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In eddy current nondestructive evaluation, one of the principal challenges is to determine the dimensions of defects inmultilayered
structures from the measured signals. It is a typical inverse problem which is generally considered to be nonlinear and ill-posed.
In the paper, two effective approaches have been proposed to estimate the defect dimensions. The first one is a partial least squares
(PLS) regression method. The second one is a kernel partial least squares (KPLS) regression method. The experimental research is
carried out. In experiments, the eddy current signals responding to magnetic field changes are detected by a giant magnetoresistive
(GMR) sensor and preprocessed for noise elimination using a wavelet packet analysis (WPA) method. Then, the proposed two
approaches are used to construct the inversion models of defect dimension estimation. Finally, the estimation results are analyzed.
The performance comparison between the proposed two approaches and the artificial neural network (ANN)method is presented.
The comparison results demonstrate the feasibility and validity of the proposed two methods. Between them, the KPLS regression
method gives a better prediction performance than the PLS regression method at present.

1. Introduction

Estimating dimensions of defects occurring in multilayered
structures is important not only for ensuring the safety of the
structural system (e.g., aging nuclear structures, composite
aircraft structures, and other civil engineering structures),
but also for getting a huge economic benefit from the
view of the possible extension of in-service inspection of
period [1–3]. To ensure the highest possible operational safety
along with economic efficiency, it is necessary to carry out
experimental inspections with high sensitivity and reliability.
One of the possible solutions of this problem is based on
the measurement of magnetic field change generating eddy
current (EC) in multilayered structures [4, 5].

Eddy current nondestructive evaluation (ECNDE) is a
structure evaluation techniquewhich allows for detecting and
characterizing the defects affecting an object without damag-
ing it or altering its functionality [6]. Pioneered by Friedrich
Forster in the 1940s, ECNDE as currently practiced is used
with electrically conducting materials for various types of

measurements. These mainly include measurement of the
thickness of metallic plates or nonmetallic coatings on metal
substrates, estimation of electrical conductivity or magnetic
permeability distributions, and determination of surface and
subsurface defect shape and size [7]. However, in point of
safety and economic efficiency assessment, there is not too
much interest in electrical conductivity andmagnetic perme-
ability distributions. The defect dimensions (depth, length,
width, and so on) are the main concerns [8]. In ECNDE, the
dimensions of defects will be retrieved by inversion of the
measured signals [9]. Since the physical model of ECNDE
is often complicated and nonlinear, as a result, the inversion
model is often ill-posed [10]. In the traditional way, the
defect dimensions would be estimated by the analyst visual
perception of EC inspection signals [6]. This method usually
requires highly trained personnel, and the results are always
influenced by the analyst’s subjectivity. Then, model-based
approaches are used to estimate defect dimensions from
EC signals [11]. These methods iteratively solve the forward
model to simulate the inspection process and predict the
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probe responses.Theproblemof defect dimension estimation
is formulated as an optimization problem, which seeks a set
of defect dimensions by minimizing an objective function,
representing the difference between the model predicted
signals and the measured signals. Such approaches usually
involve significant computational efforts, since the physical
model needs to be solved repeatedly. Due to their complexity
and low speed, the model-based approaches seem not to be
suitable for being used to estimate the defect dimensions
directly from EC inspection signals. Some researchers begin
to turn to the model-free approaches. Initially, the defect
dimension estimation problem is treated as a complex statis-
tical pattern recognition problem [12].Thesemethods usually
extract the special properties of defect signals such as shape,
phase, peak value, smoothness, convexity, unimodality, or
existence of derivatives as the feature vectors. Corresponding
defect dimensions are discretized into a set of class labels.
The defect dimensions are obtained from the classification
of the currently collected signals based on the extracted fea-
tures.The classification methods yield discrete values instead
of continuous values, which lead to insufficiently accurate
results. Then, Popa and Miya [13] and Yusa et al. [14] present
an artificial neural network (ANN) method to estimate crack
depth and reconstruct crack depth profile from EC signals.
Davoust et al. [15] propose to use the bilinear regression and
ANNmethods to estimate flaw size. Rosa et al. [16, 17] use the
probability density function estimation methods for defect
dimension estimation. They employed sample techniques
such as Markov Chain Monte Carlo (MCMC) and Bootstrap
methods for estimation of probability density function of
defect dimensions to obtain not only the quantity but also
the uncertainly characterization of the measurand. Krzywosz
[18] applies a multivariate linear regression algorithm to
establish the relationship between the inside diameter pit
depth and three features (frequency, amplitude, and phase
angle) of EC inspection signals. Bernieri et al. propose a
model-free method for the reliable estimation of crack shape
and dimensions based on the integration of an EC instrument
and a support vector machine (SVM) processing algorithm
[19]. Among these methods, ANN is an efficient nonlinear
statistical datamodeling tool, but it usually requires a number
of prior knowledge, space limitations, and database of defect
signals for neural network training. The multivariate linear
regression method can establish a direct and compact model.
However, such method often fails to arrive at a sufficient
accurate estimation due to the natural nonlinearity of the
magnetic field distribution in complex multilayered struc-
tures. The probability density function estimation methods
have a great problem that sample techniques require much
computational time. Although the results SVM method
present are quite impressive, the main drawback of SVM
is that solving the problem requires an optimization with a
complexity that varies at least quadratically with the number
of training examples, which becomes intractable in large
scale problems. Therefore, a general framework for defect
dimension estimation from EC signals is very desirable,
which can not only rapidly but also accurately carry out the
dimensions of defects in multilayered structures.

This paper presents a general robust procedure for
estimating dimensions of defects in multilayered structures
from EC signals. Here, a novel EC testing technique with
a giant magnetoresistive (GMR) sensor is used to enhance
the sensitivity and spatial resolution of the measurement
[20]. Since electromagnetic sensor based on GMR effect is
sensitive to the magnitude of the magnetic field, the GMR-
based EC probe can perform better than the conventional
probe for low-frequency applications, that is, when detecting
defects deeply buried in multilayered structures. During
scanning inspection, eddy currents are induced in multilay-
ered structures as a result of the application of an alternating
magnetic field. In the presence of defects, the output voltage
variation of the sensor is usually detected as the magnitude
perturbations of the magnetic field. This special property of
the GMR sensor will lead to a simplified signal conditioning
circuit. Theoretically, there is a relationship between defect
dimensions and GMR sensor response. In practice, however,
this relationship is influenced by noises and many other
factors. Therefore, the original signals are preprocessed by
wavelet packet analysis (WPA) for noise elimination [21].
Then, two approaches are proposed to find the relationship
between defect dimensions andGMR sensor’s output voltage,
respectively. The first one is a partial least squares (PLS)
regression method [22, 23]. The second approach consists in
generalizing the kernel method into PLS (kernel partial least
squares KPLS) regression [24, 25]. In the second method, the
original inputs are mapped into a high-dimensional space
using a kernel method. The PLS regression is calculated in
the high-dimensional space.Then, we will obtain a nonlinear
regression model in the original input space. Finally, the
estimation results are given using twomethods and compared
with those of the ANN method, in terms of estimation accu-
racy, generalization capability, and robustness, respectively.
The ANN approach is employed in ECNDE in order to
perform a nonlinear statistical regression. It is very simple
and used as a benchmark for the proposed two quantitative
evaluation methods. Experimental results show that the pro-
posed two methods present further advances including good
generalization capability, robustness of the results, avoidance
of overfitting, and low computational burden.

The remainder of the paper is organized as follows.
Section 2 gives the general formulation of the problem of
dimension estimation of defects in multilayered structures.
Section 3 briefly surveys signal denoising technique using the
wavelet packet analysis (WPA) method. Section 4 describes
two approaches used to estimate the defect dimensions.
Section 5 presents the measurement system configuration
and the experimental results. Finally, Section 6 contains
conclusions.

2. Problem Description

The EC inverse problem here can be described as the task of
quantitative estimating dimensions of defects in multilayered
structures, where the measured EC signals are given and
the unknown dimensions of defects require estimation [26].
During the probe moving over the defect, the output signal
of the GMR sensor is produced, which is proportional to the
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magnitude perturbations of the magnetic field. The sensor’s
output signal is

X = 𝐾
̇
𝐵, (1)

whereX = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) is the sensor’s output voltage,𝑁 is

the number of sample points during the scanning inspection,
𝐾 is the proportionality coefficient, and ̇

𝐵 is magnetic
induction intensity. The unknown defect dimensions Y =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑀
) have to be estimated from a set of observed

signals X. 𝑀 is the number of dimension variables. The
relationship between GMR sensor’s output voltage and defect
dimensions can be given by the classical regression model:

Y = 𝑓 (X, 𝜃) + Ε, (2)
where function𝑓 (⋅)describes the relationship betweendefect
dimensions and GMR sensor’s output voltage, 𝜃 is the
unknown parameter vector, and E is an error term. The
parameter estimation techniques are needed to learn the
unknown parameter vector 𝜃 from the real experimental data
which contain observations for the calibrated defects (defects
with known dimensions). Then, we can construct the rela-
tionship 𝑓 (⋅) using these parameters. Thus, a general inver-
sion model is obtained. We can use this model to predict the
defect dimensions given the acquired EC inspection signals.

Finally, to compare the accuracy and efficiency of the
inversion models, several measures of a model’s ability to fit
data and predictive power are introduced [27]. All of these
measures provide an estimate of the average deviation of the
model from the data. The root mean square error (RMSE) of
the residuals is defined as

RMSE = √
∑

𝑛

𝑖=1
(Y
𝑖
−
̂Y
𝑖
)

2

𝑛

,

(3)

where Y
𝑖
is the actual value, ̂Y

𝑖
is the predicted value, and 𝑛

is the total number of samples. The RMSE is termed the root
mean square error in calibration (RMSEC) for the training
(calibration) set and the root mean square error in prediction
(RMSEP) for the testing set.

Another measure of the model fit to the training data is
the coefficient of determination 𝑅2, defined as

𝑅

2
= 1 −

RSS
SS

, (4)

where RSS is the residual sum of squares and SS is the sum
of squares of the response variable Y corrected for the mean.
The𝑅2 indicates the strength of statistical correlation between
actual values and predicted values for the model. A model
fits the data perfectly if a value of 𝑅2 is higher than 0.9. 𝑅2
between 0.8 and 0.9 indicates that themodel fits the data well.
𝑅

2 between 0.6 and 0.8 is considered a useful representation
of the data, whereas 𝑅2 between 0.5 and 0.6 indicates a poor
representation of the data.

The same test can be used for the values predicted from
the testing set, 𝑄2. Consider

𝑄

2
= 1 −

PRESS
SS

, (5)

where PRESS is the prediction error sum of squares and SS
is the sum of squares of the response variable Y corrected for
the mean. The 𝑄2 indicates how well the model predicts new
data.Usually,𝑅2 for a training set is larger than𝑄2 for a testing
set, since calibration models can easily lead to overfitting of
the data. A large 𝑄2 (𝑄2 > 0.5) indicates the good predictive
ability.

3. Signal Preprocessing

In the process of EC inspection, the GMR sensor’s output
signalsmay be corrupted by noises and other artificial signals,
arising from lift-off, edge effects, high frequency, probe angle
variations, and so forth, resulting in unreliable detection and
inaccurate characterization of defect dimensions. In order to
remove the influence of noise and extract the amplitude of
the main components from the measurements, a number of
preprocessing steps are required before the defect dimension
estimation is possible [21].

WPA [28, 29] has proved its great capabilities in decom-
posing, denoising, and signal analysis, whichmakes the anal-
ysis of nonstationary signals achievable as well as detecting
transient feature components, since wavelet can concurrently
impart time and frequency structures. In wavelet packet
framework, wavelet packets offer amore complex and flexible
analysis, because, in WPA, the details as well as the approxi-
mations are split. Before denoising, the GMR sensor’s output
signals are processed by normalizing so that they have means
of zero and standard deviations of 1.Then, theWPAdenoising
procedure is implemented as in the following four steps.

(1) Decomposition: for a given wavelet, compute the
wavelet packet decomposition of signal 𝑓(𝑡) at level
𝑚.

(2) Computation of the best tree: for a given entropy,
compute the optimal wavelet packet tree. Of course,
this step is optional.

(3) Threshold of wavelet packet coefficients: for each
packet (except for the approximation), select a thresh-
old and apply it to coefficients. In general, the thresh-
old will be refined by trial and error so as to optimize
the results to fit particular analysis and design criteria.

(4) Reconstruction: compute wavelet packet reconstruc-
tion based on the original approximation coefficients
at level𝑚 and the modified coefficients.

In this paper, the mother wavelet chosen for simplifying
the implementation is the Daubechies 4 wavelet due to the
nonsymmetric shape of its wavelet function, which is the best
adjustable to the transient nature of EC inspection signals.
Using the signal to noise ratio (SNR) andRMSE as a criterion,
the WPA denoising effect comparison using a real signal
from the scanning inspection of a subsurface rectangular
defect (length 5mm, width 1mm, height 1mm, and depth
4mm) in an aluminum sample is shown inTable 1.The results
show that theWPAmethod with Shannon entropy threshold
is superior for EC signal denoising. Figure 1 shows the
performance of the WPA denoising method with Shannon
entropy threshold using the same signal and the comparison
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Table 1: De-noising effect comparison of different WPA methods.

Threshold rules Shannon Norm Energy Thre
SNR (db) 52.822 49.211 49.985 47.938
RMSE 0.00203 0.00271 0.00253 0.00323

with that of the mean filtering algorithm. In mean filtering
algorithm denoising, the SNR and RMSE of the same signal
calculated are 32.676 db and 0.01167, respectively. The signal
denoising effect using theWPAmethod is significantly better
than the use of mean filtering algorithm.

4. Defect Dimension Estimation Approaches

4.1. Partial Least Squares Regression. PLS regression [22, 23]
is a wide class ofmethods formodeling relationships between
sets of observed variables by means of latent variables
(components and score vectors). It was first introduced by
the Herman Wold and gained popularity in chemometrics
research and later industrial applications [30]. In ECNDE,
the samples are often difficult to obtain for constructing
the inversion model. PLS regression has the advantage of
allowing more variables than samples in the data and dealing
in a natural way with collinearity. In this case, the solution
of the classical least squares method does not exist or is
unstable and unreliable. Furthermore, PLS regression allows
graphical display of the latent variable space in terms of plots
and also interactive diagnostic exploration of the data. Unlike
the principal component regression method, PLS regression
chooses the latent variables in such a way as to provide
maximum correlation with dependent variables. Thus, PLS
model contains the smallest necessary number of latent vari-
ables. These special properties make the PLS approach more
appropriate for modeling the ECNDE inverse problem [31].

In the estimation of defect dimensions, PLS regression
is used to find the fundamental relationship between two
matrices, X and Y. Denote by X ⊂ 𝑅

𝑁 an 𝑁-dimensional
space of variables representing the GMR sensor’s output
voltage and similarly by Y ⊂ 𝑅

𝑀 an 𝑀-dimensional
space representing the defect dimensions. After observing 𝑛
samples from each block of variables, the PLS decomposes
the (𝑛 × 𝑁) matrix of variables X and the (𝑛 × 𝑀) matrix of
variables Y into the forms

X = UP𝑇 + E,

Y = VQ𝑇 + F,
(6)

where U and V are (𝑛 × 𝑝)matrices of the 𝑝 extracted latent
vectors, the (𝑁 × 𝑝) matrix P and the (𝑀 × 𝑝) matrix Q
represent matrices of loadings, the (𝑛 × 𝑁) matrix E and
the (𝑛 × 𝑀) matrix F are the matrices of residuals, and the
superscript 𝑇 denotes the transpose of matrix. The nonlinear
iterative PLS algorithm is implemented as follows [31].

Step 1. Randomly initialize v as any column of Y.

Step 2. Let w = X𝑇k.

Step 3. Let u = Xw, u← u/‖u‖.

Step 4. Let c = Y𝑇u.

Step 5. Let k = Yc, k ← k/‖k‖.

Step 6. Iterate Step 2∼Step 5 until convergence or the maxi-
mum number of iterations is reached.

Step 7. Calculate the deflation of X and Ymatrices: X ← X −

uu𝑇X, Y← Y − uu𝑇Y.

Step 8. Go to Step 1 to calculate the next latent variable.

Note that a minor difference of this algorithm from the
classical PLS algorithm is that the modified PLS algorithm
normalizes the latent vectors u, v rather than the weight
vectors w and c. After the extraction of the 𝑝 latent vectors,
we can create the (𝑛×𝑝)matricesU andV, the (𝑁×𝑝)matrix
W, and the (𝐿×𝑝)matrixC consisting of the columns created
by the vectors {u

𝑖
}

𝑝

𝑖=1
, {k
𝑖
}

𝑝

𝑖=1
, {w
𝑖
}

𝑝

𝑖=1
and {c

𝑖
}

𝑝

𝑖=1
, respectively,

extracted during the individual iterations.The PLS regression
model can be expressed with regression coefficient B and
residual matrix R as follows:

Y = XB + R,

B = X𝑇V(U𝑇XX𝑇V)
−1

U𝑇Y.
(7)

To avoid overfitting the training data and obtain a model
with good predictive ability, in practice, the selection of
the optimal number of PLS components is needed to be
carried out. The optimum number of components is usually
determined via cross-validation [32]. The cross-validation
is often performed on the calibration samples, which has
become the standard in PLS regression analysis. During the
cross-validation, the model increases one PLS component
until the prediction on the calibration samples shows that
further PLS components do not improve predictive ability. In
this work, the cross-validation is performed by leaving out
one sample at a time. In leave-one-out cross-validation, the
prediction error sum of squares (PRESS) and the residual
sum of squares (SS) are computed and collected. The ratio
PRESS

ℎ
/SS
ℎ−1

is calculated after each component, and a
component is judged to be significant if this ratio is smaller
than around 0.952. This is often reexpressed as 𝑄

ℎ

2
= 1 −

PRESS
ℎ
/SS
ℎ−1

≥ (1−0.95

2
) = 0.0975 for allY-variables. Here

ℎ is the number of components used in a PLS model.

4.2. Kernel Partial Least Squares Regression. Recently, Kernel
methods have become an increasingly popular tool for
machine learning tasks such as classification, regression, and
novelty detection. The notion of kernels has drawn much
interest as it allows one to obtain nonlinear algorithms from
linear ones.The attractiveness of such algorithms stems from
their efficiency in high-dimensional nonlinear problems and
their easy implementation because there are few free param-
eters to adjust, and the architecture does not need to be found



Mathematical Problems in Engineering 5

Sample point 

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

D
iff

er
en

tia
l v

ol
t a

m
p.

 (V
) 

0 10 20 30 40 50 60 8070

(a)

Sample point 

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

D
iff

er
en

tia
l v

ol
t a

m
p.

 (V
) 

0 10 20 30 40 50 60 8070

(b)

Sample point 

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0 10 20 30 40 50 60 8070

D
iff

er
en

tia
l v

ol
t a

m
p.

 (V
) 

(c)

Figure 1:The comparison of denoising performance: (a) the original EC signal, (b) the output of denoising using themean filtering algorithm,
and (c) the output of denoising using the WPA method.

by experimentation [33]. It is well known that the estimation
of defect dimensions from EC signals is an important aspect
of the ECNDE inverse problem which is often nonlinear
in realistic inspection. The defect dimension estimation
procedures can benefit from a kernel perspective, making
them more powerful and applicable to nonlinear processing.

KPLS regression [24, 25] is one type of nonlinear PLS
regression developed by generalizing the kernel method into
the PLS regression. It can be used tomodel nonlinear EC data
relations. The KPLS regression is presented by Rosipal and
Trejo [24]. Specifically, it firstlymaps the original inputs into a
high-dimensional feature space using the kernel method and
then calculates the PLS regression in the high-dimensional
feature space to find the fundamental relationships between
two matrices (X and Y). Thus, it means that we can obtain a
nonlinear regression model in the space of the original input
variables [25].

Now, consider a nonlinear transformation of X into a
feature space 𝐹:

X ∈ 𝑅

𝑁
󳨀→ 𝜙 (X) ∈ 𝐹, (8)

where 𝜙 (⋅) is a nonlinear mapping function that projects the
input vectors from the input space to 𝐹 and ∑𝑁

𝑖=1
𝜙(𝑥
𝑖
) =

0. Denote by 𝜙 the (𝑛 × 𝑆) matrix whose 𝑖th row is the
vector 𝜙 (X

𝑖
) in an 𝑆-dimensional feature space 𝐹. The KPLS

algorithm directly derived from the PLS algorithm is shown
as follows.

Step 1. Randomly initialize v as any column of Y.

Step 2. Let u = 𝜙𝜙𝑇k = Kk, u← u/‖u‖.

Step 3. Let c = Y𝑇u.
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Step 4. Let k = Yc, k ← k/‖k‖.

Step 5. Iterate Step 2∼Step 4 until convergence or the maxi-
mum number of iterations is reached.

Step 6. Calculate the deflation ofK and Ymatrices:K← (I−
uu𝑇)K (I − uu𝑇), Y← Y − uu𝑇Y.

Step 7. Go to Step 1 to calculate the next latent variable.

Note that K is the kernel matrix and 𝜙𝜙𝑇represents the
(𝑛 × 𝑛) kernel matrix K of the inner dot products between
all mapped input data points 𝜙 (X

𝑖
), 𝑖 = 1, . . . , 𝑛. That is,

K (X
𝑖
,X
𝑗
) = 𝜙(X

𝑖
) ⋅ 𝜙(X

𝑗
). As the calculations of the dot

product𝜙 (X
𝑖
)⋅𝜙 (X

𝑗
) are all replacedwith the kernel function

K (X
𝑖
,X
𝑗
), the mapping of 𝜙 (X

𝑖
) from X

𝑖
is implicit. The

elegance of usingK is that one can dealwith𝜙 (X
𝑖
) of arbitrary

dimensionality without having to compute 𝜙 (X
𝑖
) explicitly.

The matrix of regression coefficient B in the KPLS algorithm
will have the form

B = 𝜙𝑇V(U𝑇KV)
−1

U𝑇Y. (9)

As a result, the predictions on training subset and testing
subset can be made as follows, respectively:

̂Y = 𝜙B = KV(U𝑇KV)
−1

U𝑇Y,

̂Y
𝑡
= 𝜙
𝑡
B = K

𝑡
V(U𝑇KV)

−1

U𝑇Y,
(10)

where 𝜙
𝑡
is the mapped matrix of the testing subset and

K
𝑡
is the corresponding kernel matrix. Note that both K

and K
𝑡
should also be mean-centered in feature space before

applying (10).
In KPLS, just like other kernel methods, any function

satisfying Mercer’s condition can be used as the kernel
function. Two typical kernel functions are listed below:

Polynomial: K (X
𝑖
,X
𝑗
) = (X

𝑖
⋅ X
𝑗
+ 1)

𝑑

,

Radial Basis Function: K (X
𝑖
,X
𝑗
) = exp(

−

󵄩
󵄩
󵄩
󵄩
󵄩

X
𝑖
− X
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2

2𝜎

2
) .

(11)

Finally, the cross-validation technique is similarly applied
to select the appropriate components which will help avoid
overfitting caused by the use of too large dimensionalmodels.

5. Experiments and Results

5.1. Measurement System Configuration. The automatic sys-
tem based on ECNDE for estimating dimensions of defects
in multilayered structures is obtained by integrating the
test device with a computer. A block scheme of the system
is shown in Figure 2. The system consists of a few main
components: an AC excitation generator, two eddy current
probes (an inspecting probe and a reference probe), a low
pass filter, a data acquisition interface (A/D converter), a

AC current generator 

A/D converter

Low pass filter

PC 

Coordinate measuring machine 

Inspecting probe Reference probe

Inspecting structures Reference structures

GMR sensor Excitation coil 

Figure 2: Schematic view of an automatic ECNDE system.

coordinate measuring machine (CMM), and a computer.
The sinusoidal current source provides current through coils
with amplitude 1 A at a frequency 200Hz. In the system
the right-cylindrical air-cored coil probe has been used. The
coil parameters are inner radius 𝑟

1
= 3mm, outer radius

𝑟
2
= 4.5mm, length 𝑙 = 20mm, and lift-off = 0.5mm.

The probes consist of exciting coils and GMR sensors. The
basic AA-Series GMR sensors from Nonvolatile Electronics,
Inc. (NVE) are general-purpose magnetometers for use in
a wide variety of ECNDE applications. In all subsequent
experiments, the AA002-02 GMR sensor is used, due to its’
excellent linearity, high sensitivity and resolution, stable and
linear temperature characteristics, and a purely ratiometric
output. The probes are scanned over the surface of the
specimen by using a CMM. A computer program is used
to set the scan area and velocity. During measurements, the
sensing axis of the GMR sensor is directed orthogonally to
the magnetic field generated by the coil. The GMR sensor’s
output signals are amplified by a low cost, high accuracy
instrumentation amplifier AD620. Then, the amplified sig-
nals are filtered by a second-order low pass filter with a
cutoff frequency of 20Hz. A data acquisition programwritten
in Labview collects the data from the output of the filter
via a National Instrument DAQPad 6016 16 × 6 bit analog-
to-digital converter. The computer is controlling the whole
system and performing such tasks as automating the process
of inspection, data acquisition and displaying, and applying
some signal processing techniques to automate the process
of defect detection and quantification. The computer-based
system can thus increase the reliability of the detection and
enhance the performance of EC inspection of complex engi-
neering structures by avoiding errors related to human factors
such as inexperience and inconsistency. It also offers fast
and robust database methods for retrieving old inspection
data, which is important in monitoring defect initiation and
growth. In the system, reference structures and a reference
probe have been used. By comparing the signals from the
reference structures with those from the monitored special
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structures, the system can easily make a decision on structure
conditions and usage states.

5.2. Experimental Results. To verify the feasibility of the
proposed EC inversion models for estimating dimensions of
defects in multilayered structures, comparative experiments
are carried out. Detection of deeply buried defects in multi-
layered airframe joints is widely recognized as an urgent and
difficult NDE problem [34].Multilayered samples resembling
a part of the projected wing splice of the aircraft are analyzed.
We assume that the shape and position of defects are
known in advance. Therefore, this paper mainly discusses
the inversion problem of estimating dimensions of defects
in multilayered structures to simulate the quantification of
internal cracks, corrosions, and local interlayer air gaps in real
structures.

The experimental specimen is shown schematically in
Figure 3. The specimen consists of three layers of aluminum
with a total thickness of 10mm (2.5, 5, 2.5mm), electrical
conductivity 𝜎 = 18.5 × 106 S/m, magnetic permeability
𝜇 = 𝜇

0
= 4𝜋 × 10

−7H/m, length 𝑙 = 200mm, and width 𝑤 =

120mm. The layers are bolted together with 5mm diameter
Titanium bolts, whose upper part is conically shaped having
a diameter of 8mm at the surface of the specimen. The
second layer contains an exchangeable sheet, in which
calibrated rectangular defects with different dimensions have
been introduced in the center of the plate. The set of defects
are of height 1mm, five depth values varying from 2.5mm to
6.5mm, four length values varying from 1mm to 4mm, and
fourwidth values varying from 1mm to 4mmwith step 1mm.
A dataset with 80 records is acquired during the scanning. Of
the overall 80 samples, we randomly extract 50 samples and
use them as the training (calibration) set. The remaining 30
samples are used as the validation set for testing themodel. To
ensure a fair comparison, the same calibration and validation
sets are used for eachmodel.The skin depth 𝛿 = (√𝜋𝑓𝜇𝜎)−1 is
equal to about 8.28mmand indicates promising robustness of
inspection of all inner defects in the multilayered structures.

The data set is denoised by the WPA method. After the
signals are denoised, all the data are mean-centered and
scaled to unit variance before modeling. Then, the presented
approaches are implemented to construct the inversionmod-
els for estimating dimensions of defects, respectively.

Firstly, the PLS regression method is used to construct
the calibration model of defect dimension estimation. The
PLS components are computed as certain linear combinations
of the measured GMR sensor’s output signals. The optimal
number of PLS components is determined by implementing
leave-one-out cross-validation. In cross-validation, the𝑄

ℎ

2 of
each component of the PLS regression calibration model is
illustrated in Figure 4. It shows that the model has seven sig-
nificant components.This gives a strong indication that seven
PLS components are appropriate for modeling. Then, the
corresponding defect dimensions are predicted linearly based
on these extracted components. Thus, the final predictive
function is also a linear combination of the measured GMR
sensor’s output signals. Figure 5 shows the model overview
plot of the cumulative𝑅2, the fraction of the variation ofY (all

Titanium bolt

Steel nut Defect

8 mm

5 mm

80 mm

2.5 mm

5 mm

2.5 mm

Depth

Height

The sensing axis of GMR

(a)

Length

Width

Bolt hole

200 mm

120 mm

(b)

Figure 3: The sketch of an experimental aircraft multilayered
structure: (a) cutaway view of the whole structure; (b) vertical view
of the second layer.
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Figure 4: The 𝑄
ℎ

2 of each component of the PLS regression model.

the responses) explained by the model after each component
from the training set, and the cumulative 𝑄2, the fraction of
the variation of Y (all the responses) that can be predicted
by the model after each component from the testing set.
Values of the cumulative𝑅2 and𝑄2 are higher than 0.8, which
indicates the model is appropriate.

Secondly, the KPLS regression method is used to con-
struct the calibration model of defect dimension estimation.
In KPLS regression, a radial basis kernel is employed as
the kernel function.The same leave-one-out cross-validation
procedure is implemented to choose the optimal number
of KPLS components. Figure 6 shows the 𝑄

ℎ

2 of each
component of the KPLS regression calibration model. From
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Figure 5: The cumulative 𝑅2 and 𝑄2 of the PLS regression model.
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Figure 6:The𝑄
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2 of each component of theKPLS regressionmodel.

Figure 6, we can see that the model only has six significant
components. Figure 7 shows the model overview plot of the
cumulative 𝑅2 and 𝑄2. Values of the cumulative 𝑅2 and 𝑄2
are close to 1.0, which indicates that the model is an excellent
model.

In addition, in the experiments’ tests, a performance com-
parison between the proposed two methods and the ANN
method is carried out. We use a feed-forward neural network
with one hidden layer containing 12 neurons. The number of
neurons of input layer and output layer is dependent upon
the dimensions of 𝑋 (GMR sensor’s output voltage) and
𝑌 (defect dimensions), respectively. Then, the training data
subset is used for updating the network weight and bias.
During training, the error is evaluated in terms of RMSE.
The training curve of ANN is shown in Figure 8. Error with
respect to the testing data subset is not monitored during
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Figure 7: The cumulative 𝑅2 and 𝑄2 of the KPLS regression model.
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Figure 8: The training curve of ANN.

training but is quantified to assess the final performance of
the trained ANNmodel.

Finally, to compare the prediction qualities of the three
approaches, Figure 9 plots the estimated values obtained
from the three approaches against the actual values of defect
dimensions of the testing set.Themain results obtained from
the three inversion models for the training set and the testing
set are summarized in Table 2.

From Figure 9 and Table 2, it can be seen that the pro-
posed twomethods can gain a better prediction performance
than the ANN method. The defect dimension estimation
from the proposed two inversion models is more accurate
and robust. Among three inversion models, the ANN model
gives better prediction results for the training set than those
for the testing set, indicating that the ANN model can
easily lead to overfitting of the training data and will give
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Figure 9: Scatter plots of the actual values versus the estimated values of defect dimensions of the testing set: (a) the ANN method, (b) the
PLS regression method, and (c) the KPLS regression method.

obvious errors when the samples have never been contained
in the training set. In the PLS regression model, the optimal
number of PLS components selected by implementing the
cross-validation procedure simplifies the PLS model and
enhances the predictive ability of the model. Despite the
fact that the PLS model shows a slightly lower fitting of
the training data, it has a better prediction ability than the
ANN model. Compared to the PLS regression model, the
KPLS regression model needs less number of components
selected to construct the calibration model, which make the
complexity of the model further reduced. When the KPLS
regression is used to approximate the model, 𝑅2 and 𝑄2 are
greatly increased, and RMSEC and RMSEP are reduced. The
increased prediction performance of the KPLS regression
model could be explained by the fact that the ECNDE is
an inherently nonlinear process and the KPLS model could
capture the nonlinearities in the original data space benefiting
from the linear data structure in the feature space.This special

property of the KPLS regressionmay be considered as a more
proper way to interpret the nonlinear and nonstationary
ECNDE signals.

6. Conclusions

In this study, two EC inversion models for estimating
dimensions of defects inmultilayered structures are proposed
and investigated. The WPA denoising method removes the
influence of noise and information not correlated to the target
parameter, which effectively improves the performance of the
proposed approaches when using time-domain signals.Then,
the PLS regression and KPLS regression inversionmodels are
constructed to estimate defect dimensions, respectively. The
PLS regression provides an approach to the quantitativemod-
eling for estimating defect dimensions, where the correlation
structure of the acquired EC inspection data is considered.
The cross-validation is implemented to choose the optimal
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Table 2: Main results obtained with the ANN, PLS regression and
KPLS regression methods.

Data sets ANN PLS KPLS

Training set

Length 𝑅

2 0.915 0.911 0.986
RMSEC 0.316 0.323 0.128

Width 𝑅

2 0.907 0.887 0.931
RMSEC 0.338 0.372 0.291

Depth 𝑅

2 0.929 0.902 0.966
RMSEC 0.381 0.448 0.264

Testing set

Length 𝑄

2 0.705 0.858 0.953
RMSEP 0.598 0.412 0.235

Width 𝑄

2 0.691 0.821 0.894
RMSEP 0.611 0.471 0.358

Depth 𝑄

2 0.712 0.841 0.916
RMSEP 0.618 0.573 0.415

number of PLS components to obtain a model with the
appropriate complexity and good predictive ability.TheKPLS
regression is one type of nonlinear PLS regression. Compared
with other nonlinear methods, the KPLS regression has the
advantage that it does not require a nonlinear optimization
procedure. It involves calculations as simple as those used for
the PLS regression. At the same time, in comparison to the
PLS regression, the KPLS regression uses a smaller number
of components.

To test the proposed two inversion models, a strict
experiment has been carried out. Two approaches are com-
pared with the ANN method in terms of model’s ability to
fit data, predictive accuracy, and robustness. Experimental
results show that the proposed two approaches can pro-
vide better estimation performance than the conventional
approaches (the ANN method) in aspects of estimation
accuracy, generalization capability, robustness, and compu-
tational burden. The results demonstrate the feasibility and
effectivity of the proposed two inversion models. They all
give the accurate estimation of dimensions of defects in
multilayered structures. Between them, the KPLS gives a
better prediction performance. The algorithms’ capability of
quantitative evaluation of defects in multilayered structures
is fairly general and fruitful, as this encourages the attempts
to tackle the problem of other evaluation problems. In fact,
it is necessary to note that, in this paper, we assume that the
shape and position of defects are known in advance.However,
in most real industrial environments, this hypothesis is not
always met. We usually do not know the shape and position
of defects in advance.Moreover, in the real ECNDEproblems,
defects to be detected are usually smaller than the ones
considered in the experiments and the shape of defects is very
abnormal. Future work, hopefully, will be done to extend the
proposed methods to the more complex ECNDE problems
where the kind of defect is more general and the smaller
abnormal defects are considered.
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