
UPDATING ENCRYPTED XML DOCUMENTS
ON UNTRUSTED MACmNES

Prakash Reddy, Robert N. Mayo, Eamonn O'Brien-Strain, Jim Rowson, and
Yuhong Xiong
Hewlett -Packard Labs

Abstract: With XML and other data types becoming increasingly used in distributed
systems, we have a need to update this data in a way that preserves privacy
and integrity. Prior work has developed ways of encrypting XML documents
for privacy, and adding integrity codes to ensure that the data is not tampered
with. In this paper we present an algorithm that allows XML documents, or
other tree-structured data, to be updated without decrypting them. In our
model of a distributed system, several trusted machines have access to the
decrypted form of a document and may request changes to it. These change
requests are encrypted and sent to an untrusted update machine for processing.
The update machine is able to take the original encrypted document, apply the
encrypted changes, and produce an updated encrypted document. In addition,
an integrity code is produced that proves the untrusted machine performed the
update correctly. In practice, our algorithm allows trusted machines in a
distributed system to send incremental updates to a storage server, even ifthat
server is not allowed access to the clear text.

Key words: XML, Security, Incremental Cryptography, XOR MACs, Incremental change
support

1. INTRODUCTION

Distrlbuted systems often have the need to cache data at many locations,
and then propagate incremental changes to the data [8]. For instance,
consider the case of several mobile computers that each cache a shared
calendar of meetings, with the master copy of the shared calendar stored at
an Internet storage provider that should not be allowed to inspect the
calendar. When a user of a mobile computer changes a meeting time in his

Y. Deswarte et al. (eds.), Security and Protection in Information Processing Systems
© IFIP International Federation for Information Processing 2004



426 Prakash Reddy et al.

copy of the calendar, it needs to tell the storage server to update the master
calendar appropriately .

In our model, we consider the storage server to be untrusted, in that it is
not allowed access to the clear text meeting times. The mobile computers,
however, are trusted as they are part of the workgroup that has access to the
calendar. We would like to store our data in encrypted form, to prevent
snooping, on the storage server, and add an integrity code to verify that the
storage server hasn't modified the data inappropriately .

However, there needs to be a way for the storage server to update the
documents it holds. Dur algorithm presents a way for the mobile computers
to send encrypted update requests, called deltas , to the storage server.
Deltas are an application-generated set of consistent changes. Deltas are
encoded such that the storage server can perform the updates without
needing access to the clear text. This is done using a form of incremental
cryptography [2] [3]. Incremental cryptography is a set of algorithms that
can re-compute cryptographic functions in time proportional to the amount
of change in the document, rather than in proportion to the overall size of the
document. Dur technique, however, is novel in that the updates can be
processed by an update server without knowledge ofthe key.

2. BASIC CONCEPTS OF XML

XML, or eXtensible Markup Language [5], is a popular way of
representing hierarchical data using a textual representation. The
standardization of the syntax and the textual representation make it a useful
and neutral interchange format between systems and organizations .

Each XML document contains a single tree of nodes, each node called an
element. Each element begins and ends with a tag, as in "<employee> ...
</employee>. Data for the element may be associated with the element tag
as name-value pairs called attributes, and/or it may be included as free-form
text between the tags. Child elements mayaIso appear between the tags.

In the example below, web="lime . org" is an attribute containing data
for the element base. The text OK rock. is free-form text associated
with the base element, while color and value are child elements.

<base web="lime.org">
Ok rock.
<color>White</color>
<value basic="cheap">

<dollars>29.33</dollars>
</value>

</base>



Updating Encrypted XML Documents on Untrusted Machines

3. OUR SYSTEM MODEL

427

In our model of the system, we have trusted update generators, untrusted
update processors, and trusted verijiers. In the introduction, we gave an
example where the update generator was a mobile computer with a user's
calendar, while the update processor was a storage server. In addition, in
that example the mobile computers are also trusted verifiers, in that they
verify the integrity of a document when they receive it.

Update generators request modifications by preparing deltas, or lists of
changes . These are sent to update processors . For example, our storage
servers store the documents safely. But, acting as update processors, they
also incrementally update the documents with deltas from the mobile
computers . Trusted verifiers verify that the updates were done properly.

4. ALGORITHMS

XML documents in our system are encoded, encrypted, and then
appended with a Message Authentication Code (MAC). We present
algorithms for each of these three steps. In addition, documents can be
updated by applying deltas. In the process of applying deltas, it is possible
for conflicts to occur. We discuss options and algorithms for handling these.

4.1 Encoding and encrypting the XML

XML documents are tree structures. Our encoding and encryption
scheme is designed to protect the content as well as the hierarchy. Hiding the
hierarchy prevents unauthorized persons from inferring the structure of the
information from the encrypted document.

We will describe our process in two phases: encoding and encryption. In
the encoding phase, the tree-structured document is flattened into an
unordered list of elements, or nodes. The encryption phase then encrypts
these elements .

In XML, every node has some data (tags, attributes, and text), possibly
some child pointers , and a parent pointer (unless it is the root node) . An
example document is shown below:

<base web="lime.orq">
Ok rock.
<color>White</color>
<value basic="cheap">

<dollars>29.33</dollars>



428 Prakash Reddy et al.

</value>
</base>

We will describe the encoding process using approximate textual
descriptions. An implementation of the algorithm would bypass these
textual descriptions, working directly on the data structures instead.

The first step in our encoding is to assign an arbitrary ID to each element.
This is shown below in brackets:

<base [109] web="lime .org>
Ok rock.
<color [558] >White</color>
<value[971] basic="cheap">

<dollars [623]>29 . 33</dollars>
</value>

</base>

Now that elements have IDs, we can flatten the hierarchy into an
unordered list of nodes, in no particular order. Each line contains its own
node ID, the node ID of its parent, and then the contents of the node with
IDs substituted for the children:

[971] 109, <value basic="cheap" [623]>
[623] 971, <dollars>29 .33</dollars>
[109] null, <base web="lime.org>Ok rock.
[558] [971] </base>
[558] 109, <color[558]>White</color>

To encrypt the document, we encrypt each line independently. We leave
the initial node ID in clear text, and add a random number to the start of the
line's encrypted data. Thus, using encryption function E 0, we have :

[971] E(10290304, 109, <value basic="cheap" [623]»
[623] E(98740123, 971, <dollars>29.33</dollars»
[109] E(57093489, null, <base web="lime.org>Ok
rock. [558] [971]</base»
[558] E (95347892, 109, <color [558] >White</color»

The random number strengthens the encryption. Tbis is needed because
XML documents have certain properties: a document often has multiple
identical nodes, and the amount of data in anode may be small. Adding the
random number allows each node to be unique, and also lengthens the
amount of data to be encrypted. The choice of the encryption algorithm and
the length of the random number are not discussed here. They should be
chosen to provide sufficient security for the application, while still meeting
any size and perfonnance constraints imposed by the application. We will



Updating Encrypted XML Documents on Untrusted Machines 429

rely on the uniqueness of each node, provided by the random number, in the
conflict resolution algorithm, presented later.

4.2 Encoding tbe Deltas

Given a document, it is possible for a trusted update generator to request
modifications to the original document by preparing adelta, which is a list
ofcommands, each ofwhich is one ofthe following:

• ADD id, E(txt)
This adds a new node to the XML document. The encrypted data
contains the same data used to represent anode, explained
previously.

• DELETEid
This simply deletes the specified node from the document.

• REPLACE id, H(E(txCold)), E(txt)
The specified node is replaced with the specified data. The ID ofthe
node is not changed. We include a hash of the old encrypted value
of the node, to allow the update processor to uniquely identify the
data in the node. This command is similar to a DELETE ofthe node,
followed by an ADD using the same node ID.

Addition and deletion will affect the parent nodes, in that their child
pointers change. Therefore ADD and DELETE commands will be followed
by REPLACE commands to replace the parent nodes with correct ones.
Since the node ID of the parent does not change, no further propagation of
the changes is needed. Since we require that deltas be consistent, it is
assumed that when an intermediate node is deleted then the command list
also contains commands to delete all the descendent nodes.

While the delta containing these commands is generated on a trusted
machine, they can be applied to the encrypted document on an untrusted
update machine, which is the primary benefit of our system.

4.3 Applying tbe Deltas

Applying the delta involves executing the ADD, DELETE, and
REPLACE commands. For ADD, the untrusted machine simply adds the ID
and encrypted text into the document as a new line. For DELETE, it simply
deletes the line with the specified ID. REPLACE substitutes the specified
data for the data that is found in the file for that node. If the hash of the data



430 Prakash Reddy et al.

that is found in the document does not match the value specified in the
REPLACE command, we consider it a conflict (described later) .

4.4 Document Integrity

Since our documents are modified by untrusted machines, we need to
verify that the document was properly processed. MACs have been used in
other systems for a similar purpose : verifying that the document was not
altered in transit. In these systems, a MAC is generated by asender using
the document and a shared key, and the document and MAC are transmitted
to the receiver. Tbe receiver generates its own MAC from the received
document and the shared key, and then verifies that it matches the
transmitted MAC.

A traditional MAC must be regenerated using the shared key whenever
the document is changed. Our system, however, allows an untrusted
machine to update a document, and this machine does not have access to the
key. Furthermore, we would like the amount of computation done by the
machine to be proportional to the size of the delta, not the size of the
document.

To meet these requirements, we use what we call an integrity code (JC)
that is similar to a MAC. Like a MAC, a shared key is needed to generate an
IC and to verify it. Each document and each delta contains an IC, produced
using the shared key. The ICs are designed such that they can be combined
when applying adelta, without knowledge of the shared key. Tbe resulting
IC matches what would be produced by computing an IC by a pass over the
entire updated document, allowing verification at a later time.

4.4.1 Integrity code generation for a complete document

To compute the integrity code (JC) for a document, we compute the IC
for each line of the document separately and XOR these together to produce
the IC for the overall document. As a special case, if the document has no
lines then its IC is O.

To compute the IC for a line, we decrypt the line using our shared key
and then apply a one-way hash function, H O. For instance, to compute the
IC for this line in the encrypted document:

[558] E (95347892, 109, <color [558] >White</color»

We compute

IC = H ([558] 95347892, 109, <color [558] >White</color»



Updating Encrypted XML Documents on Untrusted Machines 431

We do not require the use of a specific hash function. All we require is
that it be a one-way function (that is, no H"I exists such that H-1(H(x» = x)
and that the function be largely collision-free (that is, H(x) is unlikely to
equal H(y». In practice, MD5 or a member of the SHA family will work
fme.

4.4.2 Verification of integrity codes

It is simple for a trusted machine to verify the IC of a document. It
simply recomputes the IC of the document and compares it with the IC
attached to the document. If they match, the document is valid. Amismatch
indicates improper processing.

4.4.3 Integrity code generation for incremental changes

In order to support incremental changes to documents, we need to allow
the incremental update of integrity codes. We do this by attaching to each
delta, or set of update commands, an incremental integrity code (He) that
can be applied to a document's IC to reflect the updates. Neither generating
nor applying the HC should require access to the entire document, nor
should it involve re-generation ofthe IC ofthe entire document.

In OUf method, the bitwise XOR function is used to apply the HC. That
is, when the delta has been applied to the document by an untrusted
machine, that machine may update the integrity code for the entire document
by XORing the document 's IC with the delta's HC, producing a new JC for
the document.

To compute the HC for adelta, we compute an HC for each line in the
delta and XOR them together, producing the HC for the overall delta. Deltas
contain a list of commands , and we generate an HC for each one depending
upon its type:

• ADD id, E(txt)
This adds a new node to the XML document. The HC for this
change is just H (lxi). Txt is the clear text for anode. As described
previously, this contains a randorn number, the ID of the parent and
children, and the text data for the node. When the untrusted
machine adds this line to the document and XORs in this HC, the
new IC will match the updated document.

• DELETE id
This deletes the specified node from the document. The HC for this
is simply the JC of the old node. To compute this, we fmd the node



432 Prakash Reddy et al.

to be deleted in the existing file and compute the IC for that line.
When the untrusted machine deletes this line from the document and
XORs in this lIC, the new IC will match the updated document.
This is because the lIC, when XORed, effectively "backs out" the
old node 's contrlbution to the overall IC. We are relying on the
property that if x = a XOR b, then we can "back out" b with another
XOR, as in a = x XOR b.

• REPLACE id, H(E(txCold)), E(txt)
The specified node is replaced with the specified data. The lD of the
node is not changed. We compute the lIC as ifthis was a DELETE
command followed by an ADD command, XORing those two lICs
together. In other words, the lIC consists ofthe XOR oftwo values:
the IC ofthe line to be deleted, and the IC ofthe new line.

Once the lICs for each line of the delta have been computed, we XOR
them together to produce the lIC for the overall delta. The individualline
lICs are not saved. The overalllIC is attached to the delta and sent to the
machine that will process the delta. When the untrusted machine performs
the update, it executes each line in the delta and then XORs the HC of the
delta with the IC of the document, producing a new IC that matches the
contents of the updated document.

4.5 Data freshness and conßicts

Since we allow multiple applications to make incremental modifications
to XML documents we have to address the issue of data freshness . Our
prlmary goal is to prevent applications from updating data based on stale
copies. In systems that allow multiple applications to make changes to a
document the granularlty of freshness is often the entire document. In our
case the granularlty is at the level of anode. This fmer level of granularity
allows us to support changes to documents which would normally be
considered stale. For example if two applications (A and B) cache the same
document and if application "A" makes a change and updates it, the copy
held by application would be considered stale in the traditional sense. In our
case it is possible for application "B" to make changes to the document as
long as these changes do not conflict with the changes made by application
A. Applications in our system are free to make changes and any conflicting
changes would be recognized by the update processors.

Conflicts are when a set of changes made to a document do not agree
with another set of changes made to the same document. Conflicts can be



Updating Encrypted XML Documents on Untrusted Machines 433

one ofthe following two types, real or false. For example if a document has
an attribute called color and if Bob changes it to green, while at the same
time Jim changes it Red, the system will not be able to decide which of the
changes to accept. This is areal conflict. The other type of conflict is false;
in this case the two sets of changes may appear to be inconsistent because of
the granularity of the encoding. However a system that understands the
semantics of the document may be able to automatically resolve this type of
conflict. For example if we have anode P that has two children b and c. If
Bob inserts a new child before child band Jim inserts another child after c,
both changes may be acceptable, however OUT particular encoding method
would view this as a conflict in the children ofnode P.

In any system that supports incremental updates by multiple applications,
conflict can OCCUT and is not specific to encrypted documents. An example
of a system that supports incremental updates is a source code control
system used by a group of developers. Such systems need to detect when
conflicts occur and resolve them. The systems that understand the semantics
of the data deal with false conflicts automatically and resort to policies or
human intervention for resolving real conflicts. In our case since the update
processors deal with encrypted data they will not be able to distinguish
between real and false conflicts.

In this paper we are primarily concerned with detecting conflicts. The
procedure for resolving conflicts is beyond the scope of this paper, but
would most Iikely enlist application-specific interpretation of the data to
enable a meaningful conflict resolution.

4.5.1 Conßicts from multiple applications

Several applications may need to access and update the data in an XML
document, which results in multiple deltas being sent to the update
processor. This may lead to conflicts. It would be possible to avoid conflicts
by restricting data access to one application at a time. However this would
be an impractical poIicy. Typically applications tend to operate on different
parts of the data and their updates are non-overlapping, We offer a solution
that is optimized for this common case but we handle the exception
situation.

4.5.2 Detecting conßicts

When applications make updates to documents, they generate deltas
which are sent to the update processor, which is responsible for applying the
deltas . It detects a conflict if a delta replaces anode that has been replaced



434 Prakash Reddy et al.

by a previous delta. Add and delete may also cause conflicts, but these will
be caught by the associated replace command. Recall a replace command
includes a hash of the node's original encrypted data, plus the encrypted
version of the modified data. When processing a replace command, the
update processor fmds the node data associated with the node to be replaced
and compares its hash with the hash sent as part of replace and, if they
match, replaces it with the new data. If there is amismatch it marks it as a
conflict and appends the delta to the document. The update processor, given
adelta, computes if there are any conflicts before applying the delta. A
single conflict will disable the merge of this delta, and instead the delta is
simply appended to the end of the document.

5. OTHER WORK

There is considerable body of work that is related to our proposal. Most
of this work is complementary to what we are proposing. Our solution
encompasses the areas of XML encryption, incremental change support for
XML, incremental cryptography and XOR based MACs. We give abrief
overview of some of the work in these areas.

5.1 XML Encryption

Since XML documents are widely used to store important data, security
is a major concern. Hirsch [6] gives a broad overview of the issues
associated with XML security. Current work in this area includes two
developing standards, XML-Encryption [9] [1] andXML-Signature [10] [1].

XML-Encryption and XML-Signature are going through the
standardization process as part of W3C. In brief, the XML-Encryption
standard aims to specify a process for encrypting data and representing the
result in XML. The XML-Encryption supports encryption of arbitrary data,
an XML element, or an XML element's content. The specification defmes
how the encrypted data is to be represented and does not specify what to
encrypt. On the other hand our solution specifies how an XML document is
encrypted and also how incremental updates can be performed. The syntax
proposed by the XML-Encryption can be adopted to represent our
encryption scheme.

XML-Signature provides integrity, message authentication and signer
authentication services for any type of data. XML Signature is a method of
associating a key with a block of data, and representing it as XML. While
this specification is an important component of secure XML applications, it



Updating Encrypted XML Documents on Untrusted Machines 435

is not sufficient to address all application security and incremental update
issues.

Our solution generates MACs that are used to verify the integrity of the
document and also support incremental updates to the document as weil as
the MAC itself. Since XML-Signatures map one XML document into
another, they have no effect on our processing of documents.

5.2 Incremental change support for XML

Increasingly, distributed systems are being built to allow multiple users
to update to a single data set simultaneously [7]. The key issue in supporting
this is the ability to merge changes as they are made. The proposal made by
Fontaine [7] aims to support merging of updates at a much finer level of
granularity (attributes) than our solution of merging at the element level.
However, if attribute-level of merging is required, our method could be
adapted to provide it. The motivation behind our decision to support a
coarser level of granularity is based on the assumption that applications may
operate on a single data set simultaneously but they tend to be non­
overlapping. Our solution works weil under this assumption. Another
difference of our work is that it operates on encrypted versions of the data
rather than the clear text.

The key issue in a merge process is the node matehing algorithm.
Fontaine et al [7] proposes a tree matehing algorithm. The algorithm walks
through the corresponding nodes in each input XML tree and performs a tree
structured comparison. This tends to be time consuming and requires work
not proportional to the amount of change. In our model, identification is a
trivial algorithm that involves a simple look up of the node 's unique ID. In
our system anode is assigned a unique ID and that is associated with the
node for the node 's lifetime.

The fact that there are several commercial entities developing tools to
support concurrent changes to XML data validates the importance of this
field. Since there is no clear solution that addresses incremental support
combined with security, this is a promising and relevant field of study,

5.3 Incremental Cryptography

Using cryptographic algorithms to protect the security of data is a weil
known technique, however the algorithms used tend to operate on the entire
data and any time the data is modified the entire document would have to be
re-encrypted. In systems that support incremental changes and simultaneous
updates, this technique would not be practical. The goal of incremental



436 Prakash Reddy et a/.

cryptography is to design cryptographic algorithms with the property that
having applied the algorithm to a document, it is possible to quickly update
the result of the algorithm for a modified document, rather than having to re­
compute it from scratch. Incremental cryptography can provide large
efficiency gains when small changes are frequently made to large documents
[2].

Our solution to support incremental changes to XML documents and
securing them lends itself very weIl to incremental cryptographic techniques.
Incremental cryptography and its application to virus protection were
proposed by Bellare et al [3] and they base their techniques on previous
work on XOR MACs [4]. Our solution proposes a technique for
incrementally encrypting changes specific to XML documents and more
generally to hierarchical oriented or record oriented data structures. The
Bellare proposal is aimed at supporting incremental changes to documents
by breaking them up into smaller units and encrypting them. It does not
specify the exact process by which a document is broken down and what
happens if the change crosses the unit boundary. However they highlight the
same issues we address. We came to the same conclusion that they have
reached in that we cannot hope to support incremental encryption and at the
same time hide the amount of difference between the two documents. Our
solution also supports concurrent changes and merging of these changes on
untrusted servers.

5.4 XORMACS

The XOR MAC scheme was also originally described Bellare et al [4].
This scheme was designed to support incremental changes, however these
changes were limited to just text replacement operations. This XOR scheme
was subsequentiy enhanced to support add and delete operations [3]. The
enhancement included the introduction of the chaining technique. The
algorithm involves three steps. I) Computing a hash for each subsection of
the document. 2) Combining adjacent hash values using another hash, and
then accumulating these results with the XOR function. Combining adjacent
values ensures that the order of the subsection is reflected in the fmal MAC.
3) Generating the MAC of the document by hashing the result of the XOR
accumulation.

Incremental updates including deletions and additions involve computing
the hashes of the subsections being added or deleted, and adjusting the
accumulated value to reflect these additions or deletions . Finally the
accumulated value is hashed to produce the MAC.

Our initial MAC computation is similar to this scheme, however the
defmition of subsections is not defmed, and they do not specify how changes



Updating Encrypted XML Documents on Untrusted Machines 437

across subsections would be handled. In our model, the blocks for which we
compute the integrity code are based on the structure of the document.
Computing incremental MACs in our proposal is fairly straight forward. We
do not need the chaining since our encoding of the document is immune to
the reordering of subsections. Also, in the above mentioned scheme it is
assumed that the fmal document's MAC can be computed only on trusted
machines and is assumed not to contain conflicts. It therefore cannot be used
to support merging of changes on untrusted machines.

5.5 Threats

The proposed system could be subjected to several kinds of threats . We
have grouped these into three main categories. We will briefly identify the
threats and address some of the possible solutions

5.5.1 Encoding related

Since we encode the XML document on aper node basis any party that
has access to the encrypted document could easily infer the number of nodes
in the document. If this is information is deemed important it is possible to
add additional dummy nodes which can be easily filtered out during
document decryption phase .

The choice of the encryption algorithm is not specified and the security
of the document depends on the specific encryption scheme. Users have the
flexibility in picking the appropriate encryption scheme to ensure the level
of security .

5.5.2 Update related

As incremental updates are supported through command lists, it is
possible for an adversary to reconstruct partial hierarchies by monitoring the
command lists. This will reveal the structure of the document but not the
contents of the document. One way to deal with this would be to generate
additional commands which would make the reconstruction difficult but not
impossible. This threat can be prevented by using a secure channel to
transfer the command lists.

Unauthorized parties can generate false updates which would be accepted
by the un-trusted server and this may result in preventing real trusted
updates. This technique can be used to launch a denial of service attack.
Again a secure channel can prevent this threat. This threat does not affect the
integrity of the document as changes to documents are accepted only after
the changes have been validated.



438 Prakash Reddy et al.

5.5.3 Standard network related

The common network related threats can be launched and most of these
will lead to some sort of denial of service. None of these attacks can be used
to make a legitimate modification to the document. If the update command
lists are sent over public networks, they can intercepted and modified,
however the integrity code checking would catch any such violation. Hosts
in the middle can do traffic analysis, determine the size and frequency of
changes, perhaps compute the size of the document etc. They may even alter
the commands list to remove some valid changes. We offer no specific
solutions to these threats. If these threats are considered important, they can
be prevented by using a secure channel to transfer the command lists.

6. STATUS AND FUTURE WORK

We have implemented most of these algorithms in support of an
application we are building, but the conflict detection and resolution parts
are not yet fmished.

We are investigating the application of this technology to other (non­
XML) representations. In particular, we believe a variant of our method
could be used to do similar operations on directed graphs, which are more
general than trees.

In order to avoid the need for trusted update generators to have access to
the entire document, we are working on methods of retrieving subtrees of
documents and computing integrity codes on them. This would allow even
more general incremental operation.

We are experimenting with different granularities of encodings, in order
to support conflicts better. In particular, we are experimenting with refming
our encoding so it doesn't encode a single node' s data as one encoded node.
Rather, each attribute (name-value pair) and each block of free-form text
would be encoded separately. This should reduce the number of false
conflicts.

More ambitiously, we are investigating the ability to do queries on
encrypted data.

7. CONCLUSIONS

We have applied past work and created new algorithms to solve an
important distributed systems problem: the incremental modification of data
on untrusted machines. We have structured our system to work on the



Updating Encrypted XML Documents on Untrusted Machines 439

popular XML format, although the underlying techniques apply to other
representations.

The problem solved has wide applicability to distributed systems. Our
model of an untrusted storage server is just one example. There are other
patterns of data flow in other distributed systems that could benefit from our
algorithms.

8. REFERENCES

[1] IBM Corporation. alphaWorks XML Security Suite, As described at
http://www.alphaworks.ibm.comltech/xmlsecuritysuite. December, 2003.

[2] M. Bellare, O. Goldreich, S. Goldwasser, Incremental Cryptography: The case ofHashing
and Signing - Crypto 94 Proceedings, Vo1839, Springer-Verlag.

[3] M. Bellare, O. Goldreich, S. Goldwasser. Incremental Cryptography and Application to
Virus Protection, Proceedings of the 27tb ACM Symposium on the Theory of Computing,
May 1995.

[4] M. BeUare, R. Guerin, P. Rogaway. XOR MACs: New Methods for message
authentication Using Finite Pseudorandom Functions, Oct 1995.

[5] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler. Extensible Markup
Language (XML) J.0 (Second Edition) , W3C Recommendation, October 6, 2000.

[6] Fredrick J. Hirsch. Getting Started With XML Security, As described at
http://www.jjh irsch.comlxml/xmlsec/starting-xml-security.html.

[7] Robin L. Fontaine. Merging XML files: a new approach providing intelligent merge of
XML data sets, As described at http://www.deltaxml. comlpdf/merging-xml-files.p4f.

[8] Andrew S. Tanenbaum, Maarten van Steen, Distributed Systems: Principles and
Paradigms, Prentice Hall, 2002.

[9] World Wide Web Consortium. XML Encryption Syntax and Processing. As described at
http;//www.w3.org/TRlxmlenc-core/, December 10, 2002.

[10] World Wide Web Consortium. XML-Signature Syntax and Processing. As described at
http://www.w3.orgITRlxmldsig-core/, February 12,2002.


