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Abstract: In this research article, we propose a new structure namely inverse left almost semigroup
(LA-semigroup) by adding confusion in our proposed image encryption scheme along with
discrete and continuous chaotic systems in order to complement the diffusion characteristics.
The performance analysis was conducted in terms of the correlation analysis, the pixels uniformity
analysis, the sensitivity analysis, the information entropy analysis, and pixels difference based
measurements. The results show that the proposed algorithm has better information security
properties, which can provide strong security and a high performance.

Keywords: inverse left almost semigroup; confusion and diffusion; chaotic systems; statistical
analysis

1. Introduction

The existing world demands fast and secure communication. The bandwidth is increasing every
day due to third generation, fourth generation and fifth generation technologies. Digital contents
can be easily accessed through any geographical remote area because of the ideology of a global
village. By advancing the technologies, smart and simple to access information from any remote
station creates a massive insecurity of digital information. The security of digital multimedia is one
of the vital problems of the information sciences. The widespread broadcasting and distribution of
digital information over the internet, especially social media like Facebook and Twitter, have made
it important to protect our most important information from theft, illegal copying, handling and
sharing. The advancement of digital media technology and other multimedia related technology has
made it possible to perform some standard procedures in order to improve the security of our digital
images/audio/videos from being utilized criminally over the web.

There are a number of information security techniques that have been designed whose algorithms
are based on cryptography, which is one of the most important branch of cryptology that is used to
make an encryption scheme to secure information. Classical encryption techniques usually utilize
either substitution or permutation to develop a cryptosystem; for instance, mono-alphabetical and
polyalphabetic ciphers. The use of only substitution or permutation while developing any encryption
scheme is susceptible to different cryptographic attacks. Consequently, the cryptosystems are getting
weaker every day due to the advancement of technologies and computational powers of machines.
In 1949, Claude Shannon gave the idea of confusion and diffusion, which completely changed the
security mechanisms of the digital world. The information theory added a new pillar in information
security. After the theory of Claude Shannon, the idea of confusion and diffusion was extensively
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used, which means substitution and permutation were utilized at a time in modern block ciphers [1,2].
According to Shannon, confusion specifies the connections between the cipher text and the key as much
as complex whereas diffusion corresponds to the redundancy in the statistical data of the plaintext
used in the statistical data of the cipher text. This master idea fundamentally changed the ideology of
modern block and steam ciphers. The ideas of confusion and diffusion were utilized in a number of
modern block ciphers namely international data encryption standard (IDEA), data encryption standard
(DES), and advanced encryption standard (AES).

Thereafter, different new techniques were designed which use chaos theory, wavelets transform,
discrete transforms, optics, DNA sequences and quantum spinning and rotations [3–34]. In recent
times, chaos theory has been used in an extensive way for the development of image encryption
mechanisms [35,36]. The three fundamental characteristics of chaos that have made it possible to use it
in the development of encryption algorithms are sensitive to the initial condition, topological mixing,
and dense periodic orbits. These three properties were closely related to cryptography. Due to the
cryptographically robust characteristics of chaos, we have utilized the Lorenz chaotic system while
designing our novel image encryption technique.

So far, different types of mathematical structures were utilized namely Group, Ring, Galois field
and Galois ring for the construction of a substitution box (S-box), which is one of the most important
nonlinear components of any modern block ciphers. The thrust of new mathematical structures for the
development of encryption techniques is one of the most important areas of research in information
security [8,11,12,15]. An algebraic structure equipped with a closed and left invertive binary operation
is called a left almost semigroup (abbreviated as LA-semigroup). This notion was made known
by Kazim and Naseeruddin in the early 1970s [37]. Mushtaq and Yusuf discussed some important
properties in [38]. Such groupoids are also called right modular groupoids or left invertive groupoids
or incorrectly as Abel Grassmann’s groupoid [39–41]. By successive applications of the left invertive
law in an arbitrary LA-semigroup, it can be seen that the medial identity (st)(uv) = (su)(tv) naturally
holds in an LA-semigroup. It is important to mention here that every LA-semigroup is always medial
but its converse is not true. It is a non-associative and non-commutative structure midway between a
groupoid and commutative semigroup.

In order to define the associative powers of elements in an LA-semigroup the identity (ss)s = s(ss)
was introduced in Reference [42]. An LA-semigroup with this additional property is called a locally
associative LA-semigroup. Some important decompositions of locally associative LA-semigroups were
also investigated in References [42,43]. Consider a locally associative LA-semigroup defined by the
Table 1.

Table 1. Locally associative left almost semigroup (LA-semigroup).

* 0 1 2

0 2 2 1
1 1 1 1
2 1 1 1

Where 0 ∗ (0 ∗ (0 ∗ 0)) = 2 6= 1 = (0 ∗ (0 ∗ 0)) ∗ 0, substantiates that a locally associative
LA-semigroup not need to have associative powers necessarily.

The LA-semigroups, after the 1970s, evolved from the study of a diverse generalization of groups
and semigroups. It has become a separate branch within itself with a considerable number of research
results. The reason for its procession is its natural existence in almost all mathematical contexts in
which groups and semigroups have been developed.

The study of LA-semigroups has wide applications in the locally associative LA-semigroups,
abelian groups, the theory of fuzzy LA-semigroups, ternary semihypergroups, Γ -semihypergroups,
neutrosophic LA-semigroups, soft sets and the theory of non-commutative groupoids [42–49]. Here,
we propose a new scheme for the encryption of images based on an inverse LA-semigroup and a
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modified nonlinear chaotic map, which has better confusion and diffusion characteristics that are
necessary for a modern substitution-permutation network.

This article comprises of five sections. In Section 2, we introduce fundamentals of a novel
structure inverse LA-semigroups. In Section 3, we propose an algorithm for the encryption of
images. The efficiency and safety measures for the suggested algorithm are examined in Section 4.
The numerical measures are also discussed in Section 4 to examine the response of suggested scheme
against differential attacks. Finally, give conclusions in the Section 5.

2. Preliminaries

This section is primarily related to some standard definitions, which will be quite useful in
subsequent sections.

Definition 1. An LA-semigroup is a pair (L, ∗) where A is a non-empty set; ∗ : L × L→ L satisfies
(a ∗ b) ∗ c = (c ∗ b) ∗ a for all a, b, c ∈ L . One can easily observe that the medial identity (a ∗ b) ∗ (c ∗ d) =
(a ∗ c) ∗ (b ∗ d) naturally holds in the LA-semigroups. It is important to mention here that every LA-semigroup
is always medial but its converse is not true.

Definition 2. An LA-semigroup (L, ∗) satisfying the left permutable law a ∗ (b ∗ c) = b ∗ (a ∗ c) is called
LA**-semigroup. An LA-semigroup with left identity is always LA**-semigroup and LA**-semigroup naturally
satisfies the paramedial identity (a ∗ b) ∗ (c ∗ d) = (d ∗ b) ∗ (c ∗ a).

We provide counter examples of three groupoids of order 5 in Table 2, where (i) is a medial
groupoid but not an LA-semigroup, (ii) is a left permutable groupoid, which is also paramedial but
not an LA-semigroup, (iii) is a left permutable groupoid with left identity but not an LA-semigroup
(see Table 2).

Table 2. Counter Examples.

(i) (ii) (iii)

*1 0 1 2 3 4 *2 0 1 2 3 4 *3 0 1 2 3 4
0 4 4 4 2 2 0 0 0 0 0 0 0 3 0 4 4 0
1 4 0 0 4 4 1 0 0 0 2 1 1 4 2 0 0 3
2 4 0 4 2 4 2 0 0 0 1 1 2 0 1 2 3 4
3 0 2 2 0 0 3 0 0 0 2 0 3 0 4 3 3 4
4 4 4 4 4 4 4 0 0 0 1 0 4 4 3 0 0 3

Definition 3. An LA-semigroup (L, ∗) equiped with left identity e, that is, e ∗ a = a for all a ∈ L is LA-monoid.
One can notice that left permutable law and paramedial law always hold in an LA-monoid L. We also investigate
a paramedial groupoid with a left identity is LA**-semigroup. An element a ∈ L for which there exist an
element a−1 ∈ L such that a−1 ∗ a = e, then a−1 is called left inverse of a. Right inverse for an element
in an LA-monoid can also be defined analogously. It is easy to observe that if a−1 ∈ L is the left inverse for
an element a ∈ A, that is, a−1 ∗ a = e. Then a ∗ a−1 = (e ∗ a) ∗ a−1 =

(
a−1 ∗ a

)
∗ e = e ∗ e = e. Then

a′ = e ∗ a′ =
(
a−1 ∗ a

)
∗ a′ = (a′ ∗ a) ∗ a−1 = e ∗ a−1 = a−1. Showing that left and right inverses are unique

in an LA-monoid. An LA-monoid, in which each element has its left inverse element is known as LA-group.

Definition 4. An LA-semigroup (L, ∗) satisfying the weak associative law (a ∗ b) ∗ c = b ∗ (a ∗ c) is called
LA*-semigroup. The identities (a ∗ b) ∗ c = b ∗ (a ∗ c) and (a ∗ b) ∗ c = b ∗ (c ∗ a) are equivalent in an
LA-semigroup L.

Definition 5. LA-group is an LA-monoid in which each element has a unique left multiplicative inverse.
LA-monoids are special cases of LA-semigroups whereas LA-groups are special cases of LA-monoid.
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Definition 6. An LA-semigroup L is unipotent if aa = bb for all a, b ∈ L. We define a transformation
O(L) : L→ L by OL(a) = aa for all a ∈ L.

Proposition 1. An LA-semigroup L is unipotent if and only if ker(OL) = L × L, where ker(OL) =

{(a, b) ∈ L × L : OL(a) = OL(b)}.

Lemma 1. Every unipotent left cancellative LA-semigroup is paramedial.

Let (L, ∗1) and (L, ∗2) be any two LA-semigroups of the same order. A mapping
ϕ : (L, ∗1)→ (L, ∗2) is a homomorphism if it preserves the multiplication, that is, (a ∗ 1b)ϕ =

(a)ϕ∗2(b)ϕ and an anti-homomorphism if it reverts the multiplication that is, (a ∗ 1b)ϕ = (b)ϕ∗2(a)ϕ.
If such mapping is bijective, then it is known as isomorphism and anti-isomorphism respectively. If
such a bijection exists, then the groupoids are isomorphic and anti-isomorphic respectively.

For instance, if two LA-semigroups have isomorphic tables, they have the same structural
properties. So we say that an isomorphism is an action between two multiplication tables. If we
are provided with a permutation ϕ of the elements of A, we transform the table by permuting the
rows according to ϕ, then each column, and permuting the values at the end. An anti-isomorphism is
an action followed by transposing the resulting table of an isomorphism. The outcome of applying the
permutation (b, d) is given in Table 3 (ii). Table 3 (i) and Table 3 (ii) are isomorphic. If A has n elements
then atmost multiplication tables isomorphic to given LA-semigroup.

Table 3. A Multiplication table is mapped to another multiplication under permutation (b, d).

(i) (ii) (iii)

a B c d e

−−−−−−−→
apply (b, d)

a d c b e

−−−−−−→rearrange

a b c d e
a b E e a a a d e e a a a d a e e a
b a B b e e d a d d e e b e e a d d
c a b c d e c a d c b e c a b c d e
d e A a c b b e a a c d d a c d a e
e e a a b b e e a a d d e e d a a d

Theorem 1. Let L be an LA-semigroup satisfying paramedical law. Then, one has

(i) OL is an anti-endomorphism.
(ii) OL(L) is sub LA-semigroup of L.
(iii) ker(OL) is a congruence relation.

Definition 7. An LA-semigroup L, in which for every u ∈ L there exists a unique v ∈ L for which
(uv)u = u and (vu)v = v is called an inverse LA-semigroup. This notion was made known by Mushtaq
and Iqbal in Reference [9]. They proved some interesting facts and a famous Wagner Preston theorem on
the representation of inverse LA-semigroups [9]. An inverse LA*-semigroup and inverse LA**-semigroup
are defined analogously. Some interesting results are that every LA-group is an inverse LA-semigroup
more precisely an inverse LA**-semigroup but the converse is not true [10]. Presentation of a semigroup
is a set of generators and relations which completely depicts a particular semigroup of a finite or an
infinite semigroup. Ruskuc worked on semigroup presentations in his PhD thesis [11]. Here, we find that
Π = 〈a|a257 = a = aa128, ama256−m = a256; 1 ≤ m ≤ 256 > represents an inverse LA**-semigroup of order
256 generated by a. Here, by an S-box of order 16, we mean a latin square of size 16 × 16 whose entries are
selected from a set of 256 different symbols in such a way that there is no repetition in any row and column of
the table.
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3. Proposed Digital Image Encryption Algorithm

The present section deals with the encryption procedure.

3.1. Image Encryption

Designed image encryption techniques comprise of confusion and diffusion. As illustrated in
Figure 1, the encryption method is based on the steps given below:

Step 1: Take a standard digital color image of size m × n.
Step 2: Read the inverse left almost LA-semigroup of order m × n.
Step 3: Apply a substitution transformation by using the LA-semigroup as listed in Step 2, which adds
confusion to the proposed algorithm.
Step 4: Generate chaotic sequences using Lorenz chaotic differential equations with a logistic map (seed
values for each iteration comes from the Lorenz chaotic differential equation utilized three chaotic logistic
maps used seeds from x, y and z directions solutions of Lorenz chaotic differential equations).
Step 5: Apply a bitwise addition under modulo 2, of confused image produced in Step 3 with the
chaotic sequences generated in Step 4 for each layer of the digital image that uses x component values
for the red layer, y component values from the green layer and z component values of the logistic map
for the blue layer of a given image.
Step 6: Apply all of the above steps on each layer of the digital image.
Step 7: Display the encrypted image.
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3.2. Image Decryption

This method is used as a reverse process of our encryption procedure. The encrypted images
through our proposed algorithm can be seen in Figures 2–4 respectively.Entropy 2018, 20, x 6 of 22 
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4. Security Analysis of the Proposed Algorithm

Here, we apply some statistical measures on the typical digital contents to examine the safety
during execution of the proposed encryption scheme. These measurements are strictly based on a
precise evaluation, a realistic inspection and an inconsistency criterion for the encryption of images.

4.1. Uniformity Analysis of Image Pixels

A histogram of an image provides information about the circulation of the pixel intensity esteems
for an image. A protected framework in encryption can have an identical histogram to resist statistical
assaults. The histograms in Figures 5–7 represent the standard and encrypted images of Lena, Baboon,
and Peppers. From Figures 5–7, we analyzed that the histograms of the standard images are not
uniform, whereas the histograms of the encrypted digital images are uniform. The uniformity of pixel
heights in the histograms of the encrypted images creates difficulty for attackers to find the clue for the
maximum information region.
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4.2. Correlation Analysis for Adjacent Pixels

The purpose of the correlation analysis was to examine the connections of neighboring pixels in
the original and encrypted images. Mathematically, the correlation coefficients rX,Y of two neighboring
pixels is defined as:

rX,Y =
Cov(X, Y)√

Var(X)Var(Y)
, (1)

where X and Y are the estimations of two neighboring pixels of gray scale image, Var(X) and Var(Y) are
deviations of X and Y individually and Cov(X,Y) represents the covariance. The correlation coefficients
of the plain and encrypted digital images have a distinctive substance displayed in Tables 4–7 identified
by the plain and enciphered digital images are provided in Figures 8–10. In addition, Table 4 contains
the quantified evaluation of the correlation coefficient demonstrating the diffusion of the unique and
encoded images horizontally, vertically and diagonally. Presently, we consider 2000 pairs of randomly
selected neighboring pixels to look over the original and the enciphered images horizontally, vertically
and diagonally. In Table 4, the correlation coefficients for the green, blue and red parts of the encrypted
images are quite small, which implies an irrelevant correlation between adjoining pixels.
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Table 4. Color components-wise correlation coefficient of cipher images.

Image Layer Correlation of
Encrypted Image

Correlation of Altered
Encrypted Image

Lena
Red −0.019408 −0.026560

Green 0.005199 0.016749
Blue −0.057938 −0.013504

Baboon
Red −0.017262 −0.062436

Green −0.018564 −0.039240
Blue −0.011867 0.037551

Airplane
Red −0.035036 0.025052

Green 0.040117 −0.065009
Blue −0.015017 0.014972

Pepper
Red −0.002283 −0.035236

Green −0.019859 0.007575
Blue −0.028659 0.044896

House
Red −0.034227 0.037809

Green −0.079819 −0.001682
Blue 0.020816 −0.014746

Jelly beans
Red −0.069787 −0.002181

Green −0.029373 0.018362
Blue −0.003245 −0.027437

Tree
Red 0.015815 0.008496

Green 0.032206 0.007798
Blue −0.021771 −0.015972

Splash
Red −0.030921 −0.023138

Green 0.072383 0.012479
Blue 0.005316 −0.024963

Sail boat on lake
Red 0.035408 0.000482

Green −0.004099 −0.030648
Blue 0.020935 0.020618

Table 5. Correlation coefficients of original and encrypted images.

Standard Images Original Image Encrypted Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.9339 0.9652 0.9076 −0.0043 −0.0090 −0.0031
Baboon 0.8310 0.7737 0.7723 −0.0029 −0.0079 0.0026
Peppers 0.9392 0.9003 0.9444 −0.0028 −0.0090 −0.0007

Table 6. Correlation coefficients of the plain and cipher image for the Lena color image of size 256× 256.

Standard Images Plain Image Encrypted Image

Red Green Blue Red Green Blue

Horizontal 0.9339 0.9044 0.8609 −0.0084 −0.0028 −0.0072
Vertical 0.9652 0.9464 0.9086 −0.0052 −0.0066 −0.0098

Diagonal 0.9076 0.8796 0.8371 −0.0016 0.0012 0.0013
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Table 7. Comparison between the correlation coefficients of the proposed scheme and recent techniques
using Lena image.

Correlation Directions

Horizontal Vertical Diagonal

Proposed encryption scheme −0.0043 −0.0090 −0.00310
Reference [3] 0.06810 0.08450 -
Reference [15] 0.21570 0.05810 0.05040
Reference [17] 0.00720 0.00580 0.00310
Reference [18] 0.02140 0.04650 −0.0090

Zhang et al. [26] 0.08200 0.04000 0.00500
Zhou et al. [27] 0.01200 0.02700 0.00700

Etimadi et al. [30] 0.00500 0.01100 0.02300

Entropy 2018, 20, x 11 of 22 

 

Reference [3] 0.06810 0.08450 - 
Reference [15] 0.21570 0.05810 0.05040 
Reference [17] 0.00720 0.00580 0.00310 
Reference [18] 0.02140 0.04650 −0.0090 

Zhang et al. [26] 0.08200 0.04000 0.00500 
Zhou et al. [27] 0.01200 0.02700 0.00700 

Etimadi et al. [30] 0.00500 0.01100 0.02300 

  
(a) (e) 

  
(b) (f) 

  
(c) (g) 

  
(d) (h) 

Figure 8. Correlation coefficients between the pairs of the pixels for (a) Original Lena image; (b) 
horizontally; (c) vertically and (d) diagonally (e) enciphered Lena image; (f) horizontally; (g) 
vertically; (h) diagonally. 

Figure 8. Correlation coefficients between the pairs of the pixels for (a) Original Lena image;
(b) horizontally; (c) vertically and (d) diagonally (e) enciphered Lena image; (f) horizontally;
(g) vertically; (h) diagonally.



Entropy 2018, 20, 913 12 of 22

Entropy 2018, 20, x 12 of 22 

 

  
(a) (e) 

  
(b) (f) 

  
(c) (g) 

  
(d) (h) 

Figure 9. Correlation coefficients between the pairs of the pixels for (a) original Baboon image; (b) 
horizontally; (c) vertically and (d) diagonally (e) enciphered Baboon image; (f) horizontally; (g) 
vertically; (h) diagonally. 

  
(a) (e) 

Figure 9. Correlation coefficients between the pairs of the pixels for (a) original Baboon image;
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In addition, high correlation coefficients for the red, green and blue parts of the original images
make data spillage conceivable. Table 6 provides us with similar position correlations for the red,
green and blue parts, while Table 7 gives the adjoining position correlations for the red, green and blue
parts. From Tables 6 and 7, we analyze that the correlation coefficients of the encrypted digital images
for the red, green and blue parts are all lower than −0.002, while the greatest correlation coefficient
for the original images is 0.9652 in the event of the Lena image, 0.8310 for the Baboon and 0.9444
for the Peppers image, which indicates that the correlations for the red, green and blue parts of the
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encrypted images are adequately diminished. Therefore, our encryption scheme is highly defensive
against statistical attacks.

In addition, we plotted the correlation coefficients for the red, green and blue parts of the original
images in Figure 8a–d, Figures 9 and 10a–d and the encrypted images Figure 8e–h, Figures 9 and 10e–h
toward every directions, as delineated in Figures 8–10. The solid correlation between adjoining pixels of
the plain images is apparent as the specks are congregated along the slanting in Figure 8a–d, Figures 9
and 10a–d. Nonetheless, the specks are scattered over the whole plane in Figure 8a–d, Figures 9
and 10a–d, which shows that the correlation is incredibly diminished in the encrypted digital images.

4.3. Pixel Modification Based Measurements

The quality of an image depends upon the pixel difference which is calculated by means the
mean square error (MSE), average difference (AD), maximum difference (MD), normalized absolute
error (NAE), normalized cross correlation (NCC), structure content (SC) and peak signal to noise ratio)
values (PSNR). These metrics are used for the comparison of unlike images.

4.3.1. Mean Square Error (MSE)

An encrypted image should not be equivalent to the original digital image due to the application of
the encryption scheme over the plain image, which surely adds some noise to the actual digital content.
We find MSE of the plain and encrypted images to analyze the level of enciphering. Mathematically,
MSE is defined as:

MSE =
∑m

j=1 ∑n
k=1

(
Pjk − Cjk

)2

m × n
(2)

where Pij and Cij are the pixels positioned in the j-th row and k-th column of the plain and enciphered
images respectively. A larger value of the MSE enhances the security of the encryption scheme.

4.3.2. Peak Signal to Noise Ratio (PSNR)

Mathematically, PSNR is defined as:

PSNR = 20 log10

[
IMAX√

MSE

]
, (3)

where IMAX is the maximum value of pixel which can occur. The low value of PSNR shows the more
difference of the original and enciphered images. In Table 8, we discuss values MSE and PSNR to
ensure the versatility of the suggested scheme.

Table 8. MSE and PSNR of the suggested scheme.

Images Pixel Difference Based Measures

MSE PSNR

Lena 4859.03 11.30
Baboon 6399.05 10.10
Peppers 7274.44 9.55

4.3.3. Normalized Absolute Error (NAE)

Mathematically, normalized absolute error (abbreviated as NAE) is defined as:

NAE =
∑m

j=1 ∑n
k=1

∣∣∣Pjk − Cjk

∣∣∣
∑m

j=1 ∑n
k=1

∣∣∣Cjk

∣∣∣ . (4)
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It is the proportion of the encrypted digital content to the original image. A bigger estimation of
NAE demonstrates the great nature of coming about the scrambled image after the encryption process.

4.3.4. Maximum Difference (MD)

Mathematically, the maximum difference is defined as:

MD = Max
∣∣∣Pjk − Cjk

∣∣∣,
where

j = 1, 2, . . . , m, k = 1, 2, . . . , n. (5)

It measures the maximum of the error signal. A higher value of the maximum difference indicates
that the quality of the encryption scheme is better.

4.3.5. Average Difference (AD)

The average difference measures the pixel contrast between the original image and its
corresponding enciphered image. This quantitative measure is only utilized in object revealing and
pattern recognition applications and it can likewise be pertinent to any image preparing applications
where we locate the normal distinction between two digital contents. A larger estimation of the AD
indicates the great quality of the digital image encryption (see Table 9). Mathematically, the average
difference is defined as:

AD =
∑m

j=1 ∑n
K=1

(
Pjk − Cjk

)
m × n

. (6)

The value of AD is ideally zero for two same digital images.

Table 9. Pixel difference-based and correlation-based measures of the proposed encryption scheme.

Pixel Difference Measures Correlation Measures

Image Layer MSE PSNR AD MD NAE NCC SC

Lena
Red 10637 7.8625 52.3109 255 0.4674 0.6598 1.6004

Green 9245.2 8.4716 −28.9211 235 0.7968 0.9983 0.5788
Blue 7169.4 9.5760 −22.2776 229 0.6713 1.0952 0.5632

Baboon
Red 8740.1 8.7156 1.9610 255 0.5938 0.8259 0.9174

Green 7802.8 9.2083 −5.9805 230 0.6025 0.9106 0.7810
Blue 9714.3 8.2567 −21.8818 244 0.7670 0.9038 0.6819

Airplane
Red 10039 8.1138 49.6505 255 0.4616 0.6758 1.5368

Green 10662 7.8524 49.5975 242 0.4750 0.6641 1.5619
Blue 10764 7.8110 63.1120 255 0.4458 0.6460 1.7249

Pepper
Red 8041.9 9.0772 22.1327 234 0.4941 0.7808 1.1235

Green 10993 7.7197 −11.5843 242 0.7396 0.7842 0.8678
Blue 11048 7.6980 −60.3558 220 1.2788 1.3319 0.2955

4.4. Similarities Measures

The likenesses between two signals can be estimated through a cross-correlation, structure
similarity, and structure content. These are the standard devices for assessing how much two signs are
comparable or divergent. It is a basic way to match two image patches, for highlight recognition and in
addition a part of more refined systems. The method has a few favorable circumstances. We have used
a standardized correlation and structure content with the end goal to demonstrate the dissimilarities
among the original and scrambled images.
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4.4.1. Normalized Cross Correlation (NCC)

A normalized cross-correlation (NCC) has been normally utilized as a metric to assess the level
of likeness (or difference) between two digital images. The normalized cross-correlation is limited
in the range between −1 and 1. The setting of the location edge esteem is significantly less difficult
than the cross-correlation. The NCC measures the cozy connection between two images, it might be
plain and enciphered digital images. All of the correlation-based measures are considered as 1, as the
distinction between the two images is considered as zero. In each image, the similitude estimation
is done dependent on the direct splendor and complexity varieties of utilizing cross-correlation.
Mathematically, normalized cross-correlation is defined as:

NCC =
∑m

j=1 ∑n
k=1 Pjk × Cjk

∑n
k=1

(
Pjk

)2 (7)

where m× n is the size of both plain image P and cipher image C. The estimation of NCC for encryption
varies from or not near unity, which unmistakably means that the proposed scheme includes solid
dissimilarities among the pixels of plain and scrambled images (see Table 9).

4.4.2. Structural Content (SC)

This measure viably thinks about the aggregate weight of an original signal to that of a coded
or given. It is, hence, a worldwide metric. This measure is likewise called as structural content (SC),
and in the event that it is spread at 1, at that point the changed over image is of better quality and a
huge estimation of SC implies that the image is of low quality. Mathematically, structural content is
defined as:

SC =
∑M

j=1 ∑N
k=1(P(j, k))2

∑M
j=1 ∑N

k=1(C(j, k))2 . (8)

On account of the plain and encoded images, the estimation of SC is not close to unity because the
encryption scheme includes confusion and diffusion-like noise and commotion in the original image.
The estimation of SC isn’t near one if there should be an occurrence of all advanced standard shading
images (red, green and blue layers) (see Table 9).

4.5. Entropy Investigation

Entropy is evaluated to analyze the spreading of the gray scale estimations of the images.
The coarser the image is, the bigger the entropy is. For an irregular image with 256 gray levels,
the entropy ought to, in a perfect world, be 8 [9]. On the off chance that the entropy of the encrypted
image is under 8, there is a probability of consistency, and this is a risk to the anticipated security.
Mathematically, we can represent the entropy H for a data source y is characterized as:

H = −
2N− 1

∑
i=0

p(yi) log2 p(yi), (9)

where 2N are all possible states of information and yi is the source images. For a completely sporadic
source exuding signs, entropy should be N. In Table 10, the entropies of different plain and enciphered
image entropies are given as demonstrated by the plain images in Figures 2–4. These values are
very close to the theoretical value which is 8. Consequently, information spillage in our encryption is
negligible and well secured for physical attacks. We have looked at data entropy for our proposed
encryption method with the already developed encryption plans. Table 11 shows that the entropy of
the offered scheme for the scrambled images are better than the already available algorithms.
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Table 10. Entropies of various plain and enciphered images.

Image Layer Plain Image Altered Image Enciphered Image Enciphered Altered Image

Lena
Red 7.2352 7.2353 7.9965 7.9975

Green 7.5812 7.5814 7.9970 7.9970
Blue 7.5682 7.5683 7.9971 7.9971

Baboon
Red 7.7766 7.7766 7.9965 7.9967

Green 7.4911 7.4911 7.9968 7.9973
Blue 7.7546 7.7546 7.9973 7.9973

Airplane
Red 6.8505 6.8505 7.9972 7.9972

Green 6.8622 6.8622 7.9969 7.9968
Blue 6.4537 6.4537 7.9972 7.9972

Pepper
Red 7.3843 7.3843 7.9976 7.9970

Green 7.6230 7.6230 7.9971 7.9971
Blue 7.1437 7.1438 7.9971 7.9971

House
Red 6.4310 6.4310 7.9970 7.9974

Green 6.2320 6.2321 7.9969 7.9971
Blue 6.5389 6.5389 7.9966 7.9970

Jelly beans
Red 5.2626 5.2626 7.9968 7.9968

Green 6.5464 6.5463 7.9971 7.9973
Blue 5.6947 5.6947 7.9971 7.9972

Tree
Red 7.2104 7.2104 7.9967 7.9966

Green 6.9207 6.9206 7.9973 7.9973
Blue 7.4136 7.4136 7.9973 7.9969

Splash
Red 7.2022 7.2022 7.9971 7.9973

Green 7.0099 7.0100 7.9972 7.9970
Blue 6.3056 6.3056 7.9971 7.9972

Table 11. Comparison between the entropies for 256 × 256 Lena image.

Algorithm Entropy

Proposed 7.9968
Sun’s algorithm [31] 7.9965

Baptista’s algorithm [31] 7.9260
Wong’s algorithm [31] 7.9690
Xiang’s algorithm [31] 7.9950

In Tables 11 and 12, we compare the entropy of the proposed algorithm to the already defined
algorithms. Our entropies are approximately equal to 8, which is the most suitable value. This
minimizes the chance of data spillage during the encryption. Consequently, the proposed image
cryptosystem is secure against an entropy assault. In addition, the entropy estimations of the
introduced scheme are better than the encryption schemes [3–6].

Table 12. Comparison of the entropy of the proposed algorithm to the already defined algorithms.

Encryption Techniques Test Image
Color Components of

Original Image
Color Components of

Encrypted Image

Red Green Blue Red Green Blue

Proposed scheme Lena 7.2933 7.5812 7.5682 7.9965 7.9970 7.9971
Reference [32] Lena 7.2933 7.5812 7.5682 7.9903 7.9890 7.9893
Reference [5] Lena 7.2933 7.5812 7.5682 7.9732 7.9750 7.9715
Reference [4] Lena 7.2933 7.5812 7.5682 7.9791 7.9802 7.9827
Reference [5] Lena 7.2933 7.5812 7.5682 7.9871 7.9881 7.9878
Reference [4] Lena 7.2933 7.5812 7.5682 7.9874 7.7872 7.7866
Reference [6] Lena 7.2933 7.5812 7.5682 7.9278 7.9744 7.9705
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4.6. Robustness against Differential Attack

Diffusion is a basic parameter to examine the randomness in the encryption scheme. It is an
important measurement in the proposed digital image encryption algorithm because it reflects even a
minor change in the plain image [4,5]. By and large, the enemy may roll out by a slight improvement.
For instance, by altering a single pixel of the original image and after that observe the difference in the
outcome. Along these lines, we may discover a significant connection of the original and encrypted
image. Since a little change in the original image can create a critical change in the encrypted image.
Thus, differential attacks would be exceptionally wasteful and for all intents and purposes futile.
On the off chance that an encryption scheme has a decent trademark, the connection between the
original image and the encrypted image is extremely complex and it cannot be expected easily. We
can measure the diffusion of an encryption scheme by changing a pixel in the original image [6].
To measure the effect of a one-pixel change in the original image and encrypted image, we used three
estimations MAE, NPCR and UACI to examine security in the encrypted image against differential
attacks. Suppose C1 and C2 are encrypted images before and after one pixel change in the plain image
respectively. Then the MAE, NPCR and UACI are defined as:

MAE =
∑j,k|C1(j, k)− C2(j, k)|

m × n
(10)

NPCR =
∑j,k D(j, k)

W × H
× 100% (11)

where

D(j, k) =

{
0 C1(j, k) = C2(j, k)

1 C1(j, k) 6= C2(j, k)
(12)

C1(i, j), C2(i, j) represent the value of pixel at grid (i, j) and D(i, j) is a bipolar array at grid (i, j).

UACI =
1

W × H ∑m
j=1 ∑n

k=1

∣∣∣∣C1(j, k)− C2(j, k)
255

∣∣∣∣ × 100%. (13)

In Tables 13 and 14, we have MAE (> 75), (NPCR (> 99%) and UACI (≈ 33%) for the red, green
and blue part of the encrypted standard images. These values of MAE, NPCR and UACI are very close
to the best-approximated values already available in the literature. Hence, the suggested encryption
algorithm can create more difficulty for differential attackers.

Table 13. The evaluation of the security measurements of the suggested encrypted algorithm.

Test Images NPCR UACI MAE

Max Min Mean Max Min Mean

Lena 99.997 99.612 99.713 34.43 33.21 33.87 79.22
Fruits 99.994 99.515 99.698 33.98 33.02 33.71 83.45
Parrot 99.998 99.597 99.869 33.53 33.11 33.24 75.38
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Table 14. The evaluation of the security measurements of the suggested encrypted algorithm.

Image Layer NPCR UACI

Lena
Red 0.99592 0.33497

Green 0.99595 0.33325
Blue 0.99600 0.33223

Baboon
Red 0.99594 0.33589

Green 0.99563 0.33352
Blue 0.99623 0.33408

Airplane
Red 0.99624 0.33469

Green 0.99617 0.33473
Blue 0.99591 0.33625

Pepper
Red 0.99577 0.33446

Green 0.99594 0.33453
Blue 0.99607 0.33747

House
Red 0.99551 0.33487

Green 0.99609 0.33492
Blue 0.99603 0.33284

Jelly beans
Red 0.99612 0.33317

Green 0.99617 0.33408
Blue 0.99636 0.33406

Tree
Red 0.99627 0.33385

Green 0.99620 0.33518
Blue 0.99632 0.33577

Splash
Red 0.99606 0.33522

Green 0.99600 0.33504
Blue 0.99601 0.33395

Sail boat on lake
Red 0.99618 0.33718

Green 0.99604 0.33429
Blue 0.99609 0.33493

A comparison of the differential analysis with some of the already existing results is listed in
Tables 15 and 16 respectively.

Table 15. A comparison of calculated UACI and NPCR for 512 × 512 plain Lena image.

Standard Lena Image Suggested Ref. [19] Ref. [20] Ref. [21] Ref. [22] Ref. [23] Ref. [24]

UACI 0.3392 0.3362 0.3351 0.3360 0.3351 0.3351 0.3342
NPCR 0.9973 0.9961 0.9961 0.9963 0.9961 0.9960 0.9967

Table 16. NPCR, UACI values for the color components of the digital Lena image of size 256 × 256.

Channel Metrics Lena Ref. [33] Ref. [34]

Red
NPCR 0.99592 0.996013 0.996108
UACI 0.33497 0.334210 0.334525

Green
NPCR 0.99595 0.996131 99.60580
UACI 0.33325 0.334485 0.334798

Blue
NPCR 0.99600 0.996226 0.996057
UACI 0.33223 0.334815 0.334387

We have also calculated the pixels difference base and similarities measurements between the
original encrypted image C1 and the one bit change encrypted image C2. The mathematical expressions
for the pixels difference and similarity measures for C1 and C2 are given below:

MSE =
∑m

j=1 ∑n
K=1(C1(j, k)− C2(j, k))2

m × n
(14)
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PSNR = 20 log10

 Imax√
∑m

j=1 ∑n
K=1(C1(j, k)−C2(j, k))2

m × n

 (15)

NAE =
∑m

j=1 ∑n
K=1|C1(j, k)− C2(j, k)|

∑m
j=1 ∑n

K=1|C1(j, k)| (16)

MD = Max|C1(j, k)− C2(j, k)|,

where
j = 1, 2, . . . , m, k = 1, 2, . . . , n (17)

AD =
∑m

j=1 ∑n
K=1(C1(j, k)− C2(j, k))

m × n
(18)

NCC =
∑m

j=1 ∑n
k=1 C1(j, k) × C2(j, k)

∑n
k=1(C1(j, k))2 (19)

SC =
∑m

j=1 ∑n
k=1(C1(j, k))2

∑m
j=1 ∑n

k=1(C2(j, k))2 . (20)

The analyses of the pixel difference and similarity measures are shown in Table 17. This shows
that a slight difference in the neighboring pixels creates an avalanche effect, which is one of the basic
requirements while designing any image encryption technique. The numerical values of MSE, PSNR,
NCC, NAE AD, SC and MD for original encrypted image C1 and the one bit change encrypted image
C2 clearly reflect that our proposed algorithm is resistive against differential attacks.

Table 17. Pixel difference analysis for the one bit change encrypted image with the plain image.

Image Layer MSE PSNR NCC AD SC MD NAE

Lena
Red 10770 7.8088 0.6580 52.5558 1.5999 255 0.4713

Green 9179.8 8.5025 0.9924 −28.0862 0.5846 247 0.7937
Blue 7168.7 9.5764 1.0933 −22.1300 0.5645 226 0.6720

Baboon
Red 8683.7 8.7437 0.8251 2.2474 0.9212 255 0.5919

Green 7763.9 9.2300 0.9082 −5.6691 0.7854 225 0.6008
Blue 9679.3 8.2723 0.9107 −22.4863 0.6766 249 0.7655

Airplane
Red 10116 8.0807 0.6718 50.4712 1.5505 253 0.4635

Green 10626 7.8670 0.6634 49.7774 1.5679 248 0.4740
Blue 10648 7.8583 0.6491 62.6407 1.7159 246 0.4427

Pepper
Red 8043.9 9.0761 0.7821 21.8081 1.1200 255 0.4943

Green 11139 7.6624 0.7790 −11.5038 0.8699 246 0.7473
Blue 11127 7.6670 1.3306 −60.3176 0.2947 228 1.2846

5. Conclusions

The present research article provides a new idea for the construction of an image encryption
technique. A completely new inverse LA-semi group was investigating and applied for substitution,
which is one of the most important components in symmetric encryption. This new mechanism
added confusion, which is fundamentally responsible for breaking the pattern between the original
and encrypted information. Moreover, we have utilized chaotic continuous systems in order to add
diffusion into our proposed image encryption scheme. The proposed idea adds a new milestone for
oncoming researchers.
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