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Abstract

A natural way to draw two planar graphs whose vertex sets are matched
is to assign each matched pair a unique y-coordinate. In this paper we in-
troduce the concept of such matched drawings, which is a relaxation of si-
multaneous geometric embeddings with mapping. We study which classes
of graphs allow matched drawings and show that (i) two 3-connected pla-
nar graphs or a 3-connected planar graph and a tree may not be matched
drawable, while (ii) two trees or a planar graph and a sufficiently restricted
planar graph—such as an unlabeled level planar (ULP) graph or a graph
of the family of “carousel graphs”—are always matched drawable.
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1 Introduction

The visual comparison of two graphs whose vertex sets are associated in some
way requires drawings of these graphs that highlight their association in a clear
manner. Drawings of this type are of use for various areas of computer science,
including bio-informatics, web data mining, network analysis, and software en-
gineering. Of course each drawing individually should be as clear as possible,
using, for example, few bends and crossings. But, most importantly, the posi-
tions of associated vertices in the two drawings should be “close”. This makes
it possible for the user to easily identify structurally identical and structurally
different portions of the two graphs, or to maintain her “mental map” [19].
Structural changes between two graphs and their visualizations arise, for ex-
ample, when collapsing or expanding clusters in clustered drawings [8], during
the navigation of very large graphs with a topological window [7, 18], in the
analysis of evolving networks [1, 16], and in dynamic graph drawing [3, 20, 21].
In all these scenarios the basic approach is to maintain the relative positions of
associated vertices as much as possible to smoothly transform one graph into
another. In this way changes can be captured more easily by the human eye.

Two positions are definitely “close” if they are identical. Hence a substantial
research effort has recently been devoted to the problem of computing straight-
line drawings of two graphs on the same set of points. More specifically, assume
we are given two planar graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| =
|V2|, together with a one-to-one mapping between their vertices. A simultaneous
geometric embedding with mapping (introduced by Brass et al. in [4]) of G1

and G2 is a pair of straight-line planar drawings Γ1 and Γ2 of G1 and G2,
respectively, such that for any pair of matched vertices u ∈ V1 and v ∈ V2

the position of u in Γ1 is the same as the position of v in Γ2. Unfortunately,
only pairs of graphs belonging to restricted subclasses of planar graphs admit a
simultaneous geometric embedding with mapping. Brass et al. [4] showed how
to simultaneously embed pairs of paths, pairs of cycles, and pairs of caterpillars,
but they also proved that a path and a graph or two outerplanar graphs may not
admit this type of drawing. Geyer, Kaufmann, and Vrt’o [17] recently proved
that even a pair of trees may not have a simultaneous geometric embedding
with mapping. These negative results motivated the study of relaxations of
simultaneous geometric embeddings. One possibility is to introduce bends along
the edges [5, 9, 10, 14], another, to allow that the same vertex occupies different
locations in the two drawings [2, 4, 15], introducing ambiguity in the mapping.

In this paper we consider a different interpretation of two positions being
“close”. Instead of requiring that matched vertices occupy the same location,
we assign each matched pair a unique y-coordinate. This enables the user to
unambiguously identify pairs of matched vertices but, at the same time, leaves us
more freedom to draw both graphs clearly. Specifically, let again G1 = (V1, E1)
and G2 = (V2, E2) be two planar graphs with |V1| = |V2|. G1 and G2 are
matched if there is a one-to-one mapping between V1 and V2. If a vertex u ∈ V1

is matched with a vertex v ∈ V2 then we say that u is the partner of v and that
v is the partner of u. A matched drawing of G1 and G2 is a pair of straight-line
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Figure 1: A matched drawing of two trees.

planar drawings Γ1 and Γ2 of G1 and G2, respectively, such that for any pair of
matched vertices u ∈ V1 and v ∈ V2 the y-coordinate of u in Γ1 is the same as the
y-coordinate of v in Γ2, and this y-coordinate is unique. If two matched graphs
have a matched drawing, then we say that they are matched drawable. Matched
drawings can be viewed as a relaxation of simultaneous geometric embedding
with mapping. An example of a matched drawing of two trees is shown in
Figure 1.

We remark that a problem similar to the matched drawability problem posed
in this paper has been previously studied by Fernau et al. for the comparison of
a pair of phylogenetic trees [12]. In that paper the matching is restricted to the
set of leaves of the two trees, and the objective is to compute planar drawings
for the two trees that minimize the number of crossings between the matching
edges.
Results and Organization. We start by presenting pairs of graphs that are
not matched drawable. In particular, in Section 2.1 we describe two isomorphic
3-connected planar graphs that both have 12 vertices and that are not matched
drawable. We also present a 3-connected planar graph and a tree that both
have 620 vertices and that are not matched drawable. This construction can be
found in Section 2.2.

We continue by describing drawing algorithms for classes of graphs that are
always matched drawable. In particular, in Section 3.1 we show that a planar
graph and an unlabeled level planar (ULP) graph that are matched are always
matched drawable. In Section 3.2 we extend these results to a planar graph and
a graph of the family of “carousel graphs”. Finally, in Section 3.3 we prove that
two matched trees are always matched drawable.

2 Graphs that are not Matched Drawable

2.1 Two 3-connected Graphs

We start by stating a simple property of planar straight-line drawings.

Property 1 Let G be an embedded planar graph and let Γ be a straight-line
planar drawing of G. Let u be the vertex of G with the highest y-coordinate in
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Γ and let v be the vertex of G with the lowest y-coordinate in Γ. Vertices u and
v belong to the external face of G.

Now assume that G1 and G2 are two matched graphs with the following prop-
erties: (i) G1 contains two vertex-disjoint simple cycles C1 = {u1, . . . , un} and
C ′1 = {u′1, . . . , u′m}, (ii) G2 contains two vertex-disjoint simple cycles C2 =
{v1, . . . , vn} and C ′2 = {v′1, . . . , v′m}, and (iii) ui is the partner of vi (1 ≤ i ≤ n)
and u′j is the partner of v′j (1 ≤ j ≤ m). If Ψ1 is a planar embedding of G1

such that C ′1 is inside C1 and if Ψ2 is a planar embedding of G2 such that C2

is inside C ′2, then we call Ψ1 and Ψ2 interlaced embeddings and C1, C
′
1, C2, and

C ′2 interlaced cycles.

Lemma 1 Let G1 and G2 be two matched graphs with interlaced embeddings
Ψ1 and Ψ2. There is no matched drawing Γ1 and Γ2 of G1 and G2 such that
Γ1 preserves Ψ1 and Γ2 preserves Ψ2.

Proof: Denote by C1, C
′
1, C2, and C ′2 the interlaced cycles of Ψ1 and Ψ2. Sup-

pose by contradiction that Γ1 and Γ2 exist. Denote by Γ1 the subdrawing of Γ1

restricted to the subgraph C1 ∪ C ′1 and by Γ2 the subdrawing of Γ2 restricted
to the subgraph C2 ∪ C ′2.

Since in Ψ1 cycle C ′1 is inside cycle C1, by Property 1 the top-most and
the bottom-most vertices of Γ1 belong to C1; denote these two vertices by ut

and ub. Since Γ1 is planar and since the drawing of C ′1 is completely inside the
drawing of C1, every vertex u′j of C ′1 has a y-coordinate that is greater than
the y-coordinate of ub and smaller than the y-coordinate of ut. Since Γ1 and
Γ2 are matched drawings, every vertex v′j of C ′2 in Γ2 has a y-coordinate that
is greater than the y-coordinate of vb (i.e., the partner of ub) and smaller than
the y-coordinate of vt (i.e., the partner of ut). However, since in Ψ2 cycle C2 is
inside cycle C ′2, by Property 1 the top-most and the bottom-most vertices of Γ2

belong to C ′2, a contradiction. �

Theorem 1 There exist two 3-connected planar graphs that are not matched
drawable.

Proof: Consider the two 3-connected planar graphs G1 and G2 in Figure 2.
The partner of a vertex of G1 is any vertex in G2 that has the same label.
To prove that G1 and G2 are not matched drawable, we show that all planar
embeddings of G1 and G2 are interlaced embeddings.

Since G1 and G2 are 3-connected graphs, all their planar embeddings differ
only in the choice of the external face. In G1 and G2 we can have five possible
types of external face, depending on the labels of the vertices of such a face.
Namely, an external face of G1 can have vertices with labels in one of these sets:
{a}, {a, b}, {b, c}, {c, d}, {d}, while an external face of G2 can have vertices
with labels in one of these sets: {c}, {c, d}, {d, a}, {a, b}, {b}. For any label
` ∈ {a, b, c, d}, let C1,` and C2,` denote the three-cycles formed by the vertices
with label ` in G1 and in G2, respectively. For any pair of external faces in G1

and G2 there are two distinct labels `, `′ ∈ {a, b, c, d} such that C1,`′ is inside
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C1,` in G1 and C2,` is inside C2,`′ in G2. Table 1(a) shows the inclusion relations
between the three-cycles of G1 for each type of external face, where we use the
notation ` � `′ to denote that cycle C1,`′ is inside C1,`. Table 1(b) shows the
inclusions between the three-cycles of G2.

For each pair of external faces of G1 and G2, Table 2 shows two labels `, `′

such that C1,`, C1,`′ , C2,`, C2,`′ are interlaced cycles. More precisely, in Table 2
the rows are the labels of the external face of G1, the columns are the labels
of the external face of G2, and in each cell two labels `, `′ are shown such that
` � `′ in G1 and `′ � ` in G2. For example, if the external face of G1 is the
three-cycle C1,a and if the external face of G2 is the three-cycle C2,b, we have
that in G1 cycle C1,d is inside C1,c, while in G2 cycle C2,c is inside C2,d. Hence,
any pair of planar embeddings of G1 and G2 is a pair of interlaced embeddings.

�

2.2 A 3-connected Graph and a Tree

The two graphs described in Theorem 1 are both 3-connected. Hence the ques-
tion arises if two planar graphs, at least one of which is not 3-connected, are
always matched drawable. This is unfortunately not the case: in the following
we present a planar graph and a tree that are not matched drawable.

G1 G2

d

a

b

c

d
c

b
a a

b
c

d

b

a

d

c

b
a

d
c c

d
a

b

Figure 2: Two 3-connected planar graphs that are not matched drawable. The
partner of a vertex of G1 is any vertex in G2 that has the same label.

Ext. face labels Incl. of cycles

{a} a � b � c � d

{a, b} b � c � d

{b, c} b � a; c � d

{c, d} c � b � a

{d} d � c � b � a

Ext. face labels Incl. of cycles

{c} c � d � a � b

{c, d} d � a � b

{d, a} d � c; a � b

{a, b} a � d � c

{b} b � a � d � c

(a) (b)

Table 1: Inclusions between the three-cycles of G1 (table (a)) and of G2 (table
(b)).
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{c} {c, d} {d, a} {a, b} {b}
{a} a, c a, c c, d c, d c, d
{a, b} b, d b, d c, d c, d c, d
{b, c} b, a b, a b, a c, d c, d
{c, d} b, a b, a b, a c, a c, a
{d} b, a b, a b, a d, a d, a

Table 2: Interlaced cycles for each pair of external faces. The rows are the labels
in the external face of G1; the columns are the labels in the external face of G2.
In each cell two labels `, `′ are shown such that ` � `′ in G1 and `′ � ` in G2.

Given a vertex v of a graph G and a drawing Γ of G, we denote by x(v) and
y(v) the x- and y-coordinate of v in Γ. Let T ∗ = (V ∗, E∗) be the tree depicted
in Figure 3. Estrella-Balderrama et al. [11] proved the following lemma:

Lemma 2 (Estrella-Balderrama et al. [11]) Let T ∗ be the tree depicted in
Figure 3. A straight-line planar drawing Γ of T ∗ such that y(v0) < y(v7) <
y(v3) < y(v2) < y(v4) < y(v1) < y(v5) < y(v6) in Γ does not exist.

Let T ∗ be rooted at vertex v0, and for each vertex vi, denote by d(vi) the
graph-theoretic distance of vi from the root (i = 0, 1, . . . , 7). We construct a
tree T by using T ∗ as a model. See Figure 4 for an illustration. T has 3d(vi)

copies of each vertex vi (i = 0, 1, . . . , 7). The 3d(vi) copies of vi are denoted as
vi,0, vi,1, . . . , vi,3d(vi)−1. Vertex vh,k is a child of vertex vi,j in T if and only if
vh is a child of vi in T ∗ and j = bk/3c (0 ≤ i, h ≤ 7), (0 ≤ j ≤ 3d(vi) − 1),
(0 ≤ k ≤ 3d(vh)−1). So T has one copy of v0 whose children are the three copies
v1,0, v1,1, and v1,2 of v1. The children of each copy of v1 are three of the nine
copies of v2, and so on. Three vertices of T with the same parent are called a
triplet of T . The total number of vertices of T is 310.

The tree T is matched with a nested-triangles graph, which is defined as
follows. A single vertex v is a nested-triangles graph denoted by G0. A trian-

v0

v1

v2

v3 v4

v5 v6 v7

Figure 3: A tree that does not have
a straight-line planar drawing with
y(v0) < y(v7) < y(v3) < y(v2) <
y(v4) < y(v1) < y(v5) < y(v6) [11].

vertex copies triplets levels

v0 1 0 0
v7 81 27 1...27
v3 27 9 28...36
v2 9 3 37...39
v4 27 9 40...48
v1 3 1 49
v5 81 27 50...76
v6 81 27 77...103

Table 3: Matching between the ver-
tices of T and the vertices of G103.



JGAA, 13(3) 423–445 (2009) 429

v1 v1v1

v0

v2 v2 v2 v2 v2 v2 v2 v2 v2

v3 v3 v3v3 v3 v3 v3 v3 v3 v3 v3v3 v3 v3 v3 v3 v3 v3 v3 v3 v3 v3 v3 v3 v3 v3 v3v4 v4 v4 v4 v4 v4 v4 v4 v4 v4 v4 v4 v4 v4 v4 v4 v4 v4 v4 v4v4 v4 v4 v4 v4 v4 v4

Figure 4: Tree T of the construction. Nodes of the last level (i.e. copies of nodes
v5, v6, and v7) are not shown.

gulated planar embedded graph Gk (k > 0) is a nested-triangles graph if the
external face of Gk has exactly three vertices and the graph Gk−1, obtained by
removing the vertices on the external face, is still a nested-triangles graph. A
levelling of the vertices is naturally defined for the vertices of Gk: level i of Gk

contains the vertices that are on the external face of Gi (i = 0, 1, . . . , k). Note
that Gk has 3k + 1 vertices and k + 1 levels. Thus, G103 has 310 vertices and
104 levels.

T and G103 are matched in the following way. Vertex v0 is mapped to the
(only) vertex of level 0. Each triplet of T is mapped to three vertices of G103

such that the level of these three vertices is the same in G103. Also, all triplets
formed by vertices that are copies of the same vertex of T ∗ are mapped to
consecutive levels of G103. The exact mapping is described in Table 3. Each
row of the table refers to a different vertex of T ∗ and shows the number of copies
of that vertex in T , the number of triplets in T , and the levels of G103 to which
these triplets are mapped (a triplet for each level).

We now prove that, with the mapping described by Table 3, T and G103

are not matched drawable if we insist that the drawing of G103 preserves the
embedding of G103. We start with a useful property.

Property 2 Let ΓG103 be any planar straight-line drawing of G103 that pre-
serves the embedding of G103. For each level i (0 ≤ i ≤ 103) there exists a
vertex of level i that has y-coordinate greater than the y-coordinates of all the
vertices having level less than i.

Lemma 3 A matched drawing ΓT and ΓG103 of the tree T and the graph G103

such that ΓG103 preserves the embedding of G103 does not exist.

Proof: Let ΓG103 be any planar straight-line drawing of G103 that preserves
the embedding of G103. By exploiting Property 2, we can show that ΓG103

induces an ordering λ of the vertices of T along the y-direction such that there
exists a subtree T ′ of T isomorphic to T ∗ for which the ordering λ restricted to
the vertices of T ′ is the ordering given in Lemma 2. This implies that T ′ (and
hence T ) does not have a planar straight-line drawing that respects the ordering
induced by ΓG103 .

Denote by Vi the set of vertices of T that are copies of a vertex vi ∈ T ∗

(i = 0, 1, . . . , 7). We define subtree T ′ as follows. T ′ consists of eight vertices
v0, v1, . . . , v8, where vi ∈ Vi. Of course, v0 = v0. Vertex vi is a vertex vi,j of Vi
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such that: (i) the parent of vi,j is in T ′, in particular, it is vbj/3c; and (ii) vi,j is
the vertex of its level for which Property 2 holds. Notice that the isomorphism
between T ′ and T ∗ is guaranteed by the fact that there is one vertex for each
set Vi and that a vertex is selected only if its parent is also selected.

We write Vi < Vj if all levels containing vertices of Vi are inside levels
containing vertices of Vj in the embedding of G103. Based on the mapping
given in Table 3 we have that V0 < V7 < V3 < V2 < V4 < V1 < V5 < V6.
This along with the fact that for each selected vertex Property 2 holds, implies
that y(v0) < y(v7) < y(v3) < y(v2) < y(v4) < y(v1) < y(v5) < y(v6). But
by Lemma 2, T ′ does not admit a planar straight-line drawing such that the
ordering of the vertices along the y-direction is the one given above. �

According to Lemma 3, T and G103 are not matched drawable in the case that
one wants a drawing of G103 that preserves the embedding of G103. In the
following theorem we show that T and G103 can be used to construct a new tree
and a new 3-connected planar graph that are not matched drawable even if we
allow the embedding to be changed.

Theorem 2 There exist a tree and a 3-connected planar graph that are not
matched drawable.

Proof: Let T be a tree that consists of two copies of T whose roots are adjacent.
Let G be a graph obtained by taking two distinct copies of G103 and connecting
the vertices of their external faces in such a way that the obtained graph is
a triangulated planar graph. Denote as T ′ and T ′′ the two copies of T that
form T and as G′103 and G′′103 the two copies of G103 that form G. Also, define
a mapping between T and G such that the vertices of T ′ are mapped to the
vertices of G′103 according to the mapping defined by Table 3, and the vertices
of T ′′ are mapped to the vertices of G′′103 according to the mapping defined by
Table 3. Since G is triangulated, it has a unique planar embedding except for
the choice of the external face. Whatever face of G is chosen as the external
one, the resulting embedding of G is such that either the embedding of G′103 or
the embedding of G′′103 is preserved. Thus either T ′ and G′103, or T ′′ and G′′103
are in the condition of Lemma 3 and therefore are not matched drawable. �

3 Matched Drawable Graphs

In this section we describe drawing algorithms for classes of graphs that are
always matched drawable. In particular, in Section 3.1 we show that a planar
graph and an unlabeled level planar (ULP) graph that are matched are always
matched drawable. In Section 3.2 we extend these results to a planar graph and
a graph of the family of “carousel graphs”. Finally, in Section 3.3 we prove that
two matched trees are always matched drawable.

These results show that matched drawings do indeed allow larger classes of
graphs to be drawn than simultaneous geometric embeddings with mapping (a
path and a planar graph may not admit a simultaneous geometric embedding
with mapping [4] and the same negative result also holds for pairs of trees [17]).
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3.1 Planar Graphs and ULP Graphs

ULP graphs were defined by Estrella-Balderrama, Fowler, and Kobourov [11].
Let G be a planar graph with n vertices. A y-assignment of the vertices of G
is a one-to-one mapping λ : V → N. A drawing of G compatible with λ is a
planar straight-line drawing of G such that y(v) = λ(v) for each vertex v ∈ V .
A planar graph G is unlabeled level planar (ULP) if for any given y-assignment
λ of its vertices, G admits a drawing compatible with λ.

Theorem 3 A planar graph and an ULP graph are always matched drawable.

Proof: Let G1 be a planar graph and let G2 be an ULP graph. Compute
a planar straight-line drawing of G1 such that each vertex has a different y-
coordinate, for example with a slight variant of the algorithm of de Fraysseix,
Pach, and Pollack [6]. The drawing of G1 together with the mapping between
G1 and G2 defines a y-assignment λ for G2. Since G2 is ULP it admits a drawing
compatible with λ. It follows that G1 and G2 are matched drawable. �

ULP trees are characterized in [11]. A complete characterization of ULP graphs
is given in [13]. A planar graph is ULP if and only if it is either a generalized
caterpillar, or a radius-2 star, or a generalized degree-3 spider. These graphs are
defined as follows (see also [13]). A graph is a caterpillar if deleting all vertices
of degree one produces a path, which is called the spine of the caterpillar. A
generalized caterpillar is a graph that contains cycles of length at most 4 in
which every spanning tree is a caterpillar such that no three cut vertices are
pairwise adjacent and no pair of adjacent cut vertices belong to the same 4-
cycle. A radius-2 star is a K1,k, k > 2, in which every edge is subdivided at
most once. The only vertex of degree k is called the center of the star. A degree-
3 spider is an arbitrary subdivision of K1,3. A generalized degree-3 spider is a
graph with maximum degree 3 in which every spanning tree is either a path or
a degree-3 spider.

Corollary 4 Let G1 and G2 be two matched graphs such that G1 is a planar
graph and G2 is either a generalized caterpillar, or a radius-2 star, or a gener-
alized degree-3 spider. Then G1 and G2 are matched drawable.

3.2 Planar Graphs and Carousel Graphs

In this section we extend the result of Theorem 3 by describing a family of
graphs that also includes non-ULP graphs and whose members have a matched
drawing with any planar graph. Let G be a planar graph, let v be a vertex of G,
and let Γ be a planar straight-line drawing of G. Γ is v-stretchable if: (i) there is
a vertical ray from v going to +∞ that does not intersect any edge of Γ, and (ii)
for any given ∆ > 0, there exists a value ∆′ ≥ ∆ such that the drawing obtained
by translating each vertex u with x(u) ≥ x(v) to point (x(u) + ∆′, y(u)) is still
planar. Graph G is ULP v-stretchable if for every given y-assignment λ of its
vertices, G admits a v-stretchable drawing compatible with λ. For example, the
graph G shown in Figure 5(a) is ULP [13]. Furthermore, it is easy to see that
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Figure 5: (a) A ULP graph which is ULP v4-stretchable but not ULP v3-
stretchable. (b) A carousel graph.

for any possible y-assignment, G admits a v4-stretchable drawing, and therefore
G is ULP v4-stretchable. On the other hand, for the y-assignment shown in
Figure 5(a), G does not admit a drawing that is v3-stretchable. Namely, in
order to make v3 visible from vertically above, the path from v6 to v4 must
cross the path from v7 to v4 or the path from v1 to v4, or the paths from v1 to
v4 and v7 to v4 must cross. Thus, G is not ULP v3-stretchable.

A carousel graph is a connected planar graph G consisting of a vertex v0,
called the pivot of G, and of a set of disjoint subgraphs S1, . . . , Sk (k > 1) such
that each Si has a single vertex vi adjacent to v0 (i = 1, . . . , k) and Si is ULP
vi-stretchable. Each subgraph Si is called a seat of G. Vertex vi is called the
hook of Si. Figure 5(b) illustrates the definition of a carousel graph.

Theorem 5 Any planar graph and any carousel graph that are matched are
matched drawable.

Proof: Let G1 be a planar graph and let G2 be a carousel graph. Let v0 be the
pivot of G2 and let u be the partner of v0 in G1. Compute a planar straight-line
drawing Γ1 of G1 such that all vertices have different y-coordinates and u has
the largest y-coordinate. Drawing Γ1 together with the mapping between G1

and G2 defines a y-assignment λ for the vertices in a drawing Γ2 of G2. Clearly
λ(w) < λ(v0) = yM for all vertices w 6= v0 of G2.

In the following we describe an incremental method to compute a drawing
Γ2 compatible with λ. Let S1, . . . , Sk (k > 1) be the seats of G2 and let vi be
the hook of Si (1 ≤ i ≤ k). Let λi be the y-assignment of the vertices of Si

induced by λ. As a preliminary step we compute a drawing Σi for each Si that
is compatible with λi and that is vi-stretchable. Such a drawing exists because
Si is ULP vi-stretchable. We further assume that the distance between any two
different x-coordinates is at least 1 unit.

We incrementally construct Γ2 in k + 1 steps. Denote by Γ2,i the partial
drawing of G2 obtained at the end of step i (0 ≤ i ≤ k). Γ2,0 just consists of
vertex v0 placed at position (0, yM ). Drawing Γ2,i is constructed from Γ2,i−1 by
adding Σi at a suitable x-location and possibly translating some of its vertices
further in x-direction (see Figure 6). Hence the resulting drawing Γ2,i respects
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Figure 6: Adding Σi to Γ2,i−1.

λ. The remainder of the proof focuses on the incremental step that adds Σi to
Γ2,i−1.

For a drawing Γ we denote by R(Γ) the bounding box of Γ. Let (xM , yM )
be the coordinates of the top-right corner of R(Γ2,i−1). Place the drawing Σi

such that the left side of R(Σi) is contained in the vertical line x = xM + 1.
Let R′(Σi) be the (possibly empty) sub-rectangle of R(Σi) delimited by the
x-coordinates xM + 1 and x′M = x(vi) − 1. Furthermore, let y′M denote the
maximum y-coordinate of any vertex of Γ2,i−1 ∪ Σi distinct from v0 and let
p = (x′M + 1, y′M ); if Γ2,i−1 ∪ Σi does not have any vertex distinct from v0
we let p = (1, yM − 1). The line ` through v0 and p crosses neither Γ2,i−1

nor the portion of Σi contained in R′(Σi) (see Figure 6(a)). Let q denote the
intersection of ` with the horizontal line at y(vi) and let ∆ = x(q)−x(vi). Since
Σi is vi-stretchable, there exists a value ∆′ ≥ ∆ such that we can translate the
portion of Σi contained in R(Σi) \ R′(Σi) to the right by ∆′ without creating
any crossing (see Figure 6(b)). It can easily be verified that the edge between
v0 and vi does not have any crossings in the resulting drawing. �

Lemma 4 Let G be a simple cycle and let v be any vertex of G. G is ULP
v-stretchable.

Proof: Let λ be any y-assignment of the vertices of G and let u be the vertex
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of G that has the smallest y-coordinate. Let u = v0, v1, . . . , vn−1 be the vertices
of G in the order they are encountered when walking clockwise along G. Place
each vertex vi at point (i, λ(vi)). Clearly none of the edges (vi, vi+1) (i =
0, 1, . . . , n− 2) cross each other. To avoid crossings between edge (v0, vn−1) and
the other edges we translate vn−1 to the right until the segment connecting v0
to vn−1 does not cross any other segment. By this construction it follows that
such a drawing is v-stretchable for every vertex v of G. �

Corollary 6 Let G1 and G2 be two matched graphs such that G1 is a planar
graph and G2 is a cycle. Then G1 and G2 are matched drawable.

The drawing techniques in [11] imply the following two lemmata.

Lemma 5 Let G be a caterpillar and let v be a vertex of its spine. G is ULP
v-stretchable.

Lemma 6 Let G be a radius-2 star and let v be the center of G. G is ULP
v-stretchable.

Corollary 7 Let G1 and G2 be two matched graphs such that G1 is a planar
graph and G2 is a connected graph consisting of a vertex

v0 and a set of disjoint subgraphs S1, S2, . . . Sk, each Si having a single vertex
vi connected to v0. If each Si is either a caterpillar with vi on its spine, or a
radius-2 star with vi as its center, or a cycle, then G1 and G2 are matched
drawable.

The family of carousel graphs described by Corollary 7 contains graphs that are
not ULP. For example, the graph depicted in Figure 3 is a carousel graph with
pivot v2, and the three seats are caterpillars.

Remark: The proof of Theorem 5 is constructive, it can be used to to compute
a matched drawing for the graphs G1 and G2. However, it may result in a
matched drawing that has more than exponential size. For example, let G1 be
a path u0, . . . , un−1 and assume that its drawing Γ1 assigns the y-coordinate
n− i to vertex ui. Let G2 be a star graph with v0 as its center; G2 obviously is
a carousel graph where each of the n− 1 seats is a single vertex (see Figure 7).
Let the matching be such that ui and vi are partners, and let the seats of G2

be such that Si = vi for 1 ≤ i ≤ n− 1. Suppose that v0 = (0, n), that we have
constructed Γ2,i−1, and that vi−1 = (xi−1, n− i+1) for some integer value xi−1.
Then our construction will place vi at (xi, n − i) with xi > i · xi−1, because
p = (xi−1 + 1, n − 1) and q = (i · (xi−1 + 1), n − i). It follows that the largest
x-coordinate xn−1 is more than exponential in n. We do not known whether a
polynomial-size matched drawing of a planar graph and a carousel graph which
are matched always exists.

3.3 Two Trees

Let T1 and T2 be two matched trees with n vertices each. We describe an
algorithm to compute a matched drawing of T1 and T2 and prove its correctness.
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Figure 7: A matched drawing produced by our method that has more than
exponential size.

The algorithm has two phases. In the first phase each vertex of a tree Tj

(j = 1, 2) is assigned a distinct integer number from 1 to n, so that two matched
vertices receive the same number; we denote by ord(v) the number assigned to a
vertex v. Numbers are assigned to vertices in increasing order in n steps. In the
second phase vertices are added to the drawing according to the order defined
by the numbers assigned in the first phase.

To describe the two phases we need some definitions. A chunk of rank i is
any tree of the forest obtained from T1 or T2 by removing all vertices v that
are already processed and have ord(v) ≤ i. Notice that in Phase 1, a chunk of
rank i is a tree of vertices that have not yet received a number at the end of
Step i; in Phase 2, a chunk of rank i is a tree of vertices not yet drawn at the
end of Step i. A chunk C of rank i can be adjacent only to vertices v such that
ord(v) is defined and ord(v) ≤ i; we call these vertices the anchor vertices of C.
At Step i (1 ≤ i ≤ n) the pertinent tree of Step i is T1 if i is odd and T2 if i is
even; the other tree is the non-pertinent tree of Step i.

3.3.1 Description of Phase 1

Phase 1 consists of n steps. Number i is assigned to a vertex v of the pertinent
tree of Step i; the same number is assigned to the partner of v. We maintain
the following invariant throughout Phase 1:

Invariant 1 For each integer i ∈ [1, n]:

• In the pertinent tree of Step i, every chunk of rank i has at most two
anchor vertices;

• In the non-pertinent tree of Step i, there is at most one chunk of rank i
with three anchor vertices, and every other chunk of rank i has at most
two anchor vertices.

At Step 1 the algorithm arbitrarily selects a vertex v of T1 and sets ord(v) =
1. Assume now that Invariant 1 holds at the end of Step i − 1 (i ≥ 2). Let Tj

be the pertinent tree of Step i. Two cases are possible:
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Case 1: In Tj, every chunk of rank (i − 1) has at most two anchor
vertices. Let C be an arbitrary chunk of rank (i−1) in Tj . The algorithm
selects any vertex v of C, for example one that is adjacent to an anchor
vertex of C, and sets ord(v) = i (see Figure 8).

(b)(a)

C

x

y

x

y

v

Figure 8: Illustration of Case 1: (a) Chunk C has two anchor vertices x and y.
(b) Transformation of C after v is selected. In this figure v is chosen as one of
the two vertices adjacent to the anchor vertices of C.

Case 2: In Tj, there exists a chunk C of rank (i−1) with three anchor
vertices. Let x, y, and z be the anchor vertices of C, and let π1, π2,
and π3 the three paths of Tj from x to y, from x to z, and from y to z,
respectively. The algorithm selects the unique vertex v shared by π1, π2,
and π3, and sets ord(v) = i (see Figure 9).

(b)(a)

x
y

z

v

C

x
y

z

π1

π2 π3

Figure 9: Illustration of Case 2: (a) Chunk C has three anchor vertices x, y, and
z. Vertex v is the unique vertex shared by π1, π2, and π3. (b) Transformation
of C after v is selected.

Lemma 7 Invariant 1 holds throughout Phase 1 of the algorithm.

Proof: We prove the lemma by induction. The Invariant holds at Step 1
because all chunks of rank 1 (of both T1 and T2) are adjacent to the only vertex
v with ord(v) = 1. Assume by induction that Invariant 1 holds for i− 1 (i ≥ 2).
Let Tj be the pertinent tree of Step i and let T3−j be the non-pertinent tree of
Step i. Let v be the vertex of Tj selected at Step i.

Assume first that v was selected according to Case 1. Let C be the chunk of
rank i−1 that contains v. In this case, since C is a tree and since it has at most
two anchor vertices, C is split into at most one chunk with two anchor vertices
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(one of which is v and the other one is an anchor vertex of C) and a certain
number of chunks with v as the only anchor vertex (see Figure 8). Assume now
that v was selected according to Case 2. Let C be the chunk of rank i− 1 that
contains v. Since C is a tree and since it has three anchor vertices, C is split
into at most three chunks with two anchor vertices (one of which is v and the
other one is an anchor vertex of C) and a certain number of chunks with v as
the only anchor vertex (see Figure 9). Therefore Invariant 1 holds for Tj at
Step i.

Let C ′ be the chunk of rank i− 1 in T3−j that contains the partner v′ of v.
By induction C ′ has at most two anchor vertices. Since C ′ is a tree, it is split
into at most one chunk with three anchor vertices (one of which is v′ and the
other two are the anchor vertices of C ′) and a certain number of chunks with
v′ as the only anchor vertex (see Figure 10). Or, C ′ is split into at most two
chunks with two anchor vertices and a certain number of chunks with v′ as the
only anchor vertex. This implies that Invariant 1 also holds for T3−j at Step i.

�

(b)(a)

C ′

v′

Figure 10: Creation of a chunk with three anchor vertices.

3.3.2 Description of Phase 2

Phase 2 also consists of n steps. At Step i the algorithm draws the two matched
vertices numbered i in Phase 1. The y-coordinates are assigned as follows. Let v
and v′ be the two matched vertices with ord(v) = ord(v′) = i; the algorithm sets
y(v) = y(v′) = n − i−1

2 if i is odd, and y(v) = y(v′) = i
2 , if i is even. In other

words, vertices are assigned consecutively to y-coordinates n, 1, n − 1, 2, . . . .
Thus, at the end of Step i there is no vertex drawn yet in the plane strip
between the horizontal lines y = n − i−1

2 and y = i−1
2 if i is odd, and between

the horizontal lines y = n− i−2
2 and y = i

2 if i is even. This strip is called the
strip of rank i and it is assumed to be an open set (see Figure 11). The half-
plane below the strip of rank i is called the bottom side of the drawing, while
the half-plane above the strip of rank i is called the top side of the drawing. In
order to assign the x-coordinates to the vertices, at Step i each chunk C of rank
i is associated with a convex polygon P ; C will be drawn inside P . We say that
a polygon P spans the strip of rank i if each horizontal line y = j with j ∈ N in
the strip of rank i has non-empty intersection with the interior of P . An edge is
drawn when both of its end-vertices are drawn. More precisely, let e = (u, v) be
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y = n− i−1
2

y = n− i−1
2

+ 1

y = i−1
2

y = i−1
2

+ 1

Si−1 Si

Figure 11: Si−1 is the strip of rank i− 1 and Si is the strip of rank i when i is
assumed to be odd. The top side and bottom side of the drawing at Step i− 1
are the grey parts above and below the strip.

an edge and let ord(u) = j and ord(v) = i with j < i. When vertex v is drawn
at Step i, edge e is also drawn because u was drawn before, and we say that
e is an edge drawn at Step i. We maintain the following invariant throughout
Phase 2:

Invariant 2 For each integer i ∈ [1, n] and for each chunk C of rank i in any
of the two trees, there exists a convex polygon P associated with C such that:

• The anchor vertices of C are corners of P ;

• P spans the strip of rank i;

• The intersection between P and any edge e drawn at some Step j with
j ≤ i is either empty or it consists of an end-vertex of e;

• The intersection between P and the polygon associated with any other
chunk of rank i is either empty or it consists of a common corner;

In what follows we describe how the algorithm assigns x-coordinates to the
vertices of T1. The x-coordinates of the vertices of T2 are assigned analogously.
At Step 1 vertex v with ord(v) = 1 is given an arbitrary x-coordinate. Assume
now that Invariant 2 holds at the end of Step i− 1 (i ≥ 2). Let v be the vertex
with ord(v) = i, let C be the chunk of rank i − 1 that contains v, and let P
be the polygon associated with C. We analyze the cases when i is odd and the
cases when i is even, and their subcases.

Case 1: i is odd. Recall that by Invariant 1, when i is odd C can have three
anchor vertices. If C has three anchor vertices, however, they cannot all
be on the top side of the drawing. Namely, according to Phase 1, when a
chunk with three anchor vertices is created, the next vertex that receives
a number is chosen in such a way that the chunk has no longer three
anchor vertices. This implies that if a chunk of rank i−1 has three anchor
vertices, one of them is the vertex u with ord(u) = i − 1. Since i − 1 is
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even, vertex u has been drawn at Step i − 1 in the bottom side of the
drawing. Therefore at least one anchor vertex is in the bottom side of the
drawing. Let C1, C2, . . . , Ck be the chunks of rank i obtained by splitting
C. Recall that, by Invariant 1 these chunks have at most two anchor
points. The position of v and the polygons P1, P2, . . . , Pk associated with
C1, C2, . . . , Ck are computed according to the cases below.

In Cases 1.1, 1.2, and 1.3, at most three chunks among C1, C2, . . . , Ck

have two anchor vertices: one of them is v and the other one is an anchor
vertex of C. All the other chunks have v as their only anchor vertex. In
Case 1.4 there are at most two chunks among C1, C2, . . . , Ck with two
anchor vertices: one of them is v and the other one is an anchor vertex of
C. All the other chunks have v as their only anchor vertex.

Case 1.1: C has three anchor vertices in the bottom side of the
drawing. In this case vertex v is assigned an arbitrary x-coordinate
such that the point representing v is in the interior of P . The poly-
gons P1, P2, . . . , Pk are computed as shown in Figure 12. More pre-
cisely, denote as u1, u2, and u3 the anchor vertices of C. Let C1, C2,
and C3 be the chunks having two anchor vertices. Assume that the
anchor vertices of Ci are v and ui (1 ≤ i ≤ 3). Since i is odd, the
strip of rank i is defined by the two horizontal lines y = n − i−1

2

and y = i−1
2 . Let ` be the horizontal line y = i−1

2 + 1, which is
contained in the strip of rank i. Let si be the segment connecting
v to ui (1 ≤ i ≤ 3), and let pi be the intersection point between si

and `. Let p0 and pk+1 be the intersection points between the border
of P and the horizontal line `. Assume, without loss of generality,
that p0, p1, p2, p3, and pk+1 appear in this left-to-right order along
`. Let p4, p5, . . . , pk be k − 3 points on ` that fall, in this left-to-
right order, between p3 and pk+1. For each point pi (1 ≤ i ≤ k),
choose two new points p−i and p+

i such that the left-to-right order
along ` is p0, p

−
1 , p1, p

+
1 , p

−
2 , p2, . . . , p

+
k−1, p

−
k , pk, p

+
k , pk+1. Polygon Pi

associated with Ci (1 ≤ i ≤ 3) is the polygon whose corners are v,
p−i , p+

i , and ui. Let qi be the intersection point between the straight
line through v and pi and the border of P (4 ≤ i ≤ k). Polygon Pi

associated with Ci (4 ≤ i ≤ k) is the polygon whose corners are v,
p−i , p+

i , and qi.

Case 1.2: C has three anchor vertices, and two of them are in
the top side of the drawing. Let ∆ be the triangle whose corners
are the anchor vertices of C. Notice that ∆ is contained in P and
spans the strip of rank i.

Vertex v is assigned an arbitrary x-coordinate such that the point
representing v is in the interior of ∆. The polygons P1, P2, . . . , Pk

are computed with an approach similar to that of Case 1.1. We
omit the details and refer to Figure 13(a).
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Figure 12: Illustration for Case 1.1.

Case 1.3: C has three anchor vertices, and two of them are in
the bottom side of the drawing.
The x-coordinate of v is computed as in Case 1.2. The polygons
P1, P2, . . . , Pk are computed as shown in Figure 13(b).

Case 1.4: C has less than three anchor vertices.
This case can be reduced to one of Cases 1.2, and 1.3 by selecting
one or two corners of P as dummy anchor vertices. See Figure 13(c)
for an example with two anchor vertices.

Case 2: i is even. By Invariant 1, when i is even C cannot have three anchor
vertices. However, it may happen that at most one of the chunks of rank
i obtained by splitting C has three anchor vertices. Let C1, C2, . . . , Ck

be the chunks of rank i obtained by splitting C. The position of v and
the polygons P1, P2, . . . , Pk associated with C1, C2, . . . , Ck are computed
according to the following cases:

Case 2.1: No chunk of rank i has three anchor vertices. This case
can be handled symmetrically to Case 1.4.

Case 2.2: A chunk of rank i has three anchor vertices. In this case
C necessarily has two anchor vertices. Depending on the position of
the two anchor vertices of C, we distinguish between three different
cases. In all cases we consider a triangle ∆ analogous to the one
described in Case 1.2, i.e. (i) ∆ is contained in P ; (ii) all anchor
vertices of P are corners of ∆; (iii) ∆ spans the strip of rank i.

Case 2.2.1: The two anchor vertices of C are in the bottom
side of the drawing. Vertex v is assigned an arbitrary x-
coordinate such that the point representing v is on the border
of ∆. The polygons P1, P2, . . . , Pk are computed as shown in
Figure 13(d).

Case 2.2.2: The two anchor vertices of C are in the top side
of the drawing. Vertex v is assigned an arbitrary x-coordinate
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such that the point representing v is in the interior of ∆. The
polygons P1, P2, . . . , Pk are computed as shown in Figure 13(e).

Case 2.2.3: The two anchor vertices of C are in different
sides of the drawing. Vertex v is assigned an arbitrary x-
coordinate such that the point representing v is in the interior
of ∆. The polygons P1, P2, . . . , Pk are computed as shown in
Figure 13(f).

In all cases above, let u be an anchor vertex of C. If u and v are not adjacent,
then there exists a chunk Cj of rank i (0 ≤ j ≤ k), and Figures 12 and 13 show
how to compute a polygon Pj associated with it. If u and v are adjacent, then
chunk Cj does not exist, polygon Pj is not defined and edge (u, v) is drawn as
a straight-line segment. It follows that the intersection between the segment
representing (u, v) and the polygons associated with the chunks of rank i (or
edges connecting v to other anchor vertices) consists of the single vertex v.
Hence, Invariant 2 is maintained.

Theorem 8 Any two trees are matched drawable.

Proof: Let T1 and T2 be two matched trees. We prove that the algorithm de-
scribed above correctly computes a matched drawing of T1 and T2. By Lemma 7,
Phase 1 computes an order of the vertices that satisfies Invariant 1. Phase 2
uses this order to draw the vertices.

First of all, notice that in each of the cases considered in the description of
Phase 2, a point to represent v exists. Namely, in all cases v has a y-coordinate
that is assigned depending only on the value of i: it is either y = n − i−1

2 , or
y = i

2 . So in each case v must be drawn on a point of a horizontal line ` that
is either y = n − i−1

2 , or y = i
2 . In Case 1.1 the algorithm chooses a point of

` that is inside P . Since P spans the strip of rank i, the intersection between
the interior of P and ` is not empty. In all other cases the algorithm chooses
a point that is either in the interior of triangle ∆, or on its border. Since the
number of anchor points of C is at most three, and since if there are three anchor
vertices then they are on different sides (because otherwise we are in Case 1.1),
a triangle ∆ exists with three corners a, b, and c such that: (i) a, b, and c are
corners of P ; (ii) all anchor vertices of C are in the set {a, b, c}; (iii) a, b, and
c are not all on the same side of the drawing. By construction, ∆ is contained
in P and all anchor vertices of C are corners of ∆. Also, ∆ spans the strip of
rank i because it has at least one corner in the bottom side of the drawing and
at least one corner in the top side of the drawing. Since ∆ spans the strip of
rank i, at least one point of ` inside P exists that can be used to represent v.

Invariant 2 holds throughout Phase 2 by construction. It remains to prove
that the drawings computed by the algorithm form a matched drawing of T1

and T2. Since two matched vertices have the same y-coordinate, we only need
to show that the drawings of T1 and T2 are planar. We prove this for T1; an
analogous proof holds for T2.

Consider two edges e1 and e2 in the drawing of T1. Assume that e1 is an
edge drawn at Step j, and that e2 is an edge drawn at Step i, with j ≤ i. If
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Figure 13: (a) Case 1.2; (b) Case 1.3; (c) Case 1.4; (d) Case 2.2.1; (e)
Case 2.2.2; (f) Case 2.2.3.
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j = i then e1 and e2 share an endvertex (the one drawn at Step i) and they
cannot cross. If j < i, edge e1 is drawn before edge e2. Let v be the endvertex
of e2 that is drawn at Step i, let C be the chunk of rank i− 1 that contains v,
and let P be the polygon associated with C. Edge e2 is drawn inside P , since e2
connects v to an anchor vertex of C, which is a corner of P . By Invariant 2, the
intersection between P and e1 is either empty or it consists of an endvertex of e1.
Thus e1 and e2 either have no intersection or they share a common endvertex.

�

4 Conclusions and Open Problems

In this paper we introduced the concept of matched drawings, which are a
natural way to draw two planar graphs whose vertex sets are matched. Since
this is the first study of these drawings, many interesting and challenging open
problems remain. First of all, in the light of Theorems 2 and 5, we would like
to characterize the subclass of planar graphs that admit a matched drawing
with any planar graph. Secondly, the drawing techniques of Theorems 5 and
8 may give rise to drawings where the area is at least exponential in the size
of the graphs. It would be interesting to determine for what classes of graphs
polynomial-size matched drawings exist. On a related note, some of our draw-
ing techniques rely on a planar straight-line drawing of a planar graph where
each vertex has a different y-coordinate. How big a grid is necessary to guar-
antee such a drawing with integer coordinates? Another question concerns the
counterexample for a planar graph and a tree described in Section 2.2, which
consists of 620 vertices. It would be nice to construct a counterexample with a
smaller number of vertices. And finally, given any two matched graphs, what is
the algorithmic complexity of testing whether they are matched drawable?
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