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Abstract—Studies have shown that Motor Imagery Electroen-
cephalogram (EEG) based Brain-Computer Interface (BCI) sys-
tem can be used as a rehabilitation tool for stroke patients.
Efficient classification of EEG from stroke patients is a fun-
damental in the BCI-based stroke rehabilitation systems. One
of the most successful algorithms for EEG classification is the
Common Spatial Patterns (CSP). However, studies have reported
that the performance of CSP heavily relies on its operational
frequency band and channels configuration. To the best of our
knowledge, there is no agreed clinical conclusion about motor
imagery patterns of stroke patients. In this case, it is not available
to obtain the active channels and frequency bands related to brain
activities of stroke patients beforehand. Hence, for using the CSP
algorithm, we usually set a relatively broad frequency range and
channels, or try to find a subject-related frequency bands and
channels. To address this problem, we propose an adaptive boost-
ing algorithm to perform autonomous selection of key channels
and frequency band. In the proposed method, the spatial-spectral
configurations are divided into multiple preconditions, and a
new heuristic supervisor of stochastic gradient boost strategy
is utilized to train weak classifiers under these preconditions.
Extensive experiment comparisons have been performed on three
datasets including two benchmark datasets from the famous
BCI competition III and BCI competition IV as well as one
self-acquired dataset from stroke patients. Results show that
our algorithm yields relatively higher classification accuracies
compared with seven state-of-the-art approaches. In addition, the
spatial patterns (spatial weights) and spectral patterns (bandpass
filters) determined by the algorithm can also be used for further
analysis of the data, e.g., for brain source localization and
physiological knowledge exploration.

Index Terms—Brain Computer Interface (BCI), Stroke Reha-
bilitation, Boosting, Spatial-Spectral Analysis.

I. INTRODUCTION

Brain-computer interface (BCI) provides a direct communi-
cation pathway between a human brain and an external device
[1], [2]. Thus, BCI allows stroke patients to use their brain
signals for communication and control [3], [4]. In recent years,
BCI has been widely used in restoring motor functions in
stroke patients, as a rehabilitation tool [3], [5].

Among assorts of different brain diffused signals, electroen-
cephalogram (EEG) is one of the most studied brain signals in
BCI due to its low cost and noninvasive acquisitions. Motor
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imagery EEG has been widely performed recently because
of its discriminative property and inexpensive acquisitions. A
novel application in motor imagery study is combining BCI
with clinical rehabilitation training therapies for strokes [5],
[6]. In order to control external devices using EEG-based
rehabilitation systems, it is a fundamental to provide reliable
recognition accuracies of patients’ motor imagination of their
movements. Effort has been made to explore suitable signal
processing and classification algorithms in [7]–[9].

Among various approaches developed for EEG signals,
Common Spatial Patterns (CSP) has been proved to be one
of the most effective algorithms [10]. In CSP, it tries to
classify two classes of EEG where the variance of one class is
maximized while the variance of the other class is minimized
[8]. However, studies have shown that the performance of
CSP algorithm heavily depends on its operational frequency
bands and channels configuration [3], [11]. To the best of
our knowledge, there is no agreed clinical conclusion about
motor imagery patterns of stroke patients. Stroke patients have
significantly impaired motor imagery cognitive process due to
stroke [12]. Moreover, some studies have shown that event-
related desynchronization (ERD) in stroke patients, which is
often used as a neural marker representing cortex excitability
[13], is significantly lower than that in healthy subjects [12],
[14]. In this case, it is not available to obtain the active
channels and frequency bands related to brain activities of
stroke patients beforehand. We usually set a relatively broad
frequency range and channels or try to select a subject-specific
frequency range and channels when applying CSP on strokes.

To address the problem of manually selecting the oper-
ational subject-specific frequency band and channels group,
several approaches have been proposed. Yang et al. proposed
a novel channel selection method by measuring the inconsis-
tencies from the outputs of the multiple classifiers [15], while
Chin et al. proposed DCA approach and DCR approach to
select subject-specific discriminative channels by iteratively
adding or removing channels based on the classification accu-
racies [16]. For optimization of the spectral filter, several novel
approaches, namely, Common Spatio-Spectral Pattern (CSSP)
[17], Common Sparse Spectral Spatial Pattern (CSSSP) [18],
Iterative Spatio-Spectral Patterns Learning (ISSPL) [19], Filter
Bank Common Spatial Pattern (FBCSP) [20] were proposed.

Despite various studies and recent advances, it is still a
challenging and open issue to extract optimal spatial-spectral
filters, especially for stroke patients. Moreover, since stroke
patients are potential audiences of BCI, it is highly desir-
able to design an efficient and robust discriminative model
suitable for both normal people and stroke patients. For
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this purpose, in this paper, an adaptive boosting algorithm,
termed Common Spatial-Spectral Boosting Pattern (CSSBP),
is proposed to promote the performance of decoding EEG
patterns from stroke patients by a simultaneous optimization
of the frequency filter and spatial filter. It aims to model
the usually predetermined spatial-spectral configurations into
variable preconditions. Under these preconditions, we intro-
duce a new heuristic supervisor of stochastic gradient boost
strategy for training the weak classifiers. In this process, the
most important channel groups and frequency bands related
to brain activities are produced by our algorithm. To the best
of our knowledge, this is the first study of combing CSP with
boosting strategy to solve a challenge problem of classifying
and decoding motor imagery EEG of stroke patients.

The remainder of this paper is organized as follows. A
detailed formulation of CSSBP is illuminated in Section II.
Section III briefly describes the experimental arrangement
and data acquisition. Section IV displays comparison results
among some state-of-the-art algorithms and our proposed
CSSBP algorithm. Finally, we give a brief discussion and
conclusion about our work in Section V and VI, respectively.

II. COMMON SPATIAL-SPECTRAL BOOSTING PATTERN

In this section, we give a detailed description of CSSBP
algorithm including the problem modeling and model learning
methods. CSSBP comprises four progressive stages of EEG
measurements processing: multiple spatial filtering and band-
pass filtering, feature extraction using the CSP algorithm, weak
classifiers training using CSP features, and pattern recognition
using a combination model. Fig. 1 shows the architecture of
CSSBP algorithm.

A. Problem Modeling

In BCI-based applications, there are two issues which
have to be pre-defined as a default without deliberations: the
channels configuration and frequency band for EEG analysis.
A universal configuration usually leads to poor performance in
practical applications, as different subjects have the variabil-
ity in their EEG patterns. Therefore, an improved dynamic
configuration is desirable and demanding in practical systems.

For the development to follow, we first introduce some
notations and the key point of our proposed algorithm. We use
Etrain = {xn, yn}Nn=1 to denote the training dataset, where
En is the nth sample and yn is its corresponding label. The
objective of CSSBP is that by using a universal set of all
possible pre-conditions V we try to find a subset W ⊂ V
which produces a combination model F by combing all sub-
models learned under condition Wk(Wk ∈ W) and minimize
the classification error on the dataset Etrain:

W∗ = argmin
W

1

N
| {En : F (xn,W) ̸= yn}Nn=1 | (1)

Next, we will formulate three homogeneous problems and
then adopt an adaptive boost algorithm to solve the problems.

Spatial Channel Selection The channels group is denoted
as C, while U is used to represent a universal set composed

of all possible channels subsets such that each subset Uk in
U satisfies |Uk| ≤ |C|, here we use |.| to represent the size
of the corresponding set. Thus for channel selection, we try
to find an optimal channel set S(S ⊂ U), where an optimal
combination classifier F is constructed by combining weak
classifiers trained under kinds of channel set preconditions.
Thus we can obtain:

F (Etrain;S) =
∑
Sk∈S

αkfk (Etrain;Sk) (2)

where F is the optimal combination model, fk is kth weak
classifier trained with channel set precondition Sk, Etrain is
the training dataset, and αk is combination parameter.

Frequency Band Selection In general, spectra is not a discrete
variable. We simplify spectra as a closed interval, denoted as
G, where the elements are all integer points, e.g., G is [8,
30] Hz. We split G into various sub-bands B and D denotes a
universal set composed of all possible sub-bands. The splitting
criteria must satisfy:

• Cover: ∪B∈DB = G
• Length: ∀B = [l, h] ∈ D, Lmin ≤ h− l ≤ Lmax, where

Lmin and Lmax are two constants to determine the length
of B.

• Overlap: ∀Bmin = [l, l + 1] ⊂ G,∃B1, B2 ∈ D, Bmin ⊆
B1 ∩B2

• Equal: ∀Bmin = [l, l + 1] ⊂
G, | {B : Bmin ⊂ B,B ∈ D} | = C, where C is a
constant

These criteria make it possible that the set D will not un-
derrepresent the original continuous interval. Accordingly, we
apply a sliding window strategy to produce all the sub-bands.
Four variables involve in the sliding window strategy, they
are: the start offset L, the step length S, the sliding window
width W and the terminal offset T . In each iteration, the
four parameters (Li, Si,Wi, Ti) are firstly initialized, where
i = 1 . . . I , then the sliding process Slide(L, S,W,F ) starts:
a band window with width Wi slides from the start point Li

(left edge) with a step length Si until it reaches the terminal
point Ti (right edge) and output sliding windows as sub-bands:

BandSeti = Slide(Li, Si,Wi, Ti) (3)

By varying the four parameters (L, S,W, T ), one universal
band set D including various sub-bands with different start
points, widths and terminuses is produced finally:

D =
I∪

i=1

BandSeti (4)

To select the optimal frequency band, we try to seek an optimal
band set B(B ⊂ D) which produces an optimal combination
classifier F on the training data:

F (Etrain;B) =
∑
Bk∈B

αkfk (Etrain;Bk) (5)
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Fig. 1. Architecture of Common Spatial-Spectral Boosting Pattern (CSSBP). Raw EEG data is firstly spatial filtered and bandpass filtered under multiple
spatial-spectral preconditions. Afterwards, the CSP algorithm is applied to extract features of the EEG training dataset, by which weak classifiers {fk}Kk=1
are trained and combined to a weighted commination model F . Finally, a new test sample x̂ is classified by this commination model.

where we denote fk as the kth weak classifier trained by Bk.

Combination To combine the above two models of channel
selection and frequency selection, a two-tuple vk = (Sk,Bk)
is used to represent a spatial-spectral precondition, and V is
treated as a universal set including all these spatial-spectral
preconditions. Finally, the combination function F can be
constructed as:

F (Etrain;V) =
∑
vk∈V

αkfk (Etrain; vk) (6)

B. Learning Algorithm

In order to effectively solve the problems mentioned above,
in this study, we propose an adaptive boosting algorithm to
learn the model. This algorithm consists of two main steps of
training step and greedy optimization step. We detail the two
steps in the following part of this section.

Training step. In this step, weak classifiers are produced under
different preconditions. For each spatial-spectral precondition
vk ∈ V , the training dataset Etrain are filtered under vk. Af-
terwards, the CSP features are obtained by the filtered training
dataset Etrain, by which a weak classifier fk(Etrain; γ(vk)) is
trained, where γ is the model parameter determined by vk and
Etrain. During this process, a one-to-one relationship between
precondition vk and its related learner fk is established. Thus
we formulate classification error defined in Equation 1 as:

{α, v}K0 = min
{α,v}K

0

N∑
n=1

L(yn,

K∑
k=0

αkfk(xn; γ(vk))) (7)

where K is the number of weak learners and L is the loss
function.

Greedy Optimization Step To solve Equation 7, we use a
greedy approach [21], [22], detailed as follows:

F (Etrain, γ, {α, v}K0 ) =

K−1∑
k=0

αkfk(Etrain; γ(vk))

+ αKfK(Etrain; γ(vK))

(8)

Equation 8 can be transformed as a simple recursion formula:
Fk(Etrain) = Fk−1(Etrain)+αkfk(Etrain; γ(vk)). To deter-
mine the two parameters fk and αk, we suppose Fk−1(Etrain)
is known so we get:

Fk(Etrain) = Fk−1(Etrain)

+ argmin
f

N∑
n=1

L (yn, [Fk−1(xn) + αkfk (xn; γ(vk))])

(9)

Here we use a steepest gradient descent [22] to solve the
problem in Equation 9. Given the pseudo-residuals:

rπ(n)k = −∇FL(yπ(n), F (xπ(n)))

= −
[
∂L(yπ(n), F (xπ(n)))

∂F (xπ(n))

]
F (xπ(n))=Fk−1(xπ(n))

(10)

where {π(n)}N̂n=1 is the first N̂ members of a random per-

mutation of {n}Nn=1. Then, a new set
{
(xπ(n), rπ(n)k)

}N̂

n=1
,
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which implies a stochastically-partly best descent step direc-
tion, is generated and utilized to learn the parameter γ(vk):

γk = argmin
γ,ρ

N̂∑
n=1

[
rπ(n)k − ρf(xπ(n); γk(vk))

]
(11)

In the training step, we establish a one-to-one relationship
between γk and vk. In this case, vk is determined whenever γk
is obtained. We would like to remark that we train each weak
classifier fk under a random subset {π(n)}N̂n=1, instead of the
whole training data {n}Nn=1. We apply this stochastic gradient
[21] to incorporate randomness in the stagewise iteration for
improving performances. Different from the original stochastic
gradient which uses a completely random strategy, in our
study we use a ”Resample” heuristic for generating stochastic
sequences. During the iteration process, we maintain a self-
adjusted training data pool P at background, as detailed in
Algorithm 1. We adjust the training data pool by adding copies
of the incorrect-classified samples, and the number of copies
is determined by the local classification error. This strategy not
only conjoins randomness brought by stochastic gradient, but
also increases the probability that incorrect classified samples
get selected but decreases the probability that correct classified
ones being chosen. The distribution of the samples in P will
not change too much until the combination model F has got
a strong description ability about the training data. Algorithm
1 details the whole process of the resample heuristic.

Algorithm 1 Resample Heuristic Algorithm for Stochastic
Subset Selection

1: Initialize the training data pool P0 = Etrain =
{xn, yn}Nn=1;

2: for k = 1 to K do
3: Generate a random permutation {π(n)}|Pk−1|

n=1 =

randperm({n}|Pk−1|
n=1 );

4: Select the first N̂ elements {π(n)}N̂n=1 as{
xπ(n), yπ(n)

}N̂

n=1
from P0;

5: Use these {π(n)}N̂n=1 elements to optimize new learner
fk and its related parameters in Algorithm 2;

6: Use current local optimal classifier Fk to split the
original training set Etrain = {xn, yn}Nn=1 into t-
wo parts Ttrue = {xn, yn}n:yn=Fk(xn)

and Tfalse =

{xn, yn}n:yn ̸=Fk(xn)
;

Re-adjust the training data pool:
7: for each (xn, yn) ∈ Tfalse do
8: Select out all (xn, yn) ∈ Pk−1 as{

xn(m), yn(m)

}M

m=1
;

9: Copy
{
xn(m), yn(m)

}M

m=1
with d(d ≥ 1) times so

that we get total (d+ 1)M duplicated samples;
10: Return these (d + 1)M samples into Pk−1 and we

get a new adjusted pool Pk;
11: end for
12: end for

With γk(vk) , the combination coefficient αk is obtained:

αk = argmin
α

N∑
n=1

L(yn, Fk−1(xn) + αfk(xn; γk(vk))) (12)

Algorithm 2 details the whole process of the proposed method.

C. Parameter Estimation

In this section, we discuss how to estimate some important
parameters. The iteration time K is determined by using
the early stopping strategy [23]. For N̂ which is the size
of the training set used in model training, we can find that
more randomness will be incorporated if the ratio N̂/N is
decreased. However, if we increase this ratio, more samples
are brought into the model to train a more robust local weak
learner fk. In this study, we set N̂/N ≈ 0.7 and a relatively
satisfactory performance is achieved with short training time.
For d, the copies of incorrect-classified samples when adjust-
ing P , it is determined by the the local classification error
e = |Tfalse|/N :

d = max

(
1, ⌊1− e

e+ ϵ
⌋
)

(13)

where ϵ is an accommodation coefficient. Note that e is always
smaller than 0.5 and will decrease during the iteration so that
a larger penalty will be given on samples that are incorrect
classified by stronger classifiers. In terms of the loss function
L, we simply choose the squared error loss for convenience.

Algorithm 2 The Framework of Common Spatial-Spectral
Boosting Pattern (CSSBP) Algorithm

Input: {xn, yn}Nn=1: EEG training set; L(y, x): The loss
function; K: The capacity of the optimal precondition set
(number of weak learners); V: A universal set including
all possible preconditions;

Output: F : The optimal combination classifier; {fk}Kk=1: The
weak learners; {αk}Kk=1: The weights of weak learners;
{vk}Kk=1: The preconditions under which weak learners
are trained.

1: Feed {xn, yn}Nn=1 and V into a classifier using CSP to
extract features to produce a family of weak learners F ,
so that a one-to-one mapping is established: F ↔ V;

2: Initialize P0, F0(Etrain) = argminα

∑N
n=1 L(yn, α);

3: for k = 1 to K do
4: Optimalize fk(Etrain; γ(vk)) described in Equation 11;
5: Optimalize αk as described in Equation 12;
6: Update Pk as in Algorithm 1 and Fk(Etrain) =

Fk−1(Etrain) + αkfk(Etrain; γ(vk)) ;
7: end for
8: for each fk(Etrain; γ(vk)), use the mapping F ↔ V to

find its corresponded precondition vk;
9: return F, {fk}Kk=1 , {αk}Kk=1 , {vk}

K
k=1;

III. EXPERIMENTAL CONFIGURATION

A. Data Acquisition

In order to evaluate the effectiveness and robustness of
the proposed algorithm, three different motor imagery-based
datasets, which were assembled from two famous BCI compe-
titions and one self-collected stroke patients’ EEG, were used
for simulation. Details of these datasets were described as:
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1) Dataset I: Dataset I was dataset IVa from the famous BCI
competition III [24] where five subjects (’aa’, ’al’, ’av’, ’aw’
and ’ay’) participated in a motor imagery-based experiment.
All these subjects had to imagine right hand or right foot
movement. EEG was recorded using 118 electrodes, band-pass
filtered between 0.05 and 200 Hz, and down-sampled to 100
Hz. A time segment from 500 to 2500 ms was extracted for
analysis. All the 280 trials for each subject were divided into a
training dataset and test dataset. In detail, the training dataset
for each subject was 168, 224, 84, 56 and 28, respectively.

2) Dataset II: Dataset II was dataset IIa from the famous
BCI competition IV [25] where four motor imagery based
tasks of left-hand, right-hand, foot, and tongue were involved.
9 healthy subjects (labeled S1-S9 respectively) participated in
this experiment and had to complete two sessions conducted
on different days. In each session, there were 6 runs and
each run was composed of 12 trials for each task. Totally,
one session was composed of 288 trials. EEG data was
collected from 22 electrodes, bandpass-filtered between 0.5Hz
and 100Hz, and sampled at 250Hz.

3) Dataset III: This dataset was collected from five unilat-
erally paralyzed stroke patients diseased in two months who
performed motor imagination of their disabled (left or right)
arm in a BCI combined with Functional Electrical Stimulation
(BCI-FES) rehabilitation training system for 24 times over two
months (three times per week). EEG data was recorded by a
16-channel (FC3, FCZ, FC4, C1-C6, CZ, CP3, CPZ, CP4,
P3, PZ and P4) g.USBamp amplifier at a sampling rate of 256
Hz. Patients had to complete basic motor imagery related tasks
for five sessions and each session comprised forty trials and
lasted for 240 s. We extracted a time segment starting from
0.5s to 4.5s after the visual cue for analysis. All the trials in
the training model course were divided into a training set with
120 trials and a testing set with 80 trials.

B. Data Preprocessing

In this step, EEG trial was bandpass filtered in a specif-
ic frequency band involving in motor imagery. For healthy
people, the most contributed frequency bands were α rhythm
(8-13 Hz) and β rhythm (14-30 Hz) [11]. Thus Dataset I-
II were bandpass filtered in the frequency range of 8-30 Hz.
However, the spectral characteristics of stroke patients were
not available beforehand [26], [27]. Thus raw data in Dataset
III was filtered in a general band ranged from 5 to 40 Hz.

C. Feature Extraction

For comparison, seven state-of-the-art algorithms, which
were Power Spectral Density (PSD) [28], Phase Synchrony
Rate (SR) [7], the original CSP, regularized CSP (RCSP)
[9], the sub-band CSP (SBCSP) [29], CSSP and CSSSP,
were utilized for feature extraction. For PSD, we applied
a fast Fourier transform to compute power spectral density
values. For RCSP, Weighted Tikhonov Regularization (α) was
chosen, as suggested by the study [9]. It has to be pointed
out that all the model parameters (α for RCSP, τ for CSSP
and C for CSSSP) were chosen on the training set using a
5-fold cross validation procedure. Note that for the 4-class

motor imagery classification task in Dataset II, the CSP-based
methods employed the one-versus-rest (OVR) strategy. After
feature extraction, a Fisher score strategy [30] was used to
select relevant features, as more features cannot improve the
training accuracy [30].

D. Classification and Validation

A linear support vector machine (SVM) [31], which obtains
top-level performance in many applications, was conducted for
classification. A 5-fold cross-validation was used to choose
suitable SVM parameters for prediction.

IV. RESULTS

In this section, we presented the experimental results on
the three aforementioned datasets. To begin with, we applied
the proposed method on the first two datasets, whose mo-
tor imagery related spatial and spectral characteristics were
known, and evaluated its performance in comparison with that
of seven popular algorithms. Finally, the proposed method was
applied on the last dataset, where the discriminative spatial and
spectral properties were not specifically identified.

A. Results on Dataset IVa from BCI competition III

We firstly assessed the effectiveness of our proposed method
on the widely-used benchmark Dataset IVa from BCI compe-
tition III. The results were mainly given in two aspects of
illustration of the classification accuracy and visualization of
the obtained spatial-spectral filters.

(1) Classification accuracy. Fig. 2 shows the classification
results of the test dataets between CSSBP and the other com-
peting methods. Left part in Fig. 2 presents the classification
accuracies of all the algorithms while right part gives the
details of the box plots. The feature dimensionality of each
method varied and was determined according to the training
performance, since the training performance can not be im-
proved by more features [30]. Results showed that CSSBP
outperformed other competing algorithms for all the subjects,
as it reached both the highest median and mean accuracy. e.g.,
CSSBP outperformed CSP by about 7% in mean classification
accuracy and by almost 6% in median classification accuracy.

(2) Spatial and spectral filters. Besides the superior classifi-
cation performance, we tried to observe the underlying cortical
activity patterns by visualizing the spatial patterns (spatial
weights) and spectral patterns (spectral weights) from limited
training dataset.

(1) Spatial-spectral weights. For computing the spatial
weight for each channel, we used a quantitative vector L =∑

Si∈S αiSi, where S is the channel sets and α is their
weights. The spectral weight were calculated similarly and
projected onto the frequency bands [8, 30]. Finally, we sorted
the importance of contributed channels and active frequency
bands by weight values.

(2) Peak amplitude of CSSBP filtered EEG. Besides the
spatial and spectral patterns, we also studied the temporal
patterns of the filtered EEG. We first filtered the original EEG
under all the spatial-spectral preconditions where vk ∈ V
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Fig. 2. (a) Experimental results on the test accuracies obtained for each subject in BCI competition III Dataset IVa for all the competing algorithms PSD,
SR, CSP, RCSP, SBCSP, CSSP, CSSSP and our proposed algorithm CSSBP. (b) Boxplots of all the eight algorithms.

represents the kth one. The spatial filters of CSP was then
obtained on the EEG datasets, yielding relevant components
for right hand and right foot imagination movement. We
selected the first two spatial components and projected them to
the sensor space. Afterwards, the peak amplitude of the CSP
filtered EEG signals Ek for each channel Ci ∈ C was computed
and denoted by PkCi . We averaged the PkCi over all conditions
vk ∈ V evaluated by P̂Ci = 1

| V|
∑

vk∈V αkPkCi where αk

denoted the corresponding weight for the kth condition, and
visualized them through the 2-D topoplot map.

Fig. 3 gives an illustration of spatial, spectral and temporal
information of EEG recorded from the five subjects. Left
part of Fig. 3 details the spatial-spectral weights obtained
by CSSBP while right part presents 2-D topoplot maps of
peak amplitudes of CSSBP filtered EEG in each channel. For
comparison, Fig. 4 shows the spatial filters constructed by
CSP. From these pictures, we observed that for almost all
the subjects, the most contributed channels related to motor
imagery obtained by CSSBP were concentrated at the motor
cortex areas, as also expected from the study [9], [11]. In
detail, channels contributed to right foot imagination were
focused on central cortical area while important channels for
right hand imagination were centered on left cortical area. The
same phenomenon was also observed in the pictures given by
CSP. As for spectral characteristics, α rhythm and β rhythm
contributed more to motor imagery. With a close view to these
spectral filters, there was a slight difference in the weights
between higher band and lower band, which suggested that
there was a diversity in spectral patterns between subjects.

B. Results on Dataset IIa from BCI competition IV

As is known to all, EEG classification performance heavily
depends on the selection of a time interval. Thus in this
dataset, based on Ang et al.’s work [32], a time segment
from 0.5s to 2.5s after onset of the visual cue was chosen
for analysis. The BCI Competition IV with dataset IIa aimed
at evaluating the classification performance of all the methods
based on the session-to-session transfer rate. Here we selected
session 1 and session 2 for evaluation by using continuous
classification output for each sample [25]. We used a sliding

Spatial weight Spectral weight

Peak amplitude of CSSBP Spatial-Spectral Weights

aa

al

av

aw

ay

CSSBP filtered EEG

Fig. 3. Spatial, spectral and temporal information of EEG obtained by CSSBP
for each subject in BCI competition III Dataset IVa. Left part: the spatial-
spectral weights obtained by CSSBP. Note that x axis in ’spatial weight’
histogram represents the 21 chosen channels over the motor cortex (left to
right : FC3, FC5, FC1, C5, C3, C1, CP5, CP3, CP1, FCZ, CZ, CPZ, CP2, CP4,
CP6, C2, C4, C6, FC2, FC4 and FC6) while y-axis describes the normalized
weights. x axis in ’spectral weight’ subfigure shows the frequency band [8,
30] Hz while y-axis displays the normalized weights. Right part: 2-D topoplot
maps of peak amplitude of CSSBP filtered EEG in each channel.

window strategy to output the class labels (Window size: 2s;
overlapping: 240 points). We used a metric of Cohen’s Kappa
value that measured the agreement between two estimators
[33], as also done in BCI Competition IV.

In Fig. 5, we showed the best performance in terms of
Cohen’s kappa values of the all the methods. Note that the
dimensionality of feature vector for each algorithm was de-
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(a)
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CSP Spatial Patterns

Fig. 4. Spatial weights for the two most discriminative filters constructed by
CSP for all the subjects in BCI competition III Dataset IVa. (a) Spatial filters
for right hand imagination; (b) Spatial filters for right foot imagination.

termined according to the training performance. The proposed
method outperformed the competing methods, and showed the
highest average Kappa value. The statistical analysis showed
significant difference between CSP and the proposed method
in a Mann-Whitney U test. For all the cases, the proposed
method outperformed CSP in a 95% confidence level.

With a closer look at the results, we found that the classi-
fication accuracies of the subjects with poor CSP accuracies
were significantly improved by CSSBP, e.g., S5 and S6. That
might be due to the intrinsic characteristics of subject-specific
EEG: the subject S3 and S8 with high CSP accuracy might
be have clean and noiseless data, whereas the accuracy of
S5 was close to chance level, thus there was more room for
improvement for subject S5 compared to S3 and S8.

C. Results on Dataset collected from stroke patients

The above experimental results evidenced the superior clas-
sification performance of CSSBP when applied on healthy
persons with available spatial and spectral characteristics. In
this section, CSSBP was utilized to explore the unavailable
motor imagery patterns of stroke patients.

(1) Classification accuracy. In this dataset, by varying fea-
ture dimensionality, we calculated the classification accuracy
for each day. Afterwards, we averaged all the accuracies in
all the eight weeks to represent the mean accuracy of the
corresponding method in terms of each patient. In Fig. 6, we
showed the the averaged classification accuracies for all the
methods when varying feature dimensionality.

Obviously CSSBP yielded relatively higher classification
accuracies compared with the seven competing approaches.
As feature dimensionality increased, the mean classification
accuracies changed a lot. Moreover, the classification perfor-
mance was greatly improved in terms of the patients with poor
CSP performances. We used a Mann-Whitney U test to test the
statistical significance between CSSBP and the other methods.
The results showed that CSSBP achieved significant improve-
ment in classification performance at a 95% confidence level.
We can observe that after two months’ rehabilitation, the
classification accuracies by CSSBP for almost all the subjects
could even exceed 70%.

(2) Spatial and spectral filters. Toward understanding the
merits of CSSBP, the spatial, spectral and temporal char-
acteristics of all the patients on day 30 were learned and
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Fig. 6. The mean accuracies obtained for each subject in Dataset III under
different feature dimensionalities. (a)-(e) Patient 1-5; (f) Group mean.

visualized in Fig. 7. Left part of Fig. 7 details the spatial-
spectral weights obtained by CSSBP while right part presents
2-D topoplot maps of peak amplitudes of CSSBP filtered
EEG in each channel. For comparison, Fig. 8 shows the
spatial filters obtained by CSP. From these pictures, we can
see that CSP could not extract discriminative spatial filters,
which to the contrary appeared as messy. Differently, CSSBP
filters were more discriminative and physiologically relevant.
To explore the spatial characteristics, for patients with lesion
in right side (except Patient 2), the important channels con-
tributed to right movement imagination were located at C3; as
to left movement imagination, the significant channels were
concentrated in larger areas (C4, FC4 and P4), which was also
reported in some other studies [34], [35]. In terms of spectral
characteristics, we can conclude that the frequency information
was subject-specific, e.g., higher bands (28-35 Hz) contributed
more to classification for Patient 2 while active frequencies for
Patient 1 scattered at relatively wide-ranged bands (15-30 Hz).
Similar reports can be found in [36].

(3) Gradual changes of EEG patterns over time. Due to
brain reorganization in motor areas of stroke patients, EEG
patterns may have gradually changed during rehabilitation
[11], [37]. In order to observe the gradual changes of EEG
patterns in spatial and spectral domains over time, we chose
the raw EEG of seven days, day 1, 10, 20, 30, 40, 50 and
60, to represent the different phases during rehabilitation, and
CSSBP was utilized to extract the most contributed channels
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Fig. 5. Classification performances of the seven competing methods and the proposed method. (a) Experimental results on the test accuracies obtained for
each subject in BCI Competition IV dataset IIa. (b) Boxplots of all the eight algorithms.
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CSSBP filtered EEG

Fig. 7. Spatial, spectral and temporal information of EEG obtained by CSSBP
for each patient in Dataset III on day 30. Left part: the spatial-spectral weights
obtained by CSSBP. Note that x axis in ’spatial weight’ histogram represents
all the channels over the motor cortex (left to right : FC3, C5, C3, C1, CP3, P3,
FCZ, CZ, CPZ, PZ, P4, CP4, C2, C4, C6 and FC4) while y-axis describes the
normalized weights. x axis in ’spectral weight’ subfigure shows the frequency
band 5-40 Hz while y-axis displays the normalized weights. Right part: 2-D
topoplot maps of peak amplitude of CSSBP filtered EEG in each channel.

group and frequency bands of each subject. Fig. 9 illustrates
the chosen 7 days’ weights of channels and frequency band
5-40 Hz for Patient 2 with lesion in the left side.

Obviously we found that larger regions were activated in the
affected hemisphere during rehabilitation. The importance of
sensorimotor area on the affected hemisphere increased over
time while that of the unaffected hemisphere held, that is,

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

CSP Spatial Patterns

(a)

(b)

Fig. 8. Spatial weights for the two most discriminative filters obtained by
CSP for all the patients in Dataset III on day 30. (a) Spatial filters for left
hand motor imagery; (b) Spatial filters for right hand motor imagery.

e.g., at the beginning, central parietal area (CP3) played a
compensatory role but the importance decreased over time.
Active areas gradually shifted back to central lobes (C3).
Similar phenomenon was also reported in some other studies
[11], [38]. Considering the spectral characteristics, a higher
frequency band 25-38 Hz contributed largely to motor imagery,
but the importance decentralized and distributed to lower band-
s partly over time. This dynamic band accentuation implied
that active rhythms might be changing during rehabilitation,
as also reported in [27], [38].

V. DISCUSSION

This study presented a spatial-spectral boosting algorithm,
namely CSSBP, in which the usually predetermined spatial-
spectral configurations were divided into variable precon-
ditions, and then introduced a new heuristic supervisor of
stochastic gradient boost strategy for training weak classifiers
under these preconditions.

Extensive experiment comparisons were performed on two
datasets containing data acquired from normal persons and one
dataset related to unilaterally paralyzed stroke patients. Exper-
imental results showed that our algorithm yielded relatively
higher classification accuracies compared with seven state-
of-the-art approaches. In particular, with a close observation
at the classification results in the three datasets, we found
one interesting phenomenon: for the subjects with poor CSP
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Fig. 9. The weights of the 16 channels and frequency band 5-40 Hz on the chosen 7 days for Patient 2 in Dataset III. All the values have been normalized
for comparison. Left part: the weights of channels and frequency bands on the chosen 7 days, where red rectangle represents a larger value and blue one is
lower. Right part: the changes of weights subtracting their average values of three chosen channels C3, CP3, C4 and frequencies 10Hz, 25Hz, 35Hz on the
chosen 7 days. Note that: (1) weight differences of channel C3 and lower frequencies 10Hz and 25Hz gradually increase while that of channel C4 holds; (2)
weight differences of channel CP3 and higher frequency 35Hz present a decreasing tendency.

performances (i.e., CSP error rate more than 30% like av in
Dataset I, and almost all the subjects in Dataset III), the pro-
posed CSSBP algorithm significantly outperformed the CSP
algorithm. Moreover, compared to Dataset I and II, CSSBP
achieved salient improvement in classification performance in
Dataset III.

To explore the reasons, it could be the fact that the spatial
and spectral information is not available for stroke patients.
For stroke patents under recovery, there is a higher chance
that the most contributed channels group and frequency bands
will change. Moreover, EEG from some unknown channels is
contaminated with more noisy and nonstationary signals [39].
Therefore, CSSBP is proposed to seek the operational subject-
specific frequency band and channels group for stroke patients.
As an adaptive boosting algorithm, CSSBP does not use the
spatial-spectral configurations directly but divides them into
multi-subsets, and finally calculates each subset’s contribution
(weight) to classification. This makes sense, since the channels
mainly involved in performing motor imagery will get larger
weights and finally be selected while the other futile channels
with smaller weights will be eliminated after channel selection.
Deeply, we have calculated the variance of the channels’
weights for each day, and found that the variances maintained
at a relatively larger level. We conclude that a larger variance,
which indicates a polarized distribution of channel weights,
may lead a better performance for channel selection. The
best performance achieved by CSSBP in the classification
results evidence that channel selection and frequency selection
extract extra effective information in strokes’ EEG, and they
complement each other, both contributing to the classification
ability. All these results show that CSSBP could be more
successful and robust in capturing the spatial-spectral filters.

Another important issue is the exploration of the neuro-
physiologic mechanism of injured brain’s motor functional
reconstruction during rehabilitation. Stroke is associated with
deficits in a number of cognitive processes and executive

functions, and the neurological plasticity develops with the
progression of stroke, which may lead to a changing of the
active motor cortex regions and frequency bands. We conduct-
ed further investigations on exploring EEG characteristics by
visualizing the spatial-spectral filters obtained our proposed
method. The results showed that during motor recovery mo-
tor imagery EEG patterns of stroke patient were changing.
By tracking these gradual changes of the obtained spatial-
spectral filters during rehabilitation, we tried to reveal the
compensatory mechanism about cortex reorganization. From
the experimental results, we concluded that the contribution
of the injured sensorimotor area and some other areas such
as frontal premotor area and parietal area was changing over
time. In detail, parietal lobes and frontal premotor lobes were
activated and contributed to motor imagery. However, during
rehabilitation, those cortical areas gave back their responsibil-
ity to central lobes over time. Similar phenomena were also
reported in some other studies [34], [37].

VI. CONCLUSION

In this paper, a spatial-spectral boosting algorithm was
proposed for EEG classification, which divided the channel
and frequency configuration into preconditions by using a
sliding window strategy and then trained the weak learners
through a stochastic gradient boost under these preconditions.
The most contributed channel groups and frequency bands
related to motor imagery were selected and could be treated
as effective instructions for CSP.

We evaluated the effectiveness of our proposed algorithm
when compared with the original CSP and some other CSP-
based algorithms on three different datasets recorded from
diverse populations including the healthy people and stroke
patients. The results demonstrated its superior classification
performance. Moreover, we also observed that the discrimi-
native frequency bands among subjects were subject-specific,
leading to a time-consuming tuning process in order to achieve
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the optimal performance. Our approach addressed this problem
and can easily achieve satisfactory results.

Besides the excellent classification performance, another
merit of CSSBP was that it could learn neurophysiological
relevant spatial and spectral filters, which allowed us to explore
the neurophysiologic knowledge of brain activity in some
special populations when lacking prior knowledge. e.g., when
applied on analyzing EEG recorded from stroke patients,
the most contributed channels and active frequency band
obtained by CSSBP were more significant than the messy
CSP filters. This makes sense, since it can better explore the
neurophysiologic mechanism of underlying brain’s activities.

Finally, we would like to remark that CSSBP is—although
very well suited to EEG analysis—a general framework that
can be easily used in the other BCI-based paradigms where
spatial-spectral filters need to be constructed. e.g., in this study,
we can see that CSP is only one special method embedding in
our framework for EEG analysis. For the other applications,
one can just replace CSP with the other corresponding methods
in Algorithm 2 without any change of our framework.
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