique identifier of the “name” EAttribute.
Again, this schema prevents name clashes and allows for fast
identification of the corresponding meta-element. By follow-
ing this schema, we can efficiently and unambiguously map
each EMF model into its graph representation, and vice versa.

There are several additional details to be considered which
are not represented in this figure. For example, Ecore allows
to define an EReference which is many-valued and has a
fixed ordering for its targets. By definition, edges on a ver-
tex are unordered. Hence, we need to assign explicit numeric
“order” attributes to these edges to retain this information.
Even though such corner cases do exist and require special
attention during the design of the mapping algorithm, the
overall graph format is very concise, especially when com-
pared to the large number of tables required in equivalent
SQL representations.

6.2 EQuery

Storing and retrieving models are basic capabilities that are
offered by all model repositories. However, only very few

id: "931fbf19-5ad5-4fd1-a9b2-f7897427837c"
kind: "EPACKAGE"

name: "MyPackage"

nsURI: "http://www.example.org/mymodel"

ownedEPackage
nsPrefix: "mymodel"

id: "c472f890-1d44-4aca-82df-ebae0b3f4009"
kind: "ECLASS"
name: "MyBaseClass"

eClass

id: "72c89041-fc7b-4851-8c14-5772e0ba125b"

eRef 102270d6- kind: "EOBJECT"

a0f0-4354-b991-
09ac592cdb75

tools allow for queries that operate on model content, such
as CDO. Often, languages like OCL [53], EOL [42] or the
Hibernate Query Language (HQL?®) are employed for this
purpose. HQL translates directly into SQL queries, utilizing
the object-relational mapping information. From the model-
ing perspective, HQL is therefore a rather low-level language
that is furthermore bound specifically to stores implemented
in SQL. It operates on storage level, as opposed to working on
the model level. OCL allows for model-level queries, but the
execution of these statements often suffers from poor perfor-
mance on larger instance models. Both OCL and HQL require
that their statements are written as plain strings in an applica-
tion, effectively circumventing any validation by compilers.
In the context of ChronoSphere, we introduce a new
query language called EQuery. It uses familiar syntax and is
implemented as an internal domain-specific language (DSL)
embedded in Java itself. EQuery is based on traversals rather
than declarative statements. Queries form an integral part of
an application’s business logic, and embedding them directly
into the Java source code has many benefits. Application
developers can make full use of the Java compiler for valida-
tion, and benefit from their Java IDEs when it comes to editor
support features, such as code completion and syntax high-
lighting. Queries will never go out of sync with the code that
operates on them, and Java-level type safety is also preserved
at compile time, which cannot be achieved with string-based
query formats. Finally, EQuery also defines generic traversal
steps that accept Java Lambda Expressions, which greatly
enhances the flexibility and expressivity of queries.

20 https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/
queryhqgl.html.
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EQuery works by first stating a starting element, then
navigating the model from there to arrive at the desired
result element(s). In between, EQuery allows for a wide
range of operations, including filters, loops and subqueries.
Before execution, the traversals are scanned and optimized
to make best use of the indices maintained by Chrono-
Sphere [R5]. Internally, those queries are translated to graph
traversal queries on the underlying ChronoGraph structure.
Those queries allow for highly efficient, stream-based lazy
evaluation. The entire EQuery framework is also easily exten-
sible with new operations, such as the evaluation of OCL
statements [53] or expressions in the Epsilon Object Lan-
guage [42]. There is also an ongoing research project for
translating OCL statements directly into graph traversals
called Mogwai [11], which might also be incorporated into
our framework in the future.

The remainder of this section is dedicated to examples on
how to use EQuery. We use the IT Landscape metamodel for
this purpose, as shown in Fig. 20.

Set <EObject> mailServerVMs = transaction.
find ()
.startingFromAllEObjects ()
.isInstanceOf ("Application")
.has ("name" "Mail Server")
.eGet ("runsOn")
6 .asEObject () .toSet () ;

Listing 1 A basic EQuery example

Listing 1 shows a basic example of the EQuery syntax.
Here, we start our traversal from the set of all EObjects
in our model. We then narrow the search space by restrict-
ing the elements to have an EClass named “Application”.
We then filter the EAttributes of the EObjects and
look for Applications with a “name” equal to “Mail Server”.
Then, we navigate along the “runsOn” EReference using
the familiar eGet (...) syntax. The result is a stream of arbi-
trary objects’! which needs to be filtered to include only
EObjects. Finally, we convert the stream into a Set for
further processing. All of this is expressed within regular
Java code.

Set <EObject > queryResult = transaction.find
)
.startingFromInstancesOf ("Cluster")
.and (
eGet ("runsOn")
.isInstanceOf ("PhysicalMachine"),
6 eGet ("runsOn")
.isInstanceOf ("VirtualMachine")
8 ) .toSet () ;

Listing 2 An example for Subqueries in EQuery

2l I Ecore, the operation eGet (...) can be used to access references
and attributes. While EReferences always point to other EObjects, EAt-
tributes can have arbitrary values. Thus, eGet (...) in EQuery returns
an untyped stream of objects.
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Listing 2 shows a query that retrieves all clusters which are
mixed, i.e., run on physical as well as virtualized hardware.
The query starts from the set of all clusters and then specifies
an and (...) step. This step will filter out all EObjects where
at least one of the provided subqueries does not produce any
object. Each subquery starts at the same object, which is the
one which was passed into the and step. In our example, we
pass in a cluster object into the and step, and check if it runs
on at least one physical and at least one virtual machine.

// load Ecore meta-elements from EPackage
2| EClass application = .

3l EClass virtualMachine =

4| Set<EObject > v1rtuallzedApp11catlons =
5 transaction. find ()

6 .startingFromInstancesOf (application)
.named ("apps")

8 .eGet ("runsOn")

9 .isInstanceOf (virtualMachine)

10 .back ("apps")

11 .asEObject () .toSet () ;

Listing 3 An example for back-navigation in EQuery

Our final query example in Listing 3 involves the retrieval
of all Applications which run on virtualized hardware.
To do so, we start from all applications in our model,
and create a name for this traversal step (“apps”). This
name can be arbitrary and is not connected to the model
in any way; it merely acts as a marker in our query.
From the applications, we navigate along the “runsOn”
EReference to the virtual machines. For every appli-
cation where this navigation step produced a valid result
(i.e., application.eGet ("runsOn") is non-empty),
we check if at least one of the resulting EObjects is of type
Virtual Machine. If there is such an instance, we navigate
back to the previously marked “apps” position. This pro-
duces a stream that only contains EObJjects that have at
least one target for the “runsOn” EReference which is a
Virtual Machine. It is important to note here that the back
step will only be performed if at least one element passed
the previous step. This style of backtracking works in arbi-
trary distances between query steps, and the programmer can
define an arbitrary number of (uniquely) named steps to jump
back to. They are useful in cases where the required filter
condition is not on an element itself but on its neighbors,
or in order to avoid long backtracking navigation. A final
detail worth mentioning in Listing 3 is that we first retrieve
the EClasses from the EPackage. In most places, the EQuery
API allows the programmer to choose between passing a
name (EClass name, EAttribute name...) or a variable of the
appropriate type. Generally speaking, passing in the meta-
model element directly is more efficient than specifying it by
name. In all further listings, we will not include the variable
definitions.
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6.2.1 EQuery validation and type safety

As EQuery statements are fragments of Java code, they are
subject to the Java type system and will automatically be
checked by the Java compiler. Furthermore, as there is no
media disruption between the query and the code which sur-
rounds it, the compiler will also assert that the result of the
query is of the type expected by the surrounding code. For
example, in Listing 3 the compiler can check that the result is
of type Set<EObject>. Aside from type errors, the com-
piler will also check that the general syntactic structure of
the query is correct (e.g., no unbalanced braces, no mistyped
operators...). Among the errors which will not be noticed
by the Java compiler are mistyped names of metamodel
elements and their types. For example, eGet (“name”)
is always correct according to the Java compiler, even if
the EAttribute name does not exist in the current meta-
model. Furthermore, the Java compiler cannot infer that
eGet (“name” ) will produce an element of type String;
all it knows is that it produces some result Object. For such
cases, EQuery provides content filtering and casting methods
(e.g., asEObject (), asNumber () ...) which first apply
an instanceof filter and then downcast the passing ele-
ments.

OCL takes a very different approach. From the perspec-
tive of a Java developer, OCL is an external DSL, which
means that an OCL expression is embedded into a Java pro-
gram as a string literal. By using tools such as the Dresden
OCL compiler [12], it is possible to type-check an OCL state-
ment, provided that both the statement and the corresponding
metamodel are known. However, even though this is a strong
validation, it cannot check the interactions between the query
literal and the application which executes the query. On a Java
API level, the result of an ocl.evaluate(literal)
method call will always be of type ObJj ect which then needs
to be downcast to the expected type. As both the content
of the OCL string literal as well as the downcast itself can
be changed freely without causing type errors from the Java
compiler, we argue that this method does not provide full type
safety for application developers. This is not limited to OCL:
all query languages which rely on string literal representation
(such as SQL and HQL) also suffer from the same issue.

Due to the fact that in our use case the metamodel is evolv-
ing dynamically at runtime and queries have to be created
dynamically rather than coming from design-time-constant
string literals, we decided to implement our query language
as a Java-embedded DSL to retain as much type safety as
possible by relying on the Java type system.

6.3 Metamodel evolution

One of the major benefits of employing model reposito-
ries is the freedom of defining a custom, domain-specific

metamodel for any given use case. In practice, users often
cannot take full advantage of this benefit because they are
hampered by the lack of proper tool support, in particu-
lar in cases where the metamodel evolves over the duration
of a project [37]. These cases are very common in indus-
trial contexts with long-running endeavors. In traditional
enterprise software engineering scenarios, developers cre-
ate database scripts that migrate the database schema (and
contained data) from one version to the next. There is a
wide variety of tools for this purpose (e.g., Flyway”? and
LiquiBase23 ). In a model-based environment, this translates
to the concept of metamodel evolution [R3], sometimes also
referred to as metamodel adaptation [74]. The key challenge
of metamodel evolution is to keep the instance model con-
sistent with the metamodel, i.e., the instances need to be
co-adapted such that they conform to the new metamodel
[9].

For some evolutionary metamodel changes, no instance
co-adaptation is required. For example, when adding a new
EAttributetoanexisting EClass, the existing instances
are still valid (provided that the attribute is not manda-
tory), they just have no value set for the new attribute.
Other basic examples include the addition of new EClasses
or increasing the multiplicity of an EAttribute from
multiplicity-one to multiplicity-many. However, far more
complex examples exist as well, and in many cases, fully
automatic and deterministic instance co-adaptation is not
possible. Cicchetti et al. refer to such cases as unresolvable
breaking changes [9]. For instance, we consider a meta-
model that contains an EClass A. The next version of the
same metamodel does not contain A anymore, but a new
EClass named B instead. Even though there are algorithms
for model differencing [16,40,72], in the absence of unique
identifiers (e.g., UUIDs) and change logs we cannot tell if A
was removed and B was added, or if A was merely renamed to
B. In the first case, we would have to delete all instances of A,
in the second case we would need to migrate them to become
instances of B. This basic example shows that instance co-
adaptation requires semantic information about the change,
which is only available to the application developer. For this
reason, ChronoSphere provides an API for managing meta-
model evolution with instance co-adaptation [R3]. Rose et
al. provide a summary of related approaches [60]. This in-
place transformation approach is in line with Wimmer [75]
and Meyers [48], with the notable difference that we pro-
pose a Java API instead of ATL processes or DSLs [35,
59]. The concept is also similar to the Model Change
Language [49]. This API offers three different modes of
operation:

22 hitps://flywaydb.org/.
2 hitp://www.liquibase.org/.
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Fig. 18 Metamodel evolution in Regular Change (I ; CoAdant )
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— Changes without need for instance adaptation
This kind of evolution is intended for the most basic
changes that do not require any kind of instance co-
adaptation. Examples include adding EClasses, adding
EAttributes, orincreasing feature multiplicities from
one to many. This category is also known as non-breaking
changes [9]. The developer only provides the new ver-
sion of the metamodel and loads it into ChronoSphere,
which will create a new version in the history.

— One-to-one correspondence
When instance co-adaptation is required, a common case
is that each EObject from the old model will still cor-
respond to (at most) one EObject in the new model.
Examples for changes in this category include the renam-
ing of EClasses and EAttributes. For such cases,
the ChronoSphere metamodel evolution engine provides
the developer with a predefined evolution process and
a predefined element iteration order. The developer
implements an Incubator that is responsible for either
migrating a given EObject to match the new meta-
model, or deleting it if it is obsolete. The Incubator is
specific to a given source and target metamodel and con-
tains the semantics and domain-specific constraints of the
migration, expressed in Java source code.

— Generic adaptation
In more complex cases, a one-to-one correspondence of
elements can no longer be established, for example when
an EClass is refactored and split up into two separate
classes. In such cases, ChronoSphere provides a generic
Evolution Controller interface that is in full control over
the instance co-adaptation. It receives the migration con-
text, which provides utility methods for querying the old
and new model states. The migration process as well
as the iteration order of elements are defined by the
implementation of the controller. For that reason, imple-
menting an evolution controller is the most powerful and
expressive way of defining a migration, but also the most
technically challenging one that entails the highest effort
for the developer. Just like the incubators from the one-to-
one correspondence case, such migration controllers are
specific to a given source and target metamodel version.
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By offering these features, we implement the metamodel
evolution requirement [R3]. Since we only adapt the latest
version of the model to the new metamodel, the old model
instances still conform to their corresponding metamodel. We
must not touch these instances, because this would violate the
requirements for versioning and traceability of changes [RS,
R9]. Hence, we need to put the metamodel under version
control as well.

As shown in Fig. 18, every version in every branch of
the model can have its own metamodel to which it corre-
sponds. A direct consequence of this approach is that the
application developer needs to be aware of those (potentially)
multiple metamodels, and create queries dynamically based
on that metamodel. While this will entail additional efforts in
development, it is the only fully consistent way of managing
versioned models with evolving metamodels.

The alternative would be to retroactively adapt every
stored version of the model to a single new metamodel.
However, since this adaptation process is not guaranteed to
conserve all information (e.g., consider a new metamodel
where an EAttribute has been deleted), we would not
be able to guarantee traceability anymore. Consequently,
we would introduce a considerable threat to the validity of
audits. By storing a new metamodel alongside the co-adapted
instance model, we restrict the impact of a metamodel evolu-
tion to a single version (e.g., the version that simultaneously
introduces my4 and mm, in Fig. 18) and can still guarantee
traceability in the remaining sections of our data. As we will
discuss in the remainder of this section, in our approach, we
can guarantee traceability even across metamodel evolutions.

Algorithm 2 shows how metamodel evolution works in
ChronoSphere when using an Incubator. In the beginning of
the metamodel evolution algorithm, we open fwo transac-
tions on the repository, and we refer to them as txOld and
txNew. We will use #xOld in order to read the repository
state before the evolution has occurred, and zxNew to per-
form our modifications. We assume that #xOld contains a
metamodel and a corresponding instance model (otherwise
the evolution is a regular insertion). It is crucial at this point
that these two transactions are able to work in parallel, and
are furthermore completely isolated from each other. Our
first actual modification is to override the previous meta-
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Algorithm 2: Incubator-based Metamodel Evolu-
tion [28]

Data: Repository; NewMetamodel; Incubator
1 txOld < Repository.tx();
txNew < Repository.tx();
txNew.setMetamodel(NewMetamodel);
foreach EObject e in tx New.allInstances do

L txNew.delete(e)

6 foreach EObject e in txOld.allInstances do
7 newClass < Incubator.getEClass(NewMetamodel, e);
8 if newClass /= NULL then

9 L txNew.recreate(e, newClass);

2
3
4
5

10 foreach EObject e in newT x.allInstances do

11 oldEObject < oldTx.getEObject(e);
12| Incubator.transferEAttributes(oldEObject, e);

13 foreach EObject e in newTx.allInstances do
14 oldEObject «<— oldTx.getEObject(e);
15 | Incubator.transferEReferences(oldEObject, e);

16 txNew.commit();
7 txOld.rollback();

-

model in txNew. We can safely do so because the original
is still stored in txOld. There is no metamodel differencing
taking place in this phase, we perform a plain overwrite. We
initially delete all elements in txNew (lines 4 to 5) and start
with an empty instance model. Afterward, we begin our first
instance evolution phase (lines 6 to 9). We iterate over all
EObjects stored in the old repository state, and ask our Incu-
bator for a new EClass for this particular EObject. If there is
a corresponding EClass in the new metamodel, we recreate
the EObject with the same ID, preserving the historical trace-
ability link. Otherwise, we discard the EObject. In lines 10
through 12, we iterate over the elements that received a new
EClass previously and look for their counterparts in txOld.
We ask the Incubator to transfer any desired EAttribute values
from the old version to the new one, which may also involve
a value transformation step. For the fulfillment of all of its
tasks, the Incubator has access to the Ecore API as well as
the ChronoSphere API, allowing for very clean and expres-
sive implementations. Finally, we construct the EReference
instances by iterating over the EObjects again (lines 13 to
15). Once more, the Incubator is responsible for the actual
semantics. In the last phase, we perform the commit that
persists our changes to disk (and creates a new entry in the
version history), and roll back the historical transaction.
Overall, we have maintained our traceability links (by
retaining the IDs of EObjects) and performed a metamodel
evolution with instance adaptation that is ACID safe and cre-
ates a clean history without partially evolved intermediate
states. The evolution process with a full-fledged Evolution
Controller works in much the same way. The primary differ-
ence is that the lines 6 through 15 are replaced by a call to
the controller, allowing for a maximum of flexibility in the

controller implementation. This algorithm requires efficient
management of RAM in practice, in particular when working
with larger models. Since zxNew needs to manage all changes
applied to all model elements, the change set can grow to very
large sizes. By utilizing incremental commits, we can miti-
gate the problem by flushing batches to disk while providing
the same level of ACID safety and equivalent histories.

6.4 Advantages and limitations of the incubator
approach

Using the incubator algorithm as described in section reduces
the amount of manual coding required to perform a meta-
model evolution with instance adaptation. The incubator
assists the programmer in the common case that an EOb-
ject before the metamodel evolution conforms to at most one
EObject after the metamodel evolution. This covers a lot of
cases, including:

Removal of classes

— Addition of new classes

Renaming of any metamodel element

Any changes to EAttributes and EReferences
— Any combination of changes listed above

In all of these cases, the incubator provides utilities such as
a fixed migration process and a fixed element iteration order.
The goal of the incubator approach is to drastically reduce
the required amount of manual coding for common cases.
However, it is not applicable in all scenarios. For example,
when a single class C is split into two classes (C1 and C»),
then each EObject E conforming to C must be split into
two EObjects E1 and E, where E| becomes an instance
of C1, and E; an instance of C;. Cases such as this (which
are less common and often fairly complex) are not covered
by the incubator. In such cases, the programmer needs to
implement the migration code manually. We consider the
current features to be a baseline that provides the neces-
sary raw functionality. We aim to build more sophisticated
and user-friendly evolution mechanisms on top in the future,
gradually reducing the amount of required manual coding
(see Sect. 10).

6.5 Transaction and versioning concepts

Transactional safety [R6] is the foundation of all features in
ChronoSphere which are related to collaboration and evo-
lution. Originally coined by the database community, this
concept has since been adopted by other domains as well. In
the context of modeling and model repositories, transactional
safety implies that several clients can work in parallel on a
model without interfering with each other.
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Fig. 19 Analyzing transitive dependencies of IT assets in Txture’s interactive visualizations

In ChronoSphere, a client®* requests a transaction, then

operates on it by executing queries and applying changes
locally in this transaction. Afterward, the transaction can
either be committed (local changes will be made available
globally by creating a new version) or rolled back (revert-
ing all local changes). The isolation property defined in the
SQL Standard [38] states that any operation executed within
a transaction must not be affected by other, concurrent trans-
actions [R6]. In order to achieve the highest possible isolation
level (serializable [38], also known as snapshot isolation),
databases traditionally either need to perform excessive pes-
simistic locking, or allocate considerable amounts of RAM
to open transactions in order to retain duplicates of concur-
rently modified entries. Thanks to its versioning capabilities,
ChronoSphere can provide snapshot isolation with minimal
locking, no additional memory overhead and without sac-
rificing performance. This is a direct consequence of our
design: once a model version is committed, it is effectively
immutable. Further changes will create new versions. There-
fore, as long as a client is working on any given version (i.e.,
the used transaction timestamp does not change), the model
content will not change, thus guaranteeing snapshot isolation.

7 Industrial case study

At the time of writing this document, ChronoSphere and
its sub-components are already being used in production in

24 We use the term “client” to refer to application code that operates on
top of ChronoSphere. This can be a remote method invocation, another
thread or simply a method call to the public API.
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industry. They are embedded in the commercial IT Landscape
documentation tool Txture,”> which is in turn deployed on-
site at several customers. In this section, we explore how the
interplay between Txture and ChronoSphere works and how
ChronoSphere contributes to the use cases of Txture.
Txture is a software tool for documenting the IT Land-
scape of companies. The customers of Txture employ it
for several different use cases, including impact analy-
sis, history analysis, enterprise architecture management,
transformation planning and as a supportive tool for data-
center outsourcing. Txture uses ChronoSphere as its primary
data storage. Its clients interact with Txture via a web-
based user interface. This UI offers interactive, query-based
near-real-time visualizations to the end user. The supported
visualization types include graph-based views, tables and
charts. The graph-based views (as shown in Fig. 19) are
suitable for many IT Operation and Enterprise Architec-
ture use cases, because they allow the user to navigate the
connections between model elements in an interactive way,
expanding areas of interest and collapsing others into groups
(or hiding them entirely). This workflow allows to abstract
away from distracting details on the fly. Each navigation
step performed by the user on the front-end is translated
into a query step and added to the existing base query. The
server core is responsible for executing these queries and
directly relies upon the capabilities of ChronoSphere. The
metamodel in Txture can be adapted to suit the needs of the
customer (usually starting from a best-practice model syn-
thesized from past projects; a simplified version is shown

%5 www.txture.io.
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in Fig. 20). Therefore, queries cannot be hard-coded; they
need to be created on the fly in order to conform to the meta-
model. In a string-based approach (e.g., OCL strings), the
only solution would involve building queries from individ-
ual pieces via string concatenations, which is an error-prone
process. In this approach, the Java compiler cannot offer
any checks with respect to the content of a query string.
EQuery is implemented as a Java-embedded internal DSL
(c.f. Sect. 6.2) which is beneficial for this scenario, as queries
can be assembled dynamically one step at a time without the
need for string concatenations. As queries are expressed as
Java code and ChronoSphere is intended as a tool for appli-
cation developers, further measures are required to make
ad-hoc queries available to end-users. Txture implements
a custom query syntax for end-users which is then trans-
lated into EQuery statements. Another approach for ad-hoc
queries could be to employ a JVM scripting language such as
Groovy,? which would allow end-users to type their EQuery
statements directly into a text field and evaluate them.

The incremental commits offered by ChronoSphere (see
Sect. 4.2) are also used by Txture. Data imports from external
data sources, most notably from a Configuration Manage-
ment Database (CMDB [7]), often produce a large quantity
of new elements to insert into the model. Incremental com-
mits allow to perform this insertion in a number of smaller
successive steps, avoiding memory limitation issues on the
server while preserving a history that does not contain any
intermediate (incomplete) states. Furthermore, this preserves
the atomic nature of imports: even if previous incremental
commit portions have already been written to disk, an error

26 hitps://groovy-lang.org.
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that occurs toward the end of the process can still cancel the
entire process without corrupting the database content.

A feature that is used in particular by Enterprise Architects
in Txture is the planning feature. This allows an architect to
apply arbitrary changes onto the current state of the model,
without making them part of the “as-is” architecture or mak-
ing them visible to anybody else. Txture provides the same
suite of analysis tools for the resulting plans that is also avail-
able on the “as-is” model, in addition to comparison features
that allow to analyze the impact of the plan on the real model.
This is realized using the branching feature of ChronoSphere.
When a new plan is created by a user, Txture switches the
currently selected branch for that user from the master (“as-
is”) branch to a new one. Since this branching is lightweight
in ChronoSphere, the user does not experience any waiting
time during this switch even when creating new plans on top
of large models.

A similar argument can be made for the Time Machine fea-
ture in Txture. By selecting a date and time in the past, a user
can move the entire client to that particular point in time and
review the contents of all existing visualizations calculated
on that model state. The versioning feature of ChronoSphere
acts as the enabling technology here: Txture uses the date
and time selected by the user on the user interface as the
request timestamp for the ChronoSphere transaction. As all
queries are timestamp-agnostic, all visualizations adapt to
the new situation automatically as their backing queries are
being re-evaluated by the server.

The fact that each revision is immutable in ChronoSphere
also brings additional advantages that are utilized by Txture.
Any client starts out on the latest revision of the “as-is” model
atthe time of logging in. When a new model version is created
at the server, a notification is sent out to all clients, informing

@ Springer


https://groovy-lang.org

M. Haeusler et al.

them about the existence of this new update. On most sys-
tems, this would entail that the client has to react immediately
and fetch the new information from the server in order to pre-
vent synchronization issues. Txture clients are not forced to
interrupt their current task, because the version a client is
currently viewing is immutable. The user can continue to
analyze the currently selected model version indefinitely as
the server will yield consistently reproducible query results
for any version. Should the user choose to switch to the latest
version, the transaction timestamp associated with the ses-
sion is updated to the most recent one, refreshing all query
results and client views in the process.

8 Performance evaluation

In comparison with other repository solutions, Chrono-
Sphere offers several additional features while making fewer
assumptions about the input model (e.g., we do not assume
the metamodel to remain constant over time). This rises the
question how well our approach can perform in comparison
with other solutions. In this section, we present a compara-
tive benchmark between ChronoSphere and the Eclipse CDO
repository. We specifically selected CDO for three reasons:

— CDO is widely considered to be the “gold standard” in
model repositories.

— In the spectrum of competing solutions, CDO is closest
to ChronoSphere with respect to features.

— CDO is based on a relational store, which allows for a
discussion of individual advantages and drawbacks when
comparing it to our graph-based approach.

For this benchmark, we operate on a fixed Ecore model
(as required by CDO). This model uses the Metamodel for
IT Landscape Management (Fig. 20 shows a simplified ver-
sion, the full Ecore file is available onlin627). Since instance
models in the IT Landscape environment are sensitive infor-
mation and therefore confidential, we created a synthetic
model in collaboration with our industry partners at Txture.
This model exhibits the same inner structure (element counts,
associations, ...) as a typical real-world model. The instance
model file is available online.?® It consists of approximately
200000 EObjects.

This benchmark includes four individual scenarios. The
scenarios have been synthesized from the most commonly
used queries in Txture, as introduced in Sect. 1. In each sce-
nario, we grant 5SGB of RAM to the Java Virtual Machine
(Java 1.8 Update 161) which executes the code. It is possible

27 https://git.io/vxZI13.
28 hitps://git.io/ vXZWDp.
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to run the benchmark with less RAM, however in such cases,
the garbage collector can impact the individual runtimes in
unpredictable ways. The relevant hardware in our test sys-
tem included an Inteli7 5820K CPU (3.30GHz) and a Crucial
CT500MX SSD, operated by Windows 10. All tests were exe-
cuted on a pre-warmed JVM. Each figure in the benchmark
shows the results of the scenario, averaged over 10 indepen-
dent executions. Variances are not included in the figures
due to their small magnitudes. We would like to emphasize
that CDO offers several ways of executing queries. One of
them is the usage of the Hibernate Query Language (HQL?>").
This language requires deep knowledge of the underlying
storage, as the user needs to be aware of the way in which
database tables are generated from model classes. Another
way of querying the data in CDO is by using its program-
ming interface directly. The third and final way for querying
data in CDO is by specifying OCL [53] queries. We argue
that OCL queries are the only option to formulate queries
on the abstraction level of the model, without requiring any
knowledge of the underlying storage. In this benchmark, we
will therefore only utilize OCL queries in CDO. We use the
latest stable version of CDO as of January 2018.

8.1 Model insertion

The first benchmark scenario consists of loading the 200000
EObjects into the system and persisting them to disk.

As Fig. 21 shows, there are significant performance differ-
ences during model insertion when using different database
back-ends for CDO. The embedded H2 database offers faster
insertion speed compared to PostGreSQL. ChronoSphere
is the middle ground between the two. The primary factor
which is slowing ChronoSphere down in this comparison is
the fact that both H2 and PostGreSQL have access to fixed

2 htps://docs.jboss.org/hibernate/orm/3.3/reference/en/html/
queryhqgl.html.
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schemas, which allows for a very compact binary represen-
tation of each EObject. ChronoSphere uses a more flexible
approach, resulting in less densely packed data structures and
consecutively lower insertion speed. CDO accomplishes this
performance also by deliberately working without foreign
key constraints in the database itself, thus forfeiting one of
the biggest advantages of relational storage systems.

8.2 Assets By Name

A very common task for any repository is to allow a user to
find an element by its name. In this scenario, we are search-
ing for a Physical Machine by name. We use the following
queries:

PhysicalMachine::allInstances () ->select (
pm: PhysicalMachine | pm.name =
<name_placeholder >
4)

Listing 4 OCL: Assets By Name

find () .allInstancesOf (physicalMachine)
.has (name, <name_placeholder>).toSet () ;

Listing 5 EQuery: Assets By Name

We repeat each query 100 times, using a different replace-
ment for the <name_placeholder> in every iteration.
Using the same name in every execution would entail the
possibility that the tool under test is simply returning a
cached query result which contradicts our measurement goals
(Fig. 22).

Given the fact that relational databases have been designed
especially for this kind of query, it might lead to the assump-
tion that CDO is capable of answering this query very
efficiently. However, it turns out that the CDO query eval-
uation engine for OCL does not inspect the provided OCL
statement for optimization possibilities. Instead of creating a

suitable SQL statement and forwarding it to the underlying
database, the OCL statement is evaluated simply by iterating
over the EObjects in memory. Another shortcoming of CDO
is the fact that it does not create secondary indices on model
data, and also does not offer such an option through its APL
While it is possible to manually create secondary indices in
the underlying database, they will not be utilized by CDO.
ChronoSphere analyzes and optimizes the passed query and
utilizes a secondary index on the element name, allowing for
greatly reduced query response times in this scenario.

8.3 Root cause analysis

After retrieving a particular element by name, a common task
in the IT Landscape context is to perform a Root Cause Anal-
ysis. Such an analysis attempts to track down the root cause
for a failing asset. For example, an application might fail
to operate properly because the underlying virtual machine
fails. The query therefore needs to retrieve the transitive
dependencies of a given asset. For this particular scenario, we
consider the transitive dependencies of a Service asset down
to the PhysicalMachine level. This is commonly referred to
as the deployment stack. We measure the accumulated time
for 1000 executions of this query on different initial start
objects. The queries in OCL and EQuery are formulated as
follows:

self.dependsOn.runsOn->closure (host: Host |
host->selectByKind (VirtualHost) .runsOn

i)

Listing6 OCL: Root Cause Analysis

Il tx.find () .startingFromEObject (self)
2 .eGet (dependsOn) . eGet (appRunsOn)
.closure (hostRunsOn)

4 .isInstanceOf (physicalMachine)
.toSet () ;

Listing 7 EQuery: Root Cause Analysis

In this benchmark, we utilize the closure statement in
both languages to navigate the transitive paths. We require
this statement because the path length is unknown—a Virtual
Machine may run on a Cluster which in turn is deployed on
Virtual Machines. Such a query is very difficult to express in
SQL and would require recursive JOIN operations. However,
since CDO resolves OCL queries via in-memory iteration, it
circumvents this issue.

Figure 23 shows that CDO provides acceptable perfor-
mance in this scenario; however, ChronoSphere outperforms
it by a factor of 2. The reason for this speedup lies within
the architecture of ChronoSphere: after consolidating the
EQuery steps, it transforms them into a Gremlin graph traver-
sal. This highly optimized traversal engine is then executing
the query on the data structures provided by ChronoGraph.
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We avoid the overhead of the reflective EObject API com-
pletely, granting ChronoSphere faster query execution.

8.4 Impact analysis

Root Cause Analysis, as introduced in the previous section,
finds the cause of failure of a particular asset. The inverse
question is also relevant in IT Landscape management: given
an asset, we need to determine which higher-level assets are
affected in case that this asset fails. For our model-level query,
this means that we need to find the incoming transitive depen-
dencies of a model element. For our benchmark, we perform
the impact analysis from a Physical Machine all the way up
to the Services. We formulated the corresponding queries as
follows:

| Service.allInstances () ->collect (service:
Service |

2 service.dependsOn.runsOn->closure (host:
Host |

host->selectByKind (VirtualHost) .

runsOn

4 ) ->selectByKind (PhysicalMachine)

5 ->includes (self)

6] )

Listing 8 OCL: Impact Analysis

find ()
2 .closure (hostRunsOn,
)

.eGetInverse (appRunsOn)

4 .eGetInverse (dependsOn) . toSet () ;

.startingFromEObject (s)
Direction.INCOMING

Listing 9 EQuery: Impact Analysis

In this particular scenario, we encounter a shortcoming of
OCL.: it does not allow to formulate query steps across the
incoming references of an object. This issue has been per-
ceived by tool authors and there are extensions to OCL which
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allow for an elnverse step, e.g., in the Acceleo framework.30
However, as CDO only supports the official OCL standard,
our options for formulating this query (without having to
modify our metamodel) are very limited. We iterate over all
services, build the deployment stack for each service, and
then check if our Physical Machine in question is contained
in the resulting set of elements.

As Fig. 24 clearly shows, the limitations of OCL severely
impact the performance of the query in CDO. In contrast,
the EQuery expression in ChronoSphere has approximately
the same performance as the forward-navigating Root Cause
Analysis query. Please note that we reduced the number of
input elements from 1000 to 10 in this scenario in order to get
results from CDO within a reasonable time frame. Multiply-
ing the result of ChronoSphere by 100 yields the same results
as in the Root Cause Analysis scenario. This demonstrates
that ChronoSphere queries can navigate along outgoing and
incoming references without any performance penalty.

8.5 Threats to validity

We tried to achieve a comparison in this chapter which is
as fair as possible. Nevertheless, some threats to the valid-
ity of our results could not be eliminated during the process.
First of all, the exact behavior of the Just-in-Time Compiler
of the Java Platform, as well as its garbage collector, can-
not be completely pre-determined. This adds some inherent
variance to the results, which we tried to mitigate by pre-
warming the JVM and assigning sufficient RAM to the Java
process. In the CDO cases, we implemented the queries on
a CDO client, with the CDO Server process running on the
same machine in order to eliminate network latency. CDO
does offer an embedded mode; however, in our tests we
unfortunately found this mode to be unstable and prone to
a number of unpredictable runtime exceptions. One might

30 hitps://wiki.eclipse.org/Acceleo/ Acceleo_Operations_Reference.
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Table 7 Benchmark result summary (execution times in ms)

CDO (H2) CDO (PGSQL) ChronoSphere
Model Loading 13,404.5 83,915.8 46,077.0
Root Cause Analysis 1509.6 1504.2 636.3
Impact Analysis 33,155.0 32,907.9 12.5
Assets By Name 23,2923  19,470.0 1517 .4

Bold value represents the best score in the respective row

argue that implementing the queries in HQL would have
yielded better performance in CDO; however, we chose OCL
because it operates on the model level rather than on the per-
sistence level. Also, in HQL it is currently not possible to
formulate queries which are recursive or rely on transitive
closures, which we require in our benchmark scenarios. The
employed model, even though crafted in collaboration with
the experts at Txture to ensure real-life conditions, is a syn-
thetic construct, which might lead to different results in real
applications.

8.6 Benchmark summary

In this comparative evaluation (which is summarized in
Table 7), we demonstrated that ChronoSphere offers com-
petitive performance, even though it does not require a
metamodel to be constant over time. The underlying graph
database allows for schema-free model storage without
sacrificing query execution speed. This benchmark also
demonstrates that avoiding O/R-mapping techniques has a
positive influence on the overall performance. We also show-
cased the expressiveness of our query framework, which
allows for more flexible navigation than OCL. This advan-
tage is crucial in the IT Landscape domain and generally
beneficial in model analysis. Our results are also in line with
the extensive comparative benchmark by Barmpis et. al [1]
which demonstrates the advantages of graph-based storage
over relational solutions for model persistence.

Please note that we focused exclusively on ChronoSphere
in this evaluation. For an evaluation on ChronoDB [25]
and ChronoGraph [27], we refer the interested reader to the
respective publications.

9 Discussion and related work

Over the years, a considerable number of model repositories
have been developed by various authors. Pierantonio et. al
provide a good overview in their paper [13]. In this section,
we will compare our approach to other solutions which are
conceptionally close to our repository. As our approach also
entailed the development of lower-level infrastructure, we
will also consider related work in those areas. This section

is structured in a bottom-up fashion, starting with the related
work in the area of versioned key-value stores and concluding
with related work in the model repository area.

9.1 Related Key-Value-Store versioning solutions

Database content versioning is a well-known topic. Early
work in this area dates back to the 1986 when Richard
Snodgrass published his article on Temporal Databases [69].
Adding a time dimension to the data stored in a database con-
siderably increases the complexity of the data management,
because the additional dimension introduces new demands
regarding data consistency and several tried-and-true solu-
tions are no longer applicable to the same extent as with
non-versioned data (e.g., hash tables for caching). Key-value
stores have become attractive formats for versioned data due
to their simple nature when compared to relations, graphs or
documents.

Sridhar Ramaswamy published a paper in 1997 on index-
ing for temporal databases [57]. He proposes an approach
based on validity ranges for each entry to which he refers
as windows. Each entry is valid from its insertion until its
validity is explicitly terminated by an update or deletion.
This transforms the problem of a search in a versioned
database into an instance of the well-known interval stab-
bing problem [65]: given a set of intervals and a number,
find all intervals containing this number. This approach
strongly inspired our efforts. The major difference between
the algorithms we employ in ChronoDB (c.f. Sect. 4.1) and
Ramaswamy’s approach is that in our case, the upper limit of
each validity window is given implicitly by the matrix struc-
ture. We therefore do not need to update a previously stored
validity range in our database when a new version is added.
This allows our data store to operate in a strictly append-only
fashion, which entails a number of technical advantages in
the implementation. Also, deletions of entries do not impact
our data structure in any different way than inserts or modi-
fications, which was an issue in Ramasway’s solution.

Felber et. al [21] propose a different solution. For every
key, the store manages a list of values, each value corre-
sponding to one version. This is a simple and effective system
for managing elements with independent histories (e.g., wiki
pages). However, this solution does not preserve the histori-
cal correlation between elements. For example, given a key
k1 with values a; and a;, and a key k with values by and b3,
there is no way to tell if the entry (k1, a;) existed at the same
time as (kg, b1), or (k1, b>) or neither of them. This tempo-
ral correlation is crucial when individual values can contain
references to one another, as it is the case with ChronoGraph.

Commercial database vendors also explored the possi-
bilities for database content versioning. Lomet et.al [44,45]
developed an approach named ImmortalDB which was later
integrated into Microsoft SQL Server. This solution is based
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on history chains: each entry refers to its predecessor via
a pointer (alongside timestamp metadata). This approach
allows for high performance of queries on the latest version
of the data. However, as the request timestamps are moved
further back in time, the query performance degrades lin-
early, as the history chains need to be traversed. ChronoDB
avoids this problem and offers logarithmic access time to any
entry, regardless of its age. Further commercial projects in
this area include Temporal Tables in IBM DB2 [63] or Ora-
cle’s Flashback technology [32]. The choice between history
chains and time-indexing (as shown in Sect. 4) depends on
the use case. History chains offer almost the same perfor-
mance for queries on the latest version as an unversioned
system, but when previous versions are requested, the per-
formance decreases linearly with the age of the requested
version, as all intermediate chain links need to be traversed.
Time-indexed solutions are engineered to offer nearly iden-
tical query performance on any requested version, but the
overall query performance decreases in a logarithmic fash-
ion as new versions are being added. We mitigate this issue
by splitting the data along the time axis, thus limiting the
search space of each request (see Algorithm 1). For systems
which primarily serve the latest version, history chains are a
viable choice. However, in particular for the use case of IT
Landscapes, the performance of historical queries matters to
the end users, as the repository is used for audits and history
analysis.

9.2 Related graph versioning solutions

In comparison with Key-Value stores and SQL databases,
graph databases as we know them today are a relatively
new technology. Consequently, there are fewer approaches
regarding content versioning.

Considering the large amount of development and quality
assurance efforts that has been invested into existing graph
databases (e.g., Neo4J or TitanDB), it is a tempting idea
to integrate versioning in these systems rather than devel-
oping new ones. Castelltort and Laurent published one of
the first papers [8] that seek to integrate versioning into
general-purpose graph databases. This is achieved by creat-
ing a layout for a “meta-graph” that can contain and manage
multiple versions of itself. The graph database contains this
meta-graph, and incoming queries need to be aware of this
structure in order to extract the information they require. As
Castelltort and Laurent clearly show in their paper, the com-
plexity of queries sharply increases in such a scenario. Due
to the increased number of checks that need to be performed
by each query, the performance inevitably degrades as well.
Perhaps the largest drawback of this approach is that the
application needs to be aware of and manage this additional
layer of complexity. There are several different approaches
for creating a layout for the meta-graph, e.g., the solution
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proposed by Taentzer et al. [71] which is based on modeling
differences between versions as graphs. There is one central
issue which is shared by all layouts: Given a suitable set of
graph changes, they introduce vertices in the graph which
have a very high degree of incoming and/or outgoing edges
for the purpose of version control. Such super vertices rep-
resent a problematic corner case in any graph database and
may lead to poor performance and storage space utilization.
As ChronoGraph manages version control on a lower level,
there is no need to introduce any additional graph elements in
order to achieve versioning. The disadvantage of our solution
in that regard is that a completely new implementation was
required and existing graph databases could not be reused.

Other related approaches, e.g., by Semertzidis and Pitoura
[66,67] or by Han et al. [29], assume the existence of a
series of graph snapshots as input to their solutions. These
approaches do not aim for online transaction processing
(OLTP) capabilities and focus on the analysis of a series
of static graphs. A direct comparison with our approach
is therefore not feasible. However, the data managed by
ChronoGraph may serve as an input to those tools, as each
graph revision can be extracted individually and conse-
quently be treated as a series of snapshots.

9.3 Related repository solutions

Table 8 shows a comparison of related model repositories
based on the required features we established in Sect. 2.
The table can be divided into two sections, which are cloud
(Software-as-a-Service) solutions and on premise solutions.
While cloud-based solutions for EAM models exist (e.g., Iter-
aplan’!), more fine-grained IT Landscape models are widely
considered to be very sensitive data in industry. Unautho-
rized access to such models could guide a potential attacker
to the servers where the impact of the attack is maximized.
Most companies therefore require an on premise deploy-
ment of the software that manages their IT Landscapes. This
eliminates cloud-based tools such as MDEForge [3] and Gen-
MyModel [14] from the list of possible repository candidates
for IT Landscape models.

Connected Data Objects (CDO)? is widely considered
to be the gold standard of model repositories. This reposi-
tory uses SQL databases to store model data in a versioned
fashion. CDO handles the versioning process internally, it
does not make use of versioning features in the underlying
database. With respect to features, CDO is the most complete
competitor to ChronoSphere. However, CDO exhibits several
weaknesses when employed in practice [68]. In particular,
the lack of any support for metamodel evolution moti-
vated our decision to implement a novel model repository.

31 https://www.iteraplan.de/en.
32 hitps://wiki.eclipse.org/CDO.


https://www.iteraplan.de/en
https://wiki.eclipse.org/CDO

ChronoSphere: a graph-based EMF model repository for IT landscape models

Table 8 Model repository feature comparison

Technology F1 F2 F3 F4 F5 F6 F7 F8 F9 Deployment Persistence
Eclipse CDO v v v v v v v On Premise SQL/Documents
MORSA v On Premise Documents
EMFStore v v v v On Premise XML Files
MagicDraw Teamwork Server v v v On Premise XML Files
MagicDraw Teamwork Cloud v v v v On Premise Key—Value Store
Hawk Model Indexer v v v On Premise Graph
Neo4EMF v v v On Premise Graph

GreyCat v v v v v On Premise Versioned Graph
ChronoSphere v v v v v v v v v On Premise Versioned Graph
GenMyModel v v Cloud (SaaS) SQL

MDEForge v v v v Cloud (SaaS) Documents

ChronoSphere also avoids the Object-Relational Mapping
(O/R-Mapping) process which is employed by CDO in order
to transfer model data into and out of the underlying database.
As we have shown in Sect. 6.1, there is a natural pattern
for transforming model elements into graph elements (and
vice versa), whereas O/R-Mapping is a fairly involved pro-
cess [39], both conceptionally as well as with respect to
resource usage (e.g., CPU and RAM). We also performed
a comparative benchmark between CDO and ChronoSphere
in Sect. 8.

Neo4EMF [4] was the first storage solution for EMF mod-
els that is based on graph database technology. This work has
inspired and guided our efforts. ChronoSphere utilizes a sim-
ilar model-to-graph mapping as Neo4EMEF, albeit a different
implementation for technical reasons. Neo4EMF showed the
advantages of graph-based persistence, however it is a per-
sistence framework rather than a model repository. Central
features, such as versioning, branching and ACID transaction
support, remain unaddressed by this technology.

Hawk Model Indexer [2] is another solution in the realm
of model engineering that seeks to utilize graph-based per-
sistence for models. As the name implies, Hawk is primarily
an indexer. It is therefore not responsible for the actual model
persistence, but rather for creating a secondary structure to
speed up incoming queries. Hawk is intended to be used as
an assistive technology and does not qualify as a standalone
model repository. Just as with Neo4EMF, features like ver-
sioning and branching are not considered by this approach.

MORSA [54] was one of the first NoSQL model repos-
itories. It stores models in a document-based backend
(MongoDB33 ). The main features of MORSA include model
versioning and persistence. However, in contrast to Chrono-
Sphere, MORSA treats a model as a single atomic artifact.
Queries on the model content are therefore not supported.

33 https://www.mongodb.com/.

Also, the versioning process takes place on the granu-
larity of the entire model (rather than per-element as in
ChronoSphere). MORSA is suitable for storing and retriev-
ing hand-crafted models of smaller sizes. The large models
generated by automated processes in IT Landscapes would
introduce a prohibitive amount of overhead for whole-model
versioning approaches.

EMFStore [41] is a model repository that operates on
model differences, which are stored in files in an XML-based
format. This allows EMFStore to support per-element ver-
sioning and branching as well as efficient storage utilization
for long history chains. However, EMFStore does not offer
support for model content indexing and/or querying. Retriev-
ing a model version requires a checkout operation as seen in
traditional version control systems, e.g., Git or SVN. The
commercial tool MagicDraw Teamwork Server>* follows a
similar approach as EMFStore. Teamwork Server internally
stores the XMI [52] representation of a model in a folder con-
trolled by SVN, which introduces similar scalability issues as
discussed about MORSA. ChronoSphere follows a different
approach: each version of each model element is accessible
in logarithmic time without requiring a checkout procedure
of the entire model. Also, ChronoShpere allows for indexing
and querying of the model content in contrast to the other
mentioned solutions in this category. Teamwork Server has
been superseded by MagicDraw Teamwork Cloud> which
employs a per-element versioning approach and is based on
Apache Cassandra. Even though this approach allows for a
higher scalability, due to the nature of Cassandra, this solu-
tion cannot support ACID transactions. As of the current
version (19.0), according to the official API documenta-
tion>® Teamwork Cloud does not offer any extended querying

34 https://www.nomagic.com/products/teamwork-server.
35 https://www.nomagic.com/products/teamwork-cloud.

36 https://osme.nomagic.com/19.0/swagger/index.html#.
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capabilities beyond retrieving a model as a whole and pick-
ing individual elements by ID. It does however utilize the
same retrieval model as ChronoSphere, where elements are
retrieved by stating their ID as well as their branch and times-
tamp.

An approach that is conceptually close to ChronoSphere,
but does not declare itself as a model repository, is Grey-
Cat®’ [33,34]. GreyCat stores models in versioned graphs. It
is based on the Kevoree Modeling Framework [23] (KMF),
which is an alternative to EMF that focuses on models-at-
runtime scenarios. KMF metamodels can be automatically
derived from Ecore definitions (hence we consider the meta-
modeling process to be Ecore compliant in Table 8). Much
like ChronoGraph, GreyCat implements its own graph layer
on top of a NoSQL storage. In its storage layer, Grey-
Cat uses history chains (fraces in GreyCat terminology)
which consist of change operations. Thus, GreyCat utilizes
difference-based versioning, whereas ChronoGraph employs
state-based versioning. While GreyCat also implements a
property graph, it does not support the TinkerPop API. A
major difference that sets ChronoSphere and GreyCat apart
is the fact that GreyCat is heavily relying on code genera-
tion. This entails that the metamodel for GreyCat is fixed for
all versions and branches, and metamodel evolution cannot
be supported in the same way as it is possible in Chrono-
Sphere. GreyCat (and its predecessors) and ChronoSphere
have been developed during the same time periods as inde-
pendent projects, which is the reason why neither of them is
built on top of the other. The existence of two independent
solutions also highlights both the importance of versioned
model storage as well as the suitability of property graphs
for this task.

Further related work specifically in the IT Landscape
domain includes Configuration Management Databases
(CMDBs). There is a wide variety of commercial products on
the market (e.g., BMC Atrium,38 ServiceNow?? or HP Uni-
versal CMDB*?). A direct comparison with ChronoSphere is
infeasible because CMDBs are tightly bound to their appli-
cation domain, whereas our solution is generic and domain
independent. The metamodel in a CMDB is usually fixed
and tailored toward the IT operations use case. Versioning
capabilities are also found in CMDB products, but they are
often limited to the history of single elements (i.e., it is not
possible to move an entire view with multiple elements back
in time). Overall, we do not consider CMDBs to be model
repositories because they do not utilize a metamodeling lan-

37 hitps://greycat.ai.
38 https://www.bmc.com/it-solutions/cmdb-configuration-
management.html.

3 https://www.servicenow.com/.

40 http://cmshelpcenter.saas.hp.com/CMS/10.30/ucmdb-docs/docs/
eng/doc_lib/Content/DIC_Guide.htm.
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guage (e.g., Ecore), they are domain-specific and operate on
a fixed metamodel. However, a model repository can be used
as the back-end of a CMDB or EAM application.

Table 8 shows two important facts. On the one hand all
of the features we implemented in ChronoSphere (except for
historical archiving) are present in at least one related tool.
This emphasizes the importance of the chosen feature set. On
the other hand, this table shows that ChronoSphere also ful-
fills all requirements of a general-purpose model repository
and is therefore not restricted to IT Landscape modeling in
any way.

9.4 ChronoSphere as a generic model repository

ChronoSphere has been created specifically for the use case
of IT Landscape documentation. However, the resulting con-
cepts and software are generic and have no dependencies to
this particular domain. As a general-purpose EMF model
repository with a rich feature set, ChronoSphere can be
applied in a wide range of use cases, in particular in models-
at-runtime scenarios. In the context of this paper, we decided
to focus on the domain for which the tool was originally cre-
ated. While the features of ChronoSphere are generic, it is
optimized for the workloads expected in the IT Landscape
domain (model sizes, frequency of insertions and queries,
number of concurrent users...). We will conduct further stud-
ies in the future where we apply ChronoSphere in different
domains.

10 Outlook and future work

ChronoSphere and its components currently operate exclu-
sively in local deployments. However, as other projects (e.g.,
Neo4J and TitanDB) have shown, graph databases lend them-
selves well to distribution across several machines. One of
our future goals is to create a distributed version of Chrono-
Graph for greater scalability. The fact that this database
operates in a versioned, append-only fashion should ease
this transition as the common problem of encountering stale
data is eliminated by design. Due to the chosen layer separa-
tion, the code base of ChronoSphere itself will remain largely
unchanged. Overall, we hope to achieve a distributed model
repository that can scale well with even larger models and
higher numbers of concurrent users.

EQuery, the query framework introduced by Chrono-
Sphere, is constantly evolving. With inspiration from Project
Mogwai [11], we aim for the inclusion of OCL expression
evaluation into our EQuery framework. This will allow pro-
grammers to have a ocl (String) step in the query where
the OCL statement is provided as a string. This string will
then be analyzed and transformed into a graph query, which
is then used as a subquery in the overall evaluation. By
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Table9 The chronos technology stack

Technology Classification

Source Code Repository

ChronoDB [25]
ChronoGraph [27]

Versioned Key-Value Store

Versioned TinkerPop Graph
Database

ChronoSphere [28] Ecore Model Repository

https://github.com/MartinHaeusler/chronos/tree/master/org.chronos.chronodb

https://github.com/MartinHaeusler/chronos/tree/master/org.chronos.chronograph

https://github.com/MartinHaeusler/chronos/tree/master/org.chronos.chronosphere

similar means, we intend to integrate the Epsilon Object Lan-
guage [42] as sub-expressions in our query framework. This
will allow ChronoSphere to offer support for several different
query languages within the same underlying engine.

The metamodel evolution facilities in ChronoSphere are
intended as a baseline. They offer the atomic commands
required by any evolution mechanism and focus on raw
functionality. However, certain use cases may require more
sophisticated approaches, e.g., transformations based on
differences between two given metamodels. We plan on intro-
ducing additional abstraction layers on top of the current
imperative design in order to support such transformations,
gradually reducing and ultimately eliminating the required
amount of manual coding efforts.

Finally, we will continue our ongoing efforts to increase
the overall code quality, test coverage, documentation and
performance of the implementation (Table 9). ChronoSphere
is a work in progress project that uses a large amount of
software that was developed specifically for this purpose
and consequently includes less off-the-shelf software com-
ponents than other projects. There is still a lot of room for
improvement in the implementation details which we intend
to explore in the near future.

11 Summary

In this paper, we presented ChronoSphere, a novel open-
source EMF model repository. This model repository was
designed and implemented to support large IT Landscape
models in industrial contexts, but is generic and can be
employed in any EMF-based modeling scenario. We ana-
lyzed how we inferred the requirements from the IT Land-
scape context and how they relate to the technical features
offered by ChronoSphere. We then focused on the concepts
behind our repository implementation which also contributed
to the state-of-the-art in versioned data storage and graph
databases. We discussed the commonalities and differences
of our solution with respect to related repository technology.
Our concepts and technology were evaluated in a case study
where ChronoSphere is used as the primary storage backend
by the industrial IT Landscape modeling and analysis tool
Txture. Building on top of the use cases of this case study we
performed a comparative benchmark with a state-of-the-art

model repository and demonstrated the competitive perfor-
mance of our solution. ChronoSphere is a fresh impulse in the
area of model repositories not only in terms of its features and
implemented standards, but first and foremost in that it pro-
vides the entire data management stack, allowing for a clean
and consistent architecture. As all of the individual com-
ponents are available as open-source software, each aspect
is accessible for experimentation and innovation in future
research projects. ChronoSphere is an all-new approach to
model repositories, and we hope that it will serve as a plat-
form for future projects in research and industry alike.
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