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This paper proposes a multi-invariance ESPRIT-based method for estimation of 2D direction (MIMED) of multiple non-Gaussian
monochromatic signals using cumulants. In the MIMED, we consider an array geometry containing sparse �퐿-shaped diversely
polarized vector sensors plus an arbitrarily-placed single polarized scalar sensor. Firstly, we define a set of cumulant matrices to
construct two matrix blocks with multi-invariance property. Then, we develop a multi-invariance ESPRIT-based algorithm with
aperture extension using the definedmatrix blocks to estimate two-dimensional directions of the signals. TheMIMED can provide
highly accurate and unambiguous direction estimates by extending the array element spacing beyond a half-wavelength. Finally,
we present several simulation results to demonstrate the superiority of the MIMED.

1. Introduction

Estimation of direction-of-arrival (DOA) and polarization
parameters using an array of diversely polarized electromag-
netic vector sensors is very important in many applications,
such as radar and wireless communications. In the past
two decades, many electromagnetic vector sensor direction
finding algorithms have been proposed [1–8]. Among them,
ESPRIT-based algorithms [2–4] are highly popular due
to their low computations and high estimation accuracy.
Generally, the ESPRIT-based algorithm exploits the spatial
invariance between two identical subarrays to offer direction
estimation.

Multi-invariance ESPRIT (MI-ESPRIT), first proposed in
[9], is an extension of conventional ESPRIT by exploiting the
inherent multiple invariances embedded in the array struc-
ture. With exploitation of the special multi-invariance struc-
ture, MI-ESPRIT can offer better estimation performance
than original version of ESPRIT [9]. In recent years, MI-
ESPRIT algorithm has been applied to solve direction finding
problems, where the impinging signals can be MC-CDMA
[10], Noncircular [11], and narrowband chirp [12]. However,
all the MI-ESPRIT-based algorithms mentioned above are

developed using scalar arrays, with array intersensor spacing
being not beyond a half-wavelength to guarantee unique and
unambiguous direction estimates.

In this paper, we apply the idea of MI-ESPRIT to sparse
electromagnetic vector sensor arrays to achieve aperture
extension for highly accurate direction estimation. We
present a multi-invariance ESPRIT-based method for esti-
mation of two-dimensional direction (MIMED) of multiple
non-Gaussian signals using cumulants. In the proposed
MIMED, we consider an array geometry that contains
sparse �퐿-shaped diversely polarized vector sensors plus an
arbitrarily-placed single polarized scalar sensor (dipole).
Firstly, a set of cumulant matrices is defined to form two
matrix blocks that possess the multi-invariance property.
Then, a multi-invariance ESPRIT-based algorithm with aper-
ture extension using the defined matrix blocks to estimate
two-dimensional directions of the signals is developed. The
MIMED can provide highly accurate and unambiguous angle
estimates by exploiting the fact that the spatial phase factor is
larger than a half-wavelength.

Note also that the MIMED algorithm is related to the
algorithm presented in [13] in the sense that both algorithms
define the cumulant matrices to estimate the directions of
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Figure 1: Array configuration for the MIMED: �퐿 = 2�퐿 + 1 sparse �퐿-
shaped diversely polarized vector sensors plus an arbitrarily-placed
single polarized scalar sensor.

signals. However, since the sensors used in the MIMED
algorithm are different from those in [13], the algorithmic
derivation and performance bounds are different from those
in [13]. For example, (i) [13] is derived based on a scalar
sensor array, whereas the MEMID algorithm is derived using
a vector sensor array; (ii) the algorithm in [13] defines cumu-
lant matrices to formulate the tensor model, whereas the
MIMED algorithm defines cumulant matrices to form the
multi-invariance ESPRIT model.

Notation. Throughout the paper, superscripts �푇, �퐻, ∗, and†, respectively, represent the transpose, conjugate transpose,
complex conjugate, and pseudoinverse, and ⊗ denotes the
Kronecker-product operator. ⌈�푥⌉ denotes the smallest integer
not less than �푥, ⌊�푥⌋ represents the largest integer not greater
than �푥, and arg{�푧} signifies the principal argument of the
complex number �푧 between −�휋 and �휋.
2. Signal Model

Consider �푀 narrowband completely polarized source sig-
nals, parameterized by {�휃1, �휙1, �훾1, �휂1}, {�휃2, �휙2, �훾2, �휂2},. . . , {�휃�푀, �휙�푀, �훾�푀, �휂�푀}, where 0 ≤ �휃�푚 < �휋, 0 ≤ �휙�푚 < 2�휋,0 ≤ �훾�푚 < �휋/2, and −�휋 ≤ �휂�푚 < �휋, respectively, denote
the elevation angle, azimuth angle, orientation angle, and
ellipticity angle of the �푚th source, impinging upon an array,
which is composed of �퐿 = 2�퐿 + 1 sparse �퐿-shaped diversely
polarized vector sensors plus an arbitrarily-placed single
polarized scalar sensor, as shown in Figure 1. The location
of the ℓth (ℓ = 1, . . . , �퐿 + 1) sensor lied on the �푥-axis is((ℓ − 1)�퐷�푥, 0), and the location of the �푘th (�푘 = �퐿 + 2, . . . , �퐿)
sensor lied on the �푦-axis is (0, (�푘 − �퐿 − 1)�퐷�푦)), where�퐷�푥 ≫ �휆 and �퐷�푦 ≫ �휆 are the intersensor spacing. Each

electromagnetic vector sensor consists of six spatially
orthogonal but colocated components: three electric dipoles
plus three magnetic loops.The electromagnetic vector sensor
response for the �푚th source signal produces the following6 × 1 steering vector [2]:

𝑐�푚 = 𝑐 (�휃�푚, �휙�푚, �훾�푚, �휂�푚) =
[[[[[[[[[[[
[

�푐1 (�휃�푚, �휙�푚, �훾�푚, �휂�푚)�푐2 (�휃�푚, �휙�푚, �훾�푚, �휂�푚)�푐3 (�휃�푚, �휙�푚, �훾�푚, �휂�푚)�푐4 (�휃�푚, �휙�푚, �훾�푚, �휂�푚)�푐5 (�휃�푚, �휙�푚, �훾�푚, �휂�푚)�푐6 (�휃�푚, �휙�푚, �훾�푚, �휂�푚)

]]]]]]]]]]]
]

def=
[[[[[[[[[[[
[

�푒�푥 (�휃�푚, �휙�푚, �훾�푚, �휂�푚)�푒�푦 (�휃�푚, �휙�푚, �훾�푚, �휂�푚)�푒�푧 (�휃�푚, �훾�푚, �휂�푚)ℎ�푥 (�휃�푚, �휙�푚, �훾�푚, �휂�푚)ℎ�푦 (�휃�푚, �휙�푚, �훾�푚, �휂�푚)ℎ�푧 (�휃�푚, �훾�푚)

]]]]]]]]]]]
]

=
[[[[[[[[[[[[
[

sin �훾�푚 cos �휃�푚 cos �휙�푚�푒�푗�휂𝑚 − cos �훾�푚 sin �휙�푚
sin �훾�푚 cos �휃�푚 sin �휙�푚�푒�푗�휂𝑚 + cos �훾�푚 cos �휙�푚

− sin �훾�푚 sin �휃�푚�푒�푗�휂𝑚
− cos �훾�푚 cos �휃�푚 cos �휙�푚 − sin �훾�푚 sin �휙�푚�푒�푗�휂𝑚
− cos �훾�푚 cos �휃�푚 sin �휙�푚 + sin �훾�푚 cos �휙�푚�푒�푗�휂𝑚

cos �훾�푚 sin �휃�푚

]]]]]]]]]]]]
]

(1)

where the first three entries (𝑒�푚 = [�푒�푥,�푚, �푒�푦,�푚, �푒�푧,�푚]�푇) and
the last three entries (ℎ�푚 = [ℎ�푥,�푚, ℎ�푦,�푚, ℎ�푧,�푚]�푇) represent the
electric and the magnetic field vectors, respectively. Note that
the arraymanifold of electromagnetic vector sensors does not
contain the angle-related phase factor.This fact is pivotal to the
MIMED in improving the estimation accuracy by extending
the array aperture beyond that limited by the spatial Nyquist
sampling theorem. Also, note that the Frobenius-norm of the
normalized Poynting vector is independent of the parameters
of the signal and is equal to unity. That is, the electric field
vector e�푚 and the magnetic field vector h�푚 are orthogonal
to each other and to the source signal’s normalized Poynting
vector p�푚, i.e., [2]

𝑝�푚
def= 𝑒�푚 × ℎ�퐻�푚 def= [[

[
�푢�푚
V�푚�푤�푚

]]
]

def= [[
[
sin �휃�푚 cos �휙�푚
sin �휃�푚 sin �휙�푚

cos �휃�푚
]]
]

(2)

where �푢�푚, V�푚, and �푤�푚 denote the direction cosines of the �푥-
axis, �푦-axis, and �푧-axis.
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Then, the 6(�퐿 + 1) × 1 data vectors measured by the first
to the (�퐿 + 1)th vector sensors at time �푡 can be expressed as

𝑧�푥 (�푡) = �푀∑
�푚=1

(𝑞�푥 (�휃�푚, �휙�푚) ⊗ c�푚) �푠�푚 (�푡) + 𝑛�푥 (�푡)
= 𝐴�푥𝑠 (�푡) + 𝑛�푥 (�푡)

(3)

where �푠�푚(�푡) denotes the phasor representation of the �푚th
signal, 𝑠(�푡) = [�푠1(�푡), . . . , �푠�푀(�푡)]�푇 denotes the signal vector,
𝐴�푥 = [𝑞�푥(�휃1, �휙1)⊗𝑐1, . . . , 𝑞�푥(�휃�푀, �휙�푀)⊗𝑐�푀], with𝑞�푥(�휃�푚, �휙�푚) =[1, �푒�푗2�휋/�휆�퐷𝑥�푢𝑚 , . . . , �푒�푗2�휋/�휆(�퐿−1)�퐷𝑥�푢𝑚]�푇, and 𝑛�푥(�푡) represent the6(�퐿 + 1) × 1 additive noise vector. Likewise, the 6�퐿 × 1 output
vector measured by the (�퐿 + 2)th to �퐿th vector sensors can be
expressed as

𝑧�푦 (�푡) = �푀∑
�푚=1

(𝑞�푦 (�휃�푚, �휙�푚) ⊗ c�푚) �푠�푚 (�푡) + 𝑛�푦 (�푡)
= 𝐴�푦𝑠 (�푡) + 𝑛�푦 (�푡)

(4)

where 𝐴�푦 = [𝑞�푦(�휃1, �휙1) ⊗ 𝑐1, . . . , 𝑞�푦(�휃�푀, �휙�푀) ⊗ 𝑐�푀], with
𝑞�푦(�휃�푚, �휙�푚) = [�푒�푗2�휋/�휆�퐷𝑦V𝑚 , . . . , �푒�푗2�휋/�휆(�퐿−1)�퐷𝑦V𝑚 ]�푇, and 𝑛�푦(�푡)
represent the 6�퐿 × 1 additive noise vector.

Next, we assume the single polarized scalar sensor is
placed arbitrarily at the location (�푑�푥, �푑�푦). Then, the data col-
lected by the single polarized scalar sensor can be represented
as

�푧0 (�푡) = �푀∑
�푚=1

�푞0 (�휃�푚, �휙�푚) �푠�푚 (�푡) + �푛0 (�푡) (5)

where �푞0(�휃�푚, �휙�푚) = �푒�푗2�휋/�휆(�푑𝑥�푢𝑚+�푑𝑦V𝑚) and �푛0(�푡) is additive
noise.

With a total of �푁 snapshots taken at {�푡�푛 : �푛 = 1,. . . , �푁}, the problem is to determine the azimuth-elevation
directions {�휃�푚, �휙�푚, �푚 = 1, . . . , �퐾} from these snap-
shots. For beamforming purposes, it may be also useful
to subsequently estimate the corresponding polarization
parameters {�훾�푚, �휂�푚, �푚 = 1, . . . , �퐾}. We will present the
MIMED algorithm to solve the above-mentioned problems
in Section 3, under the following assumptions: (i) the param-
eters (�휃1, �휙1, �훾1, �휂1), . . . , (�휃�푀, �휙�푀, �훾�푀, �휂�푀) are distinct with
each other, and the array steering vector matrix is of full
column rank; (ii) the impinging signals are zero-mean and
stationary, mutually independent, and non-Gaussian, having
nonzero fourth-order cumulants; (iii) the noise is zero-mean,
complex Gaussian, and possibly spatially correlated.

3. Algorithm Development

3.1. Formulation of theCumulantMatrices. In this subsection,
we define 2�퐿 + 1 cumulant matrices that can be linked to
multi-invariance model for direction estimation. In forming
the cumulant matrices, the single polarized scalar sensor is
used as a reference sensor. Let �푧�푖,�횤(�푡), �푧�푗,�횥(�푡), and �푧�푝,�휅(�푡) be
the data measured by the �횤th, �횥th, and �휅th (�횤, �횥, �휅 = 1, . . . , 6)
vector sensor element from the �퐿-shaped vector sensors,

and let the fourth-order cumulants of �푧0(�푡), �푧�푖,�횤(�푡), �푧�푗,�횥(�푡),
and �푧�푝,�휅(�푡) be cum(�푧0(�푡), �푧∗�푖,�횤(�푡), �푧�푗,�횥(�푡), �푧∗�푝,�휅(�푡)). Using the
assumptions made in Section 2 and the cumulant properties
in [14], we have

cum (�푧0 (�푡) , �푧∗�푖,�횤 (�푡) , �푧�푗,�횥 (�푡) , �푧∗�푝,�휅 (�푡))
= �푀∑
�푚=1

�휁�푚�푐∗�횤 (�휃�푚, �휙�푚, �훾�푚, �휂�푚) �푒�푗(2�휋/�휆)(�푥0,𝑖,𝑗,𝑝�푢𝑚+�푦0,𝑖,𝑗,𝑝V𝑚)
(6)

where �푖, �푗, �푝 ∈ {1, . . . , 2�퐿 + 1} and
�푥0,�푖,�푗,�푝 = �푑�푥 − �푥�푖 + �푥�푗 − �푥�푝
�푦0,�푖,�푗,�푝 = �푑�푦 − �푦�푖 + �푦�푗 − �푦�푝 (7)

with (�푥�푖, �푦�푖) being the location of the �푖th vector sensor, and

�휁�푚 = cum (�푠�푚 (�푡) , �푠∗�푚 (�푡) , �푠�푚 (�푡) , �푠∗�푚 (�푡)) = �퐸 {�儨�儨�儨�儨�푠�푚 (�푡)�儨�儨�儨�儨4} (8)

Then, denoting the 6�퐿 × 1 vector 𝑧(�푡) = [𝑧�푇�푥 (�푡),𝑧�푇�푦(�푡)]�푇, we
define the �퐿 6�퐿 × 6�퐿 cumulant matrices as

𝑅ℓ = 6∑
�푘=1

cum (�푧0 (�푡) , �푧∗ℓ,�푘 (�푡) , 𝑧 (�푡) , 𝑧�퐻 (�푡)) ,
ℓ = 1, . . . , �퐿

(9)

where �푧ℓ,�푘(�푡) is the �푘th row of 𝑧ℓ(�푡). After somemathematical
computations, we can obtain

𝑅1 = 𝐴𝐺𝐴�퐻 (10)

𝑅ℓ = 𝐴Φℓ−1�푢 𝐺𝐴�퐻, ℓ = 2, . . . , �퐿 + 1 (11)

𝑅ℓ = 𝐴Φℓ−�퐿−1V 𝐺𝐴
�퐻, ℓ = �퐿 + 2, . . . , 2�퐿 + 1 (12)

where

𝐺 = diag{�휁1 6∑
�푘=1

�푐∗�푘 (𝜃1) �푒�푗2�휋/�휆(�푑𝑥�푢1+�푑�푦V1), . . . ,

�휁�푀 6∑
�푘=1

�푐∗�푘 (𝜃�푀) �푒�푗2�휋/�휆(�푑𝑥�푢𝑀+�푑�푦V𝑀)}
(13)

Φ�푢 = diag {�푒�푗2�휋/�휆�퐷𝑥�푢1 , . . . , �푒�푗2�휋/�휆�퐷𝑥�푢𝑀} (14)

ΦV = diag {�푒�푗2�휋/�휆�퐷𝑦V1 , . . . , �푒�푗2�휋/�휆�퐷𝑦V𝑀} (15)

with 𝜃�푚 = (�휃�푚, �휙�푚, �훾�푚, �휂�푚).
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Next, we construct two 6(�퐿 + 1)�퐿 data blocks using the
defined cumulant matrices as

𝑅�푥 =
[[[[[[
[

𝑅1

𝑅2...
𝑅�퐿+1

]]]]]]
]

,

𝑅�푦 =
[[[[[[
[

𝑅1

𝑅�퐿+2...
𝑅2�퐿+1

]]]]]]
]

(16)

With the foregoing definitions, we will show in next subsec-
tion that 𝑅�푥 and 𝑅�푦 are of multi-invariance properties, which
can be exploited to estimate the directions of signals using
MI-ESPRIT algorithm.

3.2. MI-ESPRIT Algorithm for Direction Estimation. It is
easily to verify that the block 𝑅�푥 is of the form

𝑅�푥 =
[[[[[[
[

𝑅1

𝑅2...
𝑅�퐿+1

]]]]]]
]

=
[[[[[[[
[

𝐴

𝐴Φ�푢...
𝐴Φ�퐿�푢

]]]]]]]
]
𝐺𝐴�퐻 (17)

The first �퐿 rows of 𝑅�푥 can be considered as measurement of
signal 𝐺𝐴�퐻 by physical vector sensors, while the �푖th �퐿 rows
((�푖 − 1)�퐿 + 1 to �푖�퐿 rows) of 𝑅�푥 can be viewed as measurement
of signal 𝐺𝐴�퐻 by virtual vector sensors, which are virtually
placed by shifting the physical sensors along �푥-axis with
distance (�푖 − 1)�퐷�푥. Then, for all �푖 = 2, . . . , �퐿 + 1, altogether�퐿 different virtual sensor groups can be formed. Each virtual
sensor group has its own spatial invariance, so that �퐿 distinct
spatial invariances can be provided [9].Therefore, the matrix
(17) is of multi-invariance characteristic [9] which can be
exploited for use ofMI-ESPRIT for estimating directions. The
signal subspace matrix 𝐸�푠,�푥, which contains the eigenvectors
associated with �푀 largest eigenvalues of 𝑅�푥𝑅

�퐻
�푥 , can be

represented as

𝐸�푠,�푥 =
[[[[[[[
[

𝐴

𝐴Φ�푢...
𝐴Φ�퐿�푢

]]]]]]]
]
𝑇 (18)

where 𝑇 is an �푀 × �푀 full rank matrix.
Let𝐸�푠,�푥,1 and 𝐸�푠,�푥,2, respectively, be the first 6�퐿�퐿 rows and

the last 6�퐿�퐿 rows of 𝐸�푠,�푥; we have

𝐸�푠,�푥,2 = 𝐸�푠,�푥,1𝑇−1Φ�푢𝑇 (19)

From (19), we can infer that, with the estimation of 𝐸̂�푠,�푥,1 and
𝐸̂�푠,�푥,2, the diagonal elements of Φ�푢 can be estimated from
eigenvalues of 𝐸̂†�푠,�푥,1𝐸̂�푠,�푥,2 and the matrix 𝑇 can be estimated
from the eigenvectors of 𝐸̂†�푠,�푥,1𝐸̂�푠,�푥,2, i.e.,

𝐸̂
†

�푠,�푥,1𝐸̂�푠,�푥,2 = 𝑇̂−1Φ̂�푢𝑇̂ (20)

where {[Φ̂�푢]�푚,�푚 = �푒�푗2�휋/�휆�퐷𝑥�푢𝑚 , �푚 = 1, 2, . . . ,�푀}. Since �퐷�푥 >�휆/2, a set of ambiguous direction cosine estimates �푢�푚 that
satisfy (20) can be obtained. 	ese estimates are expressed as
[15]

�̂푢�푚 (�푛�푥) = �휇�푚 + �푛�푥 �휆�퐷�푥 (21)

⌈�퐷�푥�휆 (−0.5 − �휇�푚)⌉ ≤ �푛�푥 ≤ ⌊�퐷�휆 (0.5 − �휇�푚)⌋ (22)

�휇�푚 = arg ([Φ̂�푢]�푚,�푚)2�휋�퐷�푥/�휆 (23)

Similarly, we can obtain a set of cyclically ambiguous
direction cosine estimates V�푚 from the data block 𝑅�푦. These
estimates are expressed as [15]

V̂�푚 (�푛�푦) = ]�푚 + �푛�푦 �휆�퐷�푦 (24)

⌈�퐷�푦�휆 (−0.5 − ]�푚)⌉ ≤ �푛�푦 ≤ ⌊�퐷�푦�휆 (0.5 − ]�푚)⌋ (25)

]�푚 = arg ([Φ̂V]�푚,�푚)2�휋�퐷�푦/�휆 (26)

where {[Φ̂V]�푚,�푚 = �푒�푗2�휋/�휆�퐷𝑦 V̂𝑚 , �푚 = 1, 2, . . . ,�푀}.
The above low-variance but cyclically ambiguous direc-

tion cosine estimates can be disambiguated by using the set
of high-variance but unambiguous direction cosine estimates
extracted from the estimation of electromagnetic vector
sensor array manifolds. This extraction may be accomplished
by decoupling the matrix 𝐴̂ as

𝐶̂0 = ∑�퐿ℓ=1 𝐴̂ℓ�儩�儩�儩�儩�儩�儩∑�퐿ℓ=1 𝐴̂ℓ�儩�儩�儩�儩�儩�儩�퐹
(27)

where 𝐴̂ℓ denotes the ((ℓ − 1) × 6 + 1)th to (ℓ × 6)th elements
of 𝐴̂. According to (18), 𝐴̂ can be estimated as the first 6�퐿
rows of 𝐸̂�푠,�푥𝑇̂

−1
. Denoting the �푚th column of 𝐶̂0 as �푔𝑐̂�푚, the

high-variance but unambiguous direction cosine estimates of
the �푚th signal can be directly calculated by the vector cross
product between the normalized electric field vector and the
magnetic field vector, i.e.,

𝑝̂�푚 = [[[
[

�̂푢ref
�푚

V̂ref�푚
�푤ref
�푚

]]]
]

= 𝑒̂�푚�儩�儩�儩�儩𝑒̂�푚�儩�儩�儩�儩 × ℎ̂�퐻�푚�儩�儩�儩�儩�儩ℎ̂�푚�儩�儩�儩�儩�儩 (28)
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where 𝑒�푚 and ℎ̂�푚, respectively, correspond to the first three
and the last three columns of �푔𝑐̂�푚.

Finally, the high-variance but unambiguous direction
cosine estimates (�̂푢ref

�푚 , V̂ref�푚 ), �푚 = 1, . . . ,�푀 would serve
as reference direction cosine estimates to resolve the cyclically
ambiguous direction cosines estimates (�̂푢�푚(�푛�푥), V̂�푚(�푛�푦)),�푚 = 1, . . . ,�푀.The disambiguated �푥-axis and �푦-axis direction
cosines, �̂푢�푚 and V̂�푚, are found from �̂푢�푚(�푛�푥) and V̂�푚(�푛�푦) when
the value of |�̂푢�푚(�푛�푥) − �̂푢ref

�푚 | and |V̂�푚(�푛�푦) − V̂ref�푚 | are minimized.
Mathematically, the disambiguated �푥-axis direction cosine
estimates �̂푢�푚 are given by

�̂푢�푚 = �휇�푚 + �푛�표�푥 �휆�퐷 (29)

where �푛�표�푥 is estimated as

�푛�표�푥 = argmin
�푛𝑥

�儨�儨�儨�儨�儨�儨�儨�儨�̂푢ref
�푚 − �휇�푚 − �푛�푥�휆�퐷

�儨�儨�儨�儨�儨�儨�儨�儨 (30)

Analogously, the disambiguated �푦-axis direction cosine esti-
mates V̂�푚 are

V̂�푚 = ]�푚 + �푛�표�푦 �휆�퐷 (31)

where �푛�표�푦 is estimated as

�푛�표�푦 = argmin
�푛𝑦

�儨�儨�儨�儨�儨�儨�儨�儨�儨V̂
ref
�푚 − ]�푚 − �푛�푦�휆�퐷

�儨�儨�儨�儨�儨�儨�儨�儨�儨 (32)

Note that since �̂푢ref
�푚 is paired with V̂ref�푚 , the estimated �̂푢�푚

and V̂�푚 are then automatically paired without any additional
processing.

3.3. Implementation of the MIMED Algorithm. The imple-
mentation of the proposedMIMEDalgorithm is summarized
as follows:

(S1) Estimate the cumulant matrices 𝑅̂ℓ, ℓ = 1, . . . , �퐿, from
the data samples.

(S2) Form thematrices 𝑅̂�푥 and 𝑅̂�푦 using (16); then perform
the eigenvalue decomposition to 𝑅̂�푥𝑅̂

�퐻

�푥 and 𝑅̂�푦𝑅̂
�퐻

�푦 to
construct the signal subspaces 𝐸̂�푠,�푥 and 𝐸̂�푠,�푦, whose
columns correspond to the eigenvectors associated
with �푀 largest eigenvalues of 𝐸̂�푠,�푥 and 𝐸̂�푠,�푦.

(S3) Let 𝐸̂�푠,�푥,1 and 𝐸̂�푠,�푥,2, respectively, be the first 6�퐿�퐿
rows and the last 6�퐿�퐿 rows of 𝐸̂�푠,�푥, 𝐸̂�푠,�푦,1, and 𝐸̂�푠,�푦,2,
respectively, be the first 6�퐿�퐿 rows and the last 6�퐿�퐿
rows of 𝐸̂�푠,�푦. Perform eigenvalue decomposition of
𝐸̂
†

�푠,�푥,1𝐸̂�푠,�푥,2 and 𝐸̂
†

�푠,�푦,1𝐸̂�푠,�푦,2.
(S4) Estimate the ambiguous direction cosine estimates�̂푢�푚(�푛�푥) and V̂�푚(�푛�푦) from (21) to (23) and (24) to (26).

(S5) Estimate 𝐶̂0 using (27).
(S6) Compute reference direction cosine estimates �̂푢ref

�푚

and V̂ref�푚 using (28).
(S7) Obtain the disambiguated direction cosine estimates�̂푢�푚 and V̂�푚 using (29) and (31).
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Figure 2: RMSEs of the direction cosine estimates versus inter-
sensor spacing, varying from 1�휆 to 81�휆. SNR = 20 dB. Two
monochromatic signals with digital frequencies �푓1 = 0.1, �푓2 = 0.4
and direction cosines �푢1 = 0.3 and V1 = 0.2 and �푢2 = 0.43 and
V2 = 0.35 impinge upon the array.

4. Simulation Results

Simulation results are presented to demonstrate the efficacy
of the MIMED. The array configuration in Figure 1 with�퐿 = 15 elements is used. Two narrowband uncorrelated
monochromatic signals with identical power impinge on the
array. The signal direction cosines �푢1 = 0.3, V1 = 0.2,�푢2 = 0.43, and V2 = 0.35 are simulated. The first signal
is left-circularly polarized and the second right-circularly
polarized. The snapshots used are �푁 = 200 snapshots. 500
independent Monte Carlo trials are performed. Further the
additive white noise is assumed to be complex Gaussian. In
all the simulations, the performance metric used is the root
mean squared error (RMSE) of the first signal.

Wefirst assess the performance of theMIMED for various
values of �퐷�푥 = �퐷�푦 = �퐷, the intersensor spacing. Figure 2
shows, on a log-log scale, the RMSEs of the reference direc-
tion estimates (�휃ref1 , �휙ref

1 ) and the disambiguated direction
estimates (�휃1, �휙1) as a function of�퐷, varying from 1�휆 to 81�휆,�휆 being the wavelength. The SNR for each of the signals is
set to 20dB. It is seen that the RMSE of the disambiguated
direction estimates decrease linearly as the intersensor spac-
ing increases from 1�휆 up to 25�휆. The performance of the
reference direction estimates keeps almost unchanged as the
sensor spacing increases from 1�휆 to 81�휆. For �퐷 > 36�휆, the
disambiguated direction estimates exhibit almost the same
statistical errors as the reference direction estimates. This
behavior is similar to that in [4] and can be explained as
follows. Referring to (29) and (31), the estimates �푢1(�푛�푥) and
V1(�푛�푦) suffer ambiguities of some unknown integer multiples
of the grid size �휆/�퐷. As the intersensor spacing �퐷 increases,
the grid sizes shrink relative to the variances of the reference
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Figure 3: RMSEs of the direction cosine estimates versus SNR. Two
monochromatic signals with digital frequencies �푓1 = 0.1, �푓2 = 0.4
and direction cosines �푢1 = 0.3 and V1 = 0.2 and �푢2 = 0.43 and
V2 = 0.35 impinge upon the array.

estimates �̂푢ref
1 and V̂ref1 . Therefore, it becomes increasingly

probable that �̂푢ref
1 and V̂ref1 would identify the wrong grid

point. As the intersensor spacing continues to increase, the
grid misidentification will become the dominant error, and
the disambiguated estimates �̂푢1 and V̂1 eventually have the
same error statistics as the reference estimates �̂푢ref

1 and V̂ref1 .
These imply that �휃1 and �휙1 would have the same error
statistics as �휃ref1 and �휙ref

1 . Also note that the performance of
the MIMED algorithm is very close to the CRB.

In the second example, we compare the RMSEs of the
MIMED with the cumulant-based ESPRIT algorithm pro-
posed by Liu and Mendel [16] and the second-order statistics
based ESPRIT-based algorithm proposed by Zoltowski and
Wong [4]. For the algorithm in [16], we assume 96-element
arbitrarily-spaced array configuration that contains three
presets guiding sensors located at (0, 0), (�휆/2, 0), and (0, �휆/2).
For the algorithm in [4], we use a 16-element square-
shaped electromagnetic vector sensor array. For these two
algorithms, the estimated sets of directions are assumed to
have been correctly paired. For the MIMED and the one
in [4], we set �퐷 = 5�휆. Figure 3 shows the RMSEs of the
three algorithms as a function of the SNR, varying from 0
dB to 40 dB. It is seen from the figure that the MIMED
has a performance that is better than those of the other two
algorithms for a wide range of the SNR (SNR > 10dB).

In the third example, we compare the RMSEs of the
algorithms as a function of the number of snapshots. The
simulation conditions are similar to those in the second
example, except that the SNR is set at 20 dB, and the number
of snapshots is varying from 10 to 2000. The RMSEs of the
three algorithms are shown in Figure 4, where the CRBs are
also plotted for comparison. It is seen from the figure that the

200 400 600 800 1000 1200 1400 1600 1800 20000
SNR, in dB

10−5

10−4

10−3

10−2

10−1

RM
SE

s o
f d

ire
ct

io
n 

co
sin

e e
sti

m
at

es

Cumulant-ESPRIT
SOS-ESPRIT

MIMED
CRB

Figure 4: RMSEs of the direction cosine estimates versus snapshot
number. Two monochromatic signals with digital frequencies �푓1 =0.1, �푓2 = 0.4 and direction cosines �푢1 = 0.3 and V1 = 0.2 and �푢2 =0.43 and V2 = 0.35 impinge upon the array.

RMSEs of the MIMED algorithm are lower than those of the
other two algorithms and are close to the CRBs.

5. Conclusions

We have presented a MIMED method for finding directions
of non-Gaussian signals using cumulants. By using an array
containing sparse�퐿-shaped diversely polarized vector sensors
plus an arbitrarily-placed single polarized scalar sensor, we
have defined a set of cumulant matrices to construct two
matrix blocks with multi-invariance property. We have then
developed a MI-ESPRIT-based algorithm using the defined
matrix blocks to estimate two-dimensional directions of the
signals. The MIMED extends the array aperture by being
able to space the sensors much farther apart than a half-
wavelength.
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