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Abstract
This thesis studies the interaction between on-demand ad hoc routing protocols and wire-
less network interface power management. When traffic sources choose their routes with-
out regard for the preferences of relays and sinks, nodes can experience highly variable
energy consumption. We argue for negotiations that allow nodes to express their valua-
tion for different network configurations. A practical method for negotiation in mobile ad
hoc networks is detailed and then evaluated in a realistic simulation environment.

Energy consumption in 802.11 radios is dominated by the idle state, in which the in-
terface is waiting to exchange data. This induces a non-intuitive cost structure: if the radio
is awake and servicing traffic, the marginal energy costs of servicing more traffic are small.
If a relay or sink wants to report its costs in a negotiation, it must be able to express this
energy complementarity when asked to support overlapping traffic flows. Source routing
networks implement a combinatorial reverse auction, which cannot account for overlap.
We show that the combinatorial exchange is the right concept to address overlap and other
auction deficiencies such as the lack of unaffordable routes.

The use of credit incentives in ad hoc networks is complementary to this work. We
address an important issue related to the incentive compatibility of payments to our ex-
change. If agents can improve their expected utility through strategic bidding, then they
are incented to perform costly modeling of one another to learn their expected best bidding
strategy. Our design uses a Vickrey Clarke Groves mechanism to make the bidding pro-
cess strategy-proof. We show that an optimal exchange solution that accounts for energy
complementarity is required to ensure strategy-proofness, and that no previous mechanism
is strategy-proof in the power managing environment.

We have developed Exchange Power Management, which improves the energy perfor-
mance of protocols such as Dynamic Source Routing. Compared with unmodified 802.11
power management, we can reduce the range of node energy consumption by up to a fac-
tor of 5 when high message delivery ratios are required. Permitting unaffordable routes,
the improvement increases up to a factor of 12. Our design offers better average case en-
ergy consumption than 802.11 power management, and is competitive with previous work
in cross-layer power management. We also address setup latency under power manage-
ment, and introduce the fast wakeup technique which can improve route discovery latency
by up to a factor of 16.

Our work is the first to take a systems view of mechanism design application to ad
hoc networks. We have incorporated realistic models of energy consumption in popular
radios, and have addressed the practical issues of integration with real protocols such as
802.11 and DSR. The experimental results of this thesis characterize the kinds of energy
performance improvements that could be expected from negotiation-based power man-
agement. Future work will refine the fault-tolerance and scalability of our distributed pro-
tocol, increase the sophistication of our agent valuation functions, and examine application
awareness of exchange-based route selection.
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Chapter 1

Introduction

An ad hoc network (Perkins, 2001) is a collection of computing devices which form

an impromptu communications system. Ad hoc networks can be wireless, if the

devices communicate using radios or infrared transceivers. They can be mobile,

meaning that the devices can physically move, creating and breaking links as they

do so. They may also be multihop, meaning that the diameter of the network may

be larger than the range of an individual wireless transceiver, thus requiring some

nodes to relay traffic for others. Research into routing protocols for this environ-

ment is nearly a decade old, and has produced many solutions to the problem of

reliable and efficient message delivery (Johnson et al., 2003; Perkins et al., 2003;

Clausen and Jacquet, 2003).

An important dimension of the ad hoc routing problem which has received at-

tention in recent years is that of energy consumption. The mobile devices which

1
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make up a network are powered by batteries or some other limited supply of en-

ergy. Expending this energy on routing tasks may shorten the device’s active life-

time, or prevent it from completing other tasks assigned to it. On the other hand,

conserving energy by not performing routing tasks may prevent the network from

functioning. This conflict between self interest (with respect to energy) and social

utility (with respect to communications) is depicted in Figure 1.1.

Social Utility
conserved, network
Individual energy

functions poorly

Self Interest
maximized, network

Energy consumption

functions well

Figure 1.1: Self interest and social utility in ad hoc networks.

Wearable computers (Barfield and Caudell, 2001), handhelds, and other low-

power mobile devices are all well-suited for ad hoc networking. Wearables, for

example, support an on-the-go usage model which makes them better candidates

for mobile communication than laptops. Stored energy is at a premium with these

systems; battery capacities for handhelds and low-power wearables are an order

of magnitude smaller than those for laptop computers. In order to provide a useful

service lifetime, mobile devices employ power management techniques such as

processor suspension and clock scaling (Martin, 1999). The most aggressive meth-

ods, those which disable the processor or wireless network interface, effectively

remove a device from a network in which it participates. When the mobile devices

are needed for message relay service, unilateral withdrawal from the network due

to power management may prevent some messages from being delivered.
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Figure 1.2: The Spot wearable computer.

The Spot wearable computer (Dorsey, 2004), shown in Figure 1.2, provides

some insights into the energy costs of implementing ad hoc networks. Spot in-

cludes several power monitors (Dorsey and Siewiorek, 2002) which measure the

energy consumption of subsystems such as the microprocessor, disk drive, and ra-

dio. Figure 1.3 shows a trace of the energy consumed by these three subsystems

during a workload which stressed computation, disk reads, and wireless trans-

mission. The trace reveals that the transmit power rate of the IEEE 802.11b radio is

almost twice the read mode power of the disk drive, and more than three times the

active mode power of the microprocessor. More importantly for ad hoc networks,

the idle state power of the radio is nine times that of the disk or processor in their

quiescent states.

The idle mode power rate of the 802.11b radio accounts for about half of all

energy consumption in Spot. The Spot design contains an unusual number of

memory and I/O components for a device of its class. For more conventional
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Figure 1.3: Power trace of microprocessor, hard drive, and radio.

systems with fewer components, the radio would represent an even greater share

of the energy budget. To improve the overall energy performance of such systems,

clearly one must begin with the idle mode power of the radio. This thesis presents

a method for controlling the amount of time the radio spends in idle mode while

preserving ad hoc communications performance.

Energy scarcity induces the fundamental problem of power management in

ad hoc networks: which nodes will bear the energy costs of implementing the

network? This research looks to economics for the answer. We adopt a game-

theoretic (Osborne and Rubinstein, 1994) approach to deciding how the nodes

will distribute the burden of network implementation. Game theory is a set of

tools which help us to understand the behavior of decision-making agents. In the

ad hoc network setting, we will assume that a power managing agent at each node
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holds preferences over the possible configurations of the network. Factors such

as the node’s traffic-sourcing needs or history of energy consumption might figure

into an agent’s preference over which routes it can use, or whether it provides re-

lay service for a given traffic flow. The agents work to satisfy user goals, such as

achieving battery lifetime targets.

Users of mobile devices might be part of the same organization, or be entirely

unaffiliated with one another. In the latter case, users have no inherent incentive

to spend their batteries on the traffic needs of other users. We assume that some

external enforcement scheme, such as a credit or money system, is available to

provide this incentive. For example, agents might accrue credit by providing relay

service, which they then spend in order to source traffic into the network. This

thesis does not specify an enforcement scheme, but instead focuses on a method

by which the agents can reach a decision about what configuration to adopt.

We recognized that the problem of selecting a route — a collection of relays

and a sink — is an instance of an economic combinatorial allocation problem. In

fact, the Dynamic Source Routing protocol implements exactly the combinatorial

reverse auction when traffic sources choose their routes. Route selection is a combi-

natorial problem because only certain combinations of relays and sinks are valuable

to traffic sources, namely, those which form a viable route. Our solution to this

problem allows sources to submit reports about how much value they derive from

individual routes. It also allows relays and sinks to report how much loss in value
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they experience from providing service to the network. We can then aggregate

these reports to choose a network configuration that maximizes net value over the

agents.

If the enforcement scheme used to ensure adherence to the chosen configu-

ration is based on credit, there is an additional strategic problem to solve. We

want the agents to submit truthful reports about their respective valuations. If

the agents make payments using credit in order to implement a configuration,

then there may be an incentive to misreport their true valuations. For example, an

agent might strategically underbid so as to reduce its expected payment. We apply

concepts from mechanism design, an area of game theory, to make the payment

rules strategy-proof. That is, truthful reporting by the agents becomes their best

strategy.

Strategy-proof bidding is useful for agents executing on mobile devices for sev-

eral reasons. In contrast with weaker solution concepts, such as the Bayesian Nash

equilibrium, strategy-proofness does not require the agents to develop distribu-

tional information about each others’ behavior. This is critical for an ad hoc net-

work, since mobility and other factors interfere with an agent’s ability to observe

the actions of its peers. Also, strategy-proofness simplifies the computational as-

pect of bidding, since the agents do not have to statistically model one another

when choosing their bid prices.

We show that the dominance of the idle state in wireless interface energy con-
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sumption induces non-intuitive energy costs. Per-message cost models do not re-

flect the way energy is actually consumed in devices such as 802.11 radios. Instead,

we argue for a model based on time periods in which a relay or sink is actively

providing service. Given that a node is active at all, we show that the marginal en-

ergy costs of relaying additional traffic flows are small. As a result, a negotiation

mechanism for the power managing environment must account for overlap — or

energy complementarity — among traffic flows at relays or sinks. We describe

the combinatorial exchange, which permits such overlap, and show how an op-

timal solution to the exchange is required to achieve strategy-proofness. Previous

applications of mechanism design to networks do not have a way to account for

overlap, and fail to be strategy-proof in the power managing environment.

Using these concepts, we have developed the Exchange Power Management

design which implements combinatorial exchange-based route selection in ad hoc

networks. Our design echoes the on-demand themes of protocols such as Dynamic

Source Routing. Negotiations between nodes happen only when needed to choose

routes for active traffic flows, and involve only the minimal set of sources, relays,

and sinks which might be involved in those flows. Nodes that are irrelevant to ac-

tive flows do not participate in negotiations, and use low-level power management

to minimize their energy consumption.

We have also developed simple valuation functions which implement the con-

cept of agent preference. Agents submit bids describing their preferred network
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configurations based on concepts such as their credit balance, or the duration of

service they have provided to the network. We show through experimental simu-

lation that these simple models can significantly reduce variability in node energy

consumption.

1.1 Research Scope

This is an interdisciplinary thesis combining concepts from the fields of wireless

networking and economics. As shown in Figure 1.4, the Exchange Power Man-

agement protocol developed though this research inherits from work in wireless

LANs, ad hoc routing protocols, combinatorial auctions and exchanges, and mech-

anism design. The significance of this effort is in the application of economic and

game-theoretic principles to practical network protocol design. To the best of our

knowledge, this is the first work to apply exchanges and mechanism design to real

protocols in the ad hoc network environment.

Valuation FunctionsExchange

Power

Management

Combinatorial Allocation

Enforcement Schemes

Groves Mechanisms

Combinatorial Exchanges

Dynamic Source Routing

IEEE 802.11

Ad Hoc Routing Protocols

Wireless Local−Area Networks

Game−Theoretic Mechanism Design

Figure 1.4: Scope of this research.
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As described earlier, this research specifies a procedure by which agents can

reach a group decision about the configuration of an ad hoc network. We have left

the means by which that decision is enforced to future work, although in Chap-

ter 3, we discuss some existing efforts which might be helpful in this regard. This

thesis does supply an important constraint on the characteristics of an enforcement

scheme, specifically regarding budget balance and credit systems.

For the purposes of this thesis, we have implemented two very simple valua-

tion functions in order to provide examples of agent bid pricing. These models are

effective in demonstrating the benefits of exchange-based route selection, but they

operate on a relatively modest amount of information. The development of more

sophisticated valuation systems is an interesting topic for subsequent research.

1.2 Contributions

This research is the first application of exchanges and mechanism design to the

route selection problem in power managing ad hoc networks. Specific contributions

to the field of ad hoc networking research include:

• Discovery of the correspondence between source routing protocols and com-

binatorial reverse auctions.

• Design of a strategy-proof combinatorial exchange concept for source route

selection in power managing ad hoc networks. This concept is expressive
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for sources, relays, and sinks. It also introduces the concept of unaffordable

routes, and accounts for energy complementarity.

• Design of the Exchange Power Management protocol to support exchange-

based route selection in practical networks. We cast this protocol as a com-

panion to Dynamic Source Routing, and take advantage of low-level power

management features such as those provided by 802.11.

• Design of the fast wakeup technique, which reduces the latency of route dis-

covery under power management by an order of magnitude.

• Design of a cross-layer multihop power management architecture support-

ing power management suspension. Combined with fast wakeups, we show

how to reduce average-case application message delivery latency by an order

of magnitude.

• Development of several improvements to the ns network simulator, includ-

ing an implementation of 802.11 IBSS power management and several addi-

tional management features.

1.3 Organization

This thesis first describes core concepts and related work before presenting our

exchange-based power management protocol. We then provide details about the

experimental environment and discuss results.
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Chapter 2: Basic Technology introduces IEEE 802.11 wireless LANs, the Dy-

namic Source Routing protocol, combinatorial auctions and exchanges, and the

game-theoretic Groves mechanisms.

Chapter 3: Related Work surveys prior efforts to study and improve energy

performance and communications performance in wireless networks.

Chapter 4: System Design describes multihop power management, a cross-

layer design which supports timer-based and exchange-based power management.

Chapter 5: Simulator and Workloads details improvements to the ns network

simulator and describes experimental workloads.

Chapter 6: Experimental Results presents the energy and latency improve-

ments observed in the simulation experiments.

Chapter 7: Conclusion summarizes this research.



Chapter 2

Basic Technology

This research is founded on four basic technologies, two from the field of wireless

networking, and two from economics. A key insight of this thesis is the bridge

between the fields; specifically, that source routing protocols are an instance of an

auction. This Chapter provides an overview of all four technologies, develops the

relationships between them, and defines terms used later in the thesis. Figure 2.1

shows the organization of the material.

message delivery.

IEEE
802.11

Dynamic
Source
Routing

Combinatorial
Exchanges Mechanisms

Groves

Adds multi−hopProvides basic

wireless link.

Enable nodes to express

preferences over configuration.

Add strategy−proofness

to exchange payments.

Figure 2.1: Technology overview.

Section 2.1 describes the IEEE 802.11 wireless LAN protocol, a popular link

technology used in contemporary wireless networks. Dynamic Source Routing,

12
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a mobile ad hoc routing protocol, is presented in Section 2.2 and its interaction

with 802.11 is discussed. Section 2.3 introduces combinatorial exchanges, which

allow nodes to express their preferences over which routes are used in a power-

managing ad hoc network. Finally, Section 2.4 presents mechanism design, a tech-

nique for ensuring certain game-theoretic properties in strategic interactions such

as the combinatorial exchange.

2.1 IEEE 802.11 Wireless LANs

The IEEE 802.11 wireless LAN standard (IEEE, 1997) defines “a medium access

control (MAC) and physical layer (PHY) specification for wireless connectivity for

fixed, portable, and moving stations within a wireless local area.” Originally de-

signed for a 1Mbps and 2Mbps data payload communications capability, data rates

up to 11Mbps were later added (IEEE, 1999), and 54Mbps products are available at

the time of this writing (IEEE, 2003). Although several physical layers have been

specified, including infrared and multiple radio-frequency spread spectrum meth-

ods, the most popular has been Direct Sequence Spread Spectrum (Rappaport,

1996) in the 2.4GHz industrial, scientific, and medical band.

In addition to framing, addressing, and other typical MAC tasks, 802.11 pro-

vides functionality unique to wireless networks such as hidden terminal avoid-

ance and power management. The hidden terminal problem, shown in Figure 2.2,

occurs when a receiver is within radio range of multiple transmitters which are



CHAPTER 2. BASIC TECHNOLOGY 14

31 2

Figure 2.2: Hidden terminal problem.

mutually out of range of each other. In this example, suppose station 1 attempts

to send a message to station 2. Station 3 cannot hear the transmission, because 3 is

out of range of station 1. If 3 begins to transmit (to anyone), its message will collide

at station 2 with those of the hidden terminal, station 1.

t

To: j

RTS CTS

To: i

ACK

To: i

To: j

Data

t

Figure 2.3: 802.11 RTS, CTS, Data, ACK exchange.

802.11 solves this problem through the use of control frames,1 which precede

and follow a data frame transmission. To send data from station i to station j,

station i begins by sending a request to send (RTS) frame addressed to j. This

alerts any station within range of i to suspend transmission long enough for the

1There are three additional control frames beyond those described here. These involve features
specific to infrastructure wireless LANs, which are beyond the scope of this thesis.
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data transaction to complete. Station j responds with a clear to send (CTS) frame.

The CTS alerts any station within range of the receiver to defer transmissions until

the data exchange occurs. Upon receiving the CTS, i sends the data addressed to

j, which confirms receipt with an acknowledgment (ACK). This process is illus-

trated in Figure 2.3 (not drawn to scale). RTS, CTS, and ACK frames are only used

for directed, or unicast, transmissions. Broadcast data frames are sent without

handshaking or acknowledgment.

A station which sends directed Data frames to a neighbor must be able to re-

ceive CTS and ACK control frames from that neighbor. This implies that all di-

rected links in an 802.11 network are bidirectional. Also, since directed trans-

missions are explicitly acknowledged, protocols at the network layer and above

that know they are running on top of 802.11 do not need to provide their own

acknowledgment facility. Both of these characteristics are exploited by Dynamic

Source Routing (§2.2) and the power management design described in Chapter 4.

An 802.11 wireless LAN may connect to an infrastructure network through an

access point. The stations in such a network, including the access point, belong to

a basic service set, or BSS. The members of a BSS operate under the same coordi-

nation function, which determines when stations are permitted to transmit frames

on the medium. The RTS-CTS handshake described above is part of the contention-

based distributed coordination function (DCF). Medium access can also be sched-

uled by the access point, using the point coordination function (PCF).
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2.1.1 Independent Basic Service Set Operation

When access to an infrastructure network is not provided, the 802.11 wireless LAN

is called an independent basic service set, or IBSS. This mode of operation is some-

times referred to as an “ad hoc” network, but 802.11 only supports single-hop net-

works in which every station can hear every other station. To support a network

of larger diameter, a routing protocol such as the one described in Section 2.2 is

needed. This thesis uses the term “IBSS” to describe the infrastructureless opera-

tion of an 802.11 network, and uses “ad hoc network” to refer to generic infrastruc-

tureless networks of arbitrary diameter.

2.1.1.1 Beacon Management Frames

Stations join an IBSS by listening for beacon frames, which are periodically gen-

erated by stations already belonging to the IBSS. Beacons contain the operating

parameters for the network, such as the network’s name, the set of supported data

rates, and the current channel. They also contain the value of the beacon inter-

val, which is the nominal time between beacon broadcasts. Example intervals are

100 milliseconds or 200 milliseconds.

In an infrastructure network, beacons are transmitted by the access point. Bea-

con generation in an IBSS is performed using a randomized distributed algorithm.

Starting from time zero, a series of target beacon transmission times, or TBTTs,

are defined by the beacon interval. At each TBTT, every station suspends normal
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traffic and sets a short random timer. If the timer expires before any beacon frames

have been received, the station generates a beacon for the IBSS. The idea is that

only one beacon will be sent per TBTT. In a larger-diameter network, where every

node cannot hear every other node, many beacons may be generated.

2.1.1.2 Timing Synchronization Function

IBSS stations mark the TBTTs using a local timer which is maintained by a timing

synchronization function (TSF). The timer is required to be accurate to ±0.01%.

The 64-bit, microsecond-resolution timer value is included in all transmitted bea-

cons. A station receiving a valid beacon sets its own timer to the greater of the

beacon timer value or its own timer value. This method tries to maintain the syn-

chronization of timers in an IBSS to within 4µs. Chapter 3 describes research into of

the scalability of the TSF and its performance under network partitions and power

management.

2.1.2 Energy Consumption

It is common to assume that radio energy consumption is dominated by the trans-

mit state—textbf. Many examples from the literature, particularly those studying

networks from an algorithmic perspective, adopt this assumption. This has led

to a number of transmit power control schemes for wireless networks (Banerjee

and Misra, 2002; Čagalj et al., 2002; Cruz and Santhanam, 2003; Eidenbenz et al.,
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2003; Kawadia and Kumar, 2003; Lloyd et al., 2002; Srinivasan et al., 2002). These

approaches adjust the radiated power level of the wireless transmitter. The range

of the radio increases or decreases with the radiated power (Rappaport, 1996).

The error in this assumption is that it mistakes power for energy. It is correct that

the peak power rate for an 802.11 interface occurs in the transmit state. However,

energy depends on both power and time: E = P× t. To understand the total energy

consumption of an 802.11 interface, we must consider the power rates for each

state and the amount of time spent in each state.

The power behavior of several 802.11b interfaces has been studied through

high-resolution trace techniques (Ebert et al., 2002; Feeney and Nilsson, 2001).

These data are consistent with our own measurements (Dorsey and Siewiorek,

2002), and in some cases provide a more complete or precise picture of the dif-

ferent radio states. As with our own work, Feeney and Nilsson measured the Lu-

cent IEEE 802.11 WaveLAN PCMCIA interface. Ebert et al. studied the Aironet

PC4800 PCMCIA interface, which supported variable radiated power levels. Ta-

ble 2.1 shows the measured power rates for the entire interface in each of the pos-

sible radio states. For the Aironet device, the data for the 20mW radiated power

level are given, as this level is closest to the 15dBm (∼32mW) nominal rating for

the WaveLAN device (Lucent, 1998).2

These data show total interface power: the power drawn by all electronics in

2The maximum permitted output power is 1W in the United States, and 100mW in Europe
(IEEE, 1997). Transceivers for mobile applications typically radiate less than 50mW.
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Device Doze Idle Receive Transmit
Lucent WaveLAN 47.4mW 739mW 901mW 1.35W
Aironet PC4800 75mW 1.34W 1.4W 1.74W

Table 2.1: 802.11b total interface power states by radio state.

the radio interface. (They are measurements from the power rails of the PCMCIA

card itself.) While transmitting, total interface power is much greater than radiated

power. For the WaveLAN device,
TotalInterface (1.35W)

Radiated (32mW)
is more than 40:1. The ra-

tio is almost 90:1 for the PC4800. The majority of device energy consumption is not

being emitted onto the wireless medium. Instead, it is used to drive the firmware

processor, modem, RF converter, RF amplifier, and other electronic components.

In fact, many of these components are also needed to receive data, which explains

why receive power is 67–80% of transmit power.3

The least intuitive measurement concerns the idle state, in which the interface

is listening on the medium for new frames. The data show that idle power is com-

parable to receive power, and 55–77% of transmit power.4 Listening for new frames

requires many of the same baseband and RF components as frame reception, with

the possible exception of the firmware processor. Section 2.1.3 describes a method

by which these components can be disabled when the radio does not need to listen

for new frames. This doze state forms the basis for 802.11 power management.

The second element of interface energy consumption is the time spent in each

3High receive power is not peculiar to wireless LAN radios. The low-power CC1000 transceiver
(Chipcon, 2004) used in the Cricket location system (Smith et al., 2004) is an interesting example. At
its lowest radiated power level, total interface power in the receive state is actually 10–40% higher
than in transmit!

4(Dorsey and Siewiorek, 2002) measured idle power at 69% of transmit power.
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state. To understand the timing behavior of an 802.11 station, we present a detailed

timeline of directed data transmission. Consider a common traffic workload used

in ad hoc networking research: a Constant Bit Rate (CBR) application which gener-

ates 512-octet messages at an average rate of 4Hz. This workload might correspond

to a media application such as digital telephony. For simplicity, we ignore other

types of frame transmissions, such as the beacon management frames described

in Section 2.1.1.1. We focus on the traffic source, which sends directed data frames

to a neighboring station using the 802.11b 11Mbps PHY (IEEE, 1999).

As explained in Section 2.1, directed data transmissions are preceded by an

RTS-CTS handshake, and followed by an ACK. There are also wait states before,

during, and after the transmission procedure. Specifically, if the wireless medium

is busy when a frame becomes ready for transmission, the station sets a random

backoff timer. When the timer expires, the station samples the medium again to

see if it has become available. Once the medium has been free for a DCF interframe

space (DIFS), the transmitting station may send the RTS. Upon receiving the RTS,

the neighboring station waits for a short interframe space (SIFS), and sends the

CTS. The transmitting station then waits one SIFS before sending the Data frame,

and the neighbor again waits a SIFS before returning the ACK. Finally, the trans-

mitter waits one DIFS, and sets the random backoff timer again. The final random

backoff permits other contending nodes to obtain access to the medium.

When using a direct sequence spread spectrum PHY, a SIFS is 10µs and a
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DIFS is 50µs. The random backoff timer value is chosen according to U[0,CW]×

SlotTime. The contention window variable, CW, increases from 31 in ascending

powers of 2 (minus 1) every time a station retries a transmission. SlotTime is 20µs.

Although the nominal data rate associated with 802.11b is 11Mbps, most frames

are sent at a slower rate. The PHY Layer Convergence Protocol (PLCP) enables in-

teroperability of 802.11 stations which support different data rates. A 144-bit PLCP

preamble and a 48-bit PLCP header are prepended to every 802.11 frame. These

192 bits are always sent at 1Mbps. All control frames (e.g., RTS, CTS, ACK) are

sent at one of the rates in the BSS basic rate set. To ensure compatibility between

802.11 and 802.11b stations, this set typically contains the 1Mbps and 2Mbps rates.

Broadcast data frames are also sent at one of the basic rates, but directed data

frames may be sent at a higher rate supported by both sender and receiver, such

as 5.5Mbps or 11Mbps in the case of 802.11b. The basic and supported rate sets are

enumerated in the beacon frames periodically generated within the IBSS.

We can now compute the elapsed time t between the instant a station discovers

the medium to be free until the time it completes its directed data transmission.

In this example, 32 octets of header information have been appended to the 512-

octet application payload, for a total data payload of 544 octets. The resulting data

frame, with the MAC header and frame check sequence (FCS), is 4,768 bits long.
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t =DIFS +
PLCPLength (192 bits)

1Mbps
+

RTSLength (160 bits)
2Mbps

+

SIFS +
PLCPLength (192 bits)

1Mbps
+

CTSLength (112 bits)
2Mbps

+

SIFS +
PLCPLength (192 bits)

1Mbps
+

DataLength (4,768 bits)
11Mbps

+

SIFS +
PLCPLength (192 bits)

1Mbps
+

ACKLength (112 bits)
2Mbps

+ DIFS

Given the definitions of SIFS and DIFS above, t = 1.52ms. The sending station

spends 130µs in idle (8%), 496µs in receive (33%), and 897µs in transmit (59%). As

an aside, this example partly illustrates why the user data rate experienced with

802.11b is less than the “11Mbps” advertised. The 544-octet payload (by itself) sent

at 11Mbps only requires 396µs, yet the full transaction requires at least 3.8 times

that long. (This simplified analysis ignores backoff and contention time, which

adds even more to the total transmission time.) Reducing the data payload to a

single octet only reduces the total transaction time by a quarter, to 1.13ms. Also,

more than quadrupling the payload to the maximum of 2,312 octets only increases

transaction time by about 80%, to 2.81ms.

Figure 2.4 shows the timeline for the 512-octet application payload transmis-

sion. The power levels are taken from Feeney and Nilsson’s measurements of the

Lucent WaveLAN device. Time zero is the instant at which the sending station

finds the medium to be free. Following the ACK receipt, the sender waits a DIFS
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Figure 2.4: Power timeline for 802.11 directed data transmission.

before setting the random backoff timer. Integrating, we find that the total energy

consumed is 1.75mJ, with 1.21mJ (69%) consumed in the transmit state.

Consider an environment in which no Beacon management frames or other

transmissions occur. (This simplifies the analysis by ignoring contention delays

and transitions to the receive state for frames overheard by the station.) For the

4Hz CBR workload, the transaction illustrated by Figure 2.4 occurs every 250ms.

After the t = 1.52ms needed for the transaction have elapsed, the station then

spends the next 248.48ms in idle waiting for the next application message. During

this time, 184mJ are consumed, even though no frames are being exchanged. The total

energy cost for the entire 250ms period is 185mJ, only 0.7% of which was consumed

in the transmit state.
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Idle Receive Transmit
Power 739mW 901mW 1.35W
Time 249ms 496µs 897µs
Energy 184mJ 447µJ 1.21mJ

Table 2.2: Power, time, and energy per 250ms for 4Hz 512-octet CBR workload.

Table 2.2 summarizes the contributions of power and time to energy consump-

tion. Even though the transmit power rate is nearly twice that of the idle state, the

energy consumed by transmit is orders of magnitude less than idle. This is due to

the dominance of the idle state in time. We say that the idle state dominates device

energy consumption. The goal of power management should therefore be to re-

duce the amount of time spent in idle. Designs such as 802.11 power management

(§2.1.3) attempt to spend some of that time in a low-power doze state when the

interface is not actively exchanging data.

Suppose we doubled the work being done every 250ms; this might correspond

to running a second copy of the CBR application. To find energy consumption with

the new traffic flow added, we replace a t = 1.52ms idle interval (E = 1.12mJ) with

the transaction from Figure 2.4 (E = 1.75mJ). Table 2.3 shows that total energy con-

sumption over the 250ms period then rises from 185.38mJ to 186.01mJ, an increase

of 0.34%. The Table also shows how energy consumption changes when increasing

the number of flows from one to 10, one to 100, and one to 164. The 164-flow value

is provided as a limit, but is not practically achievable. It corresponds to the case

in which transactions occur back-to-back with no intervening random backoffs.

Table 2.3 provides a critical insight into the energy behavior of 802.11 interfaces.
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Flows Energy ∆-Energy
1 185.38mJ 0%
2 186.01mJ 0.34%

10 191.04mJ 3.1%
100 247.62mJ 34%
164 287.86mJ 55%

Table 2.3: Energy consumption per 250ms for additional CBR traffic flows.

It says that the energy cost of processing an additional traffic flow (with similar

characteristics) is marginal. That is, when doubling the number of application

packets processed, the total energy consumption does not double. In fact, as the

Table shows, it is never possible to double energy consumption under this power

model by adding additional flows. Rather, the additional cost of adding flow k + 1

to k existing flows is always less than 1%. We will return to the concept of marginal

energy cost later in the Chapter.

In summary, we have described a point of confusion in some research related

to the difference between power and energy. Using both our own measurements as

well as those from the literature, we have described the power behavior of popular

802.11 interfaces. In particular, the idle power rate for these interfaces is more than

half the transmit power rate. When we considered the dominant amount of time

spent by the interface in the idle state, we showed that idle also dominates energy

consumption. Finally, we showed that due to idle dominance, the energy cost of

incrementally adding similar traffic flows is marginal.
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2.1.3 IBSS Power Management

To address the high energy consumption associated with the idle state, 802.11 de-

fines an IBSS power management mode. IBSS power management allows stations

to place their transceivers in a low-power doze state. While dozing, stations can

neither transmit nor receive frames, since most of the transceiver electronics are

disabled. Periodically, stations rendezvous and, if traffic is pending, exchange

frames. The rendezvous period is the beacon interval described in Section 2.1.1.1.

2.1.3.1 ATIM Management Frames

In a power-managing IBSS, all stations wake from doze mode just before each

TBTT. At the TBTT, they execute the beacon generation algorithm, and remain

awake for a fixed length of time to exchange announcement traffic indication mes-

sage (ATIM) frames. The time following the TBTT in which ATIM frames may be

sent is known as the ATIM Window. As an example, the ATIM Window might

occupy the first 40 milliseconds of each 200-millisecond beacon interval.

A station transmits an ATIM frame during the ATIM Window if the station has

data frames ready to transmit. The station announces the addresses of every desti-

nation for which it will send data during the current beacon interval. A directed

ATIM is sent to each station to which unicast data will be transmitted. Directed

ATIM frames are acknowledged with an ACK control frame, but are not preceded

by an RTS-CTS handshake. Broadcast ATIM frames, like broadcast data frames,
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are not acknowledged, and are therefore less reliable. Data frames which become

available for transmission after the ATIM Window ends may be transmitted if their

destination address has been announced in the current interval. Otherwise, such

frames are buffered until after the next ATIM Window, in which their destination

addresses will be announced. ATIM transmission is depicted in Figure 2.5; control

and non-ATIM management frames have been omitted for clarity.

t

To: i To: j To: i To: j

To: i To: j To: k

Data Data

ATIM ATIM

ATIM Window

Figure 2.5: 802.11 ATIM frame transmission.

When a station receives an ATIM addressed to itself or the broadcast address,

it knows that it should be prepared to receive data messages in the current beacon

interval following the ATIM Window. When the ATIM Window ends, the station

remains awake for the remainder of the current interval to receive frames. (The

station may also send frames to any neighbor it believes to be awake, such as those

neighbors which transmitted ATIM frames.) If a station does not receive any ATIM

frames, and has no data messages of its own to transmit, it returns to doze mode

following the ATIM Window.
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2.1.3.2 IBSS Power Management Performance

The energy savings from using IBSS power management depend primarily on the

size of the ATIM Window and the offered traffic load. Let 0 < w ≤ 1 be the fraction

of the beacon interval occupied by the ATIM Window. Call Pdoze and Pidle the

power levels of the 802.11 doze and idle modes, with Pdoze < Pidle. The minimum

energy Emin consumed during a time t in which no control or data frames are

exchanged is:

Emin = (w Pidle + (1−w) Pdoze)× t + β(t)

The β(t) term captures the small amount of energy consumed in transmitting or

receiving beacon frames during t. For the purpose of computing a lower bound,

let β(t)→ 0. Using the WaveLAN measurements from Table 2.1 as an example, let

Pdoze = 47.4mW and Pidle = 739mW. Finally, let w =
ATIMWindow (40ms)

BeaconInterval (200ms)
= 1

5 .

The minimum energy consumption rate for a device using IBSS power manage-

ment is 186mW, a savings of 75%. Of course, a station cannot doze during an

interval in which it transmits or receives data, so the energy savings decrease as

communications activity increases. A station which transmits or receives data at

least once every w seconds would realize no savings at all.

The cost of these energy savings is latency. A data message which becomes

available for transmission during an interval in which the message’s destination

was not announced must be buffered until the end of the next ATIM Window. This

means that the worst-case delay for a data message is at least the beacon interval,
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corresponding to the case of a message that becomes available just after the end of

an ATIM Window. The average-case delay depends on traffic load; in a lightly-

loaded scenario, the expected latency is half the beacon interval. Section 2.2.2

shows how these delays accumulate in ad hoc networks of larger diameter.

2.2 Dynamic Source Routing

As mentioned in Section 2.1.1, the 802.11 IBSS is designed for environments in

which every station can hear every other station. In practice, such proximity be-

tween stations may not be practical. Depending on obstacles to signal propagation,

the range of an 802.11 transceiver may be as little as tens of meters. If stations are

willing to relay traffic for one another, then the communications range can be ef-

fectively extended. Stations participating in an ad hoc routing protocol become

nodes in a multihop ad hoc network. This Section describes one such protocol,

Dynamic Source Routing (Johnson and Maltz, 1996), or DSR.

DSR is an on-demand, or reactive, protocol. Unlike proactive routing proto-

cols, which constantly exchange local or global topology information, on-demand

protocols only do the work needed to service active traffic flows. This philosophy

makes on-demand protocols a good fit for power-managing networks, since there

is no fixed energy overhead associated with the periodic exchange of topology in-

formation. A power-managing node in a completely unladen DSR network would

have communications energy consumption Emin (§2.1.3.2).
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2.2.1 Source Routes, Route Discovery, and Route Maintenance

Traditional proactive algorithms such as distance vector or link state routing main-

tain routing tables at each node. When a message arrives at a routing node, the

routing table is consulted to select the next hop for the message, given its destina-

tion. For such a scheme to work, each routing node needs to have an up-to-date

view of the complete network topology.

In a source routing network, only traffic sources need to know about the sub-

topology containing routes to their active traffic sinks. Once a source knows a

route to a sink, it appends that source route to every message for that sink. To

deliver a message, a relay simply examines the source route, and transmits the

message to the next node listed in the route. DSR does not have distinguished

routing nodes; all nodes can source, relay, or sink traffic flows at any time.

As shown in Figure 2.6(a), a DSR traffic source first needs to identify a set of

one or more routes to the sinks of its active traffic flows. This Route Discovery

process consists of flooding the network with Route Request messages asking for

routes to a named destination. Route Requests are broadcast (Figure 2.6(b)); each

node (that is not the named destination) receiving a Route Request rebroadcasts it

if the particular Request has not been seen before. As each node rebroadcasts the

Request, it appends its own address to the Request. Nodes which know how to

reach the destination — either because they are the destination (Figure 2.6(c)), or

have a cached route to it — return a Route Reply message to the source. Route
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Replies are sent along the route which was formed as the Route Request was prop-

agated (Figure 2.6(d)). Nodes store the routes they learn through this process in a

route cache.

1

(a) 1 wants to discover 1 2.

1

(b) 1 broadcasts a Route Request.

1 2

(c) Route Request propagates to 2.

1 2

(d) Returning Route Reply to 1.

Figure 2.6: DSR Route Discovery.

Mobility is a problem for a source routing network, since links between nodes

may break. DSR provides a Route Maintenance facility to inform sources of link

breakage, and to salvage messages with broken source routes. A relay attempting

to forward a message across a broken link will be notified by the MAC layer that

the next hop is not available. This is an example of DSR exploiting the link-layer
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acknowledgments described in Section 2.1. The relay then sends a Route Error

message back to the source describing the broken link. The source, and any other

nodes which observe the Route Error, then remove all routes containing the broken

link from their cache. If the source has no more routes to a traffic sink after this

process, the source may repeat Route Discovery. Relays encountering a broken link

may attempt to salvage a message by checking their own route caches for routes to

the message’s destination, and forwarding the message along a new source route.

It is common, however, that a message encountering a broken link will simply be

dropped.

2.2.2 DSR and IBSS Power Management

When DSR is used with a non-power-managing 802.11 IBSS, the communications

energy consumption of a node is dominated by the idle power rate. This is because

nodes spend most of their time in idle waiting for communication to occur. Nodes

can use IBSS power management to reduce their energy consumption, but this

comes at a latency cost as described in Section 2.1.3.2. In fact, the latency costs of

using IBSS power management are worse in a multihop network than in the single-

hop environment for which 802.11 was designed.

DSR Route Discovery relies on the propagating broadcast of Route Request

messages. A power-managing 802.11 station should not attempt to send data

frames to an address which might not be awake, and this includes the broadcast
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address. Therefore, as broadcast Route Requests reach each new hop, they must

wait until that station announces the broadcast address in the next ATIM Window.

Figure 2.7 illustrates the problem with a timeline, not drawn to scale. Arrows in-

dicate frame transmission, and are labeled with the message type and destination.

For example, “RREQ: *” is a DSR Route Request destined to the broadcast address,

and “RREP: 2” is a Route Reply destined for address 2. For clarity, control and

non-ATIM management frames are omitted.
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Figure 2.7: Route Discovery using IBSS power management.

The example of Figure 2.7 illustrates the worst-case scenario. Several stations

are arranged in a line such that each can only communicate with its immediate

neighbors. Initially, all route and Address Resolution Protocol (Plummer, 1982), or

ARP, caches are empty, when DSR attempts to discover the route 1 4. DSR names

nodes using IP addresses, so an IP-to-MAC address translation must be available

in order to send unicast messages to any DSR node; ARP provides the translation

service. Because Route Replies are sent via unicast, nodes may have to perform an

ARP query prior to relaying a Reply. IBSS power management treats receipt of a
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management frame, such as an ATIM, as evidence that the sender is awake; this

is why the unicast ARP replies are transmitted immediately. The worst-case de-

lay for DSR to discover a route P with |P| − 1 hops is 3 (|P| − 1)× BeaconInterval.

At each hop, one beacon interval delay is incurred while waiting to propagate

the Route Request, and two more delays are added on the return trip for the

ARP exchange and transmission of the Route Reply. In this example, with a 200-

millisecond beacon interval, a Route Discovery process that should complete in

tens of milliseconds instead requires at least 1.8 seconds.

A similar latency problem affects application message delivery. Once a source

route has been discovered, application messages are relayed along the route using

a unicast transmission at each hop. The worst-case application message delivery

latency is (|P| − 1)× BeaconInterval. If more than one message is generated per

beacon interval, the average latency can be better than the worst case since multi-

ple messages can be sent in an interval following a single traffic announcement.

The final performance issue to discuss is fairness of energy distribution. In a

source routing network such as DSR, traffic sources determine which routes will

be used. The logic used by sources in choosing a route is private information,

meaning that it is opaque to any agent in the network other than the source. In

practice, this logic simply chooses from among the shortest routes known, but in

principle the logic could be arbitrary. We can say that sources have a preference for

shorter routes because of their lower latency or reduced probability of breakage.
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The problem is that the relays and sinks considered by a source have prefer-

ences as well. An energy-sensitive agent prefers not to be used for service too

often, because this reduces the energy savings gained through power manage-

ment. Other examples of agent preferences include sensitivities to congestion and

throughput. DSR provides no way to incorporate relay and sink preferences into

the choice of routes.

3

45

1

2

Figure 2.8: Choosing a source route.

In the example of Figure 2.8, source 1 knows the routes (1, 2, 3) and (1, 5, 4, 3).

Given its preference for short routes, the source will choose (1, 2, 3) for every mes-

sage to 3 until that route breaks. In a power-managing scenario, however, relay 2

will experience high energy consumption as it is continually prevented from en-

tering the doze state. Nodes 4 and 5, on the other hand, will have low energy

consumption approaching Emin.

A more sophisticated route selection method would take the energy concerns

of relay 2 into account. Eventually, 2 might become so unhappy about provid-

ing relay service that it makes more sense to reconfigure the system and use the

longer route through 4 and 5 instead. For this we need a method of aggregating
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node preferences in a way that balances self interest and social utility. Section 2.3

describes such a method which bears a remarkable similarity to the process DSR

already uses.

2.3 Combinatorial Auctions and Exchanges

A central insight of this thesis is that DSR implements a reverse auction. A reverse

auction consists of a buyer who wants to obtain some items at minimum cost,

and a set of sellers who provide the items. A familiar example is government

procurement, in which contracts are won by the “lowest bidder.” In DSR, the

traffic source is the buyer, and the relays and sinks are sellers. The “item” being

sold is an individual node’s service of forwarding or receiving messages.

In this Chapter, it is easiest to think of the auction as being held once for each

message sent by a traffic source. An item may be interpreted as the service of a

relay or sink to process an individual message. Chapter 4 introduces a different

concept for items, in which they represent a commitment by relays and sinks to be

available over a time interval to service an arbitrary number of messages.

Specifically, DSR is a combinatorial reverse auction (Sandholm et al., 2002).

The auction is combinatorial because only certain combinations of items are valuable.

For example, any combination of items that does not include the sink is valueless.

We can think of a route as being a bundle consisting of the relays and the sink on

that route. Complementarity, or synergy, exists between the items in a bundle.
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Stated differently, the value of the items in the bundle is superadditive, meaning

the value of the bundle is at least as much as the sum of the values of the con-

stituent items.

The auction forms described in this Section, and in the remainder of this thesis,

are all one-shot auctions. This means that agents independently submit sealed

bids, which are (conceptually) only visible to the auctioneer. The auctioneer de-

termines the winner or winners based only on those bids, and declares the results

once and for all. There is no iterative bidding process, such as in an ascending-

price auction. The one-shot interpretation is justifiable because DSR does not im-

plement any sort of sequential logic in choosing routes.

2.3.1 Combinatorial Reverse Auctions

Conceptually, we can think of the DSR auction as happening in one of two equiv-

alent ways. The first way is that relays and sinks individually offer to sell their

service to a buyer. The buyer then specifies which combinations of items it wants,

and selects the most affordable bundle. The other way is for the buyer to spec-

ify that it wants any bundle which includes the sink. A meta-agent then offers

bundles which each contain relays and the sink, and the buyer selects the most

affordable bundle. Both of these formulations are presented below.
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2.3.1.1 Bundled-Demand Combinatorial Reverse Auctions

For the first case, the auctioneer (buyer) knows a set of items M = {1, 2, . . . , m}

which correspond to a sink and relays found through Route Discovery. The buyer

specifies the set of bundles it wants U = {U1, U2, . . . , Ul}, where each bundle Uk =

{u1
k, u2

k, . . . , uv
k} contains items uk ∈ M representing a sink and zero or more relays

on a route to that sink. Sellers implicitly submit asks describing what they want to

sell: A = {A1, A2, . . . , An}, A j ⊆ M and |A j| = 1 (each agent can only sell its own

service). Asks in this environment are unit-price. The auctioneer labels the asks

A j winning (x j = 1) or losing (x j = 0) so as to minimize cost under the constraint

that the buyer receives all of the items in any one of its bundles:

min
Uk∈U

n

∑
j=1

x j s.t. ∑
j |A j={i}

x j = 1, i = u1
k, u2

k, . . . , uv
k , x j ∈ {0,1}

Because the asks are all unit-price, and each ask only offers one item, this is the

same as picking the shortest route from among several known routes — exactly

what DSR does. The constraint guarantees that all of the relays and the sink in a

route will be labeled winning. The fact that only the most affordable bundle (route)

is selected is an example of substitutability between the bundles. The value of

many bundles is never more than the value of a single bundle. This subadditivity

reflects the fact that a traffic source only needs one route to a sink at a time.
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2.3.1.2 Bundled-Supply Combinatorial Reverse Auctions

The second interpretation of DSR as a reverse auction uses a form more similar to

that in (Sandholm et al., 2002). Again, the items M = {1, 2, . . . , m} are the relays

and a sink. The buyer only specifies that it demands a bundle containing the sink

u ∈M. The relays and sink do not sell directly, but rather, meta-agents submit asks

A = {A1, A2, . . . , An} which combine the services of a bundle of nodes. An ask

A j = 〈(λ1
j , λ2

j , . . . , λm
j ), p j〉 contains a vector of offered items, where λk

j = 1 if k is

on the route, and λk
j = 0 otherwise. Since all routes include the sink u, λu

j ≡ 1. Asks

include a price p j =
m

∑
k=1

λk
j equal to the length of the route. The auctioneer then

labels the asks A j winning (x j = 1) or losing (x j = 0) so as to minimize cost under

the constraint that the buyer receives the item it demanded (namely, the sink):

min
n

∑
j=1

p j x j s.t.
n

∑
j=1

λu
j x j = 1, x j ∈ {0,1}

Since all bundles include the sink, the constraint says that the buyer receives ex-

actly one bundle representing a route to the sink. This is a case of no free disposal

with respect to the sink item, u, since the buyer is not willing to take additional

units of u. Given the composition of the supply bundles, this is the same as not

taking additional routes to u. The buyer may take additional items, however, since

the supply bundles generally contain a number of relay items in addition to u.

Asks are no longer strictly unit-price, but since the ask price is equal to the route
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length, cost minimization again selects the shortest route.

2.3.2 Combinatorial Exchanges

Section 2.3.1 presented formulations of DSR source route selection as a reverse auc-

tion. The forms implemented by DSR are restricted versions of the combinatorial

reverse auction, which is itself a special case of the combinatorial exchange. From

an economic standpoint, the restricted auction of DSR has several shortcomings:

1. Inexpressive pricing for sellers. In both reverse auction forms, relays and

sinks only contribute one unit each to the cost of a route. However, if ask

prices were general (p j ∈ R), sellers could indicate their individual willing-

ness to provide service. For example, a relay with a preference against service

could submit an ask with a large-magnitude price, decreasing the likelihood

that it will be part of the cost-minimizing route. Such a preference could be

based on energy goals, buffer and computational constraints, network con-

gestion, or other factors.

2. No unaffordable routes. The definition of the reverse auction is that the

buyer gets everything it wants. In the DSR interpretation, a source always

gets to use one of the routes it knows to a sink. If relays and sinks have a

strong preference against providing service, a designer may want to admit

the possibility of an unaffordable route. That is, sources could indicate how

much value they place on individual bundles of items, and if this value does
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not exceed the cost, the bundle (route) is unavailable for use.

3. Separate negotiations for each source-sink pair. Each traffic source con-

ducts a reverse auction for each of its active traffic sinks. When routes over-

lap, sellers negotiate independently with the separate buyers. This ignores

the possibility for complementarity between traffic flows. For example, a

relay could offer a discounted price if it were chosen to relay multiple con-

current flows. Such discounts reflect the marginal cost of energy for relay-

ing additional flows (§2.1.2), and provide an incentive for consolidating the

number of active relays.

We can address all of these concerns by extending the DSR route selection

method to implement a combinatorial exchange. In an exchange, sellers still sub-

mit asks, but buyers also submit bids describing what they want to buy and what

value they place on different combinations of items. Multiple buyers and sellers

can participate in the same exchange, and sellers can offer multiple units of their

service, one for each traffic flow they offer to service. Note that multiple buyers

will participate in a single exchange only when the intersection of their demanded

sets of relays and sinks is non-empty.

As with the reverse auction, the items M = {1, 2, . . . , m} are the services of the

relays and sinks. (A source can also serve as a relay or sink.) Agents submit bids

B = {B1, B2, . . . , Bn}, where a bid B j = 〈(λ1
j , λ2

j , . . . , λm
j ), p j〉 includes a vector of

item quantities λ j ∈ Λ : λi
j ∈ Z, and a scalar price for the whole bundle p j ∈ R. For
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each item k, the vector indicates the number of units an agent is willing to buy

(λk
j > 0) or sell (λk

j < 0). In the most general case, a bid can buy some items and sell

others. Due to the structure of this particular problem, bids either only buy, or only

sell items. Where the distinction is important, we will refer to B j with all λk
j ≥ 0

and p j ≥ 0 as “bids,” and B j with all λk
j ≤ 0 and p j < 0 as “asks.” Traffic sources

submit a bid for each route they want to use, while relays or sinks submit asks

indicating the number of flows for which they are willing to provide service. The

auctioneer labels the bids B j winning (x j = 1) or losing (x j = 0) so as to maximize

surplus, subject to a feasibility constraint:

max
n

∑
j=1

p j x j s.t.
n

∑
j=1

λi
j x j ≤ 0, i = 1, 2, . . . , m, x j ∈ {0,1}

The feasibility constraint simply says that agents cannot buy more units of an item

than are available for sale. The result of the surplus maximization is an allocation

λ∗ ∈ Λ that assigns items to agents as specified by the winning bids.

4

2

3

1

5

6

7

Figure 2.9: An exchange example.
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The example of Figure 2.9 shows two traffic sources with overlapping demand

sets. There are two traffic flows: 1 6 and 2 7. Node 1 knows the routes (1, 3, 6)

and (1, 4, 6), while node 2 knows the routes (2, 4, 7) and (2, 5, 7). The items are

M = {3, 4, 5, 6, 7}. Suppose the bids are as follows:

B1 = 〈(λ3
1 : 1, λ6

1 : 1), 3〉 1’s bid for (1, 3, 6)

B2 = 〈(λ4
2 : 1, λ6

2 : 1), 3〉 1’s bid for (1, 4, 6)

B3 = 〈(λ4
3 : 1, λ7

3 : 1), 2〉 2’s bid for (2, 4, 7)

B4 = 〈(λ5
4 : 1, λ7

4 : 1), 2〉 2’s bid for (2, 5, 7)

B5 = 〈(λ3
5 : −1), −0.9〉 3’s ask offering one unit of relay service

B6 = 〈(λ5
6 : −1), −1〉 5’s ask offering one unit of relay service

B7 = 〈(λ6
7 : −1), −1〉 6’s ask offering one unit of sink service

B8 = 〈(λ7
8 : −1), −1.1〉 7’s ask offering one unit of sink service

B9 = 〈(λ4
9 : −1), −1〉 4’s ask offering one unit of relay service

B10 = 〈(λ4
10 : −2), −1.5〉 4’s ask offering two units of relay service

Node 1 is indifferent between the two possible routes represented by B1 and B2,

and values them equally at price 3. Similarly, node 2 does not care which of B3 or

B4 wins. Note that node 4 has submitted two asks: B9 offers a price of −1 to relay

one flow, and B10 offers a price of−1.5 to relay both flows. The surplus-maximizing

solution assigns B2, B3, B7, B8, and B10 winning, with a surplus of
10

∑
j=1

p j x j = 1.4.
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One important way in which the exchange differs from the reverse auction has

to do with clearing: a winning combination of bids must satisfy
n

∑
j=1

p j x j ≥ 0. In

fact, no combination of winning bids can ever have a negative surplus, since the

auctioneer could do better by assigning all bids losing (x j = 0). In the reverse auc-

tion, one or more asks will always win; the only question is which combination

minimizes cost.

In the current example, suppose node 1 had not submitted any bids. Out of the

remaining bids {B3, B4, B5, B6, B7, B8, B9, B10}, no combination results in a posi-

tive surplus. Therefore, all bids are assigned losing. It is up to the system designer

to determine what should happen when a source does not obtain any of its re-

quested items. We say that such a source cannot afford any of its routes. One

possibility is that the source is prevented from sending messages to destinations

for which it has only unaffordable routes. Chapter 4 describes a design which uses

this approach.

A consequence of the clearing problem is that buyers must be careful about the

bid prices they submit. A bid price which is too low given the corresponding asks

for the demanded items runs the risk of not clearing. A bid price which is too high

may cause problems as well. In Section 2.3.1, we used price as a scalar measure of a

relay or sink’s preferences about providing service. In the exchange environment,

we extend price to become a means of accounting for the work done by nodes

in the network. When a relay or sink has a winning ask and provides service,
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it receives a payment from the exchange. The payment reflects the loss in value

experienced by the node when it provides service to the network. For an energy-

conserving node, the loss of value might be the loss of energy. For a memory- or

compute-limited node, it might mean the loss of buffer space or processor cycles. It

could even reflect the cost to user attention — at a sink, for example — when new

messages arrive which could divert the user from his present task (Kraut et al.,

2002). We can think of this payment as being made in an arbitrary-unit credit,

which is then spent when that node is a source and has winning bids. Payments

by winning sources reflect the value of the message delivery service — in energy

or some other sense — that they obtain from the relays and sink.

If there are restrictions on whether, or how much, a node can spend in deficit,

then each node has a motivation to accrue credit. For example, if a node cannot

bid more than its current credit balance, then a node with a low balance may not

be able to afford its routes. At the same time, a node with a sufficient balance does

not want to bid more than it has to, since paying for large bids may substantially

diminish that balance. Section 2.4 discusses strategic manipulation of bid prices

by buyers trying to pay less for their routes, or by sellers trying to receive more

payment for their service.

The actual implementation of credit is beyond the scope of this thesis. We are

concerned with methods for configuring ad hoc networks given preferences over

energy consumption. Credit is a means of enforcing an agreed-upon configura-
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tion. In practice, some sort of cryptographically secure instrument such as digital

coins (Ferguson, 1993; Ferguson, 1994) might be used to implement payments.

Chapter 3 describes existing work in the area of credit schemes for ad hoc networks

which might also be useful.

2.3.3 XOR Constraints

Section 2.3.1.1 introduced the idea of substitutability between bundles. In the DSR

environment, substitutability exists between routes, since a source only needs one

route at a time. Additionally, in the combinatorial exchange environment, a seller

offering multiple units of its service has substitutability between its own asks. In

the example of Figure 2.9, node 4 wants either its ask for one flow (B9) or its ask

for two flows (B10) to succeed, but not both.

Substitutability between bids can be expressed through the use of XOR con-

straints. Individual bids can be joined by exclusive-or (⊕), indicating at most one of

the bids in the⊕-term should win. The⊕-terms are joined by inclusive-or (+), indi-

cating that any combination of⊕-winners is acceptable. This OR-of-XORs bidding

language (Sandholm, 2002) allows the agents to be fully expressive with their bids

while keeping the bid representation compact. Using this language, the example

of Figure 2.9 would be expressed as:

(B1 ⊕ B2) + (B3 ⊕ B4) + B5 + B6 + B7 + B8 + (B9 ⊕ B10)
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2.4 Groves Mechanisms

The combinatorial exchange contains two basic problems: winner determination

and payment. Winner determination solves the revenue maximization problem of

Section 2.3.2 and identifies the winning bids. Payment specifies how much each

agent pays to the exchange when its bids win. This latter problem is especially

interesting if the agents in the exchange can strategically manipulate their bid

prices in order to improve their net utility. For example, a buyer might artificially

lower its bid price in order to pay less, or a seller might artificially raise its ask

price in order to be paid more. These behaviors are consistent with an agent trying

to build a positive credit balance in order to be able to afford routes.

Mechanism design is an area of game theory that studies how to solve op-

timization problems involving agents whose preferences over outcomes are pri-

vate. Section 2.3.2 presented methods for aggregating agent bids to select a con-

figuration of the ad hoc network. Bids can be thought of as reports of each agent’s

preferences over the final outcome. In this environment, the actual preferences

themselves are private information known only to each agent, and not publicly

observable. The exchange takes the reports as its inputs, not the private prefer-

ences directly. As such, agents can report preferences which are different from

their actual preferences, as in the case of a buyer submitting a low bid price.

The mechanism design problem is to elicit truthful reports from the agents.

This Section describes the Groves mechanisms, which improve the combinatorial
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exchange payment rule to cause the agents to report truthfully out of their own

self interest. A thorough introduction to mechanism design and its application

to exchanges is available in (Parkes et al., 2001), Chapter 2 of (Parkes, 2001), and

Chapter 23 of (Mas-Collel et al., 1995), from which much of this Section is taken.

2.4.1 Social Choice Functions

In the exchange interpretation of ad hoc networks, preferences are the value a traf-

fic source associates with a route, or the loss in value a relay or sink associates

with providing service. Each agent i = 1, 2, . . . , I (including buyers and sellers)

has a type θi ∈ Θi observable only by agent i. For an agent in the ad hoc network

environment, θi might include its knowledge of its own traffic sourcing behavior,

its history of relay service to the network, its model for how it consumes energy

while active, or its projections about future energy and communications needs.

It is difficult to talk about agent types in the ad hoc network environment with-

out reference to the past or the future. For example, saying that an agent’s type

is “high-volume traffic source” implies that the agent has sourced, or will source

many messages. This implies interdependence between runs of a route-selecting

combinatorial exchange: an agent’s history of winning and losing bids can affect

how much traffic it has offered. We are careful to assume the restrictions of a

static game, in which agents observe their types independently in each run of the

exchange, but do not reason about how they arrived at those types. A key advan-
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tage of this assumption is computational efficiency; agents do not have to model

past or future bidding behavior when deciding what they want in the current ex-

change. A dynamic game interpretation of the route selection problem, in which

agents learn about each other over time, is left to future work.

Given its own type, the agent can assign a scalar value to every possible allo-

cation of items using a valuation function vi : Λ×Θi → R. The values assigned

to different allocations λ ∈ Λ by vi(λ, θi) form a preference ordering over the al-

locations. An example of valuation might be a candidate relay’s level of happi-

ness with the allocation in which it is asked to provide service, given its history

of service to the network. Another might be a source’s relative happiness with the

allocation in which it receives the route P. We do not specify a valuation function

here, but do assume that each agent has such a function; Chapter 4 provides some

concrete valuation examples.

Define a social choice function f : Θ1 × Θ2 × · · · × ΘI → Λ which selects an

allocation λ ∈ Λ based on the agents’ types (θ1, θ2, . . . , θI). For a combinatorial

exchange, f (·) selects the surplus-maximizing feasible allocation of items λ∗ de-

scribed in Section 2.3.2. In some environments, the agents’ valuation functions are

taken to be common knowledge, so all that is needed to solve f (·) is the vector

of agent type values. With allocation-based choice functions such as auctions and

exchanges, it is common to view f (·) as operating on the agent valuation functions

themselves: f (v1( ·, θ1), v2( ·, θ2), . . . , vI( ·, θI)) = λ∗.
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The allocation λ∗ chosen by the combinatorial exchange using the valuation

functions is allocatively efficient:

∀λ ∈ Λ |
I

∑
i=1

vi(λ∗, θi) ≥
I

∑
i=1

vi(λ, θi)

Allocative efficiency is a desirable property for a social choice function to have; it

says that there is no allocation λ that all agents weakly prefer to λ∗, and that some

agent strictly prefers to λ∗:

6 ∃λ ∈ Λ | ∀ i . vi(λ, θi) ≥ vi(λ∗, θi) ∧ ∃ i . vi(λ, θi) > vi(λ∗, θi), λ 6= λ∗

This property, also known as Pareto optimality, means no agent can be made hap-

pier without making at least one other agent less happy.

The difficulty in implementing a social choice function lies in the fact that f (·)

cannot operate directly on the valuations vi( ·, θi). Agent types (and valuation func-

tions) are not publicly observable, so agents must submit reports about their val-

uations, which may be different from their actual valuations. Let v̂i(λ, θi) be the

valuation agent i reports that it associates with allocation λ. In the exchange envi-

ronment, valuation reports are expressed as bid prices. Specifically, bids are sam-

ples of v̂i(λ, θi) for the allocations λ agent i cares about: for bid B j submitted by

agent i, p j = v̂i(λ j, θi). An agent’s reported valuation for the surplus-maximizing

allocation λ∗ solved by the exchange is simply the sum of its winning bid prices.
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As explained earlier, agents have a specific motivation to report less value, or

more loss in value, in trying to accrue credit. When v̂i(λ, θi) 6= vi(λ, θi), it may be the

case that f (v̂1( ·, θ1), v̂2( ·, θ2), . . . , v̂I( ·, θI)) does not select the allocatively-efficient

choice of f (v1( ·, θ1), v2( ·, θ2), . . . , vI( ·, θI)). We say that the agents’ self interest

conflicts with the goal of the system designer to implement f (·). This self inter-

est follows from the common assumptions that the agents are utility maximizers,

and that the agents have quasilinear preferences. The quasilinear utility an agent

associates with allocation λ is its valuation for λ less its payment to the exchange

when that allocation is realized:

ui(λ, θi) = vi(λ, θi)− pi(λ)

Quasi-linear utility means that agent i is willing to pay any amount up to its

true valuation vi(λ, θi) in order to obtain the allocation λ. The formulation of utility

as a combination of value and payment leads to a corresponding formulation of the

social choice function. We adopt the shorthand θ = (v1( ·, θ1), v2( ·, θ2), . . . , vI( ·, θI))

to represent the input to the social choice function. Let λ(θ) ∈ Λ be the choice

of allocation selected by the function, such as the surplus-maximizing allocation

λ(θ) = λ∗ selected by the combinatorial exchange. Call pi(λ(θ)) ∈ R agent i’s pay-

ment when the allocation λ(θ) is chosen. The output of the social choice function
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f (·) then becomes:

f (θ) = (λ(θ), p1(λ(θ)), p2(λ(θ)), . . . , pI(λ(θ)))

Since the choice rule λ(·) and payment rules pi(·) are common knowledge, a utility-

maximizing agent can manipulate its input to those rules to (possibly) improve

its payment. Section 2.4.2 describes how an agent i can use strategy in choosing

its input v̂i(λ, θi) so as to maximize its individual utility. We then show how to

construct payment rules that remove the motivation for strategic manipulation.

2.4.2 Strategic Bidding

A classic example of strategic bidding illustrates the problem of self interest in the

exchange environment. In the first price sealed-bid auction, buyers simultane-

ously submit bids for an item. Recall that auctions are a special case of exchanges.

Formulated as an exchange, there are buyers i = 1, 2, . . . , I, and a seller, “agent 0,”

who derives no value from the item. In the first-price auction, the choice rule λ(θ)

assigns the item to the agent which reports that it values it the most. The payment

rule pi(λ(θ)) causes the winning buyer to pay the amount of its reported valuation.

In other words, the winner pays its bid price.
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Suppose there are two buyers, 1 and 2, and that the bids are as follows:

B0 = 〈(λ0 : −1), 0〉 Seller’s ask.

B1 = 〈(λ1 : 1), v̂1(λ1, θ1)〉 Buyer 1’s bid.

B2 = 〈(λ2 : 1), v̂2(λ2, θ2)〉 Buyer 2’s bid.

We assume that any allocation for which an agent does not specify a valuation is

irrelevant to that agent. For example, since buyer 1 submits no bids concerning

the allocation λ2 in which the item is assigned to buyer 2, v1(λ2, θ1) = 0. The choice

rule is completely specified as:

λ(θ) =


(λ0, λ1) if v̂1(λ1, θ1) ≥ v̂2(λ2, θ2)

(λ0, λ2) otherwise

The allocation (λ0, λ1), for example, assigns buyer 1’s bid winning (along with

the seller’s ask). This λ is chosen when 1’s valuation for the outcome in which 1

receives the item is at least as high as 2’s valuation for the outcome in which 2 re-

ceives the item. Both outcomes satisfy feasibility: ∑
j={0, 1}

λ j = 0 and ∑
j={0, 2}

λ j = 0.

The choice of outcome is based on surplus maximization; the allocation (λ0, λ1)

wins when ∑
j={0, 1}

p j ≥ ∑
j={0, 2}

p j. Every outcome beyond these two is either infea-

sible (more of the item is demanded than supplied) or yields less surplus (e.g.,

assigning only B0 winning, with surplus 0). The accompanying payment rule for
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the buyers is:

p1((λ0, λ1)) = v̂1(λ1, θ1) p1((λ0, λ2)) = 0

p2((λ0, λ1)) = 0 p2((λ0, λ2)) = v̂2(λ2, θ2)

The payment rules for the buyers simply say that a winning buyer pays its bid

price, while a losing buyer pays nothing. Using the quasilinear utility assumption,

we can enumerate the buyers’ net utilities for the possible outcomes:

λ(θ) = (λ0, λ1) λ(θ) = (λ0, λ2)

u1(λ(θ), θ1) v1(λ1, θ1)− v̂1(λ1, θ1) 0

u2(λ(θ), θ2) 0 v2(λ2, θ2)− v̂2(λ2, θ2)

When a buyer wins, its utility is determined by its reported valuation. A lower

reported value yields higher net utility. Lowering reported value also reduces the

likelihood that a buyer will win the auction. Let the shorthand ui, vi, and v̂i rep-

resent ui(λ(θ), θi), vi(λ(θ), θi), and v̂i(λ(θ), θi), respectively. We can summarize the

utility possibilities for buyer 1 as follows:

u1



< 0 if v̂1 > v1, v̂1 ≥ v̂2 (1 bids more than its true valuation, and wins)

≥ 0 if v̂1 ≤ v1, v̂1 ≥ v̂2 (1 bids at most its true valuation, and wins)

= 0 if v̂1 < v̂2 (1 loses)
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A symmetric analysis holds for buyer 2’s utility. Clearly, neither buyer should

ever bid more than its true valuation, since a winning bid will always result in

negative utility. However, the buyers should try to increase their utility by bidding

v̂i < vi. The problem a buyer must solve is to choose a v̂i that is not so low that its

bid loses.

When reporting its valuation for different allocations, a utility-maximizing agent

will use a strategy σi : Λ×Θi→ Σi. In game theory, strategy is the basic manifesta-

tion of agent choice. The strategies Σi are all of the possible actions agent i might

take in reporting a valuation, given its actual preferences. One strategy might be,

“bid exactly the true valuation,” σi(vi) = vi. Or, in the earlier example, if buyer 1

knows a probability distribution φ(v2) for the likely valuations of buyer 2, a strat-

egy might try to maximize expected utility: σ1(v1) = min
(
v1, Eφ(v2) [v2]

)
. If buyer 2

simultaneously uses an expected-utility-maximizing strategy to choose v̂2, then the

resulting reports form a Bayesian Nash equilibrium. In a Bayesian Nash equilib-

rium, each agent uses a strategy which maximizes its expected utility when the other

agents use their expected-utility-maximizing strategies.

The equilibrium is a solution concept for a game that determines what strate-

gies self-interested agents will use, given certain assumptions about their informa-

tion and reasoning capabilities. Let g : Σ1× Σ2× · · · × ΣI → Λ be the outcome func-

tion that chooses an allocation λ ∈ Λ based on the strategies used by the agents.

If, for all possible agent valuations vi, there exists an equilibrium strategy profile
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(σ∗
1(v1), σ∗

2(v2), . . . , σ∗
I (vI)) such that g(σ∗

1(v1), σ∗
2(v2), . . . , σ∗

I (vI)) = f (v1, v2, . . . , vI),

then g(·) implements social choice function f (·). Implementation is defined with

respect to a particular solution concept; for example, f (·) might be implementable

in Bayesian-Nash equilibria.

We can now define a mechanism Γ = (Σ1, Σ2, . . . , ΣI, g(·)) as the collection of

each agent’s possible strategies, and an outcome function g(·). A mechanism de-

fines the “rules of the game” by specifying the available strategies, and a procedure

by which an outcome is chosen based on those strategies. The goal of a mechanism

designer is to implement a social choice function f (·) based on actual agent pref-

erences, in spite of the agents’ strategies for reporting (or misreporting) their pref-

erences. For example, in the first price auction, the goal is to allocate the item to

the agent which truly values it the most, even though the agents have an incentive

to tamper with their valuation reports and “bid low.”

Let the shorthand σ−i(v−i) = (σ1(v1), . . . , σi−1(vi−1), σi+1(vi+1), . . . , σI(vI)) be the

strategies of agents other than i. Formally, the strategies (σ∗
1(v1), σ∗

2(v2), . . . , σ∗
I (vI))

are a Bayesian Nash equilibrium of the mechanism Γ if for all i and all θi ∈ Θi:

∀σ′
i ∈ Σi | Eφ(v−i)

[
ui
(
g(σ∗

i (vi), σ∗
−i(v−i)), θi

)
| θi
]
≥ Eφ(v−i)

[
ui
(
g(σ′

i(vi), σ∗
−i(v−i)), θi

)
| θi
]

This says that the agents choose the equilibrium strategies σ∗
i in order to maxi-

mize utility in expectation, given their beliefs about each other’s probable types.

Recall that in the ad hoc network environment, an agent’s type might encapsulate
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its knowledge of its own traffic behavior, its history of participation in the net-

work, or its communications and energy goals. It might be difficult for the agents

to construct useful probability distributions over these parameters for one another.

The first price auction is implementable in Bayesian Nash equilibria. This is a

fascinating result: when the agents use their equilibrium strategies, the auction still

assigns the item to the buyer who values it the most, even though the buyers are not

(necessarily) reporting their actual valuations! The equilibrium bidding strategy is

for each agent to bid the expected highest valuation of the other agents, while not

exceeding its own true valuation: σi(vi) = min
(

vi, max
j 6=i

Eφ(v j)
[
v j
])

. When all the

agents use this strategy, assuming they all know a correct distribution φ(·) for each

others’ preferences, the item will be allocated (in expectation) to the buyer with the

highest actual valuation.

Use of the Bayesian Nash equilibrium assumes that the agents have mutually

correct information about each others’ type and strategy distributions. In practice,

it is probably the case that the agents instead have asymmetric and incomplete

information about one another. One reason for this is that, in a mobile setting,

the set of agents that any individual agent can observe is constantly changing.

In addition, we are interested in minimizing the computational demands placed

on the agents. A solution concept which requires the agents to perform complex

statistical modeling of one another is not consistent with our goals.

Given these problems, the Bayesian Nash equilibrium is probably not appro-
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priate for the the ad hoc network environment. We would like a solution concept

in which an agent can choose its utility-maximizing strategy without having to

reason about what the other agents will do. Section 2.4.3 presents such a concept.

2.4.3 Dominant Strategy Equilibria and Strategy-Proofness

A stronger solution concept than the Bayesian Nash equilibrium is implementation

in dominant strategies. A strategy is weakly dominant for an agent if it gives at

least as much utility as any of its other strategies for all possible strategies the other

agents might use. The strategies σ∗ = (σ∗
1(v1), σ∗

2(v2), . . . , σ∗
I (vI)) are a dominant

strategy equilibrium of a mechanism Γ = (Σ1, Σ2, . . . , ΣI, g(·)) if for all i and all

θi ∈ Θi:

∀σ′
i ∈ Σi .∀σ−i ∈ Σ−i | ui

(
g(σ∗

i (vi), σ−i(v−i)), θi
)
≥ ui

(
g(σ′

i(vi), σ−i(v−i)), θi
)

In a dominant strategy equilibrium, an agent maximizes utility (not expected

utility) by using its dominant strategy, no matter what strategies the other agents

use. All dominant strategy equilibria are in fact Bayesian Nash equilibria, though

the converse is not true. If a social choice function f (·) can be implemented in

dominant strategies — in other words, if g(σ∗(θ)) = f (θ) — then it doesn’t matter if

the agents have incorrect information φ(·) about one another. This is good for the

mechanism designer, since if f (·) can be implemented in dominant strategies, then

it can be implemented even if the designer does not know φ(·).
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Not all social choice functions are implementable in dominant strategies. In

the special case of agents with quasilinear preferences (§2.4.1), it is possible to im-

plement auctions and exchanges. The Groves mechanisms (Groves, 1973) enable

implementation by restricting the payment rules pi(·) of a social choice function

f (θ) = (λ(θ), p1(λ(θ)), p2(λ(θ)), . . . , pI(λ(θ))). A Groves payment has the form:

pi,groves(λ∗(θ)) = −

[
∑
j 6=i

v̂ j(λ∗(θ), θ j)

]
+ hi(θ−i)

Agent i’s Groves payment is based on the reported valuations of the other agents

for the surplus-maximizing allocation λ∗(θ); and hi(·), a function that depends only

on the preferences of the other agents. In other words, hi(·) cannot depend on

agent i’s reported valuation. Later, we will give an example of hi(·).

When Groves payments are used, truth telling σi(vi) = vi is a dominant strat-

egy for the agents. The proof refers to the definition of allocative efficiency in-

troduced in Section 2.4.1. Let the shorthand λ∗(vi, v−i) = λ∗(vi( ·, θi), v−i( ·, θ−i)) =

λ∗(θ) be the surplus-maximizing allocation based on the agents’ true valuations.

Call λ∗(v̂i, v−i) = λ∗(v̂i( ·, θi), v−i( ·, θ−i)) the surplus-maximizing allocation when i

makes the announcement v̂i. For conciseness, we drop the type notation for agent

valuations, so that vi(λ∗(v̂i, v−i)) = vi(λ∗(v̂i, v−i), θi).

The proof (by contradiction) is as follows. Suppose that truth-telling were not

a dominant strategy for agent i. Then there must exist a vi, v̂i, and v−i such that i

strictly prefers the outcome in which it reports v̂i 6= vi. Using the definitions of
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quasilinear utility and the Groves payment rule:

ui(λ∗(v̂i, v−i)) > ui(λ∗(vi, v−i))

vi(λ∗(v̂i, v−i))− pi,groves(λ∗(v̂i, v−i)) > vi(λ∗(vi, v−i))− pi,groves(λ∗(vi, v−i))

vi(λ∗(v̂i, v−i)) +

[
∑
j 6=i

v j(λ∗(v̂i, v−i))

]
− hi(θ−i) > vi(λ∗(vi, v−i)) +

[
∑
j 6=i

v j(λ∗(vi, v−i))

]
− hi(θ−i)[

I

∑
j=1

v j(λ∗(v̂i, v−i))

]
− hi(θ−i) >

[
I

∑
j=1

v j(λ∗(vi, v−i))

]
− hi(θ−i)

I

∑
j=1

v j(λ∗(v̂i, v−i)) >
I

∑
j=1

v j(λ∗(vi, v−i))

I

∑
j=1

v j(λ) >
I

∑
j=1

v j(λ∗(θ)) contradicts allocative efficiency

Therefore, truth-telling must be a dominant strategy for i.

A social choice function f (·) for which truth-telling is a dominant strategy equi-

librium is said to be dominant strategy incentive compatible, or strategy-proof.

Strategy-proofness is a powerful concept for practical environments such as the

route-selecting exchange. It frees the agents from the game-theoretic complexity

of reasoning about a strategy to use in manipulating the exchange. This means the

agents do not need to know a distribution of each others’ types φ(·), and do not

have to compute an expected-utility-maximizing valuation report.

We have shown that, for agents with quasilinear preferences, it is possible to

implement a strategy-proof social choice function f (·) by using the Groves pay-

ment form. We still need to define the hi(θ−i) term in pi,groves(·). Let the notation
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λ∗
−i(θ−i) represent the surplus-maximizing allocation when agent i is removed from

the game. In an auction or exchange environment, this is the same as removing all

of agent i’s bids from consideration. The Clarke mechanism (Clarke, 1971) defines

hi(θ−i) as:

hi(θ−i) = ∑
j 6=i

v̂ j(λ∗
−i(θ−i), θ j)

In other words, this hi(θ−i) is the surplus that would be solved by the social choice

function if i did not exist. The complete payment rule is therefore:

pi,clarke(λ∗(θ)) = −

[
∑
j 6=i

v̂ j(λ∗(θ), θ j)

]
+

[
∑
j 6=i

v̂ j(λ∗
−i(θ−i), θ j)

]

One interpretation of the “Clarke tax” hi(θ−i) is that it causes agents to internalize

the externality their reported valuations impose on others. If agent i’s reported

valuation changes the chosen allocation from what would be efficient in i’s ab-

sence, then i pays an amount equal to the difference in surplus. On the other hand,

if including i’s reported valuation does not cause the efficient allocation to change,

then i pays nothing.

As an example, consider the two-buyer auction problem from Section 2.4.2.

When buyer 1 wins, buyer 2’s (implicit) reported valuation is v̂2((λ0, λ1), θ2) = 0.

If buyer 1 were removed from the auction, buyer 2 would become the winner, and

the efficient allocation would have surplus v̂2((λ0, λ2), θ2). Using Clarke payments,

this means that when buyer 1 wins, it pays the amount of buyer 2’s valuation! A
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symmetric analysis holds for buyer 2’s winning payment, and the payment rule is:

p1,clarke((λ0, λ1)) = v̂2(λ2, θ2) p1,clarke((λ0, λ2)) = 0

p2,clarke((λ0, λ1)) = 0 p2,clarke((λ0, λ2)) = v̂1(λ1, θ1)

This is the second price sealed-bid auction, so named because the winning

buyer pays the second-highest bid price. The second price auction, also known as

a Vickrey auction (Vickrey, 1961), is strategy-proof; a buyer maximizes utility by

always reporting its true valuation for allocations. Recall that in the first price

auction, an agent could benefit by reporting a valuation which was less than its

true valuation. This decreased the likelihood of winning, but when the agent did

win, its utility increased. By comparison, in the second price auction, reporting a

low valuation only decreases the likelihood of winning. The agent does not pay

less when it wins.

2.4.4 The Vickrey Clarke Groves Mechanism

We can now describe the general Vickrey Clarke Groves mechanism, or VCG

mechanism, for combinatorial exchanges. The VCG mechanism truthfully imple-

ments the surplus-maximizing (efficient) allocation choice λ∗ in dominant strate-

gies. It achieves this by using a Groves-Clarke payment rule, which we will rede-

fine in terms of a discount to each agent. Let V∗ =
I

∑
j=1

v̂ j(λ∗(θ), θ j) be the surplus
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of the surplus-maximizing allocation, and let V∗
−i = ∑

j 6=i
v̂ j(λ∗

−i(θ−i), θ j) be the sur-

plus of the surplus-maximizing allocation when i’s bids are removed. Define the

Vickrey discount to i as ∆i,vick = V∗ − V∗
−i. We can show that a Vickrey payment

in which an agent pays its reported valuation for an allocation less its Vickrey dis-

count is equivalent to the Groves-Clarke payment rule:

pi,clarke(λ∗(θ)) = −

[
∑
j 6=i

v̂ j(λ∗(θ), θ j)

]
+

[
∑
j 6=i

v̂ j(λ∗
−i(θ−i), θ j)

]

=

(
v̂i(λ∗(θ), θi)−

[
I

∑
j=1

v̂ j(λ∗(θ), θ j)

])
+

[
∑
j 6=i

v̂ j(λ∗
−i(θ−i), θ j)

]

= v̂i(λ∗(θ), θi)−V∗ + V∗
−i

pi,vick(λ∗(θ)) = v̂i(λ∗(θ), θi)− ∆i,vick

The Vickrey discount is always non-negative. This follows from the fact that

the surplus of the efficient allocation can never strictly increase by removing an

agent i. If such an increase were possible, the same greater surplus would also

be achievable by keeping i, but assigning all of its bids losing. Therefore, V∗ ≥ V∗
−i

always, and ∆i,vick ≥ 0 always.

We can use this fact to claim that the VCG mechanism is individual rational,

meaning that an agent’s expected utility from participation is non-negative. This is

a useful property for environments in which agent participation in the mechanism

is voluntary. It says that an agent’s utility will never strictly decrease as a result of

participation. In other words, a buyer will never pay more than its bid price for an
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allocation, and a seller will never be paid less than its ask price.

Unfortunately, the VCG mechanism is not budget balanced. Weak budget bal-

ance exists when
I

∑
i=1

pi,vick(λ(θ)) ≥ 0. That is, the mechanism must not pay more

to the agents than the agents pay to the mechanism. Stated in terms of discounts,

V∗ ≥
I

∑
i=1

∆i,vick. This result is a consequence of the Myerson-Satterthwaite impos-

sibility theorem (Myerson, 1983), which states that no mechanism can simultane-

ously be allocatively efficient, individual rational, and budget balanced.

Lack of budget balance is not a serious problem for the ad hoc network envi-

ronment; it simply restricts what kinds of payment instruments can be used. For

example, digital coins will probably not be a good choice, since the auctioneer

would need to be able to “print money” in order to supply the discounts. The abil-

ity of the auctioneer to pay out more than it takes in is the only constraint we place

on a money or credit system in this thesis.

We are now prepared to revisit the combinatorial exchange route selection ex-

ample of Figure 2.9 on page 42 and compute Vickrey payments. In the example,

the surplus-maximizing combination of bids was B2, B3, B7, B8, and B10, with a

combined surplus of V∗ = 1.4. In the VCG mechanism, each agent i will pay its

winning bid price discounted by ∆i,vick. The way the discounts are computed is by

solving a series of smaller exchanges with each agent removed in turn. This in-

creases the computational complexity of the mechanism; in the worst case, with I

agents, I + 1 separate winner determination problem must be solved. We can take
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advantage of the fact that the discount to an agent with only losing bids is zero,

and only solve smaller exchanges for each winning agent.

For example, to compute the payment agent 1 makes after its bid B2 is found

winning, we compute its Vickrey discount ∆i,vick = V∗ − V∗
−1. After removing all

of 1’s bids fromB, we solve a smaller exchange: B−1 = {B3, B4, B5, B6, B7, B8, B9, B10}.

No combination of the bids in B−1 yields a positive surplus, so no bids are as-

signed winning and V∗
−1 = 0. Agent 1’s reported valuation for the original surplus-

maximizing allocation λ∗ is simply the sum of its winning bid prices. Since B2 was

agent 1’s only winning bid, v̂1(λ∗) = p2 = 3. Therefore, agent 1’s Vickrey payment

is p1,vick(λ∗) = v̂1(λ∗)−∆1 = 3− 1.4 = 1.6. The remaining agent payments are com-

puted in a similar fashion:

p2,vick(λ∗) = 2− (1.4− 1.1) = 1.7

p4,vick(λ∗) = −1.5− (1.4− 1.1) = − 1.8

p6,vick(λ∗) = −1− (1.4− 0) = − 2.4

p7,vick(λ∗) = −1.1− (1.4− 1.1) = − 1.4

p3,vick(λ∗) = 0

p5,vick(λ∗) = 0

Like agent 1, agent 6 receives a large Vickrey discount because with the flow

1 6 unavailable, agent 2 cannot afford any of the routes to 7, resulting in a zero
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surplus. Note that buyers pay less than their bid prices, sellers are paid more than

their ask prices, and net payments to the mechanism are negative, at −2.3. We can

define the mechanism payment ratio, R, to characterize how much “money” the

VCG mechanism loses relative to the maximal surplus:

R = ∑I
i=1 pi,vick(λ∗)

V∗

In this example, R =
−2.3
1.4

= −1.64. The mechanism does not collect any of the

surplus indicated by the prices of the winning bids and asks. In fact, for every

unit of surplus indicated, the mechanism must pay out more than one unit to the

agents. The fact that R < 0 in this example is evidence that the VCG mechanism is

not budget balanced.

2.4.5 Optimal Solutions and Strategy-Proofness

The winner determination problem for combinatorial auctions and exchanges is

NP-complete. In principle, each of the 2|B| combinations of bids must be examined

in order to find the one which maximizes surplus. Chapter 4 describes how this

complexity can be managed in practice using heuristic search. Approximations

to the optimal λ(·) which are more computationally feasible, such as greedy meth-

ods (Lehmann et al., 1999), have been studied. These methods sacrifice strategy-

proofness, and incent the agents to misreport their preferences in order to “help”

the approximation algorithm reach a better allocation (Nisan and Ronen, 2000).
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The design of this thesis is based on an optimal mechanism. That is, not only

do we solve the winner determination problem optimally, we have formulated

the exchange itself in a way that leads to an optimal allocation based on truthful

agent reports. Specifically, as explained in Section 2.3.2, we require that buyers

whose demand sets overlap participate in a single exchange. This requirement

allows sellers to express complementarity between flows by submitting multi-

unit asks. The prices of these asks reflect the marginal energy cost of additional

flows, described in Section 2.1.2.

B
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3

6

4

2

5

7

1

4

Figure 2.10: Solving with separate exchanges.

To see how this requirement helps, suppose the example from Section 2.3.2

were solved using a separate exchange for each traffic flow. This new configuration

is illustrated in Figure 2.10. The separate exchanges A and B can be solved faster

(though their solution is stillNP-complete) because they involve smaller numbers

of bids. This method, though easier to compute, yields a suboptimal solution. In

the example of Figure 2.10, the problem arises because agent 4 cannot express the
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complementarity that exists if it wins in both exchanges.

The marginal energy cost of additional flows says, given that a relay or sink is

already providing service for k flows, adding flow k + 1 only fractionally increases

energy consumption. When a relay or sink reports its loss in value to the mecha-

nism in the form of an ask, it must be able to express these marginal energy costs.

When overlapping demand sets are resolved through the use of a single exchange,

relays express marginal cost relationships through multi-unit asks. In the original

example, agent 4 fully expressed its costs by announcing a price of −1 to relay one

flow, but only−1.5 to relay both flows. This reflects the fact that the energy to relay

the second flow, given the first, is fractional.

When separate exchanges are used, agent 4 can only report its costs for the in-

dividual flows separately. It cannot describe its costs under one exchange based

on the solution of another, since the exchanges are solved independently. In other

words, agent 4 cannot report to exchange A, “my costs are p, but if I win in ex-

change B, I can offer you a better price.” This leads to an inefficient solution in

two cases. In the first, agent 4’s single-flow asks might win in both exchanges. This

essentially “overcharges” the mechanism, since 4’s true costs to relay two flows

are less than twice the cost of relaying one flow. In other words, the surplus of this

solution could have been greater had 4 been able to express its actual, lesser costs

using multi-unit asks. The other case occurs when 4 loses in one or both exchanges.

By submitting separate one-flow asks, agent 4 appears less affordable than it actu-
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ally is, so its asks may not maximize surplus. If multi-unit asks were available, the

mechanism might have found that surplus increased by using 4 for multiple flows.

We can distribute the bids B from the earlier example among the smaller ex-

changes A and B. Exchange A contains the bids and asks relevant to 1 6:

B1 = 〈(λ3
1 : 1, λ6

1 : 1), 3〉 B2 = 〈(λ4
2 : 1, λ6

2 : 1), 3〉

B5 = 〈(λ3
5 : −1), −0.9〉 B7 = 〈(λ6

7 : −1), −1〉 B9 = 〈(λ4
9 : −1), −1〉

Exchange B contains the bids and asks for 2 7:

B3 = 〈(λ4
3 : 1, λ7

3 : 1), 2〉 B4 = 〈(λ5
4 : 1, λ7

4 : 1), 2〉

B6 = 〈(λ5
6 : −1), −1〉 B8 = 〈(λ7

8 : −1), −1.1〉 B11 = 〈(λ4
11 : −1), −1〉

Agent 4 submits an ask to relay one flow to both exchanges. To reinforce the

notion that these asks are distinct, we have named agent 4’s ask B11 in exchange B.

Note that agent 4’s ask to relay two flows, B10 in the original example, does not

appear here. The solution of exchange A cannot take into account possible overlap

with exchange B, and vice versa.

The surplus maximizing combination of the bids and asks in exchange A as-

signs B1, B5, and B7 winning. This corresponds to the route (1,3,6), with a surplus

of V∗
A = 1.1. No combination of the bids and asks in exchange B yields a positive

surplus. No bids are assigned winning, and V∗
B = 0. The total surplus found by
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the mechanism using separate exchanges, V∗
A + V∗

B = 1.1, is less than the surplus of

the single exchange, V∗ = 1.4. This example shows that using separate exchanges

in our environment yields a suboptimal solution.

We can now show that this suboptimal solution incents untruthful reporting

by the agents. Suppose that after experimenting with the mechanism, agent 4 finds

that submitting one-flow asks with price−0.75 to each exchange results in a better

outcome. In other words, let p′9 = p′11 =−0.75. In exchange A, route (1,4,6) would

be chosen with surplus V∗
A = 1.25, and in exchange B, route (2,4,7) would be cho-

sen with V∗
B = 0.15. Note that V∗

A + V∗
B = 1.4, which is exactly the optimal result. By

lying to the mechanism, agent 4 improves its own utility and the quality of the

overall solution.

Of course, this improvement is contingent on the reports of the other agents. If

one, but not both, of agent 4’s asks wins, agent 4’s net utility could be negative (un-

less its Vickrey discount ∆4,vick is sufficiently large), breaking individual rational-

ity. Agent 4 cannot guarantee non-negative utility when it lies to the mechanism.

When it knows a distribution φ(·) of the other agents’ types, it may obtain non-

negative utility in expectation. Our goal in pursuing implementation in dominant

strategies was to free the agents from having to reason about potentially advan-

tageous manipulations. Using suboptimal solutions, the mechanism is no longer

dominant strategy incentive compatible. In other words, it is not strategy-proof.

Our purpose in examining the rôle of suboptimal solutions is to argue that a
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single-exchange solution for overlapping routes is necessary to ensure strategy-

proofness. The use of separate exchanges is attractive for a variety of engineer-

ing reasons. As noted, the computational costs of winner determination may be

reduced. The communications overhead of bid submission in a distributed en-

vironment may improve, as well. However, any solution that does not optimally

account for energy complementarity at overlap nodes will fail to ensure truthful

reporting by the agents.

2.5 Summary

This Chapter presented the four basic technologies underlying this thesis. We be-

gan by describing some of the control and management features of the IEEE 802.11

wireless LAN standard. The dominance of the idle state in the energy profile of an

802.11 transceiver was introduced, followed by a power management scheme to

reduce the impact of high idle power.

Section 2.2 presented the basic features of Dynamic Source Routing, an on de-

mand source routing protocol for multihop ad hoc networks. We showed that the

802.11 IBSS power management design introduces high latency to the route dis-

covery process, as well as to the delivery of application messages. We also argued

that the source-oriented route selection method could lead to unfair energy con-

sumption among relays. We proposed that an improved route selection process

would take into account the preferences of relays and sinks.
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A main insight of this thesis is our interpretation of DSR route selection as a

combinatorial reverse auction. We developed two forms of the reverse auction

which cast the traffic source as auctioneer, and the relays and sink as sellers. The

DSR auction is restrictive in the sense that it offers inexpressive pricing for sellers,

and lacks the concept of an unaffordable route. Further, it misses opportunities to

consolidate the set of active network nodes by holding independent auctions for

each source-sink pair. We proposed a solution to these problems by generalizing

route selection using combinatorial exchanges, which are allocatively efficient.

The combinatorial exchange formulation uses credit to account for the work

done by network nodes. Relays and sinks accrue credit when providing their ser-

vices, which reflects the loss in value they experience in terms of energy, buffer

space, or even user attention. Traffic sources need to spend credit in order to use

their routes, reflecting the gain in value they experience when their messages are

delivered. When network agents have quasilinear preferences, meaning that their

utility is a function of their happiness about a network configuration less their

payment to realize that configuration, there is an incentive to misreport bid prices.

We presented the Groves mechanisms, a game-theoretic instrument which shows

how to constrain payment rules so as to make bidding strategy-proof. A Groves-

based combinatorial exchange was shown to be allocatively efficient, individual

rational, and strategy-proof, but not budget balanced. Finally, we showed that

suboptimal mechanism solutions conflict with strategy-proofness.



Chapter 3

Related Work

This thesis focuses on the use of interaction mechanisms to coordinate power man-

agement among the nodes in an ad hoc network. The underlying assumption of

the research is that power management should reduce the amount of time ra-

dio transceivers spend in the idle state. This Chapter briefly presents prior work

which assumed that the transmit power rate must be optimized. Next, approaches

to idle-state power management are described that employ out-of-band signaling.

The bulk of this Chapter covers idle-state power management which uses infor-

mation from higher protocol layers to control power mode transitions. Credit-

and reputation-based techniques are presented which enforce behaviors in coordi-

nated ad hoc networks. Finally, we conclude with theoretical work on the use of

economics and mechanism design in networks of self-interested nodes.

Figure 3.1 shows the relationship between this thesis research and previous

73
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Figure 3.1: Taxonomy of related work.

work. The multihop power management design presented in Chapter 4 is first

and foremost a method for controlling the energy consumption of nodes in an ad

hoc network. By using combinatorial exchanges to negotiate over sources, relays,

and sinks, our work leverages tools from the field of economics. Finally, enforce-

ment schemes such as credit protocols are complementary to this work, in that
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they could be used to ensure that nodes follow their negotiated agreements. The

following Sections describe these areas of related work in more detail.

3.1 Energy Performance

Most energy-related research in the area of mobile networking studies the prob-

lem of improving node energy consumption without degrading communications

performance too much. This work falls primarily into two categories: efforts to re-

duce transmitter power, and efforts to manage the energy costs of high idle-state

power. As explained in Section 3.1.1, the former type could be used in conjunction

with the present research, but we focus on idle energy because of its dominance in

802.11 radios. Within the set of designs that attempt to reduce the energy costs of

the idle state, there are two main approaches. The first, which adds hardware and

spectrum complexity by using a companion radio, is described in Section 3.1.2.

The second approach, which the work of this thesis adopts, uses information from

higher protocol layers to improve the performance of low-level power manage-

ment features. These cross-layer designs are detailed in Section 3.1.3.

3.1.1 Transmit Power Control

Intuitively, energy consumption by a radio transceiver depends on how many bits

that transceiver sends or receives. In addition to the number of bits, the radiated

power level used for transmission determines coverage radius of the transmit-
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ter. For example, as approximations, the inverse-square or inverse-fourth-power

rules relating transmission power and distance are often used. As a result, many

researchers have sought to manage energy consumption in a wireless ad hoc net-

work by adjusting transmitter radiated power.

A change in radiated power can change the network topology. Increasing ra-

diated power may increase connectivity, and create multihop paths with fewer

hops. Decreasing radiated power may reduce interference between transmitters.

In recent years, there has been great interest in studying the interaction between

topology and radiated power (Banerjee and Misra, 2002; Lloyd et al., 2002; Čagalj

et al., 2002; Cruz and Santhanam, 2003; Kawadia and Kumar, 2003; Zussman and

Segall, 2003).

Transmitter power control methods are orthogonal to the approaches described

in this thesis. The present research is founded on the observation that, for spread-

spectrum radios as IEEE 802.11 transceivers, energy consumption in idle state is

dominant, and that radiated power has second-order impact. Transmit power

schemes may be more appropriate for low-power radios such as those found in

sensor networks. Also, such methods could be used in conjunction with idle-state

management designs for topology or interference control. For example, in 802.11

radios, actual radiated power (typically below 50mW) is smaller by an order of

magnitude than total radio transceiver power (typically more than 1W). Transmit

power could be varied over the range permitted by the 802.11 specification and
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not interfere with power management schemes such as the one presented in this

thesis.

3.1.2 Paging Channels

As explained in Section 2.1.3.2, timer-based rendezvous power management trades

off communications latency for idle-state energy savings. This thesis describes al-

gorithmic methods that nodes may use to coordinate themselves in order to re-

duce this latency. A different approach, which substitutes hardware and spectrum

complexity for coordination or timer complexity, is to use an out-of-band paging

channel. Section 3.1.2.1 describes a design which pairs an 802.11b radio with a

low-power paging radio to coordinate power management in infrastructure net-

works. Section 3.1.2.2 uses two identical radios, but operates the paging radio on

a low duty cycle.

3.1.2.1 Wake on Wireless

The goal of Wake on Wireless (Shih et al., 2002) is to use a low-power control

channel to notify wireless devices that they should wake up their 802.11b radios

and receive messages. Using a PIC microcontroller and 19.2kbps 915MHz radio,

which together draw less than 10mW during active use, a mobile host listens for

power-on messages. These messages are generated by proxy hosts attached to

the wired infrastructure LAN. Proxies receive commands from network presence
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servers, which act as intermediaries between “caller” and “callee” nodes.

Using an iPAQ mobile node, the authors were able to increase battery lifetime

from 10 hours to 14 hours under a telephony workload. This is a 40% improvement

over simply using the 802.11b radio in infrastructure power management mode.

Countering these gains are the cost of the extra radio electronics on the mobile

node and in the infrastructure. Because the low-power radios have a short range,

a large number of transceivers must be installed on a site.

3.1.2.2 STEM

Rather than use a paging channel radio with low energy consumption, (Schurgers

et al., 2002) uses a radio with a low duty cycle. In a multihop sensor network envi-

ronment, Sparse Topology and Energy Management (STEM) places two identical

radios at each sensor node. One radio controls the wakeup plane; periodically,

nodes activate their wakeup plane radio to listen for wakeup messages. If a node

receives a wakeup message, it then activates a data plane radio to handle the ac-

tual data exchange. The authors argue for a dual-radio (dual-frequency) design

over single-channel design — such as 802.11 — in order to reduce wakeup mes-

sage collisions. By combining dual radios with Geographical Adaptive Fidelity,

described in Section 3.1.3.3, the authors report a 90% energy savings in simulation.

The authors acknowledge that this design trades off energy for latency; in this re-

gard, STEM seems to have all of the latency problems of an 802.11 ad hoc network

(§2.2.2), on top of the complexity of a redundant radio.



CHAPTER 3. RELATED WORK 79

3.1.3 Power Management Across Layers

The most promising architectures for power management in multihop networks

seem to be those in which power state transitions (e.g., from doze to active) at the

MAC layer are governed by events at higher layers in the network protocol stack.

Nodes which are not required for the delivery of messages should be permitted to

use aggressive power management techniques. Nodes which are needed to service

traffic flows should trade off energy savings for low-latency delivery performance.

By using higher-layer information about the rôle of a node in the multihop net-

work, a power management scheme can more appropriately configure the power

mode of the underlying transceiver.

This Section presents several recent designs which use higher-layer knowledge,

either of topology or communications activity, to control power management. In-

terestingly, the designs which focus on topology management seem to ignore activ-

ity. These designs elect a subset of nodes to stay in high-power, high-performance

states regardless of the traffic level in the network. These proactive designs gener-

ally achieve good delivery latency at the cost of potentially high worst-case node

energy consumption. On the other hand, the designs which use message activity

to stimulate power mode transitions generally do not consider the broader net-

work topology. These designs do not permit optimizations that require a wide

view of the network, such as optimizing the number of nodes which are active for

message relaying. Such on-demand approaches may waste less energy than proac-
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tive schemes, since the only nodes which operate in high-power modes are those

needed to support active traffic flows. One tradeoff is that the latency of waking

up the necessary relays may be high. Another is that, since node rôles are not

negotiated, it is possible for some nodes to experience degenerately high energy

consumption.

The following five designs are presented in chronological order of publication.

Sections 3.1.3.1, 3.1.3.2, and 3.1.3.5 describe on-demand power management ap-

proaches, while Sections 3.1.3.3 and 3.1.3.4 are proactive.

3.1.3.1 BECA

The Basic Energy-Conserving Algorithm, or BECA (Xu et al., 2000), uses a timer-

driven state machine to turn the radio on and off. (BECA, and the related designs

in Sections 3.1.3.2 and 3.1.3.3, do not use MAC power management; they simply

turn off the radio.) BECA requires the underlying routing protocol to retry routing

requests, and permits nodes to turn off their radios for some multiple of this retry

interval. Nodes periodically wake and listen for traffic; if none arrives during a

retry interval, the node returns to sleep. If the node receives a routing request and

participates in a route, or has traffic of its own to send, it remains awake until some

time after the activity ceases.

Using the ns network simulator (Fall and Varadhan, 1998), the designers ex-

tended the Ad hoc On-Demand Distance Vector routing protocol (Perkins and

Royer, 1999; Perkins et al., 2003), AODV, to support BECA. Route setup latency
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increases by as much as two orders of magnitude when using BECA relative to un-

modified AODV. Energy consumption improves by 35%–40%, and network life-

time (defined as the time at which all nodes have exhausted their energy reserves)

increases by 20%.

3.1.3.2 AFECA

A close relative of BECA is the Adaptive Fidelity Energy-Conserving Algorithm,

or AFECA (Xu et al., 2000), which is an optimization to the timing of the BECA

state machine. AFECA takes advantage of route redundancy in dense networks

to increase sleep time when other route-equivalent nodes are nearby. Before go-

ing to sleep, an AFECA node passively eavesdrops on its neighbors to generate

an estimate of their number, and uses this estimate to scale a randomized sleep

duration.

Again simulating in ns with AODV, AFECA shows a 2–5% improvement in per-

node energy consumption relative to BECA. Because AFECA may choose longer

sleep times than BECA, route setup latency increases by as much as a factor of

five. AFECA shows a clear improvement over BECA in terms of network lifetime,

where AFECA improves longevity by 55% over an unmodified AODV network.

AFECA is better able to exploit density in the network and can more aggressively

power off redundant nodes.
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3.1.3.3 Geographical Adaptive Fidelity

Geographical Adaptive Fidelity (Xu et al., 2001), GAF, replaces the neighborhood

density estimation from AFECA with explicit location data, such as from GPS. GAF

divides the physical space over which the network operates into virtual grids,

where each node belongs to at most one grid. The size of each grid is a function

of radio range, such that all nodes in a grid are within the transmission radius of

all nodes in every adjacent grid. Within a grid, a node ranking process determines

which nodes can sleep and which must stay active to support the routing protocol.

The ranking rules attempt to create grids with only one active node; already-active

nodes outrank inactive nodes, ties are broken first by estimated time remaining in

the active state, and then by node identifier. There is some flexibility in estimating

the active time remaining. A conservative estimate — say, projecting activity until

the battery is exhausted — results in a situation where each node remains active

until it expires, then is replaced by another. The designers of GAF choose an es-

timate of half the remaining battery lifetime in their experiments; thus, an active

node consumes half of its energy before being replaced.

For high node mobility speeds and long pause times between movements, GAF

is shown to consume up to 40% less energy per node (on average) than an un-

modified on-demand routing protocol. With no pause between movements, these

savings can increase to 50–60%. There is some question as to how sleep mode was

treated in the authors’ ns simulations. The energy model is based off of measure-
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ments reported for a pre-802.11 transceiver (Stemm and Katz, 1997), with a 25mW

power value for sleep mode. This seems to suggest the use of something like

802.11 power management, rather than simply turning off the radio as in BECA

or AFECA. The authors do not mention an implementation of 802.11 Power Man-

agement in their simulator, however. In any case, the power-cycling state machine

of GAF is clearly descendant from BECA and AFECA, which were designed for

the case of no useful underlying power management.

GAF transitions are not dependent on whether a node is currently being used

to relay messages. As such, it is the responsibility of the routing protocol to deal

with unexpected route breaks resulting from the GAF ranking procedure. Con-

versely, even in a completely idle network, GAF will cause some subset of nodes

to remain active at all times. In this sense, GAF uses information about the local

topology, but not information about communications activity to determine power

state transitions.

3.1.3.4 Span

Span (Chen et al., 2001) is a contemporary of GAF, but does not make such explicit

use of geographic information, and takes better advantage of lower-level power

management. Although all Span nodes can send and receive messages at any time,

only an elected subset must serve as relays. This subset is a forwarding back-

bone, and the members of this set are known as coordinators. Span attempts to

choose a minimal set of coordinators such that all nodes are within range of at least



CHAPTER 3. RELATED WORK 84

one coordinator; this ensures connectivity. For performance reasons, coordinators

do not operate in power management mode, although non-coordinators may. A

non-coordinator node decides to try and become a coordinator if it discovers two

neighbors who cannot reach each other through zero, one, or two coordinators. In

the case where multiple equivalent nodes simultaneously attempt to become coor-

dinators, Span attempts to ensure that not too many redundant nodes succeed. To

achieve this, a randomized backoff is applied to their coordinator announcement

messages; after the first few announcements are heard, the remaining candidates

should decide that their participation is no longer needed. This backoff is scaled

by, among other things, the number of neighbors a node senses, and a linear func-

tion of the energy remaining at a node. This algorithm tends to rotate the rôle of

coordinator among the all network nodes, but in the case of “bridge” nodes which

join connected components of the network, such nodes will always be pressed into

service.

The authors define network lifetime as the time from initialization to the time

when fewer than 90% of messages can be delivered. Using ns simulation with

greedy geographic forwarding, Span doubles network lifetime in simulation over

an unmodified ad hoc network. Latency using Span is within a factor of two to four

of 802.11 with no power management. For comparison, latency with 802.11 IBSS

power management is shown to be two orders of magnitude larger than without

power management. As with GAF, there is always a set of coordinator nodes active
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in a Span network, regardless of traffic load.

3.1.3.5 On-demand Power Management

In On-demand Power Management (Zheng and Kravets, 2003), information from

the DSR layer is used to trigger power management transitions at the 802.11 layer.

Upon the reception of a DSR packet, nodes set a keep-awake timer which sus-

pends the use of power management at the MAC layer. Route Reply and data

messages are considered good indicators of “commitment” to a route, while Route

Request messages are not. Accordingly, Route Replies and data messages cause

the keep-alive timer to be extended, while Route Requests have no effect on this

timer. The power management state of neighbor nodes is determined via passive

inference. For example, if traffic has not been overheard from a neighbor recently,

that neighbor is assumed to be in power management mode (or has moved). Us-

ing ns with the 2Mbps 802.11 MAC, the authors report power savings of up to 50%

based on the Span power model (Chen et al., 2001), which is similar to that used in

this thesis.

End-to-end latency is noted as a problem during route setup, before the power

management state of neighbor nodes is known. For route discovery messages,

several graphs in the paper illustrate a delay comparable to that experienced un-

der normal IBSS power management. No coordination among the nodes is used,

although it is mentioned in the context of load balancing for future work.

This is the most recent work in the area of using network-layer information
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to control MAC power state transitions. Conceptually, it is very similar to BECA

(§3.1.3.1), but uses 802.11 Power Management rather than simply turning the radio

off. Like BECA and AFECA, packet handling is the stimulus for power mode tran-

sitions, and there is no coordination among nodes in the larger network topology.

We simulate this design in our comparative experiments; our implementation is

described in Chapter 5.

3.1.3.6 Cross-Layer Power Management Summary

Table 3.1 compares five designs which extend existing ad hoc routing protocols.

The PM column indicates whether or not a protocol takes advantage of MAC-layer

power management. The chief factor in improving network lifetime seems to be

the ability to minimize the number of active nodes. With BECA, AFECA, and

On-demand Power Management, redundant nodes can be simultaneously active,

while GAF and Span nodes “take turns” operating in high-consumption states.

GAF and Span better manage redundancy because power management is coordi-

nated among the nodes.

The multihop power management architecture, described in Chapter 4, is com-

petitive with the best of the designs presented in Table 3.1. Experimental results

show an average energy savings of 56—69%. We attribute this good energy per-

formance to the on-demand nature of our protocol, which does not need to waste

energy maintaining a high-performance forwarding backbone. Not only is aver-

age latency comparable to the case of no power management, but with improve-
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Name PM Method Energy Latency

BECA no on-demand,
timer-driven state
machine; power down
radio

35–40% energy
savings, 20% network
lifetime extension

20× increase in
route setup
latency

AFECA no on-demand,
timer-driven state
machine, sleep time
influenced by neighbor
density estimation

40–45% energy
savings, 55% network
lifetime extension

30× increase in
route setup
latency

GAF no proactive, timer-driven
state machine, elect
one active node per
physical grid

40–60% energy
savings, 200–300%
network lifetime
extension

2× increase in
average latency

Span yes proactive, coordinator
election; active nodes
provide forwarding
backbone

200–250% network
lifetime extension

3× increase in
average latency

On-
demand

yes on-demand,
timer-driven PM
suspension

50% energy savings average latency
similar to no PM,
route setup
latency similar to
IBSS PM

Table 3.1: Summary of cross-layer power management designs.

ments to the 802.11 ATIM feature, we can achieve the low route setup latency of

the proactive designs. In addition to good performance on these metrics, we will

show how the use of negotiation among traffic sources, relays, and sinks can im-

prove worst case as well as average case energy consumption.

3.2 Communications Performance

Several efforts from the broader field of ad hoc network communications perfor-

mance are relevant to the current work. Section 3.2.1 presents studies of the scal-



CHAPTER 3. RELATED WORK 88

ability and performance of several 802.11 features. Methods to force nodes to be-

have cooperatively, thereby maximizing network communications performance,

are described in Section 3.2.2. Section 3.2.3 shows recent theoretical work using the

economic concept of equilibrium to derive bandwidth allocation and relay behavior

in ad hoc networks. Finally, Section 3.2.4 presents recent work in the application of

mechanism design to network route selection.

3.2.1 IEEE 802.11 IBSS Performance

This Section presents recent work studying the scalability of the 802.11 timing syn-

chronization function (§2.1.1.2), as well as the performance of the rendezvous-

based power management method (§2.1.3) under varying connectivity and load

conditions. These results are not strictly related to the design of coordinated power

management protocols, but we have found these papers helpful in extending the

ns network simulator.

3.2.1.1 Fastest-Station Asynchronism

Clock synchronization among IEEE 802.11 stations in an ad hoc network is impor-

tant for frequency-hopping coordination as well as for the use of power manage-

ment. A formal analysis of the 802.11 timing synchronization function appears

in (Huang and Lai, 2002). The authors prove that for single-hop Direct Sequence

Spread Spectrum networks of size 100 nodes, the station with the fastest timer drift
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— up to 0.01%, as permitted by the specification — will be out of synchronization

with 15% of stations on average. Such network density is higher than the cases

simulated in this thesis, but for completeness, station timer drift and the timer

update algorithm have both been implemented.

3.2.1.2 Timer Synchronization and Network Partitions

The authors of (Tseng et al., 2002) extend the 802.11 beacon and ATIM Window

features, described in Sections 2.1.1.1 and 2.1.3.1, respectively, to address clock

synchronization issues. Specifically, they focus on asynchronism resulting from

multihop network partitions, and from missed beacon receptions resulting from

the use of power management. As a solution, multiple beacons are transmitted

during ATIM Windows, and periodically stations suspend power management in

order to discover and possibly resynchronize with neigbors. This design is eval-

uated in a custom simulator with parameters similar to ns: 2Mbps 802.11 with a

250m coverage radius. It is not clear how realistic this MAC implementation is,

nor is a specific routing protocol named. Improvements in energy consumption

are shown, but no analysis of network performance costs is given.

3.2.1.3 Dynamic Power Saving Mechanism

The 802.11 specification considers the duration of the ATIM Window to be a static

parameter of the network. In (Jung and Vaidya, 2002), the ATIM Window size is

adjusted dynamically (within the range [2ms, 50ms] for a 100ms beacon interval)
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based on load. For example, if a node cannot send an ATIM frame to all pending

destinations because the current ATIM Window size is too small, then the Window

size is increased. Although the authors use ns for evaluation, it appears that the

experimental environment is restricted to single-hop ad hoc networks.

3.2.2 Enforcement Schemes

Section 3.1.3 presented techniques for reducing energy consumption in ad hoc net-

works. Nodes enter low-power states either by explicit coordination with other

nodes, or by using timers based on communications activity. In either case, it is

assumed that all nodes are willing to correctly implement the power-saving algo-

rithm, and will correctly relay messages when expected.

A branch of research in recent years has considered the question of what to

do if the designer cannot assume all nodes to be cooperative. One obvious reason

why a node might not be willing to relay messages is the energy cost involved. A

rational power-managing agent which controls node behavior might reason that

relaying the messages of others provides no utility, while it does incur a drain on

local energy reserves. Another scenario involves criminal organizations hoping to

steal network service by tampering with their communications hardware; this is

the specific motivation for the design in Section 3.2.2.1.

In any case, the techniques in this Section do not specifically address power

issues. Rather, using a variety of enforcement schemes, the following designs at-
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tempt to maximize participation in the network in spite of a node’s own (possibly

conflicting) goals. These designs are presented to show that enforcement of group

decisions in ad hoc networks is being studied. Enforcement is a complement to the

work presented in this thesis: after nodes have executed a negotiation mechanism

to determine a power-managing network configuration, enforcement provides part

of the incentive to ensure that the nodes actually adhere to their agreements.

3.2.2.1 Nuglets

Nuglets (Buttyán and Hubaux, 2000) are a type of currency used to implement

market-style interaction within a mobile ad hoc network. In this model, relays

must be compensated (using nuglets) for their forwarding services. Nodes are mo-

tivated to accrue currency through self-interest; in order to transmit their own mes-

sages later on, a sufficient number of nuglets must be available for spending.

The motivation for nuglets is based on several assumptions about users (Buttyán

and Hubaux, 2001a). Users are taken to have complete control over the functions

of their mobile devices, and in particular may tamper with these functions in or-

der to better satisfy local goals. This tampering is limited to the network layer and

above; the physical and link layers are assumed to be impervious to modification.

Finally, it is acknowledged that most users lack the sophistication needed to per-

form this tampering, but that some groups (e.g., criminal organizations) do possess

the requisite capabilities.

Two payment models are discussed: the Packet Purse Model and the Packet
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Trade Model. Briefly, the former requires traffic sources to append a number of

nuglets to each message such that each transit node which forwards the message

can be paid. The latter places the payment burden on the traffic sink; each relay

along the route buys the message from the previous node. Most attention in the

nuglets literature is devoted to the Packet Purse Model. For example, one proposed

extension to this model involves each relay executing a dynamic auction with its

neighbors while forwarding a message, the goal being to obtain the best price for

the next hop.

Performance evaluation of nuglets is accomplished through simulation, with

the goal of maximizing network throughput. In (Buttyán and Hubaux, 2001a),

pricing is determined using utility functions over node battery levels and nuglet

reserves. The battery costs of transmitting a message are taken as proportional to

the square of the transmit distance, and nodes do not move. The authors claim that,

except for very low node battery levels, the nuglet mechanisms do not introduce

substantial overhead (throughput remains within 5% of the non-nuglet network).

In (Buttyán and Hubaux, 2001b), the authors consider network performance as a

function of various decision rules which nodes may implement when forwarding

messages. This time, battery considerations are ignored, and the decision rules

reduce to inequality tests on the number of available nuglets. Here, the authors

claim that the best strategy for transit nodes is to always forward (as opposed to

forwarding only if available nuglets fall below some threshold).
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Nodes participating in a nuglet network are assumed to include a tamper-proof

module which implements the currency exchange mechanism. The authors reject

the use of digital coins (Ferguson, 1993; Ferguson, 1994) on the grounds that such

protocols typically require the services of a trusted bank. Instead, a tamper-proof

security module on each node maintains the local nuglet counter in such a way

as to enforce correct operation of the payment protocol. This adds complexity to

the routing protocol in some cases; for example, the module must participate in

route selection when using dynamic auctions. Also, because the module refuses to

permit message transmission when no nuglets are available, it seems possible for

nodes to “starve” if they happen not to be in a position to forward messages. Fi-

nally, because the nuglet counters are only synchronized periodically, it is possible

for nuglets to be “lost” when nodes with a mutual outstanding balance move out

of communications range of one another.

3.2.2.2 CONFIDANT

The nuglets system uses budget balance as an indicator of how well-behaved a

node has been in the network. Because credit exchanges — based on budget bal-

ance — are one-to-one interactions, the designers of CONFIDANT (Buchegger and

Boudec, 2002) claim that nuglets cannot address network-wide issues such as traffic

diversion around misbehaving regions. CONFIDANT is a reputation-based system

which uses announcements to indicate the trustworthiness of individual nodes.

A trust table is maintained at each node, and this table is consulted by a rout-
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ing protocol such as DSR. The routing protocol might steer traffic around known

misbehaving nodes, or might penalize misbehaving nodes by not relaying their

messages.

Through simulation (presumably ns), the authors have determined that a DSR

network using CONFIDANT can function with as many as 60% of the nodes mis-

behaving. Misbehavior was limited to “no forwarding.” Although the authors

list power savings as one reason why a node might intentionally misbehave, en-

ergy is not addressed in the simulated results. It is unclear whether CONFIDANT

alone could provide a minimum communications performance guarantee in the

presence of individual power management.

3.2.2.3 Sprite

Sprite (Zhong et al., 2003) is a credit system which uses a centralized Credit Clear-

ance Service for enforcement. Here, nodes periodically report their sourcing and

relay activities to the centralized service, which then issues credit based on node

behavior. Sources pay relay nodes for their service, but the amount of payment is

related to the success of each individual relay activity. For example, in a multihop

route, suppose that one node refuses to relay a message. Such a node would re-

ceive zero payment, the preceding node would receive a payment β, and all of the

nodes preceding that node would receive α > β.

Various precautions are taken to provide a disincentive for collusion against

the Credit Clearance Service. The authors use game-theoretic analysis to claim
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that nodes have an optimal strategy of truth-telling when reporting receipts to the

central service, and that this reporting is collusion-resistant. As with nuglets, the

goal of this design is to maximize participation rather than to address any specific

energy issue.

3.2.3 Economics and Ad Hoc Networks

Theoretical work on the conflict between self-interested users and the system-wide

performance of ad hoc networks has emerged in the last year. These efforts seek

to identify an equilibrium operating point for the network, such as a socially-

optimal allocation of bandwidth or a stable relay-refusal rate. These approaches

are abstract, and do not propose specific coordination protocols, nor do they exam-

ine interactions with existing protocols. Nevertheless, they point to an increasing

interest in the use of economics and game theory to improve system behavior in

networks of self-interested agents.

3.2.3.1 Pricing Bandwidth

Inspired by work on pricing in wired networks, (Qiu and Marbach, 2003) presents

an iterative algorithm for maximizing joint user utility in bandwidth allocation.

The authors note that their algorithm could be used to address battery issues.

Specifically, they anticipate that traffic sources would adjust their message rate if

their own energy reserves were low, or if their traffic flows transited nodes whose
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reserves were low.

Strictly speaking, this work describes an algorithm for a certain kind of utility

maximization in an ad hoc network. It is not a protocol for exchanging credit

like those of Sections 3.2.2.1 and 3.2.2.3. Nevertheless, it shows how economic

reasoning can be used, assuming enforcement, to achieve resource-sharing goals

in an ad hoc network.

3.2.3.2 Generous TIT-FOR-TAT

A sequential game modeled closely on the Iterated Prisoner’s Dilemma problem

is used in (Srinivasan et al., 2003) to control the rate at which forwarding nodes

relay messages for others. The authors claim to be the first to “[apply] game the-

ory to the problem of cooperation among nodes in an ad hoc network.”1 Variations

on the TIT-FOR-TAT strategy are known to be successful for this problem (Axel-

rod, 1984). Here, nodes can choose to accept relay requests or not; this decision is

made strategically. The authors derive the conditions for Pareto optimality of this

acceptance rate subject to energy constraints. A Generous TIT-FOR-TAT (GTFT)

strategy is described, in which a node chooses to relay or not relay based on what

it has observed other nodes to do previously. (The strategy is “generous” in that it

occasionally accepts relay requests even if selfish behavior was previously seen.)

The parameter being optimized by GTFT is the likelihood that a given node

will deny a relay request from a given traffic source. Nodes are categorized ac-

1The prospectus for this thesis applied these concepts as well (Dorsey, 2001).
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cording to energy capacity, and individual traffic flows take on the category of the

lowest-capacity source or relay on a route. Relays decide to accept or deny a relay

request for a flow in category j based on their history of interaction with flows

of category j. For example, a node might refuse to relay a category- j flow if it has

previously relayed more category- j traffic than has been relayed for it. The authors

show that their algorithm converges to a sequential equilibrium where no source

can obtain additional relay capacity for itself by deviating from the GTFT strategy.

Analysis of GTFT occurs in a highly idealized MATLAB environment. No spe-

cific network or link layer protocols are analyzed, nor is a specific topology or

mobility pattern described. More seriously, the energy model used assumes that

transmit-state power dominates, which is inconsistent with the behavior of pop-

ular spread-spectrum interfaces (§2.1.2). The fraction of successful relay requests

is presented according to the energy categories described earlier. Nodes with the

lowest energy capacity succeed about 10% of the time, while the highest-capacity

nodes succeed about 80% of the time. Assuming that this fraction correlates with

application message delivery ratio, a GTFT network would exhibit an end-to-end

reliability much worse than that of conventional networks.

3.2.4 Mechanism Design and Routing

Mechanism design, introduced in Chapter 2, is a natural fit for network problems

in which the routing nodes incur a cost for providing their service. This thesis is the
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first work to apply mechanism design to power management in ad hoc networks.

It is also the first to apply mechanisms using a real ad hoc routing protocol tested

under realistic conditions. This section presents recent theoretical work applying

mechanism design to the problems of interdomain routing (§3.2.4.1) and transmit

power control in ad hoc networks (§3.2.4.2). We organize the latter example under

Communications Performance because it implements topology control rather than

power management.

3.2.4.1 BGP Mechanism

The interdomain routing problem on the Internet is to choose routes between sep-

arate administrative domains. Currently, this problem is solved using the Border

Gateway Protocol, BGP, which is a variation of a distance vector routing proto-

col. BGP routers proactively maintain routing tables for every known-reachable

administrative domain. The table entries basically say, for each of a router’s neigh-

bors, “when you ask me to relay a message to a destination domain, I will use the

route P.” In BGP, routing table exchanges occur every time a link is added to or

removed from the network. In addition, each router must know how to reach ev-

ery other domain. These characteristics would make BGP poorly suited for use in

mobile networks where links change frequently.

A mechanism for selecting lowest-cost routes in BGP has been proposed (Feigen-

baum et al., 2002). In this method, routers include prices in the routing tables they

exchange. Each router solves an all-pairs lowest-cost path problem using its view
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of the entire network, and the prices reported by the other routers. When a router

receives a message addressed to some other administrative domain, it relays the

message to the next hop on a lowest-cost path to that domain. The router eventu-

ally receives Vickrey payments based on the number of messages it has relayed.

Although BGP is a very different kind of routing protocol from the one used in

this thesis, the BGP mechanism is an interesting application of strategy-proof pric-

ing to a real-world protocol. Several distributed algorithmic mechanism design

aspects of this application have also been studied (Shneidman and Parkes, 2003;

Feigenbaum and Shenker, 2002). Computationally-efficient Vickrey payments for a

more abstract network environment are discussed in (Hershberger and Suri, 2001).

3.2.4.2 Ad hoc-VCG

A recent approach to the problem of transmit power control in ad hoc networks,

Ad hoc-VCG (Anderegg and Eidenbenz, 2003) uses a VCG mechanism to select

minimum-transmit-power routes. The design uses an abstract on-demand routing

concept which lets the traffic destination choose which route the source will use.

The sum of the transmit power levels of the nodes on a route is the cost of the

route; the destination selects the cost-minimizing route.

The authors describe their assumptions about energy as follows:
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The total energy of a routing path is the sum on the emission energy levels

used at the source and at each intermediate node. We ignore other types of

energy consumption such as listening to signals as they tend to be mag-

nitudes smaller than the emission energy which grows with an exponent

of one to six in the distance from one intermediate node to the next.

Though no specific radio technology is named, a reference to modern “wireless

cards” strongly suggests 802.11. Section 2.1.2 explained that transmit power is not

a dominant source of energy consumption in spread spectrum systems such as

802.11. For these systems, adjusting transmit power achieves topology control,

which is different from power management (the subject of this thesis). Regarding

the magnitude of the “other types of energy consumption,” Section 2.1.2 showed

that measured power rates for an 802.11 interface in the “listening” (idle) state

are 55–77% of the transmit-state power (Feeney and Nilsson, 2001; Dorsey and

Siewiorek, 2002; Ebert et al., 2002).

Using Ad hoc-VCG, traffic sources broadcast Route Requests as in DSR. Each

node that propagates a Route Request chooses a transmit power Ptx ≤ ∞; a large

enough Ptx permits all destinations to be reached in a single hop. The node then

appends to the Route Request a report of what transmit power level it used to

send the Request. A node receiving the Route Request adjusts this reported level

to what it thinks should be the minimum transmit power that could have been

used. When the Route Request reaches the destination node, it contains a list of

nodes on a route and the reported transmit power costs associated with each. The
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destination chooses the route for which the sum of transmit power costs is mini-

mized. It then uses a VCG mechanism to compute Vickrey payments to each of

the relays. A relay’s payment is derived by computing the cost-minimizing route

when that relay is removed from the network, and using the cost difference as a

Vickrey discount.

Analysis of this VCG-based idea is limited to characterizing the overpayments

made to the relays due to the Vickrey discounts. Evaluation occurs over static

topologies where network edge weights are based on the distance between nodes

and a distance-power gradient α relating transmit power to range. A receiver is

within range if the received power level Prx =
K
dα

Ptx, with 1 < α ≤ 6, exceeds a

threshold determined by the radio. By examining the minimum-cost routes be-

tween random source-destination pairs, the average overpayment for low α = 1.5

was found to be 16–25%. For higher α, overpayment reaches as much as 500%. In

sparse networks, it was found that sources could often have incurred lower costs

by transmitting directly to destinations, rather than by paying relays.

Unlike the design of this thesis, Ad hoc-VCG is not an actual protocol. The

authors describe their work as a “first step in designing a practical protocol that

achieves truthfulness and cost-efficiency.” The system we describe in Chapter 4 is

a practical protocol which achieves these things.

Ad hoc-VCG includes some features which are unconventional for a VCG mech-

anism. The transmit power level reporting system violates the requirements for a
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direct revelation mechanism, in which agents observe their types and then di-

rectly reveal them to the mechanism. Transmit power level reports are manipu-

lated by other agents by design. If a node claims it used transmit power P̂tx to

transmit a Route Request, a relay propagating that Request modifies the report to

be P̂′
tx ≤ P̂tx, where P̂′

tx is the minimum power level the relay claims could have

been used. This is doubly complicating: nodes do not know their own type (true

minimum transmit power level), and do not know what their eventual “report” to

the mechanism will be! This opens the door for multiple layers of manipulation

by the nodes, which conflicts with the definition of direct revelation mechanisms.

Our design assumes that no tampering with agent reports occurs on the way to the

mechanism; it would be possible to use cryptographic measures to ensure this.

Ad hoc-VCG has a number of other limitations not shared by our design. Like

the combinatorial reverse auction interpretation of DSR from Chapter 2, it lacks

the concept of an unaffordable route. Also, it is assumed that the source truthfully

reports its own transmit power level! A manipulation exploiting this assumption

can happen when the source increases transmit power such that it can directly

reach the destination. If the source then underreports its transmit power level,

this direct link becomes the cost-minimizing route. The source benefits from this

approach when the power costs of the single hop are less than the Vickrey pay-

ments the source would have to pay to relays. The authors justify the truthful-

source assumption by referring to the tradition of assuming that the auctioneer is
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not self-interested. Unfortunately, in Ad hoc-VCG this rôle is played by the des-

tination, not the source. In our design, we make no such assumption, and allow

sources to use their dominant strategies when reporting to the mechanism.

Ad hoc-VCG is the first published example of mechanism design for ad hoc

networks. As a transmit power control design, it is fundamentally different from

the work of this thesis, which focuses on power management. Because separate

mechanisms are used for each source-sink pair, Ad hoc-VCG cannot account for

overlap between routes. As we showed in Section 2.4.5, this means that Ad hoc-

VCG is not strategy-proof in the power-managing environment. Ad hoc-VCG is

also a conceptual design, rather than the practical protocol we present in Chap-

ter 4. Finally, we have raised several questions about the manipulability of the

mechanism itself, and have argued that our design does not share these issues.

3.3 Summary

This Chapter has presented related work from a range of disciplines, including

power management, enforcement schemes, and economics. This thesis inherits

from, and in some cases builds upon, these efforts. Our work is the first to combine

practical protocols, realistic power models, and game-theoretic concepts to address

the problem of energy consumption in mobile ad hoc networks.

We described several proactive and on-demand techniques for cross-layer power

management in ad hoc networks. Proactive designs select a subset of nodes to re-
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main active at all times and provide relay service. These offer good route setup

latency, since the relays are already awake. Because relays may be active even

if they are not servicing active traffic flows, the energy consumption of proactive

schemes will typically be higher than in on-demand designs. Published energy

savings for recent proactive schemes were in the range of 40–60% relative to non-

power-managing networks. On-demand designs can achieve good energy savings,

particularly in low-load networks, by only waking those relays needed for active

traffic flows. The cost of existing on-demand designs is high route setup latency,

which can be orders of magnitude worse than in non-power-managing networks

Enforcement schemes for ad hoc networks, both with and without a central

bank, were presented. Existing credit systems deal in per-message payment, while

in our environment, payment only occurs during periodic solutions of a VCG

mechanism. Nevertheless, credit instrument design is complementary to our work,

as credit provides the “strength” behind the incentive compatibility of any Groves

mechanism for our environment.

Finally, we discussed recent applications of mechanism design to routing in

the Internet and ad hoc networks. Existing designs do not support the combinato-

rial exchange concept required for an optimal mechanism solution in the power-

managing environment. We have shown that in cases of route overlap, nodes ex-

perience a marginal cost of energy for additional traffic flows. Only a mechanism

solution which considers this cost structure can be strategy-proof.



Chapter 4

System Design

To evaluate the combinatorial exchange concept for ad hoc route selection, we have

developed a practical implementation of exchange-based power management.

This Chapter presents the software architecture needed to support our design, and

gives a full description of the protocol itself. Section 4.1 introduces our power

management philosophy, and Section 4.2 details the cross-layer power manage-

ment architecture. Section 4.3 shows how this architecture can be used to imple-

ment a simple timer-based power management scheme. In Section 4.4, we define

the Exchange Power Management protocol, the core of this thesis. Section 4.5 de-

scribes the simple agent valuation functions we have developed to demonstrate

exchange-based power management. Finally, in Section 4.6 we discuss future im-

provements to the fault tolerance and scalability of our protocol design.

105
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4.1 Multihop Power Management Concepts

The basic premise underlying the multihop power management design is that

low-level power management features conflict with good communications perfor-

mance. Chapter 2 described the latency caused by 802.11 IBSS power management.

In the multihop setting, we showed how the worst-case latency for DSR Route

Discovery was 3 (|P| − 1)×BeaconInterval. We also showed that the worst-case la-

tency for application message delivery is (|P| − 1)× BeaconInterval. These delays,

which can be several seconds in length, are unacceptable in a modern network.

The approach we adopt is to allow low-level power management to operate

while the network is quiescent, but to suspend power management while traffic is

active. This on-demand philosophy achieves energy savings for nodes that are not

servicing traffic flows, and high performance for active sources, relays, and sinks.

The fundamental problem to solve at each node is how to choose the intervals

during which that node will suspend power management.

This Section presents the basic tools needed to support multihop power man-

agement designs. We define concepts such as power management suspension

and fast wakeups which are used by any instance of the architecture. Sections 4.3

and 4.4 build on these tools by providing specific methods for choosing the inter-

vals of power management suspension.
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4.1.1 Power Management Suspension

Section 2.1.3 described the IEEE 802.11 IBSS power management design, which

lets stations enter a low-power doze state. Periodically, the stations rendezvous

by waking up and exchanging traffic announcements. Stations that will send or

receive data remain awake for the remainder of the beacon interval, while the

others return to doze.

This design is memoryless: a station’s traffic activity in the current beacon in-

terval has no effect on its behavior in subsequent intervals. The idea behind power

management suspension is that events such as the transmission or reception of

data are indicators that a station is likely to be active in the future. Upon ob-

serving such an event, the station may suspend power management by no longer

entering the doze state after each ATIM Window. This behavior continues until a

resume event occurs. Section 4.3 implements the suspend and resume events us-

ing timers. For example, processing a DSR Route Request causes a short period of

suspension, while processing an application message results in a longer suspen-

sion. Section 4.4 adds negotiated periods of suspension based on the results of a

combinatorial exchange.

While a station is suspending, it still obeys all the rules of IBSS power manage-

ment. Only control and management frames may be sent during the ATIM Win-

dow. Data frames for neighboring stations using power management must first

be announced with an appropriate ATIM. The only difference is that suspending
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stations never enter the doze state.

The 802.11 layer is also supplied with the MAC addresses of neighboring sta-

tions that are themselves suspending power management. These addresses are

stored in a suspending neighbors list. Directed data frames destined for a sus-

pending neighbor do not need to be preceded by an ATIM, and can be sent as

soon as possible (subject to the ATIM Window frame restrictions). This behavior is

explicitly permitted by Section 11.2.2.1 of the 802.11 specification:

The estimated power-saving state of another [station] may be based on

the power management information transmitted by that [station] and

on additional information available locally, such as a history of failed

transmission attempts. The use of RTS/CTS in an IBSS may reduce the

number of transmissions to a [station] that is in [power-saving] mode. If

an RTS is sent and a CTS is not received, the transmitting [station] may

assume that the destination [station] is in [power-saving] mode. The

method of estimating the power management state of other [stations] in

the IBSS is outside the scope of this standard. (IEEE, 1997)

It is worth noting that the part of this provision dealing with RTS/CTS is invalid

for multihop networks. A station which fails to return a CTS should be treated as

out of range; we adopt this assumption in our design.

To reduce congestion in the ATIM Window, directed ATIM frames are not sent

to neighbors which are known to be suspending power management. Combined
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with the techniques described in Sections 4.1.2 and 4.1.3, it is possible to almost

completely eliminate the use of directed ATIMs.1

Combining power management suspension with the list of suspending neigh-

bors, stations can exchange data with the same latency they would experience

without power management. The only exception to this occurs during the ATIM

Window, where data frames are not permitted. These techniques solve the latency

problem for multihop application message delivery. As long as all of the nodes

along a route are suspending (and are known by their neighbors to be suspending),

end-to-end latency is comparable to the case of no power management. Again, the

only exception to this occurs if the message is generated by a traffic source during

an ATIM Window, as the message must be delayed until after the Window ends.

4.1.2 Fast Wakeup

Section 2.2.2 revealed an important problem in the interaction betewen DSR Route

Discovery and 802.11 IBSS power management. The propagating broadcast of

Route Requests, and the subsequent unicast return of Route Replies, experienced

much higher latency under power management than without. We showed that the

cause of this higher latency was the ATIM traffic announcement process.

We have developed an extension to 802.11 which permits Route Discovery to

1An example of when directed ATIMs are still used happens after a DSR route breaks. The
traffic source may send out subsequent application messages on another cached route containing
new relays, some of which are not yet known to be suspending power management.
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occur with much lower latency. This extension, called fast wakeup, does not re-

quire changes to any 802.11 frame type, and does not break compatibility with

existing 802.11 implementations. The method changes the handling of ATIM man-

agement frames sent to the broadcast address. Such frames would be scheduled

whenever a DSR Route Request was passed to the MAC layer, if a broadcast an-

nouncement had not already been made in the current beacon interval. Proce-

dure 1 shows the new handling of broadcast ATIM frames.

Procedure 1 HANDLE-ATIM(a)
1: Let a be a received ATIM frame
2: Let s be the number of broadcast ATIM frames sent in this beacon interval
3: Let r be the number of broadcast ATIM frames received in this beacon iterval
4: if address(a) = Broadcast then
5: r⇐ r + 1
6: if s = 0 then {only generate or propagate one broadcast ATIM this Interval}
7: if r = 1 then
8: SET-ATIM-HOLDOFF(0) {helps to avoid broadcast ATIM collisions}
9: ATIM-ENQUEUE(address(a)) {propagate ATIM to the broadcast address}

We implement a random holdoff on the transmission of broadcast ATIM frames.

The purpose of the holdoff is to try and avoid undetectable collisions between

broadcast ATIM frames. Since neither RTS-CTS nor ACK are used for broadcast

ATIM frames, hidden terminal problems (§2.1) apply. The holdoff timer is set

by Procedure 2 when a broadcast ATIM becomes available for transmission. In

the procedure, we choose a random timer value of up to Holdoff-Interval (4ms in

our implementation) or the remainder of the ATIM Window minus the time re-
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quired for an ATIM transmission,2 whichever is least. To this random holdoff we

add a minimum holdoff time, and scale the whole value by the worst-case station

timer drift. (Max-TSF-Drift is 0.01%, per Section 11.1.2.4 of the 802.11 specifica-

tion.) Since a station does not know its own drift, this final adjustment ensures

that the holdoff will not go past the end of the effective ATIM Window.

Procedure 2 SET-ATIM-HOLDOFF(t)
Let t be the minimum holdoff time
Let W be the time remaining in this ATIM Window
Let A be the time required to transmit an ATIM frame
if the holdoff timer is already running then

Return.
if W − A < t then {insufficient time left in the Window}

Abandon ATIM transmission and return.
max-holdoff ←min(W − A− t,Holdoff-Interval) {don’t go past Window end}

Set holdoff timer to
t + U[0, max-holdoff]
1 + Max-TSF-Drift

At the beginning of every ATIM Window, if broadcast data frames are sched-

uled, we enqueue a broadcast ATIM and call Procedure 2 specifying a minimum

holdoff of 2 milliseconds. This minimum holdoff is used to address skew issues

related to the loosely-synchronized station timers (§2.1.1.2). Not all stations will

have precisely aligned ATIM Windows, so a “faster” station might enter its Win-

dow ahead of its neighbors. Accordingly, we wait for the minimum 2-millisecond

holdoff to expire before sending broadcast ATIMs to increase the probability that

neighboring stations are prepared to receive ATIM frames.

2 A includes enough time for one backoff given the current contention window size, an ATIM
frame transmission, an Acknowledgment frame transmission, and the requisite inter-frame spac-
ing between the frames. Since this duration is based on a unicast ATIM transaction, it actually
overstates the amount of time needed for a broadcast ATIM transmission.
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The goal of fast wakeup is to reach every station in the IBSS in a single ATIM

Window. With every station awake, and knowing that every other station is awake,

DSR Route Discovery can complete as quickly as it would without power man-

agement. As with the latency improvement we claimed for power management

suspension, there is a caveat for the latency improvement of fast wakeup. If a DSR

Route Request becomes available in the post-ATIM Window portion of the current

beacon interval, fast wakeup does not occur until the ATIM Window of the next

beacon interval. Following that Window, Route Discovery proceeds at full speed.

It is reasonable to ask about the scalability of the fast wakeup technique. The

radius of the IBSS reached by propagating broadcast ATIM frames is a function of

the size of the ATIM Window and the level of congestion in the ATIM Window.

Suppose a broadcast data frame, such as a Route Request, is enqueued for trans-

mission at or before the start of an ATIM Window. In our implementation, there

is a holdoff on the broadcast ATIM transmission of 2 milliseconds plus an addi-

tional random delay of up to 4 milliseconds. Following that holdoff, the broadcast

ATIM frame becomes the highest-priority transmission among all enqueued ATIM

frames. Supposing a 40-millisecond ATIM Window, which we use in our work,

the fast wakeup technique has at least 34 milliseconds in which to reach as many

stations as possible. This is a fairly long time by 802.11 measures. For example,

without power management, unicast DSR messages require about 10 milliseconds

to traverse a network 1,000 meters in diameter.
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We take several steps to manage congestion in the ATIM Window. As ex-

plained at the end of Section 4.1.1, directed ATIM frames are rare when power

management suspension and suspending-neighbor lists are used. This means

that the ATIM Window is mostly free to accommodate broadcast ATIM transmis-

sions. Also, we limit each station to a single broadcast ATIM frame transmission

per ATIM Window. This echoes the DSR concept of controlled flooding for Route

Request propagation.

When the radius covered by fast wakeup does not encompass the entire IBSS,

Route Discovery can still complete faster than it would without fast wakeup. An

example scenario happens when a traffic source initiates Route Discovery late in

an ATIM Window. Broadcast ATIMs propagate out to a limited radius, but stations

beyond that radius return to the doze state following the ATIM Window. When the

Route Requests are subsequently propagated, they can reach any station3 within

the fast wakeup radius. At the fast wakeup frontier, DSR will enqueue a broadcast

Route Request frame at the MAC layer, which will trigger another fast wakeup in

the next ATIM Window. Generally, this second fast wakeup is able to reach the

remainder of the IBSS stations, permitting Route Discovery to complete in a total

of two beacon intervals, which is less than the 3 (|P| − 1) intervals required without

fast wakeup.

3Of course, this does not mean Route Requests reach every station within the radius. Route
Requests are transmitted as unreliable broadcasts, meaning that frame collisions can interfere with
propagation. Also, DSR nodes use a controlled flooding technique to limit the spread of Route
Requests.
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Fast wakeup not only speeds the distribution of broadcast Route Requests, it

also solves the problem of latency with the unicast Route Reply messages. In the

worst case, with cold ARP caches, Route Replies account for 2 (|P| − 1) beacon

intervals of latency in the Route Discovery process. With fast wakeup, a node

can transmit a broadcast ARP request without delay, since the node has already

announced the broadcast address in the current beacon interval. The directed ARP

reply can be transmitted by the target to the requester because the requester is

known to be awake, since it made a traffic announcement in the current beacon

interval.

Finally, the directed Route Reply can be sent as soon as an ARP address transla-

tion is available, for two reasons. For beacon intervals in which a station transmits

a broadcast ATIM frame, if and only if a directed ATIM to a destination did not fail

in the current Interval, then that destination is assumed to be awake following the

ATIM Window. Therefore, following a fast wakeup, the directed Route Reply can

be sent immediately.

The second reason has to do with the suspending neighbors list. If, upon pro-

cessing a Route Request, a node suspends power management, and knows that

the predecessor node in the route has also suspended power management, then

the node can inform the MAC layer that the predecessor is suspending. When

returning the directed Route Reply, this predecessor node is a next-hop in the uni-

cast route, so the Reply frame can be transmitted to it without delay. This second
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method presumes that an IP-to-MAC translation for the predecessor node’s ad-

dress is available at the time the Route Request is processed. Section 4.1.3 presents

a method to ensure that such a translation is available.

4.1.3 ARP Snooping

The DSR implementation at a network node processes all DSR messages addressed

to that node or to the broadcast address. It also promiscuously examines all DSR

messages overheard on the wireless medium. The address information contained

in these messages can be used to “pre-heat” the ARP cache.

Each DSR message bears the IP address of the most recent node to transmit the

message. DSR messages are of course sent as the payload of a MAC-layer data

frame. We assume that DSR has access to the MAC frame and its headers; this

is reasonable for a kernel-mode network-layer implementation. Each DSR mes-

sage either received or overheard by a node therefore contains both a source route

header and a MAC header. These headers provide an IP-to-MAC translation for

the address of the transmitting node.

Given the information provided in each DSR message, the ARP snooping tech-

nique is obvious. For every DSR message received or overheard by a node, we

insert an address translation into the ARP cache for the sender of that message.

ARP snooping totally eliminates the need for explicit ARP requests. A DSR

node never transmits a directed data frame to a neighbor from which it has not pre-
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viously received at least one frame. For example, during Route Discovery, nodes

send broadcast Route Requests (which do not require address translation) before

sending directed Route Replies. A node which transmits a Route Reply to a neigh-

bor necessarily has received a Route Request from that neighbor, and therefore has

already added an address translation for the neighbor to its ARP cache.

4.1.4 Route Fidelity

Power management suspension, introduced in Section 4.1.1, reduces application

message delivery latency using suspending neighbor lists. When a station knows

that the next hop in a route is suspending power management, it can send data

frames to that station without delay. We have not specified how stations come

to know the power management state of their neighbors. Sections 4.3 and 4.4

describe methods by which power management suspension is configured, and

through which neighboring stations can learn about each others’ states.

An attribute that both methods share is their need for consistency in route us-

age. The on demand nature of both methods means that the nodes which are

needed to support active traffic flows suspend power management, while other

nodes continue to use power management. For this reason, it is desirable for a

traffic source to choose a route and use it consistently; only the relays on that route

need to incur the higher energy costs of suspension.

DSR chooses a route for each outgoing message independently. This means
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that the route chosen by DSR can vary from message to message as a traffic source

learns about additional routes. We override this behavior using the route fidelity

technique, which intercepts DSR route selection and uses custom selection logic.

For example, Section 4.4 describes a method by which routes are selected accord-

ing to the results of a combinatorial exchange; route fidelity allows the source to

adhere to those results.

Nodes not on the route used by the route fidelity technique resume power man-

agement, either by timing out or by implementing the results of an exchange. If a

source needs to change to a new route, as happens when its previous route breaks,

the nodes on the new route may have resumed power management. This means

the new route cannot be immediately used with low latency; an application mes-

sage sent to a power-managing node must wait for the ATIM announcement pro-

cess to complete.

When a source changes to a new route from the one previously chosen by route

fidelity, the source triggers a fast wakeup. This is essentially a forged broadcast

ATIM, which serves to wake up all stations in the IBSS. The nodes on the new route

can then suspend power management, while the other nodes eventually resume

power management.
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4.2 Multihop Power Management Architecture

We have developed a cross-layer power management architecture which supports

the concepts described in Section 4.1. Our design requires modifications to Dy-

namic Source Routing, the DSR route cache, the ARP cache, and the MAC layer.

The design is modular, so different multihop power management methods can be

easily tested. Sections 4.3 and 4.4 describe such methods.

Figure 4.1 illustrates the interaction between multihop power management and

the various layers of the protocol stack. The design is driven primarily by events

within DSR. For example, we intercept lookups into the DSR route cache, and

observe messages sent, received, or overheard by DSR. In response to these events,

we perform actions on the DSR route cache, the ARP cache, and the MAC layer. In

the Figure, actions in (parentheses) are used only by the method of Section 4.4.

4.2.1 Network Layer Interactions

Half of the actions in the multihop power management design involve Dynamic

Source Routing and the DSR route cache. DSR exposes the route cache to the

power management implementation directly.

Get Route

This action intercepts DSR route cache lookups for normal application traf-

fic. DSR names a destination, and the power management instance sup-

plies a route of its choosing, if one is available. This is the method by
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Figure 4.1: Multihop Power Management layer interaction.

which route fidelity is implemented.

Send/Receive Packet

Every message sent (as a traffic source) or received (as a relay or sink, or

messages to the broadcast address) by DSR is shown to the power man-

agement instance. Power management can use the message type to set

suspension timers, and can use address information in the message to con-

figure the suspending neighbors list. Power management can notify DSR

that it has consumed the message, meaning that DSR does not need to per-

form additional processing on the message. This is useful for messages



CHAPTER 4. SYSTEM DESIGN 120

passed between power management instances running on different nodes,

using DSR as a transport.

Snoop Packet

A DSR node promiscuously monitors the wireless medium, and processes

messages that it overhears. Such messages are shown to the power man-

agement instance, which can use them for ARP snooping, or to infer links

in the local network topology.

Salvage Packet

In some circumstances, a DSR node may want to know a route to a destina-

tion, but not because it is sourcing traffic for that destination. One example

is a node trying to forward a message along a source route, where the next-

hop link has broken. If the node knows another route to the message’s des-

tination, it can salvage the message by replacing the defunct source route

with a new, hopefully better, route. The salvage route is probably not go-

ing to be long-lived, so it is not necessary to trigger fast wakeup or apply

route fidelity constraints. We accept that the salvage route may contain

power-managing nodes, and may not provide low latency.

Broken Link

A DSR node learns that a link has broken either directly from the link layer,

or by receiving a Route Error message. For example, 802.11 notifies DSR

whenever it sends an RTS but does not receive a CTS, when it sends a
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data frame but does not receive an acknowledgment, or when it sends a

directed ATIM and does not receive an acknowledgment. The names of

the nodes on either side of the broken link are shown to the power man-

agement instance. Power management can then check to see if the broken

link affects any of the routes being maintained under route fidelity. Also,

broken link notification can be used to update the power management in-

stance’s image of the local network topology.

Send Packet (to DSR)

Power management instances running on different nodes may coordinate

themselves by passing messages. The method described in Section 4.4 uses

this technique. Power management may construct a message with a DSR

source route, which DSR will deliver either to an immediate neighbor, or

to more distant nodes using a multihop route.

Get Route or Routes (from DSR route cache)

A power management instance intercepts DSR route lookups, and returns

routes under route fidelity constraints as described earlier. In order to pro-

vide such routes, power management must have access to the DSR route

cache. The route cache exposes two operations to power management. The

first simply returns a single route to a named destination (if one is known)

using whatever selection criteria the cache implements (e.g., a shortest

route). The other operation returns all known routes to a destination, thus
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permitting power management to implement its own selection.

Remove Routes (from DSR route cache)

The DSR route cache may maintain routes for a long time, and some routes

may become stale. Power management may request that all routes to a

named destination be evicted from the cache, so that known-good routes

may be discovered.

4.2.2 Link Layer Interactions

The link layer contains the ARP cache, which records translations between IP ad-

dresses (used by DSR) and MAC addresses (used by 802.11). The ARP cache is

exposed to the power management instance for lookup and insert operations.

Lookup

In our multihop power management design, the MAC layer maintains a

suspending neighbors list. This list records the MAC addresses of neigh-

boring stations that are known to be suspending power management. As

described in Section 4.2.3, the power management instance notifies the

MAC layer when a particular neighbor has suspended or resumed power

management. To do this, power management must know an IP-to-MAC

address translation, since DSR names nodes by their IP addresses. This

translation is available from the ARP cache.

Snoop Translation

As described in Section 4.1.3, when DSR receives or overhears a message



CHAPTER 4. SYSTEM DESIGN 123

from another DSR node, the message contains both an IP and MAC address

for that node. Power management can manually insert an IP-to-MAC ad-

dress translation into the ARP cache based on the message addresses.

4.2.3 MAC Layer Interactions

In Section 4.1.1 we argued that multihop communications performance could be

improved in power-managing networks through power management suspension.

Multihop power management instructs the MAC layer4 to suspend and resume its

own power management features. It also informs the MAC layer about the power

management status of neighboring stations.

Suspend and Resume Power Management

In response to on-demand activity in the network, the power management

instance may determine that it should direct the MAC layer to suspend

power management. For example, after observing incoming messages, or

in response to a negotiation procedure, a node might be needed to service

an active traffic flow. For performance reasons discussed in Section 4.1.1,

the node’s MAC implementation should no longer enter the doze state

after each ATIM Window. When the period of on-demand activity has

passed, the power management instance may direct the MAC layer to re-

sume use of the doze state.

4Technically, medium access control is a sublayer of the link layer (Tanenbaum, 1996). It is easier
for presentation to treat it separately.
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Suspend and Resume Neighbor Power Management

The complement to power management suspension which allows latency

improvements to be realized is the suspending neighbors list. This list

is maintained within the MAC layer; addresses are added to or removed

from the list at the direction of the power management instance. The

manner by which power management learns the state of its neighbors is

method-defined. Section 4.3 uses common-knowledge suspension timer

values, while Section 4.4 adds explicitly-negotiation suspension intervals.

Get Timestamp

Each 802.11 station maintains a timing synchronization function timer,

which is loosely synchronized across all IBSS stations. This 64-bit, micro-

second-resolution timer may be useful to power management instances.

For example, the method of Section 4.4 uses timers to elect the root of a

spanning tree, and to recognize stale messages from old negotiations. In

the 802.11 specification, this timer is permitted to have a drift of ±0.01%;

the exact drift is not known to the station.

Purge Packets

Messages may be buffered by 802.11 while waiting for the wireless medium

to become available, or while waiting for ATIM announcements for power-

managing stations to complete. The power management instance may de-

cide that its own buffered messages are stale, and are not worth transmit-



CHAPTER 4. SYSTEM DESIGN 125

ting. For example, the method of Section 4.4 abandons the negotiation

procedure if it is taking too long. Negotiation messages transmitted after

abandonment serve no purpose, and are purged. Messages are purged by

type; for example, “CBR” or “DSR.”

Trigger Fast Wakeup

A power management instance may signal the 802.11 implementation to

transmit a broadcast ATIM frame in the next ATIM Window, even if it

has no broadcast data frames to send. This “forged” traffic announcement

wakes all IBSS stations. This is desirable when a traffic source changes

routes, since the some of the nodes on the new route may be dozing.

Fast Wakeup (to Power Management)

The final interaction between the existing protocol stack and multihop

power management is delivered by 802.11 to the power management in-

stance. At the conclusion of an ATIM Window in which a station either

sent or received a broadcast ATIM, the MAC layer notifies power manage-

ment that a fast wakeup (§4.1.2) was observed. The power management

instance described in Section 4.4 treats this event as the signal to start a

negotiation procedure.
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4.3 Local Power Management

Using the actions presented in Section 4.2, we can implement a simple timer-based

power management design in the style of BECA (§3.1.3.1) or On-demand Power

Management (§3.1.3.5). This design, called Local Power Management, or LPM,

uses only local information about traffic flows when making power management

suspension decisions. When a node processes a message, such as a DSR routing

message or a CBR application message, it directs the MAC layer to suspend power

management. After a period of inactivity, power management is allowed to re-

sume. The purpose of LPM is to establish a baseline performance level for the mul-

tihop power management architecture. In a sense, LPM simply enhances DSR by

improving latency under power management. LPM does not use exchange-based

negotiation techniques; these will be introduced in the design of Section 4.4.

4.3.1 Active Destinations

Section 4.1.4 introduced the concept of route fidelity, which enforces consistency

across the source routes used for successive application messages. An active traffic

source has one or more active destinations to which it has recently sent traffic.

LPM associates state with each active destination, such as whether a route has

been discovered for it, the route itself, and the time since the last use of that route.

The first time DSR requests a route to a destination (using the get route action,

Section 4.2.1), LPM begins by checking the DSR route cache to see if a route is
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known. If one is known, the route preferred by the route cache is established as

the active route for the named destination. The MAC layer is instructed to trigger

a fast wakeup (§4.2.3), and the active route is returned to DSR. The purpose of

the wakeup is to transition the network to a low-latency state, since a new route is

about to be used.

If a route is not known to the new active destination, DSR behaves as it nor-

mally would in the event of a route cache miss: it begins Route Discovery. By

enqueueing a broadcast Route Request message at the MAC layer, DSR itself trig-

gers a fast wakeup. Upon receiving a Route Reply, DSR performs the get route

action for any buffered messages awaiting source routes. This time, since a cached

route is known, LPM can establish an active route as described above.

Once the state for an active destination has been configured, subsequent get

route actions by DSR are handled by returning the active route. After a short de-

lay, 250 milliseconds in our implementation, an active route is finalized. A route

is finalized by asking the DSR route cache for its preferred route to the active des-

tination. The finalized route may be different from the original route if the source

has learned better routes in the interim. For example, the first route discovered

may not be the shortest one; subsequent Route Replies may reveal better routes.

Nodes which participate in DSR Route Discovery will still be awake at the time

of finalization; Section 4.3.2 describes this in more detail. As such, if the finalized

route differs from the original active route, the new relays are still in a low-latency
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state and can accept the application traffic.

When a link breaks due to mobility or other factors, a traffic source with an

active route containing that link must choose a new active route. A source learns

about such a link by receiving a DSR Route Error, or by an indication from the

MAC layer that transmission to a neighboring station has failed. In both cases, all

active routes are examined to see if they contain the broken link. For those that do,

the associated active destination state is torn down. If DSR subsequently performs

a get route action for such a destination, the request is handled as for a new active

destination, described above.

When a DSR node discovers that it cannot pass a message to the next hop

named in a source route, it tries to salvage the message. Using the salvage packet

action (§4.2.1), DSR asks for a new route to the message destination. If the desti-

nation is already an active destination for the node, then LPM prefers to respond

with the active route for that destination. Otherwise, LPM consults the DSR route

cache for its preferred route. If a route is known, the MAC layer is instructed to

trigger a fast wakeup and the route is returned to DSR. Otherwise, DSR drops the

message.5

If an active route has not been used for some period of time, the active desti-

nation times out. In our implementation, timeout occurs after 500 milliseconds of

inactivity. Timeout values should be chosen to correspond with the duration of

5DSR relies on higher protocol layers to ensure reliable delivery. Workloads such as the CBR
application used in this thesis do not retry messages that are dropped in this manner.
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power management suspension implemented by the relays and sink on an active

route, discussed in Section 4.3.2. After this period of inactivity, the relays and sink

will resume power management, so the source should tear down its active des-

tination state. Shorter timeout values result in more aggressive energy savings,

while longer values are more tolerant of bursty application traffic. The topic of

adapting timeout values to different traffic characteristics is left to future work.

4.3.2 Message Handling

When a DSR node sends or receives a message, it passes a copy of the message to

LPM using the send/receive packet actions (§4.2.1). LPM responds by instructing

the MAC layer to suspend power management (§4.2.3). After a period of inactiv-

ity, LPM instructs the MAC layer to resume power management. This period can

be different for each message type, but in our implementation, both DSR and CBR

messages cause 500 milliseconds of suspension.6 All nodes use the same suspen-

sion periods, and it is common knowledge among the nodes that they all use the

same periods. Note that when the MAC layer receives the resume instruction, it

may not immediately return to the doze state. If the resume is ordered in the post-

ATIM Window portion of the beacon interval, the station will stay awake until (at

least) the end of the next ATIM Window.

The source route contained in a message processed by DSR yields information

6In particular, the CBR suspension period is defined to be the active route timeout (§4.3.1).
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about the power management state of neighboring nodes. For example, a node

which sends a message (e.g., a DSR Route Reply or a CBR message) along a source

route knows the identity of the next hop on that route. Because the per-type sus-

pension periods are common to all nodes, the sender knows that the neighbor will

suspend its own power management upon receiving the message. The sender in-

structs its own MAC layer to add the neighbor to the suspending neighbors list

(§4.2.3). When adding a neighbor to the list, the neighbor is named by its MAC ad-

dress, obtained from the ARP cache (§4.2.2). The sender then sets a timer for that

neighbor, which in the absence of further interaction with the neighbor, will expire

after the appropriate suspension period. Upon expiry, the MAC layer is instructed

to remove the neighbor from the suspending neighbors list.

A node which receives a message from a neighbor updates the suspending

neighbor list as well. The previous hop on the source route is passed to the MAC

layer for neighbor suspension, and again a timer is set. There is an additional case

involving DSR Route Request messages which applies when such messages are

received, but not when they are sent. The previous hop on the route whose discov-

ery is in progress can be treated as a suspending neighbor. The next hop, to which

the Request will next be sent, is of course unknown (and there may in fact be many

next hops).

When a node is informed by the MAC layer that a link to its neighbor has bro-

ken, it may have to revise its beliefs about the power management state of that
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neighbor. For example, when a node sends a CBR message to its neighbor, it as-

sumes that the neighbor will suspend power management for the duration associ-

ated with CBR messages. If the CBR message is never received, then this assumption

becomes invalid. LPM responds to broken neighbor links by canceling the neigh-

bor suspension timer. Specifically, each neighbor has several timers, one for each

message type (e.g., CBR, DSR). LPM looks at the type of the message which en-

countered the broken link, and cancels the timer for that type. The resume neigh-

bor power management action is sent to the MAC layer when the timers for all

types have expired.

Finally, every message received or overheard (promiscuously) on the medium

is examined to provide a snoop translation (§4.2.2) to the ARP cache. The IP ad-

dress of the sender is listed in the DSR source route, while the MAC address is

found in the MAC header passed up from the MAC layer. This address pair is

an IP-to-MAC address translation, which is manually added to the ARP cache to

help with neighbor power management suspension.

4.3.3 Summary

We have described Local Power Management, a timer-based instance of the mul-

tihop power management architecture. LPM uses local information about traffic

activity to configure power management suspension. Source routes are chosen

by the DSR route cache (using a shortest-route criterion in our implementation).
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We impose route fidelity constraints on the route selection to allow the network to

converge to a small set of active nodes.

LPM improves the performance of DSR in power-managing environments by

reducing the latency of both Route Discovery and application message delivery.

Route Discovery performance is improved through the fast wakeup technique.

Application messages benefit from power management suspension and neighbor

power management suspension lists.

Timer Duration
Active route finalize 250ms
Active route timeout 500ms
CBR PM suspension 500ms
DSR PM suspension 500ms

Table 4.1: LPM timer durations.

Table 4.1 summarizes the LPM timers. All LPM nodes implement the same

timer values, and it is common knowledge among the nodes that these values are

used by all nodes.

LPM demonstrates the possibilities for improved latency in on-demand power-

managing multihop 802.11 networks. It does not attempt to shape the energy con-

sumption of individual nodes. Rather, node energy consumption is still a function

of how often a node is chosen by traffic sources to be active. In Section 4.4, we

describe a protocol that allows nodes to report their preference for activity, and

thereby influence the selection of source routes.
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4.4 Exchange Power Management

Exchange Power Management, or XPM, is another instance of the multihop power

management architecture. Like Local Power Management (§4.3), XPM uses tech-

niques such as route fidelity and fast wakeups to improve the performance of

DSR in power-managing networks. The contribution of XPM is its use of a combi-

natorial exchange to select source routes, rather than letting sources choose their

routes independently.

subgraph

Negotiation
Submit bids, solve

winner determination

Discovery Structure Implementation
Configure network

according to results

Identify on−demand

negotiating agents

Build overlay

Figure 4.2: Four-phase on-demand negotiation framework.

XPM uses a four-phase on-demand negotiation framework, shown in Figure 4.2.

When routes need to be selected, active sources begin by entering the Discovery

phase, in which they determine the routes for which they will bid. Once routes

are known, nodes enter Structure, in which the relays and sinks on those routes

are signaled to participate in a negotiation. An overlay subgraph linking the ne-

gotiating nodes is constructed. With this overlay structure in place, nodes submit

bids and asks in the Negotiation phase. The winner determination problem is

solved, and agent payments are computed; the results are then distributed among

the agents. Once the results are known, the agents enter Implementation, where

sources set their active routes, and relays and sinks configure power management.

These phases are not globally synchonized; instead, they are defined by precondi-
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tions at each node. Nodes independently progress through the sequence of phases

as these preconditions are satisfied.

In this thesis, we focus on specific protocols and algorithms in each phase which

are relevant to the problem at hand. However, the phases are essentially orthog-

onal to one another. For example, the greedy spanning tree algorithm we de-

scribe for Structure could be replaced by a balanced tree formation algorithm. The

heuristic search method we describe for winner determination could perhaps be

replaced by a linear programming approach. Rather than having relays and sinks

implement a power management state, they could configure a bandwidth reser-

vation for traffic shaping. So, while the results of this thesis focus on an instance

of the framework which supports negotiated power management, the framework

could be applied in a variety of other problem domains.

4.4.1 Discovery Phase

The prerequisite for entering Discovery is that a node does not know any routes

for at least one of its active destinations. Discovery is entered following the receipt

of a fast wakeup (§4.1.2). A node that already knows routes to its active destina-

tions skips Discovery and proceeds to Structure (§4.4.2), as does a non-source node

(which has no active destinations).

As with LPM, DSR performs the get route action (§4.2.1) to request a route

to a named destination. If that destination was not already active, XPM begins by
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instructing the DSR route cache to remove routes (§4.2.1) to that destination. For a

destination d, this is the equivalent of discovering that all links (·, d) have broken.7

This purge avoids generating bids for stale routes, since routes which resided in

the cache for a long time may no longer work. Unlike the basic DSR route selection

problem in which only one working route must be found, we would like to identify

(and bid on) several working routes at once.

After the route cache has been purged, the state for the new active destination is

established. We again set up a finalize timer (§4.3.1) for the destination. Since it is

helpful to discover as many routes as possible, the timer is set to a longer duration

— 750 milliseconds — than in LPM. Expiry of the finalize timer will cause the

source to begin contacting sellers in preparation for bidding.

After setting up the active destination state, XPM reports to DSR that no cached

routes to the destination are known. This causes DSR to begin Route Discovery, in

which broadcast Route Request messages are propagated throughout the network

(§2.2.1). The controlled flooding technique used by DSR to limit propagation de-

termines which routes will actually be discovered. Let 〈P, n〉 be a Route Request

arriving on route P = (p1, p2, . . . , p|P|) having sequence number n. DSR normally

prunes the Request if it has already seen a Request from source p1 having sequence

number n. This behavior is reasonable if the only goal is to quickly discover the

shortest route to a destination.

7This approach is inefficient if cached routes to other active destinations happen to traverse d.
A more elegant solution is left to future work.
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Figure 4.3: DSR may fail to discover both routes for the flow 1 8.

With XPM, the goal is instead to discover several diverse routes. Diversity is

important because it allows sources to bid over a variety of alternative bundles.

DSR’s pruning rule fails to achieve diversity in cases such as the one shown in

Figure 4.3. Suppose that source 1 broadcasts a Route Request for destination 8.

If the Request propagates along the lower route (relays 5, 6, and 7) faster than it

propagates along the upper route (relays 2, 3, 4, and 7), then only the lower route

will be discovered (and vice versa). This is because 7 will refuse to propagate

Route Requests it receives following the first. From a bidding perspective, this is

a problem. Suppose the lower route is unaffordable to 1, but the upper route is

affordable. If the upper route is never discovered, then source 1 will be unable to

send its messages!

XPM solves this problem by making a small change to the way DSR prunes

Route Requests.8 When Route Request 〈P, n〉 arrives, its route P = (p1, p2, . . . , p|P|)

is compared against all other Route Requests from p1 having sequence number n.

Let 〈Q, n〉 be a previously-received Route Request with Q = (p1, q2, . . . , q|Q|). In

8Actually, the change applies whenever any multihop power management instance, including
LPM, is used.
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other words, a Route Request from the same source p1 with the same sequence

number n. The Route Request 〈P, n〉 is accepted if ∀〈Q, n〉 :
|Q ∩ P|
|Q|

≤ T, where

0 < T ≤ 1 is a diversity threshold. T determines the maximum amount of com-

monality that may exist between P and any previously-seen route. In our im-

plementation, T = 3
4 seems to do a good job of pruning Requests near the source

(which reduces congestion), while encouraging diversity at more distant nodes.

In the example of Figure 4.3, suppose that node 7 processes a Route Request

from 1 on route (1,5,6), which it accepts and propagates to 8. Shortly afterwards,

it receives another Request having the same sequence number on (1,2,3,4). The

only intersection between the routes is at node 1, so
|(1,5,6)∩ (1,2,3,4)|

|(1,5,6)|
= 1

3 . If

T ≥ 1
3 , then the new Request will also be accepted and propagated.

4.4.2 Structure Phase

The prerequisite for entering Structure is that a node knows one or more routes for

each of its active destinations. Pure relays and sinks trivially satisfy this require-

ment. Upon observing a fast wakeup, nodes which do not need to discover routes

immediately enter Structure.

Sources which do need to discover routes may enter Structure as soon as they

receive Route Replies for their active destinations. Immediately upon entering

Structure, an active traffic source begins the process of building a spanning tree. In

constructing this tree, XPM nodes elect a leader to solve the winner determination
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problem and compute Vickrey payments. The tree itself describes the method by

which bids are collected from, and mechanism results are distributed to the agents.

The root of the spanning tree is a natural choice to solve the mechanism. Sec-

tion 4.4.3 describes a wave algorithm for passing bids to the root and distributing

results. The important design questions are which nodes should comprise the ver-

tex set of the tree, and what criteria should determine the choice of a root node?

The result of Section 2.4.5 helps to answer the former question. When overlap

exists among the routes being negotiated, then all agents on those routes must

participate in a single mechanism. So, for example, if two separate sources each

know a set of routes on which they want to bid, and those routes have any nodes

in common, then both sources and all of the relays and sinks on their routes must

be vertices in a single tree. This requirement determines the minimum vertex set.

XPM constructs trees having exactly this minimum set.

The choice of root is more complicated. The root solves an important, but com-

plex, winner determination problem. Although we do not model the energy (and

other) costs of this solution, the root will be operating its processor and memory

hierarchy in a high-performance mode for some period of time. It might be desir-

able to randomly rotate the rôle of root among the nodes so that a single node does

not incur disproportionate costs. Conversely, in the special case where some nodes

have access to infrastructure power, it might make more sense to delegate com-

putational tasks to those nodes. XPM assumes the general case of a self-contained
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mobile network in which any node can be the root.

4.4.2.1 Greedy-ST Spanning Tree Formation

Many distributed algorithms are known for computing spanning trees in graphs

with both weighted (Gallager et al., 1983; Gafni, 1985; Awerbuch, 1987; Faloutsos

and Molle, 1995; Przytycka and Higham, 1996) and unweighted (Perlman, 1985;

Métivier et al., 2001) edges. In the former environment, the goal is to find a span-

ning tree whose total weight is minimal. In general, nodes are assumed to know

their graph neighbors, and all graph nodes are assumed to participate in the al-

gorithm. Typically, the tree formation procedure may be initiated by any node, or

even by many nodes at once.

For the purposes of XPM, edges are unweighted, so there is no notion of a

“minimal” tree. Additionally, nodes enter the Structure phase not knowing the

identities of their neighbors. Most significantly, not all nodes will participate in the

tree formation procedure. Finally, we preserve the requirement that the procedure

should be able to initiate in a distributed fashion.

Figure 4.4 shows some properties of the trees formed by XPM. Shaded vertices

are neither sources, relays, nor sinks for active traffic flows. As such, these nodes do

not participate in the tree formation procedure. The Figure shows multiple trees,

which correspond to independent mechanisms. This occurs when sets of active

flows have no overlap. (§2.4.5 explained why sets with overlap must be combined

into a single mechanism.) These properties contribute to the scalability of XPM
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Figure 4.4: Spanning tree membership.

by preventing irrelevant nodes (those not participating in any active route) from

doing work related to mechanism solutions.

One property that we do not require for spanning trees is balance. A tree is

balanced when some nodes are not too much further from the root (measured by

edge count) than other nodes. Typically, spanning tree algorithms achieve balance

by only joining subtrees of similar size. This requires coordination and locking

within each subtree, which adds to protocol complexity. Our algorithm instead

permits nodes to determine when neighbors should be conquered based solely on

local information. This method does not result in balanced trees, but rather, greed-

ily conquers subtrees when such opportunities are discovered. For this reason, we

call the XPM spanning tree formation procedure Greedy-ST.

An XPM source which enters Structure initiates tree formation by notifying

the relays and sinks on its demanded routes that they will participate in the mech-

anism. This occurs by sending a Notify message along each route for which the
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source will submit a bid. A Notify is a type of XPM message, sent as the payload of

a DSR message. All XPM messages have the 16-octet header shown in Figure 4.5.

32 bits

bid/result words
count of

spanning tree root (IP)

spanning tree timestamp

ver type

bids/results (if applicable)
re

m

accept

Figure 4.5: XPM protocol message header.

XPM messages contain a four-bit protocol version (0x1 ), and a four-bit mes-

sage type (e.g., 0x0 for a Notify). They also contain the 32-bit IP address of the root

to whose tree the message sender belongs. A 64-bit timestamp for the sender’s

tree, expressed in 802.11 time units (1024µs), is also included. This information is

used in the subtree conquering procedure. The remaining fields will be discussed

later in this Chapter.

The tree timestamp is the basis upon which the tree root is chosen. Upon ob-

serving a fast wakeup, each XPM node samples its 802.11 station timer (§2.1.1.2)

using the get timestamp action from Section 4.2.3. These microsecond-resolution

timers are loosely synchronized. The sample is taken at the end of the ATIM Win-

dow in which the fast wakeup occurred. Due to timer drift, these samples are not

all taken at precisely the same time, nor are the sampled values identical. As a re-
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sult, we treat the sampled values as randomly drawn on some small interval. The

XPM tree timestamp has the same format as the 802.11 timer, and initially takes

the sampled value of that timer.

The conquering rule used by Greedy-ST is simple: the oldest timestamp wins.

Therefore, the root of a tree produced by Greedy-ST is the node with the oldest

timestamp. (In the event of a tie, we decide by comparing node identifiers: the

least numerical address wins.) Since all tree nodes begin as the root of a singleton

tree with randomly-drawn timestamps, the rôle of root in the final tree should be

randomly assigned. This satisfies our requirement that no single node consistently

bears the costs of solving the mechanism.

A source which needed to perform Discovery enters Structure when it receives

a Route Reply for one of its active destinations. The source adds the discovered

route to its route cache, then sends a Notify message along the new route. The

Notify precedes any application traffic on the route,9 and informs the relays and

sink that they will be participants in a negotiation.

When the finalize timer for a new active destination expires, a source assumes

that it has learned all of the routes DSR is able to discover. If the source has not

already entered Structure, it does so at this time. The source then asks the DSR

route cache for all routes to the finalized active destination using the get routes ac-

tion from Section 4.2.1. A source which does not need to perform Discovery enters

9This alerts the relays and sink that a new negotiation is beginning, so that they do not treat
subsequent application messages as infringing on an existing negotiation. An optimization would
be to piggyback the Notify on the first outgoing application message.
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Structure and performs this lookup immediately upon observing a fast wakeup.

The implementation of the route cache affects the efficiency of this lookup.

Early DSR cache designs which store entire routes — known as path caches —

answer this request by scanning the cached routes P in Θ(|P|) time. Newer link

caches (Hu and Johnson, 2000) may be less efficient since the routes must be com-

puted from knowledge of individual links.

From these cached routes, the source selects a subset for which it will actually

submit bids. The routes for which bidding will occur comprise the source’s de-

mand set. The source may decide not to bid on routes that are redundant or too

long. In general, keeping the demand set compact is good for the communications

and computational complexity of the negotiation procedure.

Once a source determines its demand set, it sends Notify messages along each

demanded route. In addition to informing the relays and sinks on those routes

of their participation in a mechanism, these messages serve two other purposes.

First, they verify that the routes actually work. Second, they begin the process of

forming a spanning tree.

If a Notify message encounters a broken link, the node which discovers the

break returns a DSR Route Error to the source. The source then removes the

affected routes from its route cache and from its demand set. Subsequently, the

source will not submit bids for routes that do not appear in its demand set.

When a Notify is successfully received, there are three possibilities with re-
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spect to spanning tree formation. Let q be a received Notify message, and let root

and timestamp describe the tree to which the receiver belongs. The Notify could

conquer the receiver, if timestamp(q) < timestamp or timestamp(q) = timestamp ∧

root(q) < root. The Notify could be from the same tree, if timestamp(q) = timestamp∧

root(q) = root. Otherwise, the receiver can conquer the node which sent the Notify.

When a receiver is conquered by a Notify, it becomes a child of the node which

sent the Notify. It acknowledges this new relationship by returning a Respond

message to its new parent. The accept bit (Figure 4.5) is set in the Respond message

to indicate that the child accepts its new position in the parent’s tree.

If the sender and receiver are in the same tree, then nothing changes as a result

of the Notify. If a parent-child relationship already existed between the nodes,

then it is preserved. If there was no previous relationship, then the nodes are now

cousins, reflecting their common tree ancestry. In either case, the receiver returns

a Respond message with the accept bit cleared. We call such a message a Respond

reject, meaning that the receiver rejects the sender’s conquering attempt.

In the final case, the receiver finds that it can conquer the sender. The receiver

first returns a Respond reject. It then sends an Update message to the sender,

which provides the sender with updated tree information. Updates are handled

in much the same way as Notify messages, except that Updates are only sent to

immediate neighbors, and are never propagated.

We call Notify, Update, and Respond messages Structure messages. These are
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the only message types needed to form the spanning tree. In Section 4.4.3, we will

introduce three Negotiation messages (Submit, Result, Revoke) which enable the

bidding process.
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2 31

(a) 1 sends Notify to 2.

(3, 100)
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accept

(1, 101) (1, 101)

2 31

(b) 2 accepts 1 as its parent.

Notify
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(g) 2 conquers 1 with an Update.
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(3, 100) (3, 100)(3, 100)

2 31

(h) 1 accepts 2 as its parent.

Figure 4.6: Subtree conquering process.

Figure 4.6 shows all of the possible actions in the tree formation process. Source 1

is notifying the relay and sink on the route (1,2,3). All three nodes begin as the

roots of singleton trees with timestamps sampled around the end of an ATIM Win-

dow in which a fast wakeup was observed. For example, node 2 begins as the

root of its own tree, with timestamp 102. Figures 4.6(a) and 4.6(b) show 1 con-

quering 2. The Notify is propagated to 3 (Figure 4.6(c)), which returns a rejection
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(Figure 4.6(d)). 3 then sends a conquering Update to 2 (Figure 4.6(e)), which is ac-

cepted (Figure 4.6(f)). Since 2’s tree membership has changed, 2 sends an Update

to it’s former neighbor 1 (Figure 4.6(g)). This Update conquers 1, which accepts 2

as its new parent (Figure 4.6(h)). The final tree is rooted at 3, with all nodes having

the same root and timestamp.

For examples such as the one just presented, the best-case message complexity

occurs when the Notify message conquers each node it encounters. Two messages

are sent across each edge: the Notify, and the Respond accept. Let P be a source’s

demand set. The best-case message count is ∑
P∈P

2 (|P| − 1), yielding complexity

Ω (∑P∈P |P|). For a vertex set V, this is “Ω(|V|).”

The worst-case occurs when each node encountered by every Notify conquers

the preceding node. The per-edge message count includes the Notify and Re-

spond reject, plus a sequence of conquering Update and Respond accept exchanges

on each preceding edge going back to the source. The worst-case message count is

∑
P∈P

[
2 (|P| − 1) + 2

|P|−1

∑
p=1

p

]
. This is an arithmetic series, which can be rewritten us-

ing Gauss’ “trick:” ∑
P∈P

[(|P|+ 2)(|P| − 1)]. The resulting complexity is O
(
∑P∈P |P|2

)
,

or “O(|V|2).”

Greedy-ST has higher O(·) complexity than some distributed spanning tree al-

gorithms because of the notification step. Traditional problem formulations have

the nodes all beginning with knowledge of their incident edges. XPM nodes do

not necessarily have this knowledge, and will not know all of their edges until they
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receive all of their Notify messages. Greedy-ST optimistically proceeds with con-

quering even if it might later discover additional edges. In future work, it might be

interesting to postpone conquering until all Notify messages have propagated. Af-

ter this point the vertex and edge sets V and E are known, and a message-optimal

algorithm — O
(
|E|+ |V| log |V|

)
— could be used (Awerbuch, 1987).
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(a) Initial subtrees.
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(b) After 2’s notification.
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(c) During 1’s notification.
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(d) Final tree.

Figure 4.7: A multiple-source tree formation example.

Figure 4.7 shows how the notification and conquering process works with mul-

tiple sources. Again, all nodes begin as the root of singleton trees (Figure 4.7(a)).

Source 1 demands the routes (1,3,6) and (1,4,6), while 2 demands (2,4,7) and
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(2,5,7). Suppose 2 sends its Notify messages out first, resulting in the subtree of

Figure 4.7(b), in which arrows point from child to parent. When 1’s Notifies are

sent, 3 is conquered but 4 is not (Figure 4.7(c)). Eventually, 1’s Notifies reach 6,

which has the oldest timestamp. Conquering Updates propagate throughout the

tree, leaving 6 as the root of the tree shown in Figure 4.7(d).

Every edge known to a node is classified by its type in the tree. The types

Parent, Child, and Cousin name relationships that have already been described.

An edge across which a node has sent a Notify or Update has type Updating until

a response is received. If a node expects to receive a conquering Update from a

neighbor, the edge to that neighbor has type Conquering. All other edges have

type Unclassified until a message is sent to, or received from, such edges.

Messages sent by a node are enqueued in an outgoing message queue before

transmission. A message is blocked in the queue if its destination is a neighbor

from which a node expects contact. For example, if the neighbor edge has type

Conquering, then no messages are sent to that neighbor until a conquering Up-

date arrives. If a Notify or Update is outstanding to a neighbor, then the edge must

have type Updating, so no messages can be sent until a Respond arrives.10

Similarly, an incoming message queue buffers received messages before pro-

cessing. Some messages are never processed. For example, those messages whose

tree timestamps indicate they were sent during an earlier run of the negotiation

10To break deadlocks, we permit Respond messages to Updating neighbors.
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procedure are discarded.

Procedure 3 PROCESS-IMMEDIATELY(q)

1: if 6 ∃ e ∈ edges s.t. type(e) = Updating then
2: if type(edges[sender(q)]) = Conquering then
3: if type(q) 6= Notify ∧ type(q) 6= Update then
4: Return false. {we’re expecting a conquering Notify or Update}
5: Return true. {it’s safe to process q}
{Even if edges are Updating, we make some exceptions:}

6: if type(edges[sender(q)]) = Updating then
7: if type(q) = Notify ∨ type(q) = Update then
8: if we appear to be able to conquer sender(q) then
9: if our root/timestamp changed since our last message to sender(q) then

10: Return true. {break a potential deadlock}
11: else {sender(q) can conquer us, or is in the same tree}
12: Return true.
13: else if type(q) = Respond then {we’re expecting this}
14: Return true.

{Negotiation messages from an Updating edge are never processed.}
15: else if type(edges[sender(q)]) = Conquering then
16: if type(q) = Notify ∨ type(q) = Update then {we’re expecting this}
17: Return true.
18: else
19: if type(q) = Notify ∨ type(q) = Update then
20: if q does not conquer our root/timestamp then {q is “harmless”}
21: Return true.
22: Return false.

Messages which are not discarded are tested to see if they can be processed

immediately. Procedure 3 returns true if a message q can be processed, given the

current edge classifications. When no edges have type Updating, all messages

are admitted unless they arrive on a Conquering edge. Once an edge is labeled

Conquering, we only accept a conquering Notify11 or Update from that neighbor.

There are a few special cases in which a node accepts messages even if it is in

11Typically, Update messages are used for conquering. If a node happens to have an outgoing
Notify queued for a neighbor that it will conquer, there is no need to also send an Update.
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the process of updating some of its neighbors. The first of these is a deadlock-

avoidance measure. If two neighbors send Notify/Update messages at one an-

other, we don’t want both nodes to block waiting for a response. Another case

involves the receipt of a Respond. These should be arriving from Updating edges,

so we always accept them.

Some Notify/Update messages will not cause a node to be conquered. These

“harmless” messages can be accepted from most edge types. The node will simply

return a Respond, and possibly a conquering Update, to the neighbor.

Procedure 4 HANDLE-NOTIFY(q)

1: received-tree-messages← received-tree-messages∪ {sender(q)}
2: NOTIFY-UPDATE(q)
3: if q should be propagated then {prune Notifies with redundant route suffixes}
4: update-type(edges[next-hop(q)])← type(edges[next-hop(q)])
5: type(edges[next-hop(q)])← Updating
6: Enqueue q to next-hop(q).

Once a Structure message has been accepted from the incoming queue, it is

passed to a per-type handler. For example, Procedure 4 shows the treatment of

Notify messages. Greedy-ST maintains a set of neighbors from which it has re-

ceived Structure messages. An edge e is classified when type(e) 6= Unclassified ∧

neighbor(e) ∈ received-tree-messages. When a classified edge breaks, as detected by

link layer acknowledgments, the spanning tree formation procedure is restarted.

Section 4.6.2 describes a more graceful treatment of broken tree edges.

Notify messages are handled in much the same way as Update messages (Pro-

cedure 5), except that Notify messages can be propagated. When a Notify is pro-
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Procedure 5 HANDLE-UPDATE(q)

1: received-tree-messages← received-tree-messages ∪ {sender(q)}
2: NOTIFY-UPDATE(q)

cessed at a relay on some source’s demanded route, in general it will be sent to

the next hop on the route. We can improve the efficiency of Notify distribution in

some cases. For example, Notifies from the same source having a common route

suffix can be pruned.

8

2

3

4

5 6 71

Figure 4.8: Some Notify messages for routes on the flow 1 8 may be pruned.

Figure 4.8 shows three routes for the flow 1 8. Suppose the Notify for the

route through 2 reaches 5 first. The subsequent Notify messages from 1 all have

a route suffix (5,6,7,8) in common with the first Notify, and so do not need to be

propagated. If the Notify that passed through 3 or 4 can conquer 5, then 5 will use

the normal Update process to inform its neighbor 6 of its new tree membership.

Procedure 6 shows the common handling of Notify and Update messages.

Such messages arriving from a node’s own tree typically do not result in any state

changes; the node simply returns a Respond reject to the sender. If the neighbor

was not previously classified as a “relative” in the tree, its edge takes type Cousin.

Messages that conquer the receiving node cause the node’s root and timestamp
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Procedure 6 NOTIFY-UPDATE(q)

1: if root(q) = root ∧ timestamp(q) = timestamp then {same tree}
2: if type(edges[sender(q)]) is not Updating, Parent, Child, or Cousin then
3: type(edges[sender(q)])← Cousin
4: Enqueue a Respond (reject) to sender(q).
5: else if q conquers our root/timestamp then
6: root← root(q)
7: timestamp← timestamp(q)
8: type(edges[sender(q)])← Parent
9: Let e be the old parent edge, if it exists.

10: if e 6= edges[sender(q)] then {parent has changed}
11: Revoke bids, if submitted.
12: type(e)← Child
13: for all n s.t. type(edges[n]) = Child∨ type(edges[n]) = Cousin do
14: if q will not be propagated or n 6= next-hop(q) then
15: type(edges[n])← Updating
16: Enqueue an Update to n.
17: Enqueue a Respond (accept) to sender(q).
18: else {we appear to be able to conquer sender(q)}
19: type(edges[sender(q)])← Child
20: Enqueue a Respond (reject) to sender(q).
21: if we’re not already trying to update sender(q) then
22: type(edges[sender(q)])← Updating
23: Enqueue an Update to sender(q).
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to change. If the message came from an edge that was not previously the node’s

parent, then the node must revoke any bids it may have sent to the old parent.

This process is described in Section 4.4.3.1. The old parent then becomes a child of

the node, and all Child or Cousin edges receive Update messages to inform them

of the new tree membership.

Procedure 7 HANDLE-RESPOND(q)

1: received-tree-messages← received-tree-messages ∪ {sender(q)}
2: if accept(q) then
3: if root = root(q) then
4: type(edges[sender(q)])← Child
5: else {q is stale}
6: Schedule a correcting Update to sender(q).
7: else {q is a rejection}
8: if root = root(q) then {sender(q) is our relative in the tree}
9: type(edges[sender(q)])← Cousin

10: else if q conquers our root/timestamp then
11: type(edges[sender(q)])← Conquering {await a conquering Update}
12: else {q is stale}
13: Schedule a correcting Update to sender(q).

Respond messages are handled as shown in Procedure 7. Typically, receipt of

a Respond from a neighbor informs a node that the neighbor is a “relative” in

the same tree, or is about to conquer the node. If the root and timestamp of the

Respond message are not consistent with a node’s beliefs about the state of the

tree, the node may schedule a correcting Update to the neighbor. Bid submission

will not proceed until the node and its neighbors agree upon the tree status.

Nodes learn their incident edges by receiving Notify messages along the de-

manded routes of traffic sources. They may infer additional edges when they
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overhear messages on the wireless medium. DSR passes overheard messages to

XPM using the snoop packet action (§4.2.1). If a neighbor transmits an XPM mes-

sage that is overheard, and an edge to that neighbor was not previously known,

then a new tree edge is added. The type of the edge is Cousin, if the XPM message

bears a root and timestamp from the same tree; otherwise, the edge is Unclassified.

2

54

6 7

8

3

1

(a) Without inferred edges.

2

54

6 7

8

3

1

(b) With inferred edges.

Figure 4.9: Inferred spanning tree edges.

Figure 4.9 shows how the use of inferred edges is helpful. Suppose 1 sends

Notify messages along the routes (1,2,3,8), (1,4,5,8), and (1,6,7,8), resulting in

the tree of Figure 4.9(a). The average path between any node and the root 5 is 2

edges in length. However, as the Notify messages proceed along their routes,

nearby nodes might overhear them. For example, 4 might overhear the Notify

on (1,2,3,8) when it is transmitted by 2, and later by 3. This allows 4 to infer the

edges (2,4) and (3,4), shown in dashed lines. Using the inferred edges, it may be

possible to construct a tree with shorter paths. For example, the average path in

the tree of Figure 4.9(b) — which uses inferred edges — is only 1.14 edges in length.
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This example shows that the use of inferred edges permits the formation of more

balanced trees. Edge inference, which we have implemented for Greedy-ST, is a

useful technique for any spanning tree algorithm.

4.4.3 Negotiation Phase

The prerequisite for entering the Negotiation phase is that a node has classified

all of its incident edges, and has received bids from all of its children. The former

requirement states that a node has resolved its relationships with its neighbors; it

is neither updating nor being conquered by other nodes. The latter requirement

is trivially satisfied by leaf nodes in the tree, as they have no children. Leaves

begin the bid submission process, by passing bids towards the root of their tree.

Section 4.4.3.1 describes this algorithm in more detail. Once all bids reach the root,

the root solves the mechanism by executing a winner determination algorithm

(§4.4.3.2), and computing agent payments (§4.4.3.3). The results of the mechanism

are then distributed among the agents.

4.4.3.1 Bidding Wave Algorithm

Mechanisms provide a centralized solution to a distributed optimization prob-

lem. The exchange-based mechanism of this thesis requires all reports of agent

preference to be gathered in one place. Some agent, the “auctioneer,” then solves

a surplus-maximizing combination of bids, and determines agent payments to the
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mechanism. The problem we must address in the distributed environment is that

of collecting the bids at a single node.

Given a spanning tree produced by the algorithm of Section 4.4.2.1, there is

a straightforward Θ(|E|) algorithm for bid submission. Beginning with the leaf

nodes in the tree, each node submits bids to its parent. A parent combines the

bids received from its children with its own bids, and submits the aggregate to its

parent, and so forth. Bids traverse each of the |E| tree edges. Once the root receives

bids from all of its children, the algorithm is complete and the root may proceed

with solving the mechanism. A distributed algorithm of this form is called a wave

algorithm (Tel, 2000).

Section 2.3.3 described the OR-of-XORs bidding language, which lets agents

express substitutability between bids. Each agent’s bids are contained in an OR

term (which contains one or more XOR terms, which contain one or more bids).

When parents combine their bids with those of their children, they are simply join-

ing OR terms to produce a larger OR term. Ultimately, the root generates a single

large OR term which is the input to the mechanism.

Drawing from the earlier examples of Figures 2.9 (§2.3.2) and 4.7, Figure 4.10

shows how bids are passed to the root. As an example of bid aggregation, consider

agent 2, whose own bids are B3 ⊕ B4. Agent 2 must wait to submit its bids until

it has received bids from all of its children, namely, agent 5 in this case. Once 5

submits its bid B6, 2 combines the bids to produce the OR term (B3 ⊕ B4) + B6,
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Figure 4.10: Bid submission and aggregation.

which it submits to its parent, node 4.

XPM uses a compact bidding syntax to encode the OR-of-XORs language.

Bids are transmitted in the body of an XPM Submit message. As Figure 4.11(a)

shows, each bid contains an identifier for the agent which submitted the bid, as

well as a unique identifier used by the submitting agent to help distinguish among

multiple bids. Bids can specify up to 15 items i for which λi
j 6= 0; for all other items

k, λk
j ≡ 0. Prices p j are encoded as a 28-bit signed integer in units of 1

1000 . Items i

and the 8-bit signed integer units λi
j are then packed in groups of four.

Bids are marshaled into an XOR term as shown in Figure 4.11(b). XOR terms

are, in turn, marshaled into an OR term as shown in Figure 4.11(c). The smallest

expression by an agent, a bid or ask for a single item, requires 20 octets for the

bid itself, an additional 4 octets for the enclosing XOR, and 4 more octets for the

OR wrapper, for a total of 28 octets. Expressed in 32-bit units, this size is 7 words.
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(a) Bid representation.

32 bits

bid countXOR

bid 1

bid n

(b) XOR representation.

32 bits

OR xor−term count

xor 1

xor n

(c) OR representation.

Figure 4.11: OR-of-XORs bidding language syntax.

XPM messages indicate the count of bid words they contain in the 16-bit unsigned

integer field shown in Figure 4.5 (§4.4.2.1).

Although we do not explore the use of cryptographic techniques in this the-

sis, we note that bids could be encrypted. Encryption of the mechanism inputs is

one of many techniques that can help make an implementation robust against ma-



CHAPTER 4. SYSTEM DESIGN 159

nipulation in a distributed environment (Shneidman and Parkes, 2003). Generally

speaking, distributed algorithmic mechanism design (Feigenbaum and Shenker,

2002) studies how the distributed nature of mechanisms introduces opportunities

for agent manipulation. In the specific case of XPM, cryptographic protection of

the OR term submitted by each agent could reduce the chances of bid alteration.

No agent other than the root needs to be able to interpret another agent’s report,

so no functionality is lost by encrypting these reports. Applications of cryptogra-

phy, as well as other distributed algorithmic mechanism design results, to XPM are

interesting subjects for future work.

Procedure 8 HANDLE-SUBMIT(q)

1: descendant-bids[sender(q)]← descendant-bids[sender(q)]∪ bids(q)
2: if remaining(q) > 0 then {there are additional parts to this multipart Submit}
3: Return.
4: if ∃ e ∈ edges s.t. type(e) is Conquering or Updating then
5: Return.
6: if ∃ e ∈ edges s.t. type(e) = Child∧ descendant-bids[neighbor(e)] = ∅ then
7: Return. {awaiting bids from neighbor(e)}
{All edges are classified, and we’ve received bids from all children.}

8: Signal Bids-Ready.

Procedure 8 shows the handling of Submit messages. A parent receives a Sub-

mit from one of its children, which may contain bids from many descendants. It is

useful to remember which descendants exist in the subtrees rooted at each child.

This information can later be used to factor out per-subtree mechanism results.

As descendant bids are aggregated with parents’ own bids, it can be the case

that the size of the encoded bids grows beyond the maximum size of a single
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Submit message.12 It is useful to support the concept of a multipart Submit, in

which bids are segmented across multiple back-to-back Submit messages, then re-

assembled at the receiving parent. The first n− 1 parts of an n-part Submit have a

nonzero value in the 2-bit unsigned remaining field of the XPM header (Figure 4.5,

§4.4.2.1). For each message, this value indicates the number of parts to follow;

when a Submit with a value of zero is received, bid transmission is complete.

If the tree relationships between a node and all of its neighbors are resolved,

and bids have arrived from all of the node’s Child edges, then the node is ready

to submit bids to the mechanism. It signals that all bids are ready, which indi-

cates that the prerequisites for the Negotiation phase have been satisfied. The

node constructs a Submit message containing its own bids as well as those of its

descendants, and enqueues the message for its parent.

It is useful for a node to be able to cancel bids it has previously submitted. For

example, in Figure 4.7(b) (§4.4.2.1), suppose node 4 sends a Submit message to its

parent, 2, containing bids from 4 and 7. In Figure 4.7(d), 4’s tree membership and

parent have changed. To prevent nodes (such as 2) from doing wasteful work, 4

sends an XPM Revoke message to its former parent.

Procedure 9 shows how Revoke messages are processed. Upon receiving a

Revoke, a node should delete any bids received from the sender of the Revoke

(including those submitted by descendants). If any bids have been submitted to

12Given the maximum 802.11 data frame payload, and the various header sizes, a single Submit
can carry 530 words of encoded bids.
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Procedure 9 HANDLE-REVOKE(q)

1: descendant-bids[sender(q)]← ∅ {delete bids from sender(q)}
2: if type(edges[sender(q)]) is Parent, Child, or Cousin then
3: if ∃ e ∈ edges s.t. type(e) = Parent and we’ve already submitted bids then
4: Enqueue Revoke to neighbor(e). {send bid revocation to our parent}
5: if root = id then {we’re the root of our tree}
6: Signal Bids-Invalid. {abort an in-progress mechanism solution}

a node’s parent, the Revoke propagates upward to that parent. If the node is the

root of its tree, it may be in the process of solving a mechanism. Since the inputs

to that mechanism (the bids) have changed, this solution should be aborted.

bid 1

bid n

32 bits

bid count

agent identifier (IP)

agent payment

(a) Result representation.

32 bits

result count

result 1

Result

result n

(b) Result set representation.

Figure 4.12: Mechanism result syntax.

Following the solution of the mechanism, the root informs all of the agents of

their winning bids (if any) and their payments to the mechanism. This information

is distributed along the spanning tree edges using XPM Result messages. Each

agent receives a mechanism result of the form shown in Figure 4.12(a). The result
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contains the agent’s identifier, and the amount of its Vickrey payment, pi,vick. A

number of bids may be included, as well. These are copies of any of the agent’s

winning bids or asks (i.e., B j ∈ B s.t. x j = 1). Additionally, for sellers, copies of the

winning bids demanding items offered by the agent’s winning asks are included.

These copies allow sellers — relays and sinks — to see which routes they serve,

and thereby configure their suspending neighbors list (§4.1.1) accordingly. Agent

results are packed into a result set, shown in Figure 4.12(b), which forms the body

of the Result message.

Procedure 10 HANDLE-RESULT(q)

1: own-bids← results(q)[id] {factor out own results}
2: for all n s.t. type(edges[n]) = Child do
3: Enqueue Result containing results(q)[n] to n. {factor out child n’s results}
4: Signal Results-Ready.

Procedure 10 shows the handling of Result messages. A node receiving a Re-

sult from its parent first factors out its own agent result from the enclosed result

set. Then it factors out agent results for each of the subtrees rooted at its children.

(Recall that it knows the subtree memberships from the bid submission stage.)

Result messages are then sent to each child with result sets appropriate to those

children and their respective descendants. Following this, the node is ready to

enter Implementation.

Like agent bid submissions, agent results could be encrypted. Once the root

determines the winning bids and agent payments, agent i’s results need only be
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readable by agent i.13 Again, the use of cryptography in XPM is a topic for future

research.

4.4.3.2 Branch-on-Bids Winner Determination

The winner determination problem for combinatorial exchanges, described in

Section 2.3.2, is NP-complete (by reduction from weighted set packing). The

Branch-on-Bids algorithm (Sandholm, 2003) uses heuristic search to manage this

complexity. For the scenarios we have simulated, we were able to optimize BOB

sufficiently to feel comfortable with its performance in practical environments.

BOB looks for a surplus-maximizing combination of bids in a search tree,

shown in Figure 4.13. (This tree has nothing to do with the spanning tree of Sec-

tion 4.4.2.) The vertices of the tree are bids B j ∈ B. Each vertex has two descendent

edges corresponding to the cases in which B j is assigned winning (x j = 1) or losing

(x j = 0). The 2|B| leaves of the tree represent all possible combinations of the bids

B. In principle, we could perform a depth-first examination of the tree, enumerate

all of the combinations, and pick the one with the greatest surplus.

Fortunately, it is possible to bound the search by exploiting the constraints be-

tween bids, and by employing heuristics. As an example of the former, suppose

that in Figure 4.13, B1 and B3 were joined by XOR constraints: B1⊕ B3. Then, when

searching the subtree in which x1 = 1, we could prune the search of any subtrees

13To further reduce the amount of information leakage, it might be desirable to eliminate the
practice of passing sellers a copy of each winning bid that involves them. The suspending neigh-
bors list could be configured using other means.
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Figure 4.13: Branch-on-Bids winner determination.

in which B3 is assigned winning (x3 = 1).

Heuristics improve search performance by estimating the additional surplus

available in a subtree (Russell and Norvig, 1995). An admissible heuristic never

overestimates this surplus. BOB uses admissible heuristics to decide which subtrees

cannot yield a greater surplus than the best combination of bids found so far.

During the search, the set of bids labeled winning so far are stored in the set

IN. The best allocation found so far, IN∗, is kept up-to-date at each search node,

as is the surplus of that allocation, f̃ ∗. Initially, IN = ∅, IN∗ = ∅, and f̃ ∗ = 0. At
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each search node, let g be the surplus of the bids which were assigned winning

(x j = 1) so far. The allocation Λ resulting from the winning bids so far records the

allocations for each item i: Λi = ∑
j

λi
j x j. Procedure 11 is run at each search node.

Our implementation uses the graph data structure optimization (GRA) from

(Sandholm, 2003). Each bid corresponds to a vertex in a graph, where the edges

between vertices indicate constraints between bids. For example, bids B j and Bk

which are joined by an XOR constraint share an XOR edge ( j, k). If B j and Bk do

not share an XOR edge, but there exists an item i for which λi
j 6= 0 and λi

k 6= 0, then

the vertices share an OR edge ( j, k).

When a bid Bk is assigned winning (xk = 1), it is deleted from the graph (line 25

of Procedure 11). Any bids sharing an XOR edge to Bk are also deleted, since they

can no longer be assigned winning. A bid B j sharing an OR edge to Bk is deleted

if there exists an item i for which λi
j > 0 and

λi
j + Λi + ∑

Bl |¬deleted(Bl)∧λi
l<0

λi
l

 > 0. In

other words, B j can be deleted if the amount of i it demands, plus the amount of i

available from assigned-winning bids, plus the amount available from unassigned

bids is an infeasible allocation.14 (B j demands more of i than can be supplied.)

After the subtree corresponding to the assignment of bid Bk winning has been

searched, the subtree in which bid B j is assigned losing (xk = 0) is searched. The

neighbors of Bk which were deleted prior to searching the assigned-winning case

14An additional case in which neighboring bids are deleted appears in (Sandholm, 2003), appli-
cable when there is no free disposal of items. The rule is symmetric with the one already presented,
but applies to asks for item i. It says that if B j is offering an amount of i that, given the demand for
i in already-allocated bids and the demand in unallocated bids, would result in a net surplus of i,
then B j is deleted. We permit free disposal in our implementation, and do not use this rule.
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Procedure 11 BOB(Λ, g)

1: if Λi ≤ 0 for i = 1, 2, . . . , m then {Λ is a feasible allocation}
2: if g ≥ f ∗ then
3: IN∗← IN, f̃ ∗← g

{upper revenue bound for remaining bids, h ≥ 0:}
4: h← ∑m

i=1(ESTIMATE-SUPPLY(i)−Λi)×ESTIMATE-REVENUE(i)
5: if g + h < f̃ ∗ then
6: Return. {bounding}

{lower revenue bound for remaining feasible bids, L ≥ 0:}
7: L←maxB j∈B p j s.t. ¬deleted(B j), p j > 0, and Λi + λi

j ≤ 0 for i = 1, 2, . . . , m
8: if g + L > f̃ ∗ then
9: IN∗← IN, f̃ ∗← g + L

10: Choose branching Bk s.t. ¬deleted(Bk) and ∀B j |¬deleted(B j) pk ≥ p j. If 6 ∃Bk, return.
11: else {Λ is currently infeasible}
12: if 6 ∃ B j ∈ B s.t. ¬deleted(B j)∧ p j > 0 then {no available bids remain}
13: if 6 ∃B ⊆ B s.t. ∀ B j ∈ B |¬deleted(B j)∧ IN ∪B is feasible then
14: Return.

{least revenue decrease for items with infeasible allocations, H ≤ 0:}
15: H← ∑m

i=1|Λi>0 p j | maxB j|¬deleted(B j)∧Λi+λi
j≤0 λi

j

16: if g + H < f̃ ∗ then
17: Return. {bounding}
18: else
19: Choose the shortest Bk s.t. ¬deleted(Bk)∧ ∃ i |λi

k > 0∧Λi > 0, if it exists.
20: if a branching bid Bk ∈ B has not been chosen then
21: Choose branching Bk s.t. minBk|¬deleted(Bk)

[
maxi|Λi>0

∣∣Λi + λi
k

∣∣]. If 6 ∃Bk, return.
22: IN← IN ∪ {Bk} {xk ← 1}
23: for i = 1, 2, . . . , m do
24: Λi ← Λi + λi

k
25: Delete Bk and neighboring bids as appropriate.
26: BOB(Λ, g + pk) {branch Bk in}
27: IN← IN \ {Bk} {xk ← 0}
28: for i = 1, 2, . . . , m do
29: Λi ← Λi − λi

k
30: Restore neighbors of Bk.
31: BOB(Λ, g) {branch Bk out}
32: Restore Bk, return.
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are restored to the graph before searching the xk = 0 subtree (line 30 of Proce-

dure 11). Bid Bk is not itself restored to the graph until both the xk = 1 and xk = 0

subtrees have been searched (line 32 of Procedure 11). Delete and restore oper-

ations use the constant-time methods described in (Sandholm, 2003), such as the

use of cross pointers between bids, and the removed-edge sets E′ and E′′.

Line 1 of Procedure 11 divides the procedure at each search node into the case

in which the current allocation Λ is feasible, and that in which it is infeasible. We

only update the best allocation found so far, IN∗ and f̃ ∗, when Λ is feasible. This is

important because it is not acceptable for BOB to declare an infeasible allocation

to be the solution.15

In line 4 of Procedure 11, h ≥ 0 is a heuristic upper bound on the revenue

achievable from the bids that have not yet been assigned winning or losing. It is

computed by first determining the maximum possible supply of each item i from

the unassigned bids, ESTIMATE-SUPPLY(i). This supply is calculated by adding the

maximum amount of i offered by any bid in each XOR term. This sum is opti-

mistic: no more than one bid per XOR term can be found winning, and in general,

not all XOR terms will have a winning bid. Therefore, ESTIMATE-SUPPLY(·) does

not violate admissibility. Procedure 12 shows the maximum supply determination.

Given the maximum supply of an item i from the remaining unassigned bids,

we can compute the upper bound of the supply of i at the current search node.

15This restriction does not appear in (Sandholm, 2003). The algorithm presented there is de-
scribed for combinatorial auctions, which have a different feasibility constraint.
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Procedure 12 ESTIMATE-SUPPLY(i)
1: Let X ∈ X be an XOR term s.t. X ⊆ B,

S
X∈X X = B, and

T
X∈X X = ∅

2: a← 0
3: for all X ∈ X do
4: aX ← 0
5: for all B j ∈ X do
6: if ¬deleted(B j) then
7: if λi

j < aX then
8: aX ← λi

j
9: if aX < a then

10: a← aX

11: return −a

Subtract out the allocation Λi ≤ 0 from the bids assigned winning so far. The result

is an upper bound on the number of units of i available in a subtree of the current

search node.

To determine the additional revenue achievable from the estimated amount of

i remaining, we use an estimate of per-unit revenue. When initializing the bid

graph, we compute for each bid B j an estimate of its per-unit revenue potential,

p j

∑m
i=1 λi

j
.16 In our ad hoc network environment, bids (p j ≥ 0) only demand items

(λi
j ≥ 0), and asks (p j < 0) only supply items (λi

j < 0), so ∀B j∈B
p j

∑m
i=1 λi

j
≥ 0.

An upper bound on the additional net revenue from item i can be computed

using these per-unit revenue estimates. Find the bid demanding i with the greatest

per-unit estimate, and the ask supplying i with the greatest per-unit estimate, and

compute the net revenue which would result from trading one unit of i using this

16This is similar to the p j

|S j|α heuristic from Section 3.1.2 of (Sandholm, 2003), which is presented

for combinatorial auctions. Note that since ∑m
i=1 λi

j can be negative in the exchange environment, α

cannot be used.
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maximum-revenue pair. Procedure 13 shows this net revenue estimate, ESTIMATE-

REVENUE(i).

Procedure 13 ESTIMATE-REVENUE(i)

1: di ←maxB j∈B
p j

∑m
i=1 λi

j
s.t. ¬deleted(B j) and λi

j > 0 {max demand price per unit i}

2: si ←maxB j∈B
p j

∑m
i=1 λi

j
s.t. ¬deleted(B j) and λi

j < 0 {max supply price per unit i}
3: return max (di − si, 0)

We have described ESTIMATE-SUPPLY(i)−Λi, the upper bound on the net units

of i available below the current search node, and ESTIMATE-REVENUE(i), the upper

bound on the net revenue from trading one unit of i. The product of these estimates

is an upper bound on the revenue available from trades involving item i in the

subtree below the current search node. The combined estimated revenue from all

items is the heuristic h solved on line 4 of Procedure 11.17

Given the heuristic upper bound h on the additional revenue achievable in a

subtree of the current search node, line 6 of Procedure 11 bounds the search. If

the optimistic revenue achievable below the current search node is not as great

as the best revenue seen so far, the search is pruned. The search efficiency gained

through pruning depends on the tightness of the upper bounds used to compute h.

Improvements to this heuristic are a topic for future work.

Procedure 11 also uses a lower bound on subtree revenue, L ≥ 0. Line 7 finds

the unassigned bid B j with the greatest p j ≥ 0 which can be feasibly added to

the allocation Λ. (If no such bid exists, L ← 0.) The idea behind L is that if we

17This formulation of h is a generalization of the heuristic described for multi-unit combinatorial
auctions in Section 4.1 of (Sandholm, 2003).
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can trivially increase surplus by adding a single bid, then we should ignore any

subtrees that don’t provide at least that increased amount of surplus.

L is used on line 9 of Procedure 11 to update the best allocation seen so far, IN∗

and f̃ ∗. Note that when IN∗ is updated, it does not include the bid B j that was

used to compute L. That bid will not be added to IN∗ until we reach a search node

in which B j has been assigned winning. The purpose of updating f̃ ∗ is to avoid

searching fruitless subtrees until we either assign B j winning, or find some other

combination of bids that further increases surplus.18

The final aspect of Procedure 11 which is unique to the feasible-allocation case

concerns how a branching bid is chosen on line 10. When initializing the algo-

rithm, we sort the bids in descending order of price. At each search node, if the

allocation Λ is feasible, we choose an unassigned bid that has maximum price in

this ordering. The goal here is to increase surplus as much as possible, as described

in Section 4.2 of (Sandholm, 2003). Branching bids which yield high-surplus allo-

cations allow BOB to prune later subtrees more effectively.

When the allocation Λ is infeasible, BOB tries to add bids or asks that would im-

prove feasibility. Line 12 of Procedure 11 checks to see if all bids (p j > 0) have been

deleted from the graph. When this is the case, it is no longer possible to increase

the demand for items. BOB therefore considers the contributions of asks, if they

exist, which could produce a feasible allocation. When no combination of remain-

18This use of L requires a change to the test on line 2 of Procedure 11 from the algorithm presented
in (Sandholm, 2003), which compares g > f̃ ∗. The change is needed so that when we eventually
reach a search node at which the lower bound surplus f̃ ∗ is realized, we properly update IN∗.
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ing asks can make the allocation feasible (line 13), there is no reason to search the

current subtree.

Otherwise, we compute a lower bound H ≤ 0 on the decrease in revenue that

would result from making the current allocation feasible. The intuition behind H

is that we can assign some asks winning that would make the currently-infeasible

allocation feasible. Adding these asks (p j < 0) to the current surplus g will reduce

surplus. The surplus of a feasible allocation based on the current allocation is

maximized when this reduction is minimized. H, computed on line 15, gives the

amount of this minimal reduction. If the surplus g + H is not as good as the best

surplus found so far, f̃ ∗, we prune the search in line 17.

If undeleted bids are available, it can actually be useful to try and branch on a

bid even though the current Λ is infeasible (line 19). The reasoning is as follows.

Consider a branching bid Bk which demands an item i for which the current al-

location is infeasible: Λi > 0. We call such a Bk an overlap bid, referring to the

overlap between the items demanded by Bk and the items demanded by assigned-

winning bids. By branching on an overlap bid, we cause descendant search nodes

to branch on multi-unit asks early. We expect combinations involving multi-unit

asks to reach high-surplus allocations sooner, in general, than those which have no

demand overlap among bids.

When we choose an overlap bid for branching, we pick the shortest such bid.

This bid demands the fewest items; it is the Bk for which the count of items i hav-
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ing λi
k is minimal. To break ties among shortest bids, we choose the one which

demands the greatest number of items i for which Λi > 0.

Of course, an overlap bid may not exist, or there may simply be no undeleted

bids at all. If we reach line 20, and have not pruned the search or selected a branch-

ing bid, we choose a branching bid that moves Λ closer to feasibility. Line 21

chooses a branching bid that most reduces the magnitude of the net demand for

some item i whose allocation is currently infeasible. In our environment, this typ-

ically means finding an ask which increases the supply of i in the allocation Λ by

just enough to achieve Λi ≤ 0.

A variation of this technique is described in Section 4.2 of (Sandholm, 2003),

in which the goal is to minimize maxi|Λi>0 Λi + λi
k. That is, it tries to minimize the

allocation of i rather than the magnitude of the allocation. In our environment,

minimizing the allocation tends to branch on multi-unit asks offering more units

than are necessary to make some Λi feasible. Branching on an ask for fewer units

(with a lower-magnitude price) would decrease surplus by a smaller amount, thus

improving the future pruning behavior of the algorithm.

The net effect of the branching bid selection rules is to have the allocation Λ os-

cillate between feasibility and infeasibility. When the current allocation is feasible,

we try to increase surplus. When it becomes infeasible, we try to choose branching

bids that will restore feasibility.

Before handing bids to BOB, we perform several preprocessing steps to try
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and reduce wasted work. The first step removes those bids which demand at least

one item that is not being supplied. This is generally useful when computing the

Vickrey discount to a seller (§4.4.3.3). Removing the supply of that agent’s item

from the exchange may cause some buyers’ bids to become infeasible. These bids

will never be part of a surplus-maximizing solution, so it is safe to remove them

from the input.

The next step removes those bids that are unaffordable. Some bids may de-

mand only items for which a single unit is being supplied.19 It is easy to determine

whether such bids can possibly contribute positive surplus to a solution. The bid

price plus the sum of the (single-unit) ask prices for the demanded items must be

positive. If not, the bid may be eliminated from the BOB input.

The final step removes excess asks, those which supply more units of an item

than are being demanded by all bids. We permit free disposal in our combinato-

rial exchange, so technically we can permit such asks. However, the structure of

asks in our environment is such that a multi-unit ask has a price with magnitude

at least as great as any ask offering fewer items. We also require that an agent of-

fering k units of service submit asks for 1, 2, . . . , k− 1 units. Therefore, a solution

involving an excess ask can never have a surplus greater than a solution using an

ask for the same item, but which offers fewer units.

These preprocessing steps are O(|B|2), compared with the O(2|B|) of actual win-

19This preprocessing step does not work for multi-unit asks. We would have to consider the
possible contributions to surplus of other bids which demand the same item(s), which is essentially
winner determination.
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ner determination. In the current implementation, we perform the steps prior to

constructing the graph data structure used by BOB. Nodes in this graph are joined

by OR edges when item overlap exists between bids. By performing the prepro-

cessing in this graph, we could reduce the amount of searching that occurs when

deciding whether to cull a given bid. For each of the three steps, only a bid’s neigh-

bors reachable by OR edges need be examined.

We conclude the description of BOB by showing how it solves the earlier ex-

ample of Figure 2.9 from Section 2.3.2. That example had ten bids, but our imple-

mentation begins by preprocessing out two of them. Bid B4, which demanded the

route (1,5,7), is unaffordable. The corresponding supply comes from B6 (relay 5)

and B8 (sink 7). Since p4 + p6 + p8 = −0.1, B4 can be eliminated. After removing

B4, there is no demand for relay 5, so B6 becomes an excess ask, and is removed.

Figure 4.14 shows the complete search tree examined by BOB. Search nodes

marked with an “×” indicate bounding or pruning. The current surplus g is la-

beled at each node; when the allocation at that node is infeasible, the surplus is

shown in parentheses. In this example, BOB discovers the surplus-maximizing

combination, with f̃ ∗ = 1.4, first. It then backtracks, testing the combinations in

which some x j = 0. Most of these are simply infeasible. However, after assigning

x3 = 0, heuristic pruning is used to avoid searching that subtree, since the best

allocation without B3 has surplus 1. The algorithm then searches the subtree in

which x2 = 0, which does not yield a greater surplus than 1.4.
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Figure 4.14: BOB search tree for the example of Figure 2.9.
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This example visits 21 search nodes, compared with the 2|B|+1 − 1 = 511 nodes

required for full search. Our implementation, running on a 1GHz mobile PowerPC

7450, completes in 2.8ms.

4.4.3.3 Vickrey Payment Computation

An agent’s payment to the Vickrey Clarke Groves mechanism (§2.4.4) is com-

puted by solving the winner determination problem with that agent’s reports re-

moved. In principle, this means solving a smaller exchange for each agent. How-

ever, we only actually have to compute Vickrey payments for those agents who

had winning bids in the original exchange. An agent with no winning bids con-

tributes nothing to the surplus of the original exchange, so removing its bids will

not change the winning surplus. Therefore, its Vickrey discount is zero, and so is

its payment.

After solving the winner determination problem using the algorithm described

in Section 4.4.3.2, we solve smaller exchanges for each winning agent. These ex-

changes are smaller (i.e., |B−i| < |B|), not only because the winning agent’s bids

have been removed, but also because of preprocessing. Typically, removing a win-

ning buyer’s bids causes some asks to become excess asks, which are then culled.

Removing a winning seller’s asks causes some bids to become infeasible, which

are also culled. As a result, BOB generally executes more quickly during Vickrey

payment computation than during initial winner determination.
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4.4.4 Implementation Phase

The prerequisite for entering Implementation is that a node knows its own mech-

anism results. The root learns its results after solving the winner determination

problem, while the other nodes learn their results after receiving an XPM Result

message (§4.4.3.1). Upon entering Implementation, a node configures its active

routes, if any. It also configures timers for its own power management suspen-

sion, as well as for its suspending neighbors list.

A traffic source which receives its mechanism results first marks all of its ac-

tive routes as having invalid negotiations. Since a node participates in one and

only one mechanism at a time, its mechanism results completely specify the ac-

tive routes it may use. If the source had no winning bids, it sets a timer for the

duration of the negotiation interval, which is 20 seconds in our implementation.

When this timer expires, the source will start the negotiation procedure again, at

which point it might be able to win a route. If the source had winning bids, it uses

them to replace whatever active route state it was maintaining for a given destina-

tion. Winning routes will be used until they break, until the end of the negotiation

interval, or until their destination ceases to be active.

If a destination becomes inactive in the middle of the Implementation phase,

the source no longer requires the services of the nodes on the negotiated route to

that destination. The source can trigger a restart, which allows nodes to renego-

tiate. If there are no other active traffic flows, this allows nodes to resume power
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management earlier than if they waited for the current negotiation interval to ex-

pire. If the destination becomes inactive within the renegotiation hold time —

5 seconds in our implementation — before the scheduled end of the negotiation

interval, then the interval is allowed to expire and no early restart is triggered.

Implementation is a terminal state for the four-phase negotiation procedure.

A node eventually enters Implementation, either by correctly receiving its mech-

anism results, or by abandoning the procedure. Nodes abandon the Structure

or Negotiation phases20 after failing to receive an expected message within some

fixed period of time. The timeout in Structure is 750 milliseconds, while Negotia-

tion is slightly longer — 1 second — to account for time spent solving the mecha-

nism. Table 4.2 summarizes the XPM timers. As with LPM, all nodes implement

the same timer values.

Timer Duration
Active route finalize 750ms
Structure phase timeout 750ms
Negotiation phase timeout 1s
Negotiation interval 20s
Inactivity renegotiation hold 5s

Table 4.2: XPM timer durations.

Even under stressful mobility conditions, the procedure will always terminate.

If a node terminates by abandoning, then the mechanism in which that node par-

ticipates may fail to be solved, or some nodes may fail to receive their mechanism

20Nodes automatically proceed from Discovery to Structure following the expiry of a finalize
timer (§4.4.1).
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results. Traffic sources which discover that the procedure has abandoned may

restart it by triggering a fast wakeup.

Sources are not blocked from sending application messages while the negotia-

tion procedure is in progress. A source which had a winning route in the previous

negotiation continues to use that route while a new negotiation is proceeding. A

source which does not have a previously-winning route uses whatever route is

selected by the DSR route cache, subject to route fidelity constraints (§4.1.4).

The only time a source is blocked from sending is when it has an unaffordable

route. That is, when it has bid on routes to a destination, but none of the bids

were found winning during winner determination. This ensures that the negoti-

ation process interferes minimally with normal application message delivery. The

results of the mechanism are what determine the usability of routes.

4.5 Valuation Functions

Exchange Power Management provides a framework for agents in a mobile ad

hoc network to express their preferences over configurations. So far, we have as-

sumed that the agents have some way of computing their preferences, but have not

described specific methods. This Section presents basic valuation functions which

agents can use to determine their preferences. These functions demonstrate some

of the fundamental capabilities of exchange-based power management. More so-

phisticated functions are an interesting subject for future work.
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Conceptually, the valuation function is the realization of agent type, θi (§2.4.1).

Literally, it is the function vi(·, θi) that, given a type, maps configurations of the

network to some scalar value. In our environment, an agent’s type encapsulates

private information that the agent holds regarding its energy and communica-

tions status. For example, it might contain the amount of time a node has spent

suspending power management on behalf of other nodes. Or, it might maintain

the balance of credit the node holds with respect to the mechanism.

Valuation functions in our environment form the basis for two kinds of reports

by the agents: bid prices and ask prices. In the examples of this Section, bid prices

are primarily a function of route length, while ask prices are primarily a func-

tion of how much an agent “owes” the network. The individual functions in Sec-

tions 4.5.1 and 4.5.2 refine these ideas further.

The philosophy underlying bid pricing is that an agent must capture the value,

or work, associated with message delivery. Intuitively, this is somehow related to

the number of relays which must provide service in order to implement the route.

We must be careful with this idea, however. Consider a naı̈ve model in which each

individual route P is valued at S× |P| for some scaling factor S ≥ 1. Here, longer

routes are valued more than shorter routes, which is contrary to the common notion

of route quality!

The model we adopt instead uses route length as a general estimate of the work

required to deliver messages to a destination. A source could use many methods
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to estimate this work. For example, it might compute an estimate of the network

diameter based on the contents of its route cache. Or, it could compute the mean

route length among routes it knows to a specific destination. In our implemen-

tation, after a source selects the routes for which it will submit bids, it picks the

longest of these routes. The length of this route is passed to the valuation function,

which computes a bid price. This price is applied to all bids to the destination, re-

flecting the value the source associates with any route that delivers messages to

that destination.

Every agent submits one or more asks, which indicate the agent’s reported

costs for providing relay or sink service to the network. The valuation function

determines the costs for forwarding or receiving a single traffic flow. Given this

single-unit ask price, XPM proceeds to compute the prices for multi-unit asks as

necessary.

Procedure 14 MAKE-SUPPLY

1: p← 0 {price for u-unit ask}
2: ṗ← single-unit ask price {from valuation function}
3: for u = 1, 2, . . . , U do {U is the greatest number of units to be supplied}
4: p← p + ṗ
5: Create an ask for u units with price p.
6: ṗ← ṗ× (1−Discount)

Procedure 14 shows the method by which multi-unit ask prices are computed.

An ask offering u units of relay or sink service has a price that is based on a vol-

ume discount applied to the 1, . . . , u− 1 smaller asks. In our implementation, the

discount is 9
10 . As an example, if the single unit ask price is −1, the prices for sub-
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sequent multi-unit asks are −1.1, −1.11, −1.111, and so forth. This method was

chosen because it is easy to compute, and loosely reflects the concept of marginal

energy cost (§2.1.2).21 Methods which more accurately capture the energy costs of

multiple flows should be examined as part of future research.

In the current implementation, we do not consider complementarity between

sourcing and relaying or sinking at the same node. A node which is a winning traf-

fic source must suspend power management. If such a source were to be a relay or

sink as well, its additional energy costs would be marginal given that it is already

suspending. To fully express this complementarity, agents would have to be able

to submit bids that demand routes and supply their own relay or sink service. This

is permitted by the definition of a combinatorial exchange, and the XPM bidding

protocol syntax supports it. The current BOB implementation (§4.4.3.2) employs

several optimizations that assume bids only demand items or only supply them,

but not both. Exploration of more expressive bidding is left to future work.

4.5.1 Time Balance

The first valuation function we describe was designed to show the capabilities of

XPM under the constraint that the application message delivery ratio is maxi-

mized. That is, the ratio of messages received at the application layer to the number

of messages sent should be maximal. This is a common metric applied to rout-

21This particular discounting method probably overstates the incremental costs of the first few
additional traffic flows, and understates them after about the tenth.
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ing protocols, so we would like to see what influence, if any, XPM can have on

performance given this constraint.

Section 4.4.4 explained that the only time messages are blocked in XPM is when

a source has an unaffordable route. To maximize delivery ratio, we need a valua-

tion function that produces bid prices which can afford any route. These are neces-

sarily large bid prices, which result in large mechanism payments when a source

has winning bids.

An agent that can afford any route is essentially insensitive to the cost of its

routes. Rather than having quasilinear preferences (§2.4.1), such an agent expe-

riences direct utility ui(λ, θi) = vi(λ, θi) unrelated to its payment pi(λ). For agents

with these preferences, the VCG mechanism provides no additional properties

(e.g., strategy-proofness) not already offered by the combinatorial exchange. In

fact, an XPM for such agents could dispense with computing Vickrey prices alto-

gether, as the only important information solved by the mechanism is the set of

winning bids and asks.

We call this valuation function the Time Balance model. Bid prices are derived

by scaling the (maximum) route length. Ask prices are an exponential function of a

balance which measures the amount of time an agent has spent supplying service

to the network against the amount of time in which it has demanded service.

Let |Pmax| be the length of the maximum-length route passed to the valuation

function during bid preparation. Under the Time Balance model, the bid price is
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computed as p = St × (|Pmax| − 1), for a scaling factor St � 1. In our implementa-

tion, St = 5,000, which seems to be large enough for nearly all routes.

Let W =
(
w1, w2, . . . , w|W|

)
be the sequence of time windows in which a node

has suspended power management to serve as a relay or sink. The total time the

node has spent suspending while providing service is
|W|

∑
i=1

wi, in seconds. Let R =(
(P1, r1) , (P2, r2) , . . . ,

(
P|R|, r|R|

))
be the sequence of tuples describing the routes

this node has used as a source, and the time windows in which each route was

used. For each route Pi, |Pi| − 1 other nodes (the relays and a sink) spent ri sec-

onds suspending power management on behalf of this node. The total time other

nodes have spent suspending power management for this node is
|R|

∑
i=1

(|Pi| − 1)× ri,

in seconds. Define the time balance bt as:

bt =
|W|

∑
i=1

wi −
|R|

∑
i=1

(|Pi| − 1)× ri

When bt is negative, this node “owes” the network service. Otherwise, this

node is “owed” service by other network nodes. Note that bt accounts for suspen-

sion activity while the negotiation procedure is executing, as well as after a nego-

tiated configuration has been reached. The single-flow ask price is computed as

p = −Abt
t , where At > 1 is a constant which determines how aggressively prices

rise as the node’s balance becomes increasingly positive. In our implementation,

At = 1.003, which keeps prices from growing too quickly.

Figure 4.15 shows the single-flow ask pricing as a function of the time balance.
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Figure 4.15: Time Balance ask pricing.

The ask price is −1 when the balance is zero, and asymptotically approaches zero

as this node “owes” more to the network. When the node has a positive balance

with respect to the rest of the network, it rapidly becomes less affordable to other

sources. Larger values of At cause the node to be more aggressively expensive.

In our current implementation, all nodes use the same At. It would be interesting

to dynamically choose At based on a node’s beliefs about its own traffic-sourcing

behavior (e.g., high-volume source, bursty source) or some other feature.

4.5.2 Credit Balance

To make use of the incentive compatibility properties of the VCG mechanism,

agents need to care about how much they pay to implement an outcome. The
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basis for this mechanism is a payment rule which removes the incentive for an

agent to strategically manipulate its valuation reports in the hope of paying less

(or being paid more). We want a valuation function that, unlike the Time Balance

model, is sensitive to payment amounts.

The basic concepts underlying the Credit Balance model are similar to those

from the Time Balance model. Bid prices are mainly proportional to route length,

and ask prices are a function of the credit balance bc =−∑ pi,vick. Limiting the mea-

sure of a node’s contribution to the network to just this credit balance, however,

can be inaccurate with respect to the node’s actual energy consumption.

t
waste

disruption

overhead Implementation phase

negotiation interval

Figure 4.16: Overhead and waste in credit-based contribution assessment.

Figure 4.16 shows the two factors which lead to the inaccuracy: overhead and

waste. In XPM, agent payments are based on a network configuration that lasts

for a negotiation interval (§4.4.4). Essentially, the agents are paying for (or are

paid for) the service that occurs during the Implementation phase. But before

the Implementation phase is reached, some nodes must spend time in the Discov-

ery, Structure, and Negotiation phases, during which they are suspending power

management. This time is not accounted for in the agent payments; we call such

time overhead.

During the Implementation phase, a disruption may occur which causes the
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agents to restart the negotiation process. Examples of disruptive events include

route breakage or the arrival of a new traffic flow. Following a disruption, the cur-

rent negotiation is abandoned, but the agents have already paid (or have been paid)

for a full negotiation interval of service. These payments are partially wasteful,

since a full interval was not used. We call the time between a disruption and the

end of the disrupted negotiation interval waste.

Overhead and waste are opposites. One measures work that is unpaid; the

other measures work that was paid for, but not performed. We can combine these

measures to make Credit Balance ask pricing more closely reflect Time Balance

pricing (which automatically accounts for overhead, and is insensitive to wasted

payments). The idea is for certain periods of waste to pay for periods of overhead.

Specifically, an agent with winning asks and no winning bids — a “pure” relay

or sink — adds the wasted remainder of a disrupted negotiation interval to the

counter Waste. All agents add their periods of overhead to the counter Overhead.

Call the difference, Overhead−Waste (in seconds), an agent’s net overhead.

Credit Balance ask pricing is a piecewise function of the credit balance:

p =



−Abc
c if bc < 0

−Lbc − 1− Overhead−Waste
NegotiationInterval

if bc ≥ 0 and Overhead > Waste

−Lbc − 1 otherwise

The constant Ac is similar to that used in the Time Balance model, but smaller,
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since the magnitude of bc is generally much less than that of bt. In our implemen-

tation, Ac = 1.1. Again, the ask price asymptotically approaches zero as bc becomes

increasingly negative. When bc = 0, the ask price is −1.
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Figure 4.17: Credit Balance ask pricing without surcharge.

When the credit balance is non-negative, we switch to a linear function of bc,

with L > 0. For our implementation, L = 0.1. In the linear region, prices rise less

aggressively than if we were to use a pure exponential function. This helps to keep

relays and sinks affordable as their credit balances increase. If the net overhead is

positive, then we try to “sell off” some of the overhead by applying a surcharge to

the ask price.22 The basis for the surcharge is a reference price of 1 unit of credit per

negotiation interval. This price is scaled to the actual amount of overhead being

22The amount of overhead sold in any ask is capped at 5 seconds.



CHAPTER 4. SYSTEM DESIGN 189

“sold.” If an ask whose price has the surcharge applied is found winning, then we

adjust the net overhead counter by the amount of overhead that was “sold.” When

the net overhead is non-positive, no surcharge is applied. Figure 4.17 shows the

single-flow ask price for this latter case.

Bid prices are again computed by scaling the length of a maximum-length

route. Let the base price of a bid pbase = Sc × (|Pmax| − 1), with Sc ≥ 1. The scaling

factor Sc is much smaller than the St used in the Time Balance model, reflecting the

sensitivity of agents to overpayment. In our implementation, Sc = 1.5.

A consequence of the more conservative bid prices used in the Credit Balance

model is that some bids may be unaffordable. That is, their price is too low to yield

positive surplus given the corresponding asks. When an agent’s bids are unafford-

able, it is blocked from sending messages in the current negotiation. We employ

several techniques to help an agent whose base price is too low. The justification

for this is a practical interest in keeping delivery ratio high. We concede that a

game-theoretic interpretation of these techniques may be a challenge to develop.

The first technique we use to increase the chances that a bid will be affordable

is the use of a “tip.” Call b′c = bc− pbase the remaining balance after accounting for

a payment equal to the base (bid) price.23 The bid price is then computed as:

23Due to the use of Vickrey discounts, the bid price is the most an agent will pay when it wins.
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p =


pbase if b′c < 0

pbase + min
(
bc × Tip, b′c

)
otherwise

The Tip > 0 is a fraction of the current credit balance that an agent is willing to

pay to increase its chances of winning. In our implementation, Tip = 1
10 . An agent

offers at most its remaining credit balance in a single tip.

The second technique is a multiplier of the bid price just computed. The multi-

plier begins with unit value, and is incremented by 1
2 every time a source has losing

bids. The effect of the multiplier is to successively increase its bid price with each

losing negotiation, in the hopes of eventually winning. The multiplier is reset to

the unit value at the conclusion of a negotiation which is allowed to expire. An

interpretation of the multiplier might be an agent which revises its beliefs about

the value of its routes over time. Because this “learning” implies some sort of in-

terdependence between sequential runs of the mechanism, we suggest that it is

probably better to avoid such behavior in future valuation functions. As a practi-

cal matter, the tip and multiplier techniques do reduce the number of unaffordable

routes experienced by agents.

4.5.3 Summary

Neither the Time Balance nor Credit Balance valuation functions incorporate the

concept of energy. For example, neither involves a measure of “remaining battery
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life.” This is a useful abstraction, since it frees the agents from having to compare

energy profiles across heterogeneous devices. By expressing contribution to the

network in terms of time spent suspending power management, or in the even

more abstract units of credit, these valuation functions are independent of the spe-

cific hardware implementation.

The notion of balance, rather than a “gas gauge” form of resource measure-

ment, is useful for a number of reasons. Some earlier designs (Chen et al., 2001;

Xu et al., 2001) based their selection of active nodes on expected lifetime. A node

which is closer to exhausting its battery is less likely to be chosen for service. This

concept is perhaps most applicable to environments in which all nodes are inserted

into an environment at time zero, and the network must function for as long as

possible. Sensor networks are an example of systems which have this property.

By contrast, balance is a persistent measure of a node’s contribution to the net-

work. We envision an environment in which nodes continually enter and leave the

network. Here, there is no concept of network longevity; there is only the steady-

state energy consumption rate of the nodes. A node’s balance can be preserved

when it leaves and later returns to the network. Balance still makes sense if a

node’s battery is recharged, or if it switches to an alternate radio implementation.

Finally, balance is attractive because it provides a link between a node’s own

traffic sourcing activity and its total communications energy consumption. A

node which sources more must be able to pay for its traffic, so it must provide
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more service to the network, thus increasing its energy consumption. A node

which wants to reduce its energy consumption now has a way to do so: simply

find a way to source fewer messages. This is a major difference between a ne-

gotiated design like XPM and a non-negotiated design like LPM. With LPM, an

“unlucky” node could find itself being made to provide relay service for many

sources, thus increasing its energy consumption even if its own communication

needs are modest. With XPM and balance-based valuation functions, a potential

relay can examine its contributions to the network, and conclude that it does not

“owe” the network additional service. It can then report a high ask price indicating

its preferences, and effectively limit its additional energy consumption.

4.6 Future Improvements

The Exchange Power Management design presented in this Chapter is the first ap-

plication of a strategy-proof mechanism to the problem of power management in

a mobile ad hoc network. XPM tries to find a balance between game-theoretic inter-

ests such as incentive compatibility and network protocol interests such as com-

munications efficiency. Incentive compatibility constrains the set of optimiza-

tions we can perform, both to the communications and compute performance of

our protocol. Communications efficiency determines the scalability of the proto-

col, and can limit its usefulness in some environments.

Section 2.4.5 showed how the result of (Nisan and Ronen, 2000) applies to the



CHAPTER 4. SYSTEM DESIGN 193

power managing network environment. Suboptimal mechanism solutions can-

not guarantee strategy-proofness; agents may be incented to lie about their pref-

erences in order to “help” the winner determination algorithm reach a better re-

sult. We showed that a mechanism based on the solution of separate, independent

combinatorial exchanges was indeed suboptimal. We then argued that, for over-

lapping routes, the use of a single combinatorial exchange was necessary to ensure

strategy-proofness.

This observation informs the manner in which XPM handles disruptive events

during a negotiation interval. Since an optimal solution to the winner determi-

nation problem is required to preserve incentive compatibility, XPM reacts to new

traffic flows and route breakage by computing a new optimal solution. At any

time, the agents are either implementing the results of an optimal mechanism, or

they are trying to construct the solution to such a mechanism.

XPM uses the fast wakeup event (§4.1.2) as a signal to restart the negotiation

procedure. Nodes receiving a fast wakeup reconstruct their spanning trees “from

scratch,” submit new bids, and implement the results of a new, optimal mecha-

nism. Since fast wakeup is a global signal, even nodes participating in mechanisms

unaffected by a new or changed route must re-run the procedure.

From a protocols perspective, triggering the solution of possibly many mech-

anisms throughout the network based on a local event (e.g., a broken link) raises

scalability concerns. Yet many local means of reacting to such events fail to yield
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an incentive compatible outcome. Section 4.6.1 argues against some local repair

techniques, and presents an alternative which preserves strategy-proofness with-

out triggering network-wide renegotiation.

This improved renegotiation method utilizes the spanning tree overlay from

Section 4.4.2.1 in a different way. Rather than discarding the tree after a negotiation

completes, the new method may reuse the tree during renegotiation. This new

application calls for a more graceful handling of broken tree edges. Section 4.6.2

describes one possible approach.

Finally, under conditions of high node mobility, a negotiation procedure for

route selection may not be able to keep up with the rate of topology change. Al-

though such an environment is not the subject of this thesis, Section 4.6.3 describes

a method for gracefully failing over to LPM under high mobility. This approach

completely sacrifices the energy-shaping advantages of XPM, but allows DSR to

continue experiencing the latency benefits of multihop power management.

4.6.1 Interim Mechanism Solutions

XPM provides a facility for selecting a subset of network nodes to support ac-

tive traffic flows. Section 2.1.2 showed that, for an 802.11 interface, energy con-

sumption in the idle state dominates. Accordingly, XPM sellers are offering to

spend some fixed interval of time (e.g., 20 seconds) suspending power manage-

ment while they relay or sink messages. While suspending, these nodes incur the
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high energy costs of the idle state, rather than the lower costs of the power man-

agement doze state.

Ideally, once a negotiation has been reached, the network would remain static

for the remainder of the negotiation interval. No links would break, no new traf-

fic flows would become active, and no existing traffic flows would terminate. In

reality, all of these events are possible. When such changes occur, we can apply

corrective measures from one of the following categories:

• Renegotiate optimally. When overlap exists between an existing negotiation

and a new or changed set of routes, solve a new, single exchange optimally.

The solution must be based on the reports of all agents in the union set of the

existing negotiation and the new or changed routes.

• Renegotiate suboptimally. Solve a local, smaller mechanism which only re-

quires reports from the agents on the new or changed routes.

• Don’t renegotiate. Wait until the existing negotiation expires, then add the

agents on the new or changed routes to the next solution. Until that time,

either permit sources to choose routes at their discretion, or block them from

sourcing messages.

In the order presented, these approaches exhibit increasing communications

efficiency, and therefore, increasing scalability. XPM currently uses an approach

from the first category, and solicits bids from all affected agents in order to solve the
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exchange optimally. As explained earlier, no approach from the second category

can guarantee strategy-proofness. The third category either reduces to LPM — the

sellers cannot express their preferences, and are not compensated for their costs —

or induces extremely high delivery latency due to blocking.

This thesis is about strategy-proof mechanisms, so our approach comes from

the first category. We can improve upon XPM by reusing and augmenting the

spanning tree from the existing negotiation, rather than generating a whole new

tree. The agents on the new or changed routes pass bids to the (old) root, which

retains the bids used to reach the existing solution. The exchange is solved opti-

mally using a combination of old and new bids. This interim mechanism solution

is then distributed among the agents, which implement the new configuration for

the remainder of the existing negotiation interval.
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(b) Existing tree edges.

Figure 4.18: Existing flow and tree edges.

Adapting a familiar example, the agents in Figure 4.18(a) execute a mechanism

to allocate a route for 1 6. The nodes form the spanning tree depicted in Fig-

ure 4.18(b), with the root 6 having the oldest timestamp, 100. Bids are passed to 6,

which solves the exchange optimally, and distributes the results.
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Figure 4.19: Augmenting an existing negotiation.

Before the end of the negotiation interval, suppose that source 2 decides to bid

on one of the routes for 2 7, shown in Figure 4.19(a). This might happen because

the flow 2  7 has recently become active. Or, 2 might have previously known

a different set of routes to 7 which broke, and the newly-discovered replacement

routes overlap with the negotiation from Figure 4.18. In any case, the problem is to

augment the existing tree with the new vertices 2, 5, and 7 shown in Figure 4.19(b).

Under XPM, the fast wakeup which preceded 2’s Route Discovery is inter-

preted by the other agents as a signal to restart the negotiation procedure. Agents

1, 3, 4, and 6 would re-run Structure, joined shortly thereafter by 2, 5, and 7. All

seven agents would submit bids to a common root, which would compute an op-

timal solution.

In the improved approach, we no longer interpret fast wakeup as a global negotia-

tion restart signal. Upon receiving a fast wakeup, nodes suspend power manage-

ment as before. Traffic sources whose demand set has not changed do not imme-
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diately initiate the process of building the spanning tree. As we will show, nodes

whose existing negotiations do not overlap with new or changed routes continue

to use their negotiations, and do not process new Structure or Negotiation mes-

sages. Only those sources having new or changed routes send Notify messages

along those routes. Such sources begin the tree construction process as in XPM,

as the root of a singleton tree, with a timestamp sampled at the time of the fast

wakeup.

A Notify for a new or changed route may reach a node which participated in an

existing negotiation. Call this an overlap node, referring to the overlap between

the existing negotiation and the new or changed routes. Overlap nodes remem-

ber their tree state from the existing negotiation. That is, they know the root and

timestamp for their tree, as well as the edge classifications (e.g., Parent, Child) for

their neighbors. This is a departure from XPM, in which tree state is discarded

once an agent receives its Result message and enters Implementation.

Tree augmentation begins at overlap nodes. XPM already uses a tree forma-

tion algorithm in which older subtrees conquer younger subtrees, based on times-

tamps. We can use exactly this algorithm for augmentation. Sources with new

or changed routes begin with a timestamp that is later (younger) than the one re-

membered by nodes in existing negotiations. An overlap node will have an older

timestamp than the Notify messages it receives from sources with new or changed

routes. Therefore, the overlap node will conquer the nodes on those routes having
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later timestamps.
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(c) Final tree.

Figure 4.20: Augmenting the spanning tree.

Figure 4.20 illustrates spanning tree augmentation. Following the fast wakeup

triggered by source 2, nodes 2, 4, and 5 are the roots of singleton trees with times-

tamps sampled at the time of the fast wakeup. Nodes 1, 3, 4, and 6 — which

are already implementing a negotiation — do not update their root or timestamp

information, and remember their existing edge classifications. The initial state, be-

fore 2 sends its Notify messages, is shown in Figure 4.20(a). In Figure 4.20(b), 2 has

sent Notifies to 4 and 5. 5 agrees to be a child of 2, but 4 has an older timestamp
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from the existing tree, and conquers 2. 2 will next conquer 5, and ultimately 7 will

be conquered after receiving the propagated Notifies from 4 and 5. The final tree

appears in Figure 4.20(c).

Note that only a subset of the nodes processed Structure messages in the exam-

ple. Nodes 1, 3, and 6, which do not appear on the new or changed routes, did not

process any Notify, Update, or Respond messages. This is an improvement over

XPM, in which all nodes on active routes process Structure messages.

CBA

1 2

Figure 4.21: Flow 1 2 overlaps existing negotiations A, B, and C.

Figure 4.21 illustrates the case of multiple overlap. The new flow 1 2 con-

tains relays from three existing negotiations, labeled A, B, and C. In this situation,

the existing tree with the oldest timestamp will conquer the other trees (as well as

the augmented vertices).

The precondition for entering Negotiation is similar to that in XPM. A node

which has received a Notify from a source with new or changed routes, and which

has classified all of its incident edges, enters Negotiation after receiving bids from

all of its children. Leaf nodes begin this wave algorithm as in XPM, by sending

Submit messages to their parent. Bids are aggregated at parents, and eventually

propagate up to the root.
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Figure 4.22: Edges traversed by Submit messages in the augmented tree.

Figure 4.22 shows in bold the tree edges across which Submit messages are

passed in the augmented tree. Nodes which do not lie on a tree path between

overlap nodes and the root do not process Submit messages. This again improves

upon XPM, in which all nodes on active routes process Submit messages.

We can reduce the number of bids that must be encoded in Submit messages

passing between overlap nodes and the root. In XPM, a parent combines all of its

childrens’ bids with its own bids, and passes the aggregated bids towards the root.

In the improved design, a parent only needs to include bids submitted by agents at

overlap nodes or augmented tree vertices. Bids from overlap nodes must be con-

sidered because such nodes must express their preferences for relaying additional

traffic flows. In the example of Figure 4.18, node 4 reported its costs for relaying a

single flow. When the second flow was added in Figure 4.19, 4 completely specifies

its preferences by submitting an additional ask for two flows.

In Figure 4.22, node 4 must include all bids and asks from its augmented vertex

descendants, 2, 5, and 7. Node 4 also includes its own asks, offering to relay one

or two flows (joined by XOR constraints). Node 4 does not include any asks from
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its child 1, since 1 is neither an overlap node nor part of the augmented vertex

set. Once 6 receives the new bids from 4, it adds them to the set B. If an agent

— such as 4 — already submitted bids in the existing negotiation, its old bids are

replaced when it submits new ones. The existing bids of agents that do not submit

replacements are preserved.

Not requiring bid submissions from all agents improves communications ef-

ficiency. It does, however, requires us to specify how the existing bids will be

transformed into results in the interim mechanism. The existing prices reflect val-

uations for a full negotiation interval, but the interim mechanism solves a config-

uration that will be used for only the remaining fraction of that interval. If we can

assume that agent valuations scale directly with time, then it is easy to incorporate

the existing bids into the new solution. Suppose the interim mechanism is solving

a configuration that will last for the remaining fraction s < 1 of the current interval.

All existing bid prices are multiplied by s by the root. Agents submitting new bids

scale their prices by s themselves. These agents can compute the value of s by exam-

ining the tree timestamp. The negotiation interval is common knowledge, and the

tree timestamp marks the (approximate) start of the existing interval. Therefore,

s = 1− CurrentTime− TreeTimestamp
NegotiationInterval

. In this manner, all bids express values for

a common subinterval.

Given the transformed existing bids and the newly-submitted bids, the root can

solve the winner determination problem. The Branch-on-Bids variant described
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in Section 4.4.3.2 computes an optimal solution “from scratch.” Depending on the

extent to which new bids override existing bids, it might be possible to use incre-

mental winner determination techniques to reduce the amount of computation

at this step (Kastner et al., 2002; Sandholm, 2002). Incremental methods apply to

combinatorial allocation problems when the set of bids B is perturbed, for example

by adding bids or changing bid valuations. The goal is to take an existing solution,

make some changes according the perturbations, and arrive at a new solution in

less time than solving the full problem again.

Once a new solution is reached, we compute Vickrey payments as in Sec-

tion 4.4.3.3. Call agent i’s payment in the existing negotiation pi,vick, and its pay-

ment in the interim mechanism p′i,vick. Our interpretation of interim payments is

that i pays (1− s)× pi,vick + p′i,vick for the entire interval. That is, the original payment

is scaled to the time for which the original solution was in effect. For the remain-

ing fraction of the negotiation interval, s, the agent pays its Vickrey payment in the

interim mechanism.24

There are some special cases in which the solution to the interim mechanism

does not affect agents implementing an existing result. If an interim mechanism

is solved with the same bids as the existing solution, but with prices scaled by

s, then the interim Vickrey payments p′i,vick = s× pi,vick. Therefore, agent i’s total

payments for the interval do not change due to the interim mechanism. Another

24If we have to solve a second interim mechanism, then we scale the payment of the first interim
mechanism to reflect its effective subinterval, and so forth.
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case concerns agents with no winning bids or asks in either the existing or interim

solutions. These agents make have p′i,vick = pi,vick = 0. A third case occurs when the

introduction of new bids does not change the mechanism solution. In the example

of Figure 4.19, suppose source 2 cannot afford any of its routes. The winning

agents in the interim mechanism are the same as those in the existing solution.

When any of these cases occur, it may be possible to improve the distribution of

Result messages. Specifically, agents which have not explicitly submitted new bids

to the interim mechanism and whose results do not change do not need to receive

a new Result message. They may continue to implement the existing result for the

remainder of the negotiation interval.

In the general case, the interim solution will cause some agents’ Vickrey pay-

ments for the total negotiation interval to change. These agents’ bids may change

from winning in the existing solution to losing in the interim solution (or vice versa).

Such agents must receive a Result message informing them of the status of their

bids and the new amount of their Vickrey payments. We also require that agents

which have submitted new bids to the interim mechanism receive a Result mes-

sage, whether or not their status or payments change.

So far, we have emphasized improvements in message efficiency made possi-

ble by the interim mechanism approach. These improvements do not necessarily

translate into energy savings, however. Consider a node which is implementing

an existing negotiation in which it had no winning bids. This node has resumed
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power management. During the negotiation interval, the node observes a fast

wakeup, and suspends power management while waiting to see if an interim ne-

gotiation will occur.

The first opportunity a node has to learn that it will participate in an interim

mechanism happens if it receives a Notify or Update. The first of these must arrive

before the Structure timeout (750 milliseconds in our implementation). However,

a node will not necessarily receive a Structure message, as in the case of nodes 1

and 3 in Figure 4.20. The next opportunity a node has to learn that it is partici-

pating in an interim mechanism is during bid submission. For example, in Fig-

ure 4.20, the first message received by node 6 is a Submit from node 4. Again,

nodes 1 and 3 do not receive these messages. The final opportunity occurs as Re-

sult messages are distributed, which may happen several seconds after the fast

wakeup was observed.

Nodes should not need to wait, suspending power management, for the worst-

case Result delay to find out if they are participants in an interim mechanism.

Non-participants should resume power management as soon as possible. We can

achieve this by borrowing the application of a keep-alive message from multicast

routing in ad hoc networks (Jetcheva, 2004). A node which is implementing an

existing negotiation, and which receives a Notify or Update as part of an interim

negotiation, sends a keep-alive message to all of its neighbors in the existing tree.

(Section 4.6.2 discusses how to handle broken tree edges.) Those nodes in turn
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propagate the keep-alive to their tree neighbors, and so forth, until all members of

the existing tree have received the message.25 This process must complete before

the Structure timeout. If a node receives neither a Notify, Update, nor a keep-

alive before this timeout, it may assume that it is not a participant in an interim

mechanism. As a result, the energy cost of a fast wakeup to an irrelevant node (i.e.,

one which will not participate in the interim mechanism) is at most the Structure

timeout duration spent in the idle state.
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Figure 4.23: Worst-case edge traversal by Result messages.

Participants in the interim mechanism suspend power management until they

receive their Result message. In the worst case, Result messages will traverse all

|E| edges of the spanning tree. This corresponds to the case in which every agent

has at least one bid that changes from winning to losing (or vice versa), or whose

Vickrey payment changes. Figure 4.23 illustrates this case; a Result message tra-

verses each bold edge (but in the direction opposite of the arrow, since the arrows

point from child to parent).

25With suitable pruning, at most one keep-alive traverses each tree edge in this step. Multiple
nodes at different positions in the tree can initiate keep-alive dissemination concurrently.
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Upon receiving a new Result message, nodes enter Implementation as in XPM.

Implementation following an interim mechanism solution only lasts for the re-

mainder of the existing negotiation interval. For those agents which do not need

to receive Result messages, we can allow them to resume their previous Imple-

mentation status following a timeout.

4.6.2 Spanning Tree Repair

XPM constructs a spanning tree overlay “from scratch” following a fast wakeup

event. Although the tree typically exists for less than a second, it is still possible

for a tree edge to break before a Result message traverses it. If we use interim

mechanism solutions (§4.6.1), the probability of broken edges increases since the

tree may be reused some time after it was initially constructed. XPM responds to

edge breaks by restarting the tree formation process via a fast wakeup. This is a

global restart, which is inefficient; any time an edge breaks in any tree, all trees

are reconstructed. We would like a more localized means of responding to tree

edge breaks. One possible approach is to repair the tree by having the nodes in the

subtree beneath the broken edge rejoin the tree via other edges.

Tree repair relies on information obtained during tree formation. We assume

that each tree node knows the root and timestamp of its tree, as well as the clas-

sifications of its incident edges (e.g., Parent, Child). The problems we must solve

are to detect broken edges, and to reconnect disconnected subtrees. The former is
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easily solved, both reactively and proactively. The latter requires more work, but

has already been solved in other problem domains.
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Figure 4.24: A broken tree edge (2,4) disconnects the subtree containing 2 and 5.

Figure 4.24 shows an example of a broken tree edge. When the link (2,4) fails,

nodes 2 and 5 are disconnected from the tree. XPM detects such a break using

link layer acknowledgments. The first time any node attempts to send a message

across the broken edge, the link layer will report that the transmission failed. For

example, either 2 or 4 might send a Structure message across the link. Or, once

Structure has completed, 2 (the child) might send a Submit or Revoke, or 4 (the

parent) might send a Result. Relying on link layer acknowledgments is a reactive

approach; the break is not discovered until a node needs to use it.

The reactive approach just described introduces no overhead, but there are cir-

cumstances in which it would be useful to discover the break earlier. For example,

suppose the link (2,4) fails after a Submit message traverses it, but before the Result

arrives. Node 4 may have already sent a Result to 7 before detecting the break. At

this point, even if nodes 2 and 5 could be reconnected to the tree, say, as descen-

dants of 7, it is too late. Once 7 receives its Result, it enters Implementation. In
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XPM, Implementation is a terminal state for the protocol; no additional Structure

or Negotiation messages may be processed. Also note that 2 will not detect the

break, and will time out waiting for Negotiation to conclude. 2 infers that the pro-

tocol has failed somehow, but does not know specifically that one of its incident

edges has broken.

We could perhaps detect the break earlier using proactive means. Keep-alive

messages, as used in multicast protocols (Jetcheva, 2004), allow both endpoints of

a broken link to detect the failure within some bounded delay. Consider a change

to XPM in which, as soon as a node classifies one of its incident edges as type

Child, it begins to periodically send keep-alive messages across that edge. Since

these are directed messages, the sender can detect when the transmission fails.

Similarly, if the period (plus some margin26) elapses and the child does not receive

a keep-alive, then the child can infer the failure as well.

This change allows the parent to detect the break in at most the time between

periodic keep-alive transmissions. The child detects the break in at most this period

plus a small margin. It is important that the child be able to detect the break, since

we want the nodes in a disconnected subtree to be able to initiate the process of

reconnecting.

1 2

Figure 4.25: A broken tree edge (1,2) from source 1’s demand set.

26If a keep-alive message is scheduled for transmission during the ATIM Window, then it will
be deferred until the end of the Window. Contention may cause additional delays.
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The edge set of the spanning tree consists of edges from demanded routes

as well as inferred edges discovered by promiscuous listening on the wireless

medium. The loss of an inferred edge can never (by itself) disconnect a tree; such

an edge can always be replaced by one or more links from the sources’ demand

sets. The loss of an edge from any source’s demand set is more serious. Figure 4.25

shows a simple example: traffic source 1 demands only the route (1,2). If the link

(1,2) breaks, the tree becomes disconnected; there is no way to reconnect it using

only tree nodes. Further, because the broken edge comes from a route in source 1’s

demand set, even if we could reconnect the tree, the break affects the outcome of

the negotiation. Source 1 can no longer bid on the route (1,2).

In XPM, a broken tree edge causes a restart of the spanning tree formation pro-

cedure. If the broken edge was part of a source’s demand set, then that source

will discover the break when it sends out its new Notify messages along each de-

manded route. The source can then modify its demand, and not submit bids for

the affected route or routes.

In the revised protocol, we can proactively inform affected sources that their

demand set may need to change. A node which has an incident broken tree edge,

and which is the closer to an affected source of the two nodes formerly joined by

the edge, can send a DSR Route Error back to the source.27 This gives sources the

chance to withhold irrelevant bids from the mechanism.

27Nodes can remember the routes on which they received Notify messages. If a tree edge from
one of those routes is observed to break, the proactive Route Error is sent to the sources which sent
Notify messages along those routes.
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We have several options for dealing with the tree disconnection problem of Fig-

ure 4.25. We can allow the tree formation process to time out, and let one or more

traffic sources restart the procedure. We can attempt to reconnect the disconnected

subtrees by recruiting “helper” nodes from outside the tree. We could allow bid-

ding only from nodes still connected to the root; disconnected nodes would be

blocked until a subsequent negotiation. The choice of how to handle this specific

situation is an open problem, and should be studied as part of future research.
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(a) Rerooting the subtree.
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(b) Reparenting the nodes.

Figure 4.26: Two spanning tree repair techniques.

Returning to an earlier example, suppose it is possible to reconnect a sub-

tree. We can use concepts from Adaptive Demand-Driven Multicast Routing,

or ADMR (Jetcheva, 2004), to perform the repair. Upon discovering that it is the

root of a disconnected subtree, node 2 in Figure 4.26(a) can attempt to reroot the

entire subtree by finding a new parent (e.g., node 1) in its former tree. This can be

accomplished by soliciting neighbors across Cousin edges for a conquering Up-

date. If no such edges exist, a broadcast solicitation identifying the tree 2 is trying
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to rejoin may be issued. During this rerooting process, 2 could use the equivalent

of ADMR repair notification messages to prevent its descendants from attempting

a repair themselves.

If it is not possible to reconnect the subtree at the subtree root, it may still be

possible to reconnect using other subtree nodes. Figure 4.26(b) shows that the edge

(5,7) could be used to make 7 the new parent of 5. In turn, 5 becomes the new

parent of 2. This reparenting process uses the existing XPM subtree conquering

procedure.

We observe that the loss of a tree edge having type Child does not prevent

a node from participating in the bid submission wave algorithm. The precondi-

tion for entering Negotiation is that bids have been received from all Child edges.

Therefore, after removing a broken Child edge, a node must only wait for the re-

maining children to submit bids before passing a combined Submit towards the

root. As in XPM, if the tree structure later changes such that a node gains or loses

descendants, the node may always Revoke its earlier submission and Submit re-

vised bids.

Finally, with the use of interim mechanism solutions, all tree nodes must know

that they are participating in a negotiation. Section 4.6.1 described how keep-

alive messages could be propagated throughout a tree to inform tree nodes of

their participation. If a broken tree edge is encountered at this stage, nodes in the

disconnected subtree will not be informed! Further, since they are not informed,
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they cannot initiate the tree repair techniques described above. One possible (but

unreliable) solution might be to send a propagating broadcast throughout the net-

work, inviting members of the named tree to verify the integrity of their incident

tree edges. Broken links could then be repaired using the aforementioned meth-

ods. Alternative handling of this case is a topic for future research.

4.6.3 High-Mobility Adaptation

Even with the interim mechanism solution (§4.6.1) and tree repair (§4.6.2) tech-

niques just presented, it is possible for XPM to be overwhelmed by high node mo-

bility. Although specific thresholds are not known, if links break faster than the

spanning tree can react, then the nodes will never be able to successfully execute

the mechanism. As link breakage occurs more frequently, more Structure mes-

sages are transmitted to try and reestablish the tree, thus increasing congestion.

We would like to detect a point of diminishing returns associated with the use of

negotiated routes. Beyond this point, the nodes could agree to use unnegotiated

routes until mobility conditions become more favorable.

When nodes move slowly, it is more likely that some will become “stuck” in

distinguished positions within the network. These nodes will bear a dispropor-

tionate amount of the network relay load. XPM helps these nodes by allowing

them to express their preferences for providing service. When the nodes move

quickly, the likelihood of a node becoming “stuck” in this manner decreases. As
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such, it is reasonable to consider methods other than negotiation for choosing

routes.

Nodes might discover that tree edges are failing “too often” by several means.

They can measure the frequency with which their own incident edges fail. They

can monitor the overall density of Structure messages, both received and over-

heard. They could keep statistics on Route Error messages or fast wakeup fre-

quency. These and other data could be used to infer whether the local network has

become too unstable for XPM to be helpful.

A source which concludes that mobility conditions are prohibitive might be

permitted to switch to Local Power Management (§4.3). Even if the source is not

in a position to observe the problem, a relay or sink on one of the source’s routes

could send back a report. The source could inform its affiliated relays and sinks

that it believes switching to LPM is justified. A technique such as XPM Notify

propagation could be used for this purpose. If enough relays and sinks concur

with the source’s assessment, the source would subsequently be permitted to use

its own discretion in choosing routes. This would be permitted for some fixed

interval, in the spirit of the XPM negotiation interval. After the interval expires,

the source would be required to negotiate properly, or again appeal to the relays

and sinks for continued use of LPM.

It may be possible for the relays and sinks to receive some compensation for

their costs under this approach. These nodes could simply report prices to traffic
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sources. The sources would then be obliged to pay in the amount of the reported

price to each node whose service it employs. Since there is no way to make such a

method strategy-proof, we hesitate to proceed further in this exposition. We con-

clude by saying that failover techniques for XPM in high-mobility environments

are a topic worthy of additional study.

4.7 Summary

This Chapter presented a practical framework for power management in a mobile

ad hoc network. We presented several techniques for improving the performance

of protocols such as Dynamic Source Routing in power-managing environments.

Specifically, we showed how power management suspension and fast wakeups

could reduce the latency of application message delivery and Route Discovery. We

then described an architectural framework for implementing these concepts in a

protocol stack containing DSR and 802.11.

We then described Local Power Management, a design which provides DSR

nodes with the energy savings of 802.11 power management, but without the high

latency. LPM is not a negotiated design, so nodes cannot express preferences over

network configurations. This means that LPM does not offer any energy-shaping

features, but it is still useful as a baseline for improved DSR performance in power-

managing environments.

Building on LPM, we introduced Exchange Power Management, a mechanism-
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based design for negotiation among power-managing nodes. Using DSR as the ac-

tual routing protocol, XPM permits nodes to express their preferences using bids

and asks in a combinatorial exchange. Once routes have been discovered, XPM

forms a spanning tree over the sources, relays, and sinks on overlapping routes.

This tree is used to collect bids in a wave algorithm. The root of the tree solves

the winner determination problem using heuristic search, and computes Vickrey

payments from the agents. The mechanism results are passed down along the tree,

and sources proceed to use those routes which correspond to their winning bids.

We provided some simple examples of agent valuation functions based on the

concept of balance, which measures an agent’s contribution to the network. One

example emphasized delivery ratio, a common metric in routing protocol analysis.

This design necessarily sacrificed the incentive compatibility of the mechanism,

but still provided a way for relays and sinks to express their preferences for pro-

viding service. The other example assumed agents which were sensitive to their

payment amounts, which led to the idea of an unaffordable route.

Finally, we described some interesting directions for future improvements to

various XPM procedures and algorithms. A method for renegotiating a mecha-

nism which has been disrupted was proposed. Second, a technique for repairing

spanning trees whose edges break, rather than reforming the tree “from scratch,”

was explained. Finally, concepts for responding to high node mobility were men-

tioned, including failing over to LPM in situations where the XPM procedure can-
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not react quickly enough.

Exchange Power Management is the first design to combine 802.11 power man-

agement, Dynamic Source Routing, combinatorial exchanges, and VCG mecha-

nisms. It is the first application of mechanism design to the mobile ad hoc network

environment based on practical protocols. It is the first game-theoretic power man-

agement design to appreciate the energy consumption behavior of actual wireless

network interfaces. By understanding the rôle of the idle state in total energy con-

sumption, we have identified the requirement that a strategy-proof mechanism

for this environment must solve a single exchange for overlapping routes. XPM

therefore implements the first strategy-proof mechanism for power-managing mo-

bile ad hoc networks.



Chapter 5

Simulator and Workloads

To measure the performance of the multihop power management architecture, we

have implemented the designs of Chapter 4 in simulation. This Chapter describes

our experimental environment, detailing the simulator and workloads we have

used in this research. Section 5.1 presents our enhancements to the ns network

simulator, a popular tool used by many ad hoc networking researchers. Section 5.2

explains the communications and movement patterns to which we have applied

our design.

5.1 Simulator

Since the beginning of this research, no vendor of IEEE 802.11 wireless network

interfaces has offered an implementation of IBSS power management (§2.1.3). An

informal survey of vendors on this matter revealed that IBSS power management

218
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performance did not justify the complexity of implementation, or that there was

insufficient market demand for the feature. We chose simulation as the method of

evaluation in lieu of actual system measurement. This is a common approach used

by mobile ad hoc networking researchers, since it permits rapid experimentation

with larger networks than would otherwise be practical.

We can offer some insight into these beliefs about complexity and demand.

First, most commercial and consumer applications of 802.11 involve infrastructure

networks, not the ad hoc networks supported by IBSS mode. Most ad hoc applica-

tions today are found in military, research, or demonstration environments.1 Only

a small population of users would benefit from IBSS power management were it

to be released. As we described in Section 2.1.3, IBSS power management adds

to the latency of communication. This thesis describes techniques to improve la-

tency in multihop environments, but these techniques are not part of the 802.11

specification. Finally, the complexity of supporting IBSS power management at

the firmware and device driver levels is non-negligible. As an informal measure,

when we added IBSS power management to the existing 802.11 implementation in

the ns simulator, the 802.11 code more than tripled in size.

The experimental environment for this research is an extended version of the ns

network simulator (Fall and Varadhan, 1998), originally developed in a collabora-

tion between UC Berkeley, LBL, USC/ISI, and Xerox PARC. ns is an object-oriented

1In fact, early versions of the WaveLAN 802.11 product only supported ad hoc operation through
a non-compliant demonstration mode, suggesting how the designers imagined it would be used.
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discrete event simulator written in C++ with an OTcl command interface. Sev-

eral network protocols at the application, transport, network, and link layers have

been implemented in ns. The simulator supports both wide-area and local-area

networks.

5.1.1 Monarch Extensions

The Monarch Project at Rice University, formerly at Carnegie Mellon, has pub-

lished an extended version of ns 2.1b1, which introduced support for mobile, mul-

tihop wireless networks (Monarch, 1999). The present research is based on re-

lease 1.1.2 of the Monarch extensions. The major enhancements provided by the

Monarch version are a radio propagation model underlying the wireless MAC,

and the implementation of multihop routing protocols for the mobile ad hoc envi-

ronment. We have ported the Monarch code base to Mac OS X and newer distribu-

tions of Linux with the Intel C++ Compiler. Patches for these updates have been

published on the Internet and are in use by several researchers around the world.

5.1.1.1 Radio Propagation

Support for position and mobility in a wireless network simulation is important

because wireless network interfaces have limited range. The Monarch extensions

simulate this with a simple radio propagation model. The model assumes an an-

tenna reference distance of 100 meters; within this distance, received signal power
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is given by the Friis free space equation,

Pr(d) =
PtGtGrλ2

(4π)2d2L

A reference for the Friis equation is Section 3.2 of (Rappaport, 1996). Given

a transmitter power, the gains of the transmitting and receiving antennae, and

miscellaneous system losses, the Friis equation says that received power falls off

with the inverse square of distance. For transmitter-receiver distances beyond the

reference distance, a two-ray ground reflection model is used:

Pr(d) = PtGtGr
h2

t h2
r

d4

Given a transmitter power, transmitter and receiver gains, and the heights of

the transmitting and receiving antennae above a flat ground plane, the two-ray

model says that received power falls off with the inverse of distance raised to the

fourth power. Section 3.6 of (Rappaport, 1996) explains this model in greater detail.

Under this model, the maximum coverage radius of a simulated radio is 250 me-

ters. The model does not account for obstacles or other sources of signal attenua-

tion. It also does not model multipath effects, such as fast fading (also known as

Rayleigh fading).
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5.1.1.2 Multihop Routing

The motivation for the Monarch ns extensions was to provide a simulation envi-

ronment in which to evaluate multihop ad hoc routing protocols. Several such pro-

tocols have been implemented in ns , including Destination-Sequenced Distance

Vector (Perkins and Bhagwat, 1994), the Temporally-Ordered Routing Algorithm

(Park and Corson, 1997), Ad hoc On-Demand Distance Vector routing (Perkins

and Royer, 1999), and Dynamic Source Routing (Johnson et al., 2003). The present

research is based on DSR, which has been documented extensively in this simula-

tion environment (Broch et al., 1998; Maltz et al., 1999; Maltz et al., 2000).

The version of ns used in our experiments implements a DSR path cache, called

MobiCache, which stores entire routes. Newer link caches have been developed

(Hu and Johnson, 2000) since this version of ns was released. As Section 4.4.2.1

explained, patch caches simplify the process of determining a source’s demand set.

We have not experimented with trying to compose demand sets from individual

links, although this might be an interesting subject for future work.

5.1.2 802.11 Implementation Improvements

The Monarch ns implementation of the IEEE 802.11 standard (IEEE, 1997) is largely

complete with respect to medium access. That is, the contention-based statistical

multiplexing algorithms are in place, as are the procedures to mitigate hidden

terminal effects (§2.1) and retransmit lost frames. In addition to these, however,
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802.11 defines a number of management features which are necessary for stations

to join networks, implement power management, and perform other activities.

These management features add substantially to the complexity of an 802.11 im-

plementation. In our work, we have more than tripled the lines of code associated

with the 802.11 protocol.

5.1.2.1 Timer Synchronization

Every station in an 802.11 network implements a microsecond-resolution timer

which is used to coordinate frequency hopping, contention-free medium access,

and power management. Frequency Hopping Spread Spectrum has become a less

popular 802.11 PHY since the advent of the Direct Sequence Spread Spectrum, or

DSSS, 802.11b standard (IEEE, 1999). We therefore ignore the use of station timers

for frequency hopping. Similarly, contention-free medium access is only available

in infrastructure networks; we also ignore the use of timers for this purpose. The

remaining item, power management, relies on station timers to coordinate peri-

odic power cycling of the transceiver electronics. The details of this procedure are

described in Section 5.1.2.3.

Section 11.1 of the 802.11 specification (IEEE, 1997) describes the timer synchro-

nization method for infrastructure and IBSS environments. In an infrastructure

network, timer synchronization is simple: the access point periodically broadcasts

a beacon, and the beacon contains a timestamp. Stations always adopt the times-

tamp in beacon frames received from an access point.
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In an IBSS, there is no distinguished station which provides a master timer ref-

erence. Stations therefore implement a distributed timing synchronization func-

tion (§2.1.1.2), or TSF, which is intended to maintain timer synchronization in a

BSS “to within 4µs plus the maximum propagation delay of the PHY for PHYs

of 1 Mb/s, or greater.” In the distributed TSF, all stations periodically attempt to

transmit a beacon frame. When the time for beacon transmission — known as a

target beacon transmission time, or TBTT — arrives, each station contends to send

the beacon. The algorithm, described in Section 11.1.2.2 of the 802.11 specification,

requires stations to do the following at each TBTT:

1. Suspend the decrementing of the backoff timer for any pending non-beacon

or non-ATIM transmission.

2. Calculate a random delay uniformly distributed in the range [0ms, 1.24ms]

(for DSSS PHYs).

3. Wait for the period of the random delay.

4. If a beacon arrives before the random delay has expired, cancel both the re-

maining delay and the pending beacon transmission. Resume decrementing

the ATIM timer.

5. If the random delay has expired and no beacon has arrived during the delay

period, send a beacon.

We implement an alternate backoff timer used for beacon delays and ATIM
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backoff. At a TBTT, we pause the normal backoff timer, and switch to the alternate.

After beacon transmission or reception (in a non-power-managing network), or

at the end of the ATIM Window (in a power-managing network), we reset the

alternate timer and resume using the normal one.

The separation between TBTTs is fixed throughout the life of the network, and

is known as the beacon interval (§2.1.1.1). This interval is a configurable parame-

ter of the network. Previous research involving simulated IBSS environments has

used values of 100 milliseconds, (Heindl and German, 2001; Huang and Lai, 2002),

200 milliseconds (Chen et al., 2001), and 400 milliseconds (Zheng and Kravets,

2003). Our experiments use a beacon interval of 200 milliseconds.

Beacons include a timestamp which is equal to the value of the sending station’s

timer at the time the beacon is placed on the wireless medium. The timestamp is

an encoding of the station timer value in time units. A TU is “a measurement of

time equal to 1024µs” (IEEE, 1997). When a station receives a beacon, it compares

the received timestamp with the value of its own timer. If the received timestamp

is greater than the local timer value, then the local timer is set to the value of the

received timestamp. Beacons also include several network parameters, including

the size of the beacon interval and ATIM Window, both expressed in TU.

The introduction of beacons has minimal impact on simulated performance,

relative to the original Monarch ns. At worst, they periodically increase the level

of congestion in the network by a small amount. Our experiments have not shown
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this change to noticeably affect DSR.

5.1.2.2 Timer Implementation

Time is continuous in ns; most events in the simulator are dispatched by real-

valued timers. Call the time scale on which these timers operate absolute time.

Physical movement and signal propagation are two aspects of the simulator which

occur in absolute time. A station’s timer may be faster or slower than absolute

time. For an interval ∆τ measured using a station’s timer, the corresponding ab-

solute interval ∆t is given by ∆t =
∆τ

1 + d
. The timer drift d is, for each station,

chosen from a uniform random distribution on [−0.01%, 0.01%]. This interval cor-

responds to the maximum drift permitted in Section 11.1.2.4 of the 802.11 speci-

fication. In our implementation, all timers based on the timer, such as the TBTT

timer and ATIM Window length timer, are subject to this drift.

When sending beacons or comparing the timestamp of a received beacon to

a local timer, it is necessary to know the station timer value associated with the

present moment in absolute time. This requires two pieces of state: the absolute

time of the last timer update, tup, and the value of the station timer at that update,

τup. Given the absolute time tnow, which is always available from the simulator, the

associated station timer value is:

τnow =
[(

tnow − tup
)
× (1 + d)

]
+ τup
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5.1.2.3 IBSS Power Management

When a station uses power management (§2.1.3), it periodically wakes and sends

ATIM management frames to those neighbors for which it wants to send mes-

sages. Stations that will send or receive data during the current beacon interval

then stay awake for the entire interval. The implementation issues surrounding

power management involve the additional timers for the ATIM facility, buffering

for data frames, and power state transitions in and out of the low-power doze

state.

The ATIM Window starts at a TBTT and lasts for a fixed duration as measured

by the station timer, described in Section 5.1.2.2. In previous simulation work, this

duration has been set at 40 milliseconds (Chen et al., 2001; Zheng and Kravets,

2003), and a variable (but non-compliant) 2—50 milliseconds (Jung and Vaidya,

2002). We use a 40-millisecond ATIM Window in our experiments.

Once the ATIM Window begins, only beacon, ATIM, and acknowledgment

frames (sent in response to a directed ATIM) may be transmitted until the end of

the Window. No ATIM frames are sent until a station has either sent or received a

beacon following a TBTT, as described in Section 5.1.2.1. If a timer update causes

a station to advance its timer past a TBTT — in other words, if it “jumps over”

the TBTT — then the ATIM Window starts late. In such cases, the ATIM Window

length relative to the TBTT does not change. Instead, the timer which defines the

end of the Window is abbreviated so that the station ends its Window in (loose)
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sync with its neighbors.

When the MAC layer receives a datagram from a higher protocol layer for

transmission, it may need to buffer the datagram due to power management. For

example, the transmitting station might be asleep, or the destination (including

the broadcast destination) might be asleep. In general, such datagrams will be

buffered until the next beacon interval, when the destination can be announced,

although problems in the announcement process (e.g., congestion) may require

longer durations.

Our implementation assumes that the MAC layer can buffer an arbitrary num-

ber of datagrams to an arbitrary number of destinations. In each ATIM Window,

as many destinations are announced as possible. To extract the best performance

from this implementation, we altered the queue between the link and MAC layers.

The Monarch ns design releases one datagram to the MAC layer at a time: once a

message is successfully transmitted, or a transmission failure occurs, the next mes-

sage is handed down. When messages to a variety of destinations are available,

this can result in very poor latency; in the worst case, only one datagram can be

transmitted per beacon interval. Our implementation passes all datagrams to the

MAC layer as soon as they are ready for transmission, thus making better use of

the traffic announcement process.

During the ATIM Window, our implementation announces the broadcast ad-

dress (if it requires announcement) before any other addresses. Broadcast ATIM
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frames are not acknowledged, but directed ATIM frames are. If no ACK for a

directed ATIM is received after several retries, then the destination for the ATIM

is marked as unreachable. Following the ATIM Window, buffered datagrams are

processed in queue order. Messages to unreachable destinations which reach the

head of the queue are not transmitted; instead, we trigger a higher-layer callback

to indicate that the transmission attempt has failed.

There are several cases in which a station must stay awake following the ATIM

Window, at least one of which is hard to justify. If a station sends an ATIM frame,

or receives one destined for itself or the broadcast address, it must stay awake.

Correspondingly, if a station hears an ATIM from its neighbor, or sends a directed

ATIM which is acknowledged, then it knows the neighbor will be awake. In addi-

tion, Section 11.2.2.3 of the 802.11 specification requires that if the station transmits

a beacon, “it shall remain in the Awake state until the end of the next ATIM Win-

dow.” We find this clause very difficult to motivate; it means that a station which

frequently sends beacons, but never processes actual datagrams, can still be awake

in many beacon intervals. Our implementation honors this clause, and in Chap-

ter 6 we show the energy costs of this requirement.

Section 11.2.2.3 also requires a dozing station to “enter the Awake state prior

to each TBTT.” In our implementation, a station wakes 3 milliseconds prior to the

TBTT, as measured with its own station timer. This prevents the station from

missing beacon or ATIM frames transmitted near the TBTT, even if its own timer
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is slightly out of sync with those of its neighbors.

When a station is using the multihop power management architecture, de-

scribed in Chapter 4, we make several changes to the behavior of the 802.11 im-

plementation. In general, these are compatible with the existing specification. The

first is for the suspending neighbors list (§4.1.1), which allows stations to skip

the buffering and ATIM process for neighbors which are known to be awake. The

second involves the propagation of broadcast ATIM frames using the fast wakeup

technique (§4.1.2). The third concerns the rule about remaining awake after beacon

frame transmission, which we ignore. (A station which has another reason to stay

awake, such as having received an ATIM, can still do so.) These changes result in

improved latency and energy performance without significantly departing from

the 802.11 specification.

5.1.2.4 802.11b High-Rate PHY

Monarch ns implements the original 802.11 specification, which supported data

rates of 1 megabit per second and 2 megabits per second. The much more common

version in use today is 802.11b (IEEE, 1999), which is backwards compatible and

adds support for higher data rates, 5.5 and 11 megabits per second. Owing to the

ubiquity of the newer standard, we modified ns to support the higher rates.

Multirate support in 802.11 is implemented using the PHY Layer Conver-

gence Protocol, or PLCP, described in Section 15.2 of the 802.11 specification for

DSSS PHYs. Each 802.11 frame is prepended with a PLCP header which describes
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the data to follow. Included in the header is information about the modulation

scheme, data rate, and length of the frame, as well as a CRC-16 frame check se-

quence. Although the PLCP preamble and header were accounted for in the frame

sizes used by Monarch ns, the timing calculations made for frames were incorrect.

To permit interoperability between stations that support different data rates,

the PLCP preamble and header are always sent at 1 megabit per second as required

by Section 15.2.3 of the specification. The existing code assumed that all frames

were sent in their entirety at 2 megabits per second, which would understate the

time required to send a frame. Our implementation corrects this.

An 802.11 network has basic rates, which are the data rates usable by all sta-

tions, and supported rates, which a station is not required to support before join-

ing the network. Both the basic and supported rate sets are encoded in the bea-

con frame. In our implementation, the basic rate set includes the 1 megabit per

second and 2 megabit per second rates, while the supported rate set contains the

11 megabit per second rate.

Section 9.6 of the 802.11 specification requires that certain frames always be

sent at one of the basic rates. These include all control frames and any frame sent

to the broadcast address. The latter encompasses all beacons, broadcast ATIM

frames, and broadcast data frames. In our implementation, these frames are sent

at 2 megabits per second. Directed data frames may be sent at any rate known

to be supported by the receiver; in our implementation, such frames are sent at
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11 megabits per second.

5.1.3 Power Model

To collect information about energy consumption in the simulated radio, we added

hooks to the 802.11 implementation which record power state transitions. For ex-

ample, frame reception is implemented by starting a timer as the first bit of a frame

is received. The timer is set to expire when the frame reception should complete.

Our power model records the transition to the receive state at the time the timer is

set, and records a return to the idle state when the timer expires.
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Figure 5.1: Power trace using Feeney & Nilsson rates.

The power model itself does not know about specific power rates; it only records

the amounts of time spent in each state. Power rates are applied in postprocess-
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ing. Figure 5.1 shows an example trace produced by the model, using rates from

(Feeney and Nilsson, 2001).

In ns, frames which arrive with insufficient signal strength to be decoded (ac-

cording to the propagation model) still trigger the receive timer, but are then dis-

carded. Our implementation records these periods spent in the receive state. This

means that distant transmitters can affect a station’s energy consumption as the

faint frames are “heard.”

This is not the case when the interface is in the doze state, however. All incom-

ing frames are immediately discarded when in doze, and no power state tran-

sitions are recorded until the station emerges from doze. Our implementation

assumes an instantaneous transition between idle and doze. Published data for

802.11 interfaces indicates transition times of 250 microseconds (Kamerman and

Monteban, 1997), and recent simulator work has assumed 800 microseconds (Jung

and Vaidya, 2002). These transitions are small relative to the length of a beacon

interval, and will not significantly affect communication or energy performance.

For completeness, a future version of our power model will incorporate less ideal

transition behavior.

5.1.4 On-demand Power Management Implementation

We have implemented On-demand Power Management (§3.1.3.5) in our version

of ns to provide a direct comparison with previous work. On-demand Power Man-
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agement is the most recent work to use network-layer information to control MAC

power state transitions. It is similar in some respects to Local Power Manage-

ment, described in Section 4.3. For example, power state transitions are controlled

by uncoordinated timers. It differs in several key respects:

• No route discovery improvement. DSR Route Discovery incurs the latency

associated with 802.11 IBSS power management, as broadcast Route Requests

are delayed at each hop. Route Replies may return more quickly than under

basic IBSS power management, as some nodes may suspend power manage-

ment. By comparison, LPM and XPM use fast wakeup (§4.1.2) to reduce the

latency of Route Discovery.

• Suspending neighbor list based on MAC information. Every received or

overheard MAC frame, including control and management frames, is exam-

ined for the status of the power management bit in its frame control field.

The power management suspension status of neighboring stations (§4.1.1) is

updated accordingly, as the bit indicates whether the sending station is cur-

rently using power management. By comparison, LPM only uses messages

received at the DSR layer to update the suspending neighbors list. This

reduces the size of the list, since only neighbors with which a node is com-

municating will appear in the list.

• 2-stage transmit failure handling. When the MAC layer fails to send a mes-

sage to a neighbor, the response to that failure depends on the status of the
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suspending neighbor list. If the neighbor was believed to be suspending

power management, it is now believed to be using power management. If

it was already using power management, it is now considered unreachable.

By comparison, transmission failures under LPM are always treated as link

failures (as in normal DSR).

• No change to beacon/doze interaction. Section 5.1.2.3 described a require-

ment of the 802.11 specification that stations transmitting a beacon frame dur-

ing a beacon interval must remain awake for the entire interval. On-demand

power management honors this requirement. By comparison, LPM and XPM

ignore the requirement and achieve lower energy variability in idle networks.

To implement On-demand Power Management in our simulator, we corre-

sponded with the primary author of (Zheng and Kravets, 2003) to clarify some

design points described in her paper. We also reviewed her implementation of the

design, originally developed for a different version of ns. We then implemented

On-demand Power Management as an instance of our own multihop power man-

agement architecture, since most of the data structures and cross-layer actions are

similar.

Several concepts are described in the paper which the author did not imple-

ment in her code. These include the use of periodic “HELLO” messages, and

neighbor state inference based on node degree and beacon frames. Our imple-

mentation follows the code in these instances.
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Timer Duration
Route Request keepalive 0s
Route Reply keepalive 5s
CBR message keepalive (source) 2s
CBR message keepalive (relay) 2s
CBR message keepalive (sink) 2s
Refresh interval 5s

Table 5.1: On-demand Power Management timer durations.

We adopted the timer values described in the paper, which are reproduced in

Table 5.1. The refresh interval is not implemented as a timer, but rather is used

when a transmission failure occurs. When a stations sends an RTS frame but does

not receive a CTS from its neighbor, it checks the suspending neighbor list. If the

neighbor hasn’t been heard from in longer than the refresh interval, then one of two

things happens. If the neighbor was previously suspending power management,

it is considered to have resumed power management. Otherwise, its list entry is

removed.

The code uses a different value for the refresh interval: 900 seconds. This value

means “forever” in many simulators based on the Monarch ns distribution. We

used the value from the paper in our implementation.

5.2 Workloads

In order to evaluate the performance of the simulated power management schemes,

we need synthetic workloads which span a range of communications and mobil-

ity types. Realistic workload generation could warrant a separate thesis; we have
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tried to select plausible workloads similar to those already published for this type

of research. Our communications workload exercises the network under vary-

ing amounts of concurrent traffic. The mobility models, some of which are new,

attempt to capture the inherent structure of human movement in organized envi-

ronments.

A major difference between our workloads and those of previous work is the

duration of each simulation. Our experiments run for 10,000 seconds (2.8 hours)

of simulated time, an order of magnitude longer than is typical (Maltz et al., 1999;

Chen et al., 2001; Xu et al., 2001; Zheng and Kravets, 2003). Our goal was to miti-

gate transient energy effects, and focus on the steady state of the network.

Our experiments each involve 50 mobile nodes, a number used in other re-

search (Broch et al., 1998; Zheng and Kravets, 2003). There are no special rôles;

any node can be a source, relay or sink. Nodes are confined to an area defined by

the mobility model for the duration of the simulation. Each node has an infinite

supply of energy, and can participate in communications at any time during the

simulation.

5.2.1 Traffic Loads

The most popular traffic load applied to simulated ad hoc networks is the Con-

stant Bit Rate application (Broch et al., 1998; Maltz et al., 1999; Chen et al., 2001;

Xu et al., 2001; Zheng and Kravets, 2003). A CBR traffic source generates fixed-size
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packets at semi-regular intervals. A real-world application with these characteris-

tics might be digital telephony2 or some other form of streaming media.

The CBR application is popular for a number of reasons, not the least of which

is the fact that it ships with the ns simulator (Monarch, 1999). Also, it is simple, with

no acknowledgment or retry facility. Unlike a TCP source, CBR does not adapt to

congestion, nor does it implement flow control. This makes the CBR message rate

more predictable, especially in the face of delays caused by Route Discovery or

route breakage resulting from mobility.

The parameters we use for an individual CBR traffic flow are identical to those

found elsewhere (Maltz et al., 1999). The CBR application generates 512-octet mes-

sages at an average rate of 4Hz. The inter-message spacing is randomly drawn

from a uniform distribution on 250ms ± 125ms.

The CBR traffic load generator that ships with ns randomly starts all flows in

the first 180 seconds of simulation time (Monarch, 1999). This is unsuitable for our

purposes, as we want to study the long-term behavior of the network. Instead, we

space traffic flow starts throughout the life of the simulation. Each network node is

initially assigned some number of messages to send during the simulation. Then,

this message count is divided among several flows; each flow contains a random

number of messages drawn from a uniform distribution on [100, 500] messages.

At 4Hz, this corresponds to flows lasting 25 seconds to just over two minutes.

2Since the CBR data flow is unidirectional, this is an imperfect example.
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The source for these values is the author’s mobile phone bill; the overwhelming

majority of calls were observed to fit into this interval.

When scheduling traffic, we control the number of concurrent flows that are

active at any given time. This is a useful way to set a bound on how “busy” the

network can be. By contrast, the ns-supplied CBR generator has no such control. In

our experiments, we evaluate three concurrency levels: 0-flow, 1-flow, and 2-flow.

The 0-flow traffic load is actually an idle or unladen network; no traffic sources are

ever active. This is an important case to consider when measuring the energy per-

formance of a network. It establishes baseline energy consumption independent

of traffic activity, and can reveal wasted energy in a power management scheme.

In the 1-flow traffic load, at most one traffic flow is active at any given time.

Each node is assigned a number of messages to source over the entire simulation,

randomly drawn from [100, 1,400). This interval is sized to allow all messages

to be sent in the time allotted for the simulation. Figure 5.2(a) shows an exam-

ple of the times during which each node is active as a traffic source. The vertical

axis corresponds to a node’s index or address; the graph comprises 50 stacked

timelines showing periods in which each node is a traffic source. In this example,

471 seconds of the total 10,000 seconds (4.7%) are spent with no active traffic flow;

otherwise a traffic flow is in progress.

Similarly, the 2-flow traffic load has at most two flows active at any time. Our

traffic generator tries to keep two flows active for most of the simulation. Because
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(b) 2-flow traffic load.

Figure 5.2: Example traffic loads.
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more flows can be used, we assign larger numbers of messages to the nodes drawn

from [100, 2,500). Figure 5.2(b) shows the periods during which each node is a

source; 647 seconds (6.5%) are spent with no active flows.

Our traffic loads exhibit less concurrency than some earlier work (Maltz et al.,

1999). To evaluate the effectiveness of a power management scheme, we argue

that performance under low and moderate load is more important than that un-

der heavy load. For example, suppose that all nodes are active as sources or sinks.

There is nothing a power management scheme can do to improve energy consump-

tion! Every node will be awake, and experience the worst-case energy consump-

tion. Further, it is unrealistic to expect in any network of appreciable size that all

(or even most) nodes have messages to send at any given time.

There are at least two interesting questions to ask about a power management

design. Does it behave reasonably under low load? Does energy consumption

increase in a controlled fashion as load increases? Reasonability refers to the cor-

relation between communication activity and energy consumption. We expect a

node that performs no communication tasks to experience close to the minimum

possible energy consumption. A node that processes more messages should con-

sume more energy than a node that processes fewer messages. Consumption is

controlled if it gradually increases with load. It is undesirable for a node to quickly

approach the worst case energy consumption under moderate communication ac-

tivity. Chapter 6 will show that the 802.11 IBSS power management design is
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unreasonable, and that only negotiated designs such as XPM are controlled.

5.2.2 Mobility Models

The second facet of our experimental workloads is the model for node mobility.

During the simulation, nodes are constantly moving about in a plane. We want

to know how different types of mobility affect the communications and energy

performance of the network.

In keeping with the original motivation for this research — energy consump-

tion in wearable and handheld devices — we examine node movement at a walk-

ing pace, up to one meter per second. Our models have node densities of 50—100

nodes per square kilometer, which is comparable to previous work (Maltz et al.,

1999). The models vary by the degree of structure they exhibit. The structure of

a mobility model encompasses the constraints on node movement; when nodes

are free to move at random, we say there is no structure to their mobility. If nodes

are forced to stay in a particular region or move along defined paths, then their

mobility is structured.

5.2.2.1 Unstructured Mobility Model

The first model we present is the popular random waypoint movement pattern

used by many researchers (Broch et al., 1998; Maltz et al., 1999; Chen et al., 2001;

Xu et al., 2001; Zheng and Kravets, 2003). Nodes are placed randomly in a plane,
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which for our experiments has size 800m× 600m. They pick a random destination

in the plane, and move towards it at a speed chosen randomly from the interval

(0, 1] meters per second. Upon reaching its destination, a node pauses for a ran-

dom time drawn from the interval (0, 60] seconds. After the pause time expires, a

new random destination is chosen, and the process repeats. This cycle runs con-

tinuously for the entire life of the simulation.

Figure 5.3: Unstructured movement pattern.

Figure 5.3 depicts the random waypoint movement pattern, not to scale. This

unstructured mobility model is ubiquitous in mobile ad hoc network research, and

we are obliged to include it here. The model is considered to be a good test of the

underlying routing protocol and its ability to deal with route breakage caused by

mobility. It models unorganized environments, such as deserts or open plains, in

which mobile nodes are not constrained to follow particular paths.
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5.2.2.2 Moderately Structured Mobility Model

Unstructured mobility is of theoretical interest for the stress it places on routing

protocols. It is difficult to argue that such movement corresponds to any real phys-

ical scenario. Measurements of real-world wireless networks with mobile users

show that dwell time is often substantial (Shaffer, 2003; Shaffer and Siewiorek,

2003). Users move to a “favorite site,” then stay there for a long time before mov-

ing to another favorite site.

We have developed additional mobility models which attempt to capture this

behavior. The first, which we call the moderately structured mobility model, is

a small variation on the unstructured model. We divide the same 800m × 600m

plane into five zones, shown in Figure 5.4. One or more nodes are placed in the

center zone (radius 150 meters), the remaining nodes are distributed evenly across

the remaining four zones. Nodes move in their zone according to the random way-

point algorithm described earlier, but never leave their zone. This reflects scenar-

ios in which nodes are assigned to a particular area, such as soldiers on patrol.

A node near the middle of the network is more likely to appear on a route

than a node at the periphery. In this mobility model, a node in the center zone

can never reach the periphery. We expect such a node’s energy consumption to be

higher than that of nodes in peripheral zones.
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Figure 5.4: Moderately structured movement pattern.

5.2.2.3 Highly Structured Mobility Model

Finally, the highly structured mobility model is intended to capture the properties

of metropolitan or campus environments. Nodes congregate in small spaces, and

move from space to space along predefined paths. Figure 5.5 shows the model;

this particular geometry might occur in an academic building.

Figure 5.5: Highly structured movement pattern.
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The plane is now 1km × 1km. Nodes are placed in small zones at the western

and eastern ends of the plane; while in these end zones, they move according to

the random waypoint algorithm described earlier. These zones might correspond

to lecture halls or dining spaces. Occasionally, a node will leave its end zone and

proceed at one meter per second along one of the arc-shaped corridors to the other

end zone. These corridors might be hallways, sidewalks, or bridges. In addition,

there are several stationary nodes placed in the middle of the plane. These might

be users in offices whose positions are static.

Several routes are possible between the end zones: one uses the stationary

nodes, the others use the arc-shaped corridors. The route involving the station-

ary nodes will tend to be chosen because it is shorter than the corridor routes. We

expect the stationary nodes to have higher energy consumption than those nodes

which are permitted to move.



Chapter 6

Experimental Results

This Chapter presents the measurements collected from experimental trials of the

multihop power management architecture. Using the simulator and workloads

from Chapter 5, we have studied the energy and communications performance

of the design under a variety of conditions. Section 6.1 presents the energy con-

sumption experienced by nodes under several power management schemes. In

Section 6.2, we examine the interaction between power management and latency,

while Section 6.3 shows the effects on message delivery ratio. Section 6.4 gives

statistics on the performance of the Exchange Power Management negotiation

procedure. Finally, Section 6.5 profiles our Vickrey Clarke Groves mechanism

implementation, and Section 6.6 summarizes the experimental results.

The results of this Chapter reflect more than a thousand experimental trials

spanning a range of workloads, which are organized by three parameters:

247
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Traffic Load

We vary the maximum number of concurrent traffic flows which may be

active at a given time. A traffic flow is a 512-octet × 4Hz CBR application.

We present data for 0-flow, 1-flow, and 2-flow traffic loads (§5.2.1). The 0-

flow load corresponds to an idle network. For most of the time in a 2-flow

load, there are two concurrently-active traffic sources.

Mobility Model

We test each of the unstructured (§5.2.2.1), moderately structured (§5.2.2.2),

and highly structured (§5.2.2.3) models. The maximum node speed under

all models is one meter per second, which is a walking pace.

Power Management

We apply five different power management schemes to each workload sce-

nario. IBSS is the standard 802.11 “ad hoc” mode, without power manage-

ment. IBSS PM is the power management mode as defined by the 802.11

specification. ODPM is the timer-based On-demand Power Management,

the implementation of which we described in Section 5.1.4. LPM is our

own timer-based Local Power Management scheme described in Section 4.3.

Finally, we compare our Exchange Power Management using two separate

valuation functions: XPM Time uses Time Balance valuation (§4.5.1), while

XPM Credit uses Credit Balance valuation (§4.5.2).

For each combination of the three traffic loads and three mobility models, we
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randomly generated thirty scenarios, for a total of 270 scenarios. Each scenario

involves 50 nodes and runs for 10,000 seconds of simulated time. We then applied

all of the six power management schemes to each scenario, for a total of 1,620 tri-

als. The results show that Exchange Power Management reduces worst-case node

energy consumption, and offers comparable or better average-case energy perfor-

mance than 802.11 power management. We also see that both Route Discovery

and application message delivery latency improve substantially when using the

multihop power management architecture.

6.1 Energy Consumption

Using the power model described in Section 5.1.3, we have collected statistics on

the energy consumption of nodes in the simulated trials. The simulator records

the amount of time nodes spend in the various power states (e.g., doze, receive).

In postprocessing, we multiply these times by power rates to produce energy mea-

surements.

Figure 6.1 shows an example of the time spent in the four power states. These

measurements are for an idle network using the unstructured mobility model.

Each pie represents the sample mean times over 30 trials. Figure 6.1(a) shows that

for IBSS mode (no power management), the idle state dominates. Adding power

management (Figures 6.1(b) and 6.1(c)) shifts some of that idle time to the doze

state, where the power rate is lower. The remaining examples, all instances of mul-
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Figure 6.1: Power state times for unstructured, idle traffic load.
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tihop power management, shift even more time to doze because of an improve-

ment to the way beacon frames are treated under power management (§5.1.2.3).

The measurements of Figure 6.1 provide a critical insight into energy conser-

vation for interfaces such as 802.11 transceivers. A power management scheme

saves energy by reducing time spent in the idle state. Multihop power manage-

ment reduces this time from 99% (in IBSS mode) to 21% in this example. In fact,

21% ≈ ATIMWindow (40ms)
BeaconInterval (200ms)

, which is the best case since there are no active traf-

fic flows.1

Given the power state times, we can apply a variety of power rates to see how

each would affect energy consumption. In this Section, we consider three sets of

rates, one taken from actual measurements, the other two provided for hypotheti-

cal purposes. The Feeney & Nilsson rates, taken from (Feeney and Nilsson, 2001),

were measured from the popular WaveLAN 802.11b interface. Starting from these

rates, we want to know what would happen if the dominant power states were to

become less costly. The 1
2 idle power set is the same as Feeney & Nilsson, but the

idle power rate is reduced by half. We then reduce idle power to one tenth its Feeney

& Nilsson value, and reduce doze power to one one-hundredth in the 1
10 idle power,

1
100 doze power set. These hypothetical rates will not be discussed in the text, but

are shown in plots of energy performance. The plots in Sections 6.1.1 and 6.1.3

show that while the magnitudes of energy consumption change, the relative rela-

1The measurement is not exactly 20% because, in our implementation, stations wake from doze
3ms prior to the TBTT, as described in Section 5.1.2.3. For this example, multihop power manage-
ment stations spend about 43ms in idle during each Beacon Interval.
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tionships between power management modes are preserved. This indicates that

our techniques should still be effective for future wireless interfaces with better

idle power performance. Table 6.1 shows the rates used for each set.

State Feeney & Nilsson 1
2 idle power

1
10 idle power,
1

100 doze power
doze 47.4mW 47.4mW 474µW
idle 739mW 370mW 73.9mW
receive 901mW 901mW 901mW
transmit 1.35W 1.35W 1.35W

Table 6.1: Power rate sets.

The following Sections present the range, quartiles, and mean of per-node en-

ergy consumption in our experiments. For each set of results, the Feeney & Nilsson

rates are featured, followed by the same results under the hypothetical rates.

6.1.1 Per-Node Energy Range

We begin by characterizing the variability of energy consumption experienced by

an individual node. A power management scheme that exhibits low variability is

desirable when estimating the portion of the system energy budget that should

be allocated to communications. Energy consumption in 802.11 interfaces is a

bounded variable: given a workload, there is a nonzero minimum and finite

maximum amount of energy that the interface can consume. When a variable is

bounded in this fashion, the range is a suitable index of dispersion (Jain, 1991).

Section 2.1.3.2 derived the minimum energy consumption Emin for a station
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which processes no control or data frames, which we repeat here:

Emin = (w Pidle + (1−w) Pdoze)× t + β(t)

The β(t) term represents the additional energy consumed by the periodic trans-

mission and reception of beacon management frames during t. For example, in

Figure 6.1, β(·) was visible as the 1% of time spent in the receive state.

If a station does not use power management, w ≡ 1, and Emin = Pidle × t + β(t).

For the purpose of describing a lower bound, let β(·)→ 0. In our 10,000-second

simulations, using the Feeney & Nilsson rates, such a station cannot consume fewer

than Emin = 7,390J. When using power management, our simulated stations spend

a 40 millisecond ATIM Window plus a 3 millisecond early wakeup in the idle state

every 200 milliseconds, giving w =
ATIMWindow (40ms) + EarlyWakeup (3ms)

BeaconInterval (200ms)
=

0.215. The resulting Emin = 1,961J means that the best-case energy savings from

power management are about 73.5%.

The maximum energy consumption experienced by an 802.11 station depends

on the time the station spends in idle waiting for communication, plus the en-

ergy to exchange the frames themselves. The worst case occurs when the station

is always awake and waiting for communication. Let C(t) represent the additional

energy, above that consumed in idle, required to transmit and receive non-beacon
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frames. The maximum energy consumption during time t is therefore:

Emax = Pidle × t + C(t) + β(t)

Both C(t) and β(t) are bounded. Section 2.1.2 showed that there is a limit to

the number of messages a station can send in a fixed amount of time, based on

the medium access control algorithm. This leads to an upper bound on the addi-

tional energy consumed due to frame transmission. For the CBR application, we

showed that C(t) could add at most 55% to energy consumption, but that typically

the contribution was much smaller — less than 1%. Likewise, since beacons are

only transmitted periodically, their contribution is largely a function of their fre-

quency. Figure 6.1, in which beacons are the only frames being exchanged, showed

that beacon activity takes up about 1% of the total time. The additional energy β(·)

is similarly small.

A station that does not use power management always incurs the worst-case

energy consumption. This occurs because such a station is always in the idle state,

and can never doze. In fact, as C(·)→ 0, Emax → Emin.

Power managing stations typically experience lower energy consumption than

Emax, because they can enter the doze state. The amount of time they spend in

idle is determined by communications activity. A station which expects to send

or receive frames in the current beacon interval must remain awake in the idle

state for the entire interval. Therefore, it is easy to make a power managing station
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experience Emax: simply make it transmit or receive at least one message during

every beacon interval.

In this Section, we will show examples of energy consumption approaching

Emax. A contribution of Exchange Power Management is that it provides nodes

with a way to limit Emax to a lower value. Once a node raises its ask price suffi-

ciently high, it may no longer be affordable as a relay or sink. At this point, it will

no longer have to stay awake and wait for communications activity. We will show

how this can serve as a “cap” on energy consumption.

We refer to (Emin, Emax) as the range of energy consumption values experienced

by a node. Call Emax − Emin the magnitude of the range. Figures 6.2—6.10 show

the sample ranges measured during simulation. Sample ranges with small magni-

tudes are desirable because they indicate low variability. As variability decreases,

the ability to effectively estimate — and plan for — the energy consumption of the

interface improves.

In this and subsequent Sections, we organize the data for our experimental

trials first by traffic load, then by mobility model. The sequences begin with sim-

ple workloads and progress towards more complex ones. The data for the 0-flow

(idle) traffic load are presented first, followed by the 1-flow and 2-flow loads. For

each traffic load, the unstructured mobility model scenarios are presented first, fol-

lowed by the moderately structured and highly structured models. Thirty random

scenarios were generated for each combination of traffic load and mobility model,
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and six power management modes were applied to each scenario. Each Figure

summarizes the results of 150 trials.

The order in which we present the power management nodes was chosen to

reflect their general energy consumption, greatest to least. IBSS mode (using no

power management) typically has the highest energy consumption. Next, ODPM

and IBSS PM often have very similar energy behavior, with ODPM showing slightly

higher worst case and average case consumption. These are followed by the new

designs introduced in this thesis, LPM and XPM.

Figure 6.2 shows the energy ranges for each of the power management schemes

in an idle network. Using the Feeney & Nilsson power rates in Figure 6.2(a), the

range for IBSS mode (using no power management) has a very small magnitude.

As the idle power rate drops in the hypothetical power models of Figures 6.2(b)

and 6.2(c), the magnitude grows. This is due to the increased significance of the

transmit and receive states, as some stations process more beacons than others. For

example, a station with many neighbors might receive many beacon frames after

a TBTT, while a station in a sparse region of the network receives relatively few.

The ODPM and IBSS PM ranges have a conspicuously large magnitude. Sec-

tion 5.1.2.3 explained that stations which transmit beacon frames must remain

awake for the entire beacon interval. This means that stations with “fast” timers,

and those in sparse regions of the network, will tend to win the contention-based

beacon generation algorithm (§5.1.2.1) more often, and will spend relatively more
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Figure 6.2: Unstructured energy range for idle traffic load.
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beacon intervals awake. These stations will experience higher energy consumption

than stations which send fewer beacons.

When using the multihop power management architecture, our 802.11 imple-

mentation permits beacon-transmitting stations to doze after the ATIM Window.

As such, the LPM and XPM ranges are all identical for the idle traffic load; the

number of beacons a station sends has minimal impact on energy consumption.

We note that the sample minimum energy for the LPM and XPM samples is slightly

higher than Emin = 1,961J, derived earlier. The difference is explained by the addi-

tional energy consumed when exchanging beacon frames, β(·).

Figures 6.3 and 6.4 show similar representations for the idle traffic load in the

moderately structured and highly structured mobility models. The variation be-

tween the ranges is accounted for by differences in geometry across the mobility

models. For our models, as the degree of structure increases, so does sparseness.

Stations in sparse regions of the network will tend to send more beacons and ex-

perience higher energy consumption, particularly when using ODPM or IBSS PM

mode.

Figure 6.5 shows the 1-flow traffic load in the unstructured mobility model.

This representation plots energy vs. messages sent. Each node is assigned to a

bucket of size 100 messages, corresponding to the number of messages the node

was able to send as a source during the trial. For each bucket, the maximum and

minimum points are plotted, and the region enveloped by those points is shaded.
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The traffic loads are generated in such a way that when all messages are suc-

cessfully sourced, the buckets all contain a comparable number of nodes. A node

which is prevented from sourcing some of its messages — either because it could

not discover a route, or because it could not afford one — may be moved to a

lower bucket. The former affects all five power management modes. The latter is

relevant only to XPM with Credit Balance pricing, for which unaffordable routes

are common.

This representation reinforces the fact that a node’s energy consumption is not

necessarily linked to its own communications activity. For example, Figure 6.5(a)

shows that under ODPM or IBSS PM, it is possible for a node that sources 200

messages to consume about 5,000J. It is also possible for a source that sends six

times as many messages to consume half as much energy!

Figure 6.5(a) shows that the range for IBSS again has a very small magnitude,

about 10J. The minimum energy consumed under IBSS — about 7,420J — is 40%

greater than the maximum of IBSS PM, and 175% greater than the maximum of

LPM. In this and subsequent Figures, the order of entries in the key — top to bot-

tom — generally follows the order of peak energy consumption — greatest to least.

The magnitudes of the ODPM and IBSS PM ranges are generally larger than

that of LPM or XPM. We compare ranges by averaging the magnitudes over the

buckets, and reporting the factor by which the average IBSS PM magnitude is

larger than the others. Expressed this way, larger factors are better, as this means
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the mode being compared to IBSS PM has lower variability. In Figure 6.5(a), the

magnitude of the range for IBSS PM is 5.1 times that of LPM, 5.2 times that of

XPM Time, and 9.6 times that of XPM Credit. This shows that all of the multi-

hop power management designs yield much more predictable energy behavior

than 802.11 IBSS power management. As the degree of structure in the mobility

model increases, we will show how XPM and its valuation functions preserve a

small-magnitude range (larger factor), while non-negotiated schemes (e.g., ODPM,

IBSS PM, LPM) become less predictable.

The previously-published ODPM design exhibits a range that is similar to IBSS PM.

ODPM uses IBSS power management, but uses timers to keep stations “awake” for

longer durations following frame activity. Therefore, the ODPM range has a sim-

ilar shape to the IBSS PM range, with a slightly greater magnitude caused by the

longer durations spent in the “awake” state. Because of this similarity to IBSS PM,

we will not separately characterize the relationship between ODPM and our LPM

and XPM designs in the text.

Figure 6.6(a) shows how the energy ranges change as more structure is added

to the mobility model. Peak energy for IBSS PM, LPM, and XPM Time have all

increased visibly. The magnitudes have also increased; IBSS PM has a magnitude

almost 50% larger than in the unstructured case. The IBSS PM magnitude is now

only 1.8 times that of LPM, and 3.1 times that of XPM Time. However, it is 12.3

times that of XPM Credit, which has kept a tight “cap” on energy consumption,
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Figure 6.6: Moderately structured energy range for 1-flow traffic load.
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peaking at just 2,720J.

The nodes which experience the high peak energy consumption shown in Fig-

ure 6.6 are those in distinguished positions with respect to the network topology.

In the moderately structured workload, nodes in the center zone occupy distin-

guished positions. Because these nodes are always near the geographic center of

the network, they are more likely to appear on routes that traverse the network.

Also, since a route through the center of the network is likely to be shorter than

a more circuitous route, sources which select shortest routes will force these dis-

tinguished nodes into service more often. ODPM, IBSS PM and LPM use shortest

routes, so we expect those modes to exhibit the worst peak energy consumption.

XPM Time takes node preferences into account, and tries to route around distin-

guished nodes, but sometimes has no alternative but to use them. As a result,

peak energy consumption for these nodes can still grow, but at a slower rate than

the non-negotiated schemes. XPM Credit, through the use of unaffordable routes,

has a means of avoiding overuse of distinguished nodes. By preventing overuse,

peak energy is kept low.

In the highly structured mobility model of Figure 6.7(a), LPM behaves very

much like IBSS PM, with the two peaking at 6,634J and 6,726J, respectively. These

peaks are within about 10% of IBSS mode for the same workload, meaning that

some nodes save almost nothing by using power management! The affected nodes

are those in distinguished positions, which in the highly structured mobility model
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are those in the center corridor. The magnitude of IBSS PM is also about 11%

smaller than LPM, because while the worst cases are comparable, in the best case

LPM consumes less energy. IBSS PM has a magnitude that is 2.3 times that of

XPM Time, and 11.3 times that of XPM Credit. Again, XPM Credit keeps energy

consumption below 2,751J, but as we will later show, this comes at the cost of not

being able to deliver some messages. XPM Time, which emphasizes high delivery

ratio, must tolerate a higher worst-case energy consumption of 4,399J.

Figure 6.8(a) increases the number of active traffic flows to 2 in the unstruc-

tured mobility model. Peak energy has increased by a few hundred Joules for all

modes except IBSS. The magnitude of the IBSS PM range is 3 times that of LPM

and XPM Time, and 6.5 times that of XPM Credit.

The energy ranges become more volatile in Figure 6.9(a), which depicts the

moderately structured mobility model for the 2-flow traffic load. IBSS PM now

peaks at 6,982J, at which point the energy savings are 7% relative to IBSS-mode

(with no power management). The IBSS PM magnitude is only 1.4 times that of

LPM, and 2.5 times that of XPM Time, but 11.5 times that of XPM Credit.

Finally, Figure 6.10(a) shows the 2-flow traffic load under the highly structured

mobility model. As with the 1-flow case, LPM and IBSS PM are very similar un-

der these conditions as they approach the upper bound Emax. XPM Time is able

to contain energy consumption below 4,892J while maintaining a high delivery

ratio. XPM Credit offers the more aggressive “cap” of 2,919J with a tradeoff in de-
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Figure 6.9: Moderately structured energy range for 2-flow traffic load.
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Figure 6.10: Highly structured energy range for 2-flow traffic load.
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livery ratio. Comparing worst cases (peak energy consumption) relative to IBSS-

mode, IBSS PM saves about 8% energy, LPM saves 9%, XPM Time saves 35%, and

XPM Credit saves 62%. The magnitude of the IBSS PM range is about 17% less than

that of LPM, but 2 times that of XPM Time, and 10.5 times that of XPM Credit.

We have shown that Exchange Power Management delivers a more compact

range of energy consumption values under a variety of traffic and mobility condi-

tions. Under intensive workloads, timer-based power management schemes such

as Local Power Management yield the same worst-case energy behavior as 802.11

IBSS power management. By using negotiations that incorporate node prefer-

ences, XPM is able to limit the worst case in two ways. Using Time Balance

valuations, relays and sinks that have already provided “enough” service to the

network can indicate their relative willingness to supply more. This lets sources

route around overused relays while still keeping delivery ratio high. An addi-

tional limit available with the Credit Balance valuation function is the concept of

unaffordable routes. A relay or sink that is “too expensive” for a source will not

be used, and can achieve a tight bound on worst-case energy consumption. When

high delivery ratio is required, these results show that the magnitude of the energy

consumption range can be reduced by factors of 2–5.2 relative to 802.11 IBSS power

management. When unaffordable routes are permitted, this reduction improves

to factors of 6.5–12.3.

An interesting feature of Exchange Power Management is that its valuation
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functions shape energy consumption without specifically taking energy as an in-

put. Instead, the functions operate on abstractions such as credit or the time spent

supplying or demanding service in the network. Because of this design, XPM can

be applied in heterogeneous environments for which not all nodes have the same

energy consumption or capacity characteristics.

No previous on-demand design for power management in ad hoc networks has

addressed the problem of worst case energy consumption, or variability in en-

ergy consumption. On-demand Power Management (§3.1.3.5), an existing design

which we simulated, experiences worst case energy consumption that is greater

than that of IBSS PM. Span (§3.1.3.4) and GAF (§3.1.3.3), which are proactive pro-

tocols, also suffer from the problem of distinguished nodes. In both designs, an

active relay having no neighbors which could replace it must remain awake — even

if there are no active traffic flows!

6.1.2 Per-Node Energy Quartiles

The previous Section characterized the range of energy consumption values for

the six power management modes. This Section provides additional information

about the dispersion of the data, in the form of quartiles. We present the relation-

ships between the range, the median, and interquartile range (Jain, 1991).

The quartile representation shows that most of the sample data tend to be clus-

tered near the lower end of the range. This is what we expect for our workloads,
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since the nodes with near-worst case energy consumption will be those “stuck” in

distinguished positions within the network, and these are in the minority. Our

goal in developing XPM was not to improve average case energy consumption,

although the data show that XPM performs better in this regard than previous de-

signs. Instead, we focus on controlling the worst case, which we demonstrated in

the previous Section.

Predictable energy consumption is just as important as expected energy con-

sumption in some environments. For instance, consider soldiers in a battlefield

scenario. A communications device which experiences unexpectedly high energy

consumption may exhaust its battery, and leave its operator unable to contact the

rest of the unit. Such a situation may endanger the operator or the entire group.

By controlling the worst case energy consumption of the wireless interface, mis-

sion planners can better equip soldiers with appropriately-sized batteries.

Figure 6.11 shows the energy consumption quartiles for each of the six power

management modes in the unstructured mobility model with no application traf-

fic. The candlestick representation shows, from bottom to top, the minimum, first

quartile (Q1), third quartile (Q3), and maximum (Q4). ODPM and IBSS PM have

high maxima due to the 802.11 requirement that stations which transmit a bea-

con must remain awake for the entire beacon interval (§5.1.2.3), as explained in

the previous Section. The minority of stations with “fast” timers that tend to win

the beacon contention algorithm more often will occupy the high end of the en-
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Figure 6.11: Unstructured energy quartiles for idle traffic load.
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ergy range, which accounts for the distributional skew towards the low end. Fig-

ures 6.12 and 6.13 show quartiles for the moderately structured and highly struc-

tured workloads. The form of the energy distributions is similar to that of the

unstructured case.

Figure 6.14 shows the quartiles for the unstructured mobility model with the

1-flow traffic load. As with the range plots from Section 6.1.1, the nodes are sorted

into buckets based on the number of messages they were able to source during a

trial. For ease of presentation, the size of the buckets has been increased to 500

messages. We again plot quartiles as with the idle traffic load cases, but addition-

ally join the median (Q2) data points across buckets for each series.

The quartiles of Figure 6.14 reveal that, relative to IBSS mode with no power

management, all of the power managing designs yield median energy savings of

about 2
3 . As mentioned earlier, the best case savings from a design based on 802.11

IBSS power management are 73.5% using the parameters adopted in this work. In

fact, the median energy consumption (Q2) for LPM and XPM is lower than that for

the previously-published ODPM or IBSS PM. Also, the interquartile range [Q1, Q3]

is tighter for our designs than for ODPM or IBSS PM. This says that our improve-

ment to the worst case (Q4) has not come at the expense of the common case.

In Figures 6.15 through 6.19, the distributions move upwards. The worst case

(Q4) for LPM begins to look more like that of ODPM and IBSS PM, although the

median (Q2) is still lower. XPM, which consistently provides better worst case be-
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Figure 6.12: Moderately structured energy quartiles for idle traffic load.
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Figure 6.13: Highly structured energy quartiles for idle traffic load.
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Figure 6.14: Unstructured energy quartiles for 1-flow traffic load.
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Figure 6.15: Moderately structured energy quartiles for 1-flow traffic load.
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Figure 6.16: Highly-structured energy quartiles for 1-flow traffic load.
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Figure 6.17: Unstructured energy quartiles for 2-flow traffic load.
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Figure 6.18: Moderately structured energy quartiles for 2-flow traffic load.
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Figure 6.19: Highly-structured energy quartiles for 2-flow traffic load.
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havior than ODPM or IBSS PM, also has a lower median. In most cases, XPM with

the Credit Balance valuation function has the lowest median energy consumption

of all the designs tested.

6.1.3 Per-Node Energy Mean

Sections 6.1.1 and 6.1.2 presented the range and distribution of energy consump-

tion values experienced by individual nodes. Those measures described the vari-

ability, and importantly, the worst case for energy consumption. We now charac-

terize the average case energy behavior for the same set of trials. Specifically, we

present 95% confidence intervals for the sample mean of per-node energy con-

sumption. Each Figure shows the intervals computed over 150 simulation runs.

Starting with the idle traffic load, Figure 6.20(a) shows the mean energy con-

sumption for the unstructured mobility model. The confidence intervals are tight

for all five power management modes. Relative to IBSS-mode (no power man-

agement), ODPM and IBSS PM save 65% energy, and the multihop power man-

agement designs — LPM and XPM — save 73%. (The optimal savings, given our

choice of ATIM Window and beacon interval, were shown earlier to be 73.5%; the

difference is due to beacon activity.) This is a strength of an on-demand proto-

col such as DSR: when the network is idle, node energy consumption approaches

Emin. A proactive protocol which periodically exchanges topology information

would need to wake nodes during these exchanges, thereby increasing their en-



CHAPTER 6. EXPERIMENTAL RESULTS 285

 2000

 3000

 4000

 5000

 6000

 7000

 8000

XPM
Credit

XPM
Time

LPMIBSS PMODPMIBSS

en
er

gy
 (

J)

(a) Feeney & Nilsson.

 1500

 2000

 2500

 3000

 3500

 4000

XPM
Credit

XPM
Time

LPMIBSS PMODPMIBSS

en
er

gy
 (

J)

(b) 1
2 idle power.

 400

 600

 800

 1000

 1200

 1400

XPM
Credit

XPM
Time

LPMIBSS PMODPMIBSS

en
er

gy
 (

J)

(c) 1
10 idle power, 1

100 doze power.

Figure 6.20: Unstructured energy mean for idle traffic load.
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ergy consumption. Proactive power management designs, such as Span (§3.1.3.4)

and GAF (§3.1.3.3), must also consume more energy, as a subset of nodes are awake

at all times.

The moderately structured and highly structured workloads in Figure 6.21

and 6.22, respectively, show mean energy values that are largely unchanged. The

exceptions are ODPM and IBSS PM in the highly structured mobility model (Fig-

ure 6.22(a)), which only save 58%, a 7% degradation from the less-structured cases.

This is due to the sparseness of the highly structured model. Stations have fewer

competing neighbors in the beacon generation algorithm, and are therefore more

likely to win, thus increasing the number of beacon intervals in which they must

stay awake. LPM and XPM again save a near-optimal 73%.

The following twelve Figures show confidence intervals for the sample mean in

the 1-flow and 2-flow traffic loads. Because the mean for IBSS-mode is much higher

than that for the other modes, we have separated the data for each set of trials

into two graphs. The first presents only the IBSS-mode and IBSS PM intervals, to

provide context for the power management values. The second then re-scales and

reproduces the IBSS PM intervals alongside those for ODPM, LPM, and XPM.

Figure 6.23(a) shows the IBSS and IBSS PM mean energy consumption for the 1-

flow traffic load under unstructured mobility. In expectation, IBSS PM saves about

63% energy relative to IBSS-mode. Zooming in and adding the multihop power

management designs, Figure 6.24(a) shows that LPM and XPM offer consistently
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Figure 6.21: Moderately structured energy mean for idle traffic load.
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Figure 6.22: Highly structured energy mean for idle traffic load.
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Figure 6.23: Unstructured energy mean for 1-flow traffic load.
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Figure 6.24: Unstructured energy mean for 1-flow traffic load (continued).
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better average-case performance than IBSS PM. LPM and XPM typically consume

about 400J less than IBSS PM. Relative to the case of no power management, LPM

and XPM Time save 68% energy, while XPM Credit saves 69%.

As with the energy range, the average case behavior for ODPM is similar to

that of IBSS PM. We observe that the ODPM means have a shape similar to those

of IBSS PM, but at a higher magnitude. Again, this is because ODPM uses timers to

keep stations “awake” for longer durations following frame activity than IBSS PM

would. Because of this similarity, and the fact that ODPM does not provide better

average-case energy savings than IBSS PM, we will not separately describe the

ODPM data in the text.

Proceeding to the moderately structured mobility model in Figure 6.25(a), the

IBSS mean has not changed, while the IBSS PM mean has increased by about 125J.

Zooming in, Figure 6.26(a) shows that LPM and XPM still outperform IBSS PM

by 240–530J, on average. Compared with IBSS-mode, IBSS PM saves 61% energy,

LPM saves 66%, XPM Time saves 64%, and XPM Credit saves 68%.

Figure 6.27(a) shows the average case energy for the 1-flow traffic load un-

der the highly structured mobility model. Relative to the moderately structured

model, IBSS-mode is unchanged, and IBSS PM has increased by an additional

470J. IBSS PM savings are 55%, on average. The rescaled Figure 6.28(a) shows that,

again, both LPM and XPM yield better performance than IBSS PM. XPM Time con-

sumes 412 fewer Joules on average, while XPM Credit saves 1,012J. Compared to
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Figure 6.25: Moderately structured energy mean for 1-flow traffic load.
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Figure 6.26: Moderately structured energy mean for 1-flow traffic load (continued).
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Figure 6.27: Highly structured energy mean for 1-flow traffic load.
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Figure 6.28: Highly structured energy mean for 1-flow traffic load (continued).
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IBSS-mode (no power management) LPM provides a 64% improvement in energy

consumption, with improvements of 61% and 69% for XPM Time and XPM Credit.

Also, note that the confidence intervals for XPM are visibly tighter than those for

IBSS PM or even LPM. This is a consequence of the decreased energy variability

described in Section 6.1.1.

The 2-flow, unstructured mobility scenario in Figure 6.29(a) repeats the pat-

tern: IBSS PM saves 61% energy relative to IBSS-mode, LPM saves 66%, XPM Time

saves 65%, and XPM Credit saves 68%. We note that the confidence intervals for

XPM Credit increase in size for some of the larger buckets. This is due to the small

number of samples in these buckets; for example, the 2,000-message bucket only

holds two samples, while most other buckets contain 40–120 samples. When a traf-

fic source cannot afford some of its routes, as can happen with XPM Credit, it is

less likely to appear in one of the high-count buckets.

The moderately structured mobility model for the 2-flow traffic load, shown

in Figure 6.31(a), shows that IBSS PM provides 60% average savings relative to

IBSS PM. Figure 6.32(a) shows that LPM and XPM Time are generally comparable

to, but not worse than, IBSS PM, with LPM offering 61% savings and XPM Time

60%. Perhaps most interesting is XPM Credit — averaging 67% savings — which

exhibits a clear trend towards increasing energy with a node’s own communica-

tions activity. This indicates that Credit Balance valuation is able to save energy

for nodes that don’t source many messages.
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Figure 6.29: Unstructured energy mean for 2-flow traffic load.
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Figure 6.30: Unstructured energy mean for 2-flow traffic load (continued).
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Figure 6.31: Moderately structured energy mean for 2-flow traffic load.
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Figure 6.32: Moderately structured energy mean for 2-flow traffic load (continued).
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Figure 6.33: Highly structured energy mean for 2-flow traffic load.



CHAPTER 6. EXPERIMENTAL RESULTS 302

 2000

 2500

 3000

 3500

 4000

 4500

 0  500  1000  1500  2000

en
er

gy
 (

J)

count of messages sent

ODPM
IBSS PM

LPM
XPM Time

XPM Credit

(a) Feeney & Nilsson.

 1400

 1600

 1800

 2000

 2200

 2400

 0  500  1000  1500  2000

en
er

gy
 (

J)

count of messages sent

(b) 1
2 idle power.

 350

 400

 450

 500

 550

 600

 650

 700

 750

 0  500  1000  1500  2000

en
er

gy
 (

J)

count of messages sent

(c) 1
10 idle power, 1

100 doze power.

Figure 6.34: Highly structured energy mean for 2-flow traffic load (continued).
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Finally, Figure 6.33(a) shows the 2-flow load with highly structured mobility.

IBSS PM provides 53% average energy savings compared with IBSS-mode. In Fig-

ure 6.34(a), LPM and XPM are consistently comparable to, or better than, IBSS PM.

The average savings are 60%, 56%, and 68% for LPM, XPM Time, and XPM Credit,

respectively.

In summary, LPM and XPM deliver average-case energy consumption that

is at least as good as 802.11 IBSS power management. In many cases, the mean

energy consumption provided by LPM or XPM is hundreds of Joules lower than

IBSS PM. This is especially significant for XPM, as the ability to limit the worst

case energy consumption (§6.1.1) does not come at the expense of the average case.

Mobility ODPM IBSS
PM LPM XPM

Time
XPM

Credit
Unstructured 61% 63% 68% 68% 69%
Moderately Structured 59% 61% 66% 64% 68%
Highly structured 51% 55% 64% 61% 69%

(a) 1-flow traffic.

Mobility ODPM IBSS
PM LPM XPM

Time
XPM

Credit
Unstructured 59% 61% 66% 65% 68%
Moderately Structured 55% 60% 61% 60% 67%
Highly structured 49% 53% 60% 56% 68%

(b) 2-flow traffic.

Table 6.2: Average energy savings relative to no power management.

Table 6.2 reproduces the average-case energy savings presented in this Section.
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In all cases, LPM and XPM offer greater savings, relative to the case of no power

management, than 802.11 IBSS power management. We can now amend Table 3.1

from Chapter 3 by adding our claims about energy performance improvement

with LPM and XPM. Table 6.3 shows the revised summary.

Name Energy Performance
BECA 35–40% energy savings, 20% network lifetime extension
AFECA 40–45% energy savings, 55% network lifetime extension
GAF 40–60% energy savings, 200–300% network lifetime extension
Span 200–250% network lifetime extension
On-demand 49–61% energy savings (claimed 50%)
LPM 61–68% energy savings
XPM Time 56–68% energy savings, reduced energy range by 2×–5.2×
XPM Credit 67–69% energy savings, reduced energy range by 6.5×–12.3×

Table 6.3: Augmented power management summary: energy performance.

Many differences exist between the evaluation environments used by the au-

thors of the various designs. These differences include — but are not limited to —

radio power models, 802.11 power management implementation and parameters,

mobility models, and traffic loads. We do not read too much into the differences

between our average case savings and those of earlier authors. Instead, we ob-

serve that XPM provides expected energy savings comparable to existing designs.

In addition, XPM provides the energy-shaping capability described in the previous

Sections, and the low-latency communications performance presented in the next.
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6.2 Latency

Section 2.2.2 presented several problems with the interaction between on-demand

source routing networks and power management. The latency of the Route Dis-

covery process in the worst case was shown to be a linear function of the route

length and the 802.11 beacon interval. Once a route was discovered, we showed

that the worst case application message delivery latency was also linear in the

route length and beacon interval. This Section presents measurements of both

Route Discovery and delivery latency for the five power management modes.

6.2.1 Route Discovery Latency

The Route Discovery latency problem is an instance of a general design issue for

on-demand, or reactive, network protocols. On-demand designs defer work until

it is actually needed. This contrasts with proactive designs that perform work

in anticipation of future need; when this need is unrealized, the work is wasted.

On-demand designs can be less wasteful, but carry the cost of setup latency. For

example, when a new route is needed, a proactive protocol might already know it,

but a reactive protocol typically must discover it.

The multihop power management architecture uses the fast wakeup tech-

nique (§4.1.2) to improve Route Discovery latency. Fast wakeup accelerates the

transition of power managing stations to a low-latency state. The goal is to enable

the Route Discovery process to complete in just one or two beacon intervals.
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A DSR traffic source may generate multiple Route Request messages while try-

ing to discover a route. For example, if the first Request does not produce results

in some amount of time, a second Request is sent. Our measurements mark the

elapsed time from the generation of the first Request to the moment the source

learns the first discovered route. We chose this method rather than trying to de-

termine which of possibly many Requests triggered the first Route Reply. Also,

this measure better reflects what sources care about: from the time a route is first

needed, how long does it take to discover one?

Mobility IBSS ODPM IBSS PM LPM XPM
Time

XPM
Credit

Unstructured 45.0ms
±1.78ms

1,278ms
±81.4ms

1,077ms
±31.2ms

163ms
±34.9ms

162ms
±1.96ms

165ms
±2.28ms

Moderately
Structured

62.7ms
±19.5ms

1,037ms
±35.1ms

2,171ms
±71.1ms

164ms
±20.6ms

172ms
±16.6ms

184ms
±17.0ms

Highly
Structured

71.6ms
±6.29ms

1,748ms
±57.7ms

3,210ms
±85.1ms

206ms
±17.9ms

200ms
±7.11ms

245ms
±15.3ms

Table 6.4: Mean Route Discovery latency for 1-flow traffic load.

Table 6.4 shows the effect of fast wakeup on Route Discovery latency for the

three mobility models under the 1-flow traffic load. Each Table cell shows the

sample mean over 30 simulation runs, along with the 95% confidence interval.

The first feature to note is that the use of power management (IBSS PM) results in

a discovery latency that is 24 to 45 times that of IBSS-mode.

Even ODPM, which was designed to improve (average case) latency, experi-

ences high Route Discovery latency comparable to IBSS PM. This is because the

propagation of DSR Route Request messages occurs in exactly the same manner
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as in IBSS PM. In some cases, the return of Route Reply messages can be faster

than under IBSS PM. This can happen when a node forwards the Reply to a neigh-

bor which is already known to be suspending power management. For example,

such a neighbor might have recently been active, supporting some traffic flow,

and therefore appears in the forwarding node’s suspending neighbor list. In such

cases, the forwarding node need not wait for the ATIM process, and can send the

Route Reply immediately. Although no setup latency statistics for ODPM have

been published, Figure 7 of (Zheng and Kravets, 2003) shows a 1.8-second setup

latency for a 3-hop route, which is worse than the average case measurements we

have collected.

The use of fast wakeup in LPM and XPM reduces discovery latency by an or-

der of magnitude. For the unstructured and moderately structured mobility mod-

els, Route Discovery typically requires only a single beacon interval. Relative to

IBSS PM, fast wakeup improves discovery latency in these models by factors of 6

and 12–13, respectively. The highly structured mobility model is a more challeng-

ing environment, with longer routes in a sparser topology; it completes discovery

in two beacon intervals. Discovery latency improves by factors of 13–16 relative to

IBSS PM.

A few of the cells in Table 6.4 show large confidence intervals for the sample

mean. LPM in the unstructured mobility model and IBSS-mode under moderately

structured mobility are examples. This appears to be caused by high variability
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in the discovery latency for a specific set of routes. In the unstructured LPM data,

routes of length 3 exhibit higher variation, while in the moderately structured IBSS

case, the larger spread is seen in routes of length 4. We believe these characteristics

are peculiarities of the workloads themselves.

Mobility IBSS ODPM IBSS PM LPM XPM
Time

XPM
Credit

Unstructured 58.8ms
±4.38ms

1,039ms
±64.2ms

1,062ms
±31.1ms

160ms
±4.66ms

220ms
±13.1ms

233ms
±21.5ms

Moderately
Structured

91.6ms
±22.8ms

930ms
±28.5ms

2,104ms
±56.3ms

193ms
±24.1ms

230ms
±17.5ms

253ms
±18.9ms

Highly
Structured

83.6ms
±5.12ms

1,507ms
±38.6ms

2,807ms
±52.1ms

240ms
±26.2ms

410ms
±34.0ms

513ms
±41.6ms

Table 6.5: Mean Route Discovery latency for 2-flow traffic load.

Route Discovery performance for the 2-flow traffic load is shown in Table 6.5.

IBSS PM again has much higher latency than IBSS-mode without power man-

agement, requiring 18 to 34 times the delay. The additional traffic flow has de-

graded the performance of fast wakeup somewhat, especially for XPM. Still, there

is a significant improvement over IBSS PM, by factors of 4–8 in the worst case

(XPM Credit), and 7–12 in the best case (LPM).

Figures 6.35, 6.36, and 6.37 show Route Discovery latency as a function of route

length (|P| − 1). The graphs illustrate 95% confidence intervals for the sample

mean in each bucket. This representation shows that the latency performance of

LPM and XPM is much closer to that of IBSS-mode than IBSS PM. In each graph,

we have delineated the buckets using dotted lines, and have individually labeled

the data in a single bucket to improve readability.
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(a) 1-flow traffic load.
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(b) 2-flow traffic load.

Figure 6.35: Unstructured Route Discovery latency means.
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(a) 1-flow traffic load.
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Figure 6.36: Moderately structured Route Discovery latency means.
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(a) 1-flow traffic load.
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(b) 2-flow traffic load.

Figure 6.37: Highly structured Route Discovery latency means.
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The fast wakeup technique, used by LPM and XPM, provides a clear perfor-

mance advantage over the 802.11 IBSS power management mode when measur-

ing the latency of DSR Route Discovery. We have shown latency improvements

by factors of 4 to 16, resulting in performance much closer to the case of no power

management than that of IBSS PM. This technique permits DSR networks to enjoy

the energy-saving benefits of power management without incurring the worst-case

setup delay.

6.2.2 Application Message Delivery Latency

The second problem with the interaction between 802.11 power management and

DSR concerns multihop application message delivery latency. That is, the delay

between when a message leaves the application layer at the source and when it

reaches the application layer at the sink. The problem is that unless the inter-

message period is smaller than the 802.11 beacon interval, messages would incur

a beacon interval of delay at each hop while the ATIM process completes (§2.2.2).

For the CBR application, the inter-message period (250 milliseconds on aver-

age) is longer than the beacon interval (200 milliseconds). As a result, we expect

IBSS PM to exhibit poor delivery latency. On the other hand, we expect ODPM,

LPM, and XPM, which use power management suspension (§4.1.1), to offer la-

tency that is closer to the case of no power management.

Message delivery latency is related to the length of the route traversed by that
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Mobility IBSS ODPM IBSS
PM LPM XPM

Time
XPM

Credit

Unstructured 1.90
±0.002

1.80
±0.001

1.82
±0.002

1.90
±0.002

1.88
±0.002

1.82
±0.002

Moderately
Structured

3.94
±0.002

3.56
±0.002

3.64
±0.002

3.79
±0.002

3.93
±0.002

3.92
±0.003

Highly
Structured

5.77
±0.003

5.45
±0.002

5.53
±0.002

5.37
±0.002

6.88
±0.003

6.70
±0.007

(a) 1-flow traffic.

Mobility IBSS ODPM IBSS
PM LPM XPM

Time
XPM

Credit

Unstructured 1.89
±0.001

1.81
±0.001

1.83
±0.001

1.90
±0.001

1.88
±0.001

1.80
±0.002

Moderately
Structured

3.93
±0.001

3.62
±0.001

3.67
±0.001

3.82
±0.001

4.04
±0.001

3.96
±0.002

Highly
Structured

5.84
±0.002

5.45
±0.002

5.70
±0.002

5.58
±0.002

6.99
±0.002

6.79
±0.005

(b) 2-flow traffic.

Table 6.6: Mean route length.

message. Table 6.6 shows the mean route lengths, with 95% confidence intervals,

observed in our experiments. For our workloads, route length increases with the

degree of structure in the mobility model. We expect a similar trend in delivery

latency. Of special note are the lengths of routes chosen by XPM in the highly

structured cases, which are greater than those chosen by the other power man-

agement designs. This occurs because the relays on the shortest routes become

more expensive than other nodes, causing more circuitous routes to be assigned

winning. We expect these longer routes to affect delivery latency.

Table 6.7 shows delivery latency performance for the 1-flow traffic load. IBSS PM
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Mobility IBSS ODPM IBSS PM LPM XPM
Time

XPM
Credit

Unstructured 3.47ms
±22µs

56.7ms
±1.13ms

292ms
±876µs

9.00ms
±79µs

8.83ms
±34µs

9.12ms
±49µs

Moderately
Structured

7.98ms
±154µs

42.0ms
±683µs

775ms
±1,993µs

13.8ms
±139µs

14.9ms
±194µs

18.3ms
±459µs

Highly
Structured

11.1ms
±84µs

93.3ms
±1.19ms

1,385ms
±2,480µs

18.6ms
±218µs

22.6ms
±166µs

38.0ms
±1,037µs

Table 6.7: Mean delivery latency for 1-flow traffic load.

exhibits substantially higher latency than IBSS, by factors of 84 to 125. The previously-

published ODPM design improves this latency by using power management sus-

pension. Its average latency is higher than IBSS by factors of 5.2 to 16; these figures

reflect the high route setup latency experienced under ODPM. Our own designs,

which reduce setup latency, show a delivery latency that is at most 3.4 times that

of IBSS-mode. These improve latency relative to IBSS PM by factors of 32 to 74 for

LPM, and 32 to 61 for XPM.

Mobility IBSS ODPM IBSS PM LPM XPM
Time

XPM
Credit

Unstructured 3.71ms
±28µs

36.9ms
±641µs

296ms
±656µs

9.22ms
±36µs

11.8ms
±209µs

13.5ms
±294µs

Moderately
Structured

10.4ms
±305µs

34.2ms
±469µs

810ms
±1,345µs

16.6ms
±306µs

20.4ms
±325µs

32.7ms
±813µs

Highly
Structured

11.5ms
±34µs

60.1ms
±595µs

1,237ms
±1,527µs

20.4ms
±198µs

47.7ms
±672µs

153ms
±2,955µs

Table 6.8: Mean delivery latency for 2-flow traffic load.

The 2-flow traffic load latency is shown in Table 6.8. Again, IBSS PM incurs 78

to 108 times the latency of IBSS. Generally, LPM and XPM offer similar benefits

to those seen in the 1-flow data, up to a factor of 61 improvement over IBSS PM.
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The exception is XPM Credit under the highly structured mobility model, where

the improvement is only a factor of 8. We hypothesize that queueing delays at the

traffic source during Route Discovery, which was shown to take a long time in

Table 6.5, are responsible for this high average latency.

Figures 6.38, 6.39, and 6.40 again show 95% confidence intervals for mean de-

livery latency as a function of route length. Since many of the sample mean values

are close to zero, the bottom edge of each graph has been lowered by 0.1 second to

improve readability. Since most routes tend to be 8–10 hops or less, the confidence

intervals for longer routes are spread out due to their smaller number of samples.

Nevertheless, it is clear that LPM and XPM yield delivery latency that is in some

cases several seconds faster than IBSS PM.

Name Latency
BECA 20× increase in route setup latency
AFECA 30× increase in route setup latency
GAF 2× increase in average latency
Span 3× increase in average latency
On-demand 10×–28× route setup latency, 3×–16× average latency
LPM 2.1×–3.6× route setup latency, 1.6×–2.6× average latency
XPM Time 2.5×–4.9× route setup latency, 1.9×–4.1× average latency
XPM Credit 2.7×–6.1× route setup latency, 2.3×–13.3× average latency

Table 6.9: Augmented power management summary: latency.

Table 6.9 summarizes the the latency performance of LPM and XPM alongside

the designs presented in Chapter 3. The measurements are all expressed relative to

the latency of a non-power-managing network, which gives the best performance.

The worst case latency is given by a network that uses 802.11 IBSS power man-
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(a) 1-flow traffic load.
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(b) 2-flow traffic load.

Figure 6.38: Unstructured application message delivery latency means.
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(b) 2-flow traffic load.

Figure 6.39: Moderately structured application message delivery latency means.
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(b) 2-flow traffic load.

Figure 6.40: Highly structured application message delivery latency means.
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agement. The results of this Section show that route setup latency increases by

factors of 18 to 45 under IBSS PM. The BECA, AFECA, and On-demand Power

Management2 setup latencies are similar. GAF and Span are proactive designs,

and achieve near-best-case setup latency by requiring relays to always be active.

By comparison, LPM and XPM latency increases are an order of magnitude smaller

than other on-demand designs, and approach the performance of the proactive de-

signs. Our measurements also show that IBSS PM average (application message)

latency is 78 to 125 times that of the non-power-managing IBSS mode. Again, LPM

and XPM exhibit average latency that is one or two orders of magnitude less than

this, and typically comparable to existing designs.

6.3 Delivery Ratio

A traditional metric used to evaluate routing protocols is the number of messages

they successfully deliver. Call the delivery ratio the fraction of application mes-

sages received compared to the number which were sent. Modern protocols are

expected to deliver nearly 100% of their messages.

There are several reasons why a routing protocol, particularly one operating

in a mobile wireless network, might not deliver all of its messages. First, the

protocol might not be able to discover a route for some messages. Second, a route

2Summary latency statistics were not previously published for On-demand Power Manage-
ment. Several plots in (Zheng and Kravets, 2003) illustrate that average latency is near that of a
non-power-managing network, while setup latency is much higher.
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might break during use. This is a real problem for the CBR application running

on DSR, since DSR only makes a limited effort to salvage messages with broken

routes. (If the forwarding node which discovers a broken next hop does not know

an alternate route to the sink, then the message is discarded.) The CBR application

does not detect lost messages, and has no retry facility. Therefore, we expect to lose

some number of messages due to node mobility and broken links.

Exchange Power Management introduces a third reason why some messages

might not be delivered. When a source cannot afford any of the routes it knows

to a sink, it is blocked from sending messages for the remainder of the current

negotiation. Such messages in our simulations are simply discarded at the source.

When using XPM with Credit Balance valuation, these unaffordable messages

count against the delivery ratio.

We must clarify one point regarding the delivery ratio for XPM. A ratio d ≤ 1

does not imply that messages are randomly lost at the rate 1− d. Rather, it means

that a fraction of messages 1− d were generated during negotiation intervals when

the source had no affordable routes. Affordability is determined by the state of

the network — its geometry, the preferences of nodes on demanded routes —

at the time messages become available for transmission. If the application could

reschedule its communication so that it only sent messages when it could afford

routes, its delivery ratio would rise. The CBR application in our simulations has

not been modified to behave this way, but such adaptation is an interesting subject
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for future work.

Mobility IBSS ODPM IBSS PM LPM XPM
Time

XPM
Credit

Unstructured 99.9% 99.3% 99.1% 99.9% 99.9% 70.3%
Moderately
Structured 99.8% 98.8% 98.0% 99.8% 99.9% 45.9%

Highly
Structured 99.8% 98.7% 98.0% 99.9% 99.2% 27.8%

Table 6.10: Application message delivery ratio for 1-flow traffic load.

Table 6.10 shows the observed delivery ratio for the 1-flow traffic load. Each

cell contains the cumulative data for 30 simulations. Since DSR was designed for

non-power-managing networks, IBSS-mode is the “gold standard” for message

delivery performance. As expected, IBSS-mode provides nearly 100% delivery un-

der all mobility models. Adding power management, ODPM and IBSS PM are

slightly less reliable due in part to the high latency of Route Discovery. LPM,

which addresses this latency problem, has reliability comparable to IBSS.

XPM, when using Time Balance valuation, offers a high delivery ratio compa-

rable to IBSS-mode or LPM. Time Balance bid pricing tries to offer a sufficiently

high reported valuation so that all routes are affordable. The slightly lower ratio

observed for the highly structured mobility model is an indication that this valu-

ation function requires additional tuning. In a small number of cases (0.8%), it is

encountering unaffordable routes due to an insufficiently high bid price. These

cases almost certainly involve the overused nodes in the center corridor of the mo-

bility model, which are offering very large ask prices to try and avoid service.
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The Credit Balance valuation function, in contrast with Time Balance valua-

tion, offers a much lower delivery ratio. This is an intended consequence of unaf-

fordable routes. For example, in the unstructured mobility model, nearly 30% of

messages were generated at times when the state of the network made the routes

for those messages too expensive. As suggested earlier, it is entirely possible that if

the sources could have rescheduled their transmission attempts for a time when af-

fordable routes were available, this ratio could be improved. Section 6.1.1 showed

the advantage of accepting this behavior: nodes can “cap” their energy consump-

tion and avoid being overused.

Mobility IBSS ODPM IBSS PM LPM XPM
Time

XPM
Credit

Unstructured 99.9% 99.5% 99.4% 99.9% 100% 62.2%
Moderately
Structured 99.8% 99.3% 98.5% 99.8% 99.8% 37.6%

Highly
Structured 99.9% 99.3% 98.6% 99.9% 99.6% 24.2%

Table 6.11: Application message delivery ratio for 2-flow traffic load.

Table 6.11 shows the delivery ratio data for the 2-flow traffic load. The results

are similar to the 1-flow case. The ratio for XPM Credit has fallen slightly, because

the increased network utilization causes ask prices to rise more quickly. As a result,

sources encounter unaffordable routes sooner.

To support the claim that the delivery performance exhibited by XPM is mostly

attributable to affordability, Table 6.12 shows the delivery ratio for affordable mes-

sages. These data show that, when messages are sent along affordable routes, the
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1-flow 2-flow

Mobility XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

Unstructured 99.9% 99.9% 100% 99.9%
Moderately
Structured 99.9% 99.9% 99.9% 99.8%

Highly
Structured 100% 99.9% 99.8% 99.4%

Table 6.12: Affordable message delivery ratio.

delivery ratio approaches 100%. We expect this performance; once a negotiation is

in place, message delivery using XPM is essentially the same as with LPM, which

also gives a high delivery ratio.

6.4 Negotiation Characteristics

This Section profiles several attributes of the Exchange Power Management ne-

gotiation procedure. We characterize the amount of work done by XPM under

the various workloads. First, we examine how often a node participates in a ne-

gotiation. For those negotiations that succeed, we measure how many procedure

restarts were required due to failures (e.g., broken edges in the spanning tree).

We profile the amount of time required to complete the Discovery, Structure, and

Negotiation phases. Next, we show how long the Implementation phase typi-

cally lasts, accounting for route breakage and other factors. Finally, we present

measurements of the message and data overhead of the XPM design.
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6.4.1 Active Participant Restart Separation

The first measurement we present is the mean time between negotiation proce-

dures in which a node is an active participant. A node is an active participant

when it begins the procedure with active destinations (§4.3.1), or when it receives

an XPM message during the procedure. We measure the time between restart

events that mark the beginning of negotiations in which a node is active. This

metric gives an idea of how often a node will have to do work in a negotiation (as

opposed to simply timing out).

1-flow 2-flow

Mobility XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

Unstructured 242s
±5.04s

242s
±5.07s

119s
±1.89s

125s
±2.00s

Moderately
Structured

107s
±1.42s

113s
±1.56s

55.6s
±548ms

62.8s
±645ms

Highly
Structured

65.5s
±778ms

71.6s
±897ms

43.5s
±500ms

51.0s
±541ms

Table 6.13: Mean separation between active participant restart events.

Table 6.13 gives the restart separation sample means, with 95% confidence in-

tervals, for each combination of mobility model and traffic load. With the greater

number of traffic flows, nodes participate in negotiations more frequently. This

frequency also increases with the degree of structure in the mobility models. XPM

tends to use longer routes in the more structured models as it routes around overused

relays. Longer routes offer more opportunities for route breakage, therefore in-

creasing the frequency of renegotiation.
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6.4.2 Restarts per Negotiation

Chapter 4 explained that since the XPM negotiation procedure is brief, faults are

generally handled by restarting the procedure. For example, if an edge in the span-

ning tree breaks before it can be used to distribute Result messages, the procedure

restarts and the tree is formed again “from scratch.” We have proposed methods

for tree repair (§4.6.2) that handle such events more gracefully. It is worth asking,

however, how much work results from the current handling.

1-flow 2-flow

Mobility XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

Unstructured 1.05
±0.002

1.05
±0.002

1.07
±0.002

1.08
±0.002

Moderately
Structured

1.14
±0.002

1.12
±0.002

1.44
±0.005

1.39
±0.006

Highly
Structured

1.22
±0.002

1.18
±0.002

1.68
±0.004

1.62
±0.004

Table 6.14: Mean number of restarts per negotiation.

Table 6.14 shows the sample mean number of restart events that occur in an ex-

ecution of the negotiation procedure. In other words, this shows how many tries

are typically needed to “get it right.” The minimum value for this variable is 1.

In most cases, the mean is quite close to the minimum. For the more structured

mobility models with multiple traffic flows, larger tree sizes offer more opportu-

nities for edge breakage, thus increasing the likelihood of additional restarts. Still,

the mean is less than two restarts per run. The multiple-flow data suggest that

graceful tree repair techniques will help the scalability of XPM in larger and more
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active networks.

6.4.3 Negotiation Time

It is useful to know how much time elapses from the initial restart event until a

node receives its Result message and enters Implementation. This measurement

includes the time spent in Discovery, Structure, and Negotiation, and accounts

for intermediate restarts resulting from events such as tree edge breakage. In our

trials, the tree root spends 250 milliseconds of simulated time solving the VCG

mechanism (§4.4.3) independent of the number of bids. This delay is incorporated

into the total time required for the negotiation procedure. Section 6.5 shows that

250 milliseconds may be excessive for most of our simulations, but insufficient for

larger networks.

1-flow 2-flow

Mobility XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

Unstructured 408ms
±1.78ms

409ms
±1.84ms

415ms
±1.29ms

419ms
±1.33ms

Moderately
Structured

537ms
±1.40ms

517ms
±1.39ms

710ms
±1.77ms

690ms
±1.92ms

Highly
Structured

622ms
±1.09ms

585ms
±1.08ms

836ms
±1.57ms

820ms
±1.65ms

Table 6.15: Mean time required for negotiation process.

Table 6.15 shows the sample mean negotiation times with 95% confidence in-

tervals. For most workloads, the mean is about half a second. With increasing

structure and traffic activity, negotiation times rise; this is due to the higher like-
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lihood that such negotiations will involve multiple restarts. Every restart adds at

least one beacon interval — 200 milliseconds in our simulations — to the negotia-

tion time. This is the real cost of intermediate restarts, since nodes must be awake

during these wasted intervals, consuming energy at the high idle power rate.

These data characterize the overhead of the negotiation process. Nominally,

this means about a half second of overhead per 20 seconds of Implementation.

Section 6.4.4 measures the typical length of the Implementation phase.

6.4.4 Negotiation Lifetime

Finally, we measure the lifetime of a negotiation; that is, the duration of the Im-

plementation phase. Section 4.4.4 explained that once the results of a negotiation

are distributed, nodes implement those results for a negotiation interval, which

is 20 seconds in our simulations. Several factors can cause the interval to be short-

ened. A new traffic flow might become active, or an existing flow might become

inactive or break. These events all trigger a restart, which ends the current negoti-

ation interval early.

Table 6.16 presents the sample mean negotiation lifetime observed in our ex-

periments. In most cases, the expected lifetime is more than 75% of the nominal

lifetime. As the degree of structure and the amount of traffic increase, the likeli-

hood of early termination increases. These measurements illustrate the usefulness

of the proposed interim mechanism solutions (§4.6.1). If nodes did not have to
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1-flow 2-flow

Mobility XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

Unstructured 17.0s
±85.0ms

17.1s
±102ms

15.2s
±78.2ms

16.2s
±94.5ms

Moderately
Structured

16.5s
±91.2ms

16.4s
±137ms

14.2s
±80.1ms

15.6s
±130ms

Highly
Structured

16.4s
±94.2ms

16.3s
±189ms

14.2s
±82.1ms

15.9s
±173ms

Table 6.16: Mean negotiation lifetime.

abandon their current negotiations every time a new route becomes active, or an

existing route changes, then the average negotiation lifetime could approach the

target duration. This is desirable for several reasons, including the fact that it gives

agents a better sense of how much service they are buying or selling.

6.4.5 Overhead

Traditional metrics for network protocol performance include the number of ad-

ditional messages or bits of data generated as overhead. For example, the 802.11

MAC protocol generates three control frames for every directed data frame it sends,

for a message overhead of 3:1. We have measured the message and data overhead

for XPM and DSR with respect to the CBR application traffic load. Our method-

ology recorded every message sent by a source or forwarded by a relay. So, for

example, a CBR or XPM Notify message sent along a route having |P| − 1 hops

would be counted as |P| − 1 messages. A broadcast DSR Route Request counts as

a single message.
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Table 6.17 shows the overhead for DSR and XPM separately, measured with

respect to the number of CBR messages transmitted. For instance, in the unstruc-

tured, 1-flow case, using XPM with Time Balance valuation, DSR sends 0.144 mes-

sages for every CBR message, and XPM generates an additional 0.098 messages for

every CBR message. We have also broken out the XPM overhead by message type.

It is worth noting that the greater XPM overhead under Credit Balance valuation

is largely due to the smaller number of CBR messages transmitted.

Before presenting the raw data overhead, Table 6.18 shows the mean message

sizes, with 95% confidence intervals, observed during the trials. These message

sizes reflect the payloads passed to the MAC layer. Note that the messages which

are sent along routes, as opposed to those sent to immediate neighbors, grow in

size with the degree of mobility structure. These include CBR, DSR, and XPM No-

tify messages. As shown in Section 6.2.2, route length increases with structure in

our workloads. The growth in message size reflects the length of the route encoded

in these messages.

The XPM Submit and Result messages are particularly interesting. Submit mes-

sage size is nearly identical under the Time Balance and Credit Balance valuation

functions, increasing with the degree of structure. The Result messages are notice-

ably smaller under Credit Balance, however. This is because fewer winning bids

tend to be encoded for distribution to agents under that valuation function.
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Unstructured Moderately
structured

Highly structured

Message XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

CBR 1 1 1 1 1 1
DSR 0.144 0.206 0.118 0.227 0.092 0.255
XPM (all) 0.098 0.140 0.199 0.405 0.247 0.808
XPM Notify 0.017 0.026 0.031 0.063 0.033 0.106
XPM Update 0.013 0.018 0.035 0.070 0.048 0.157
XPM Respond 0.030 0.043 0.066 0.132 0.080 0.261
XPM Submit 0.019 0.027 0.034 0.070 0.044 0.144
XPM Revoke 0.002 0.003 0.008 0.016 0.016 0.054
XPM Result 0.017 0.024 0.025 0.053 0.026 0.086

(a) 1-flow traffic.

Unstructured Moderately
structured

Highly structured

Message XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

CBR 1 1 1 1 1 1
DSR 0.136 0.223 0.116 0.250 0.084 0.254
XPM (all) 0.127 0.200 0.293 0.627 0.312 0.967
XPM Notify 0.022 0.035 0.047 0.099 0.047 0.145
XPM Update 0.018 0.028 0.058 0.122 0.063 0.193
XPM Respond 0.040 0.063 0.102 0.215 0.107 0.330
XPM Submit 0.023 0.037 0.045 0.099 0.050 0.156
XPM Revoke 0.004 0.006 0.015 0.033 0.023 0.073
XPM Result 0.019 0.030 0.026 0.059 0.022 0.069

(b) 2-flow traffic.

Table 6.17: Message overhead relative to CBR application traffic.
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Unstructured Mod. structured Highly structured

Message XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

CBR 545
±0.005

545
±0.007

553
±0.004

553
±0.006

565
±0.005

565
±0.011

DSR 47.6
±0.067

47.5
±0.067

69.8
±0.094

68.7
±0.099

131
±0.218

126
±0.239

XPM (all) 69.7
±0.182

67.0
±0.171

77.6
±0.142

72.2
±0.127

97.2
±0.169

82.7
±0.129

XPM Notify 50.3
±0.049

50.3
±0.052

58.4
±0.036

58.1
±0.034

69.6
±0.035

69.2
±0.036

XPM Update 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0
XPM Respond 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0

XPM Submit 104
±0.394

104
±0.393

134
±0.387

134
±0.387

180
±0.377

178
±0.380

XPM Revoke 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0

XPM Result 121
±0.521

105
±0.530

171
±0.589

124
±0.518

289
±0.937

152
±0.675

(a) 1-flow traffic.

Unstructured Mod. structured Highly structured

Message XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

CBR 545
±0.004

545
±0.006

553
±0.006

553
±0.008

566
±0.004

566
±0.010

DSR 48.8
±0.055

48.4
±0.054

73.0
±0.077

71.4
±0.081

133
±0.183

131
±0.200

XPM (all) 69.6
±0.137

66.2
±0.129

76.6
±0.105

71.4
±0.096

96.1
±0.135

83.7
±0.111

XPM Notify 50.5
±0.035

50.5
±0.036

59.5
±0.029

59.6
±0.032

72.0
±0.027

71.1
±0.029

XPM Update 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0
XPM Respond 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0

XPM Submit 111
±0.361

111
±0.376

151
±0.352

152
±0.379

211
±0.388

211
±0.421

XPM Revoke 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0 44.0 ±0

XPM Result 126
±0.460

103
±0.444

197
±0.652

128
±0.492

347
±1.16

164
±0.769

(b) 2-flow traffic.

Table 6.18: Mean message size (octets).
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Unstructured Moderately
structured

Highly structured

Message XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

CBR 1 1 1 1 1 1
DSR 0.013 0.018 0.015 0.028 0.021 0.057
XPM (all) 0.013 0.017 0.028 0.053 0.043 0.118
XPM Notify 0.002 0.002 0.003 0.007 0.004 0.013
XPM Update 0.001 0.001 0.003 0.012 0.004 0.012
XPM Respond 0.002 0.003 0.005 0.011 0.006 0.020
XPM Submit 0.004 0.005 0.008 0.017 0.014 0.045
XPM Revoke 0.000 0.000 0.001 0.001 0.001 0.004
XPM Result 0.004 0.005 0.008 0.012 0.013 0.023

(a) 1-flow traffic.

Unstructured Moderately
structured

Highly structured

Message XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

CBR 1 1 1 1 1 1
DSR 0.012 0.020 0.015 0.032 0.020 0.059
XPM (all) 0.016 0.024 0.041 0.081 0.053 0.143
XPM Notify 0.002 0.003 0.005 0.011 0.006 0.018
XPM Update 0.001 0.002 0.005 0.010 0.005 0.015
XPM Respond 0.003 0.005 0.008 0.017 0.008 0.026
XPM Submit 0.005 0.007 0.012 0.027 0.018 0.058
XPM Revoke 0.000 0.000 0.001 0.003 0.002 0.006
XPM Result 0.004 0.006 0.009 0.014 0.013 0.020

(b) 2-flow traffic.

Table 6.19: Bit overhead relative to CBR application traffic.
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Table 6.19 shows the bit overhead, which is a function of the message overhead

and the message size. In almost all scenarios, XPM contributes less than 10% bit

overhead. In the worst case, using Credit Balance valuation in the highly struc-

tured scenarios, this overhead is less than 15% even though the amount of CBR

traffic is small.

6.5 Computational Performance

The last set of measurements we present profile the performance of the Branch on

Bids implementation, described in Section 4.4.3.2. This algorithm uses heuristic

search techniques to solve an NP-complete optimization problem. As such, it is

critical to the scalability of XPM that the BOB implementation be as fast as possi-

ble. Our implementation is based on a design that is several years old, and does

not contain all of the optimizations published for that algorithm (Sandholm, 2003).

More recent commercial implementations of winner determination algorithms are

claimed to be orders of magnitude faster than BOB. Other algorithms could re-

place BOB in an XPM implementation; all we require is that such an algorithm

correctly and optimally solve the winner determination problem for combinato-

rial exchanges.
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6.5.1 Winner Determination

We begin by profiling the BOB algorithm itself, which is used to determine the

winning bids and asks during mechanism solution. One interesting result is that

the bids and asks generated using Time Balance pricing are often more compu-

tationally expensive for BOB than those generated with Credit Balance pricing.

Since Time Balance bids have prices that are high enough to afford any route, such

bids cannot be preprocessed out of the input to the heuristic search stage.

Table 6.20 shows the sample mean compute time for BOB as measured during

our simulations. The test environment was an Athlon MP 1900+ system running

Linux 2.4.19; the implementation was built using the Intel C++ Compiler for Linux,

version 7.0. Filesystem logging for the BOB code was disabled during the exper-

iments. The data are only for the winner determination step in the mechanism

solution; they do not include runs of BOB used to compute agent Vickrey dis-

counts.

1-flow 2-flow

Mobility XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

Unstructured 374µs
±3µs

357µs
±4µs

444µs
±6µs

440µs
±8µs

Moderately
Structured

1.08ms
±11µs

870µs
±12µs

2.85ms
±40µs

2.77ms
±61µs

Highly
Structured

2.53ms
±23µs

1.84ms
±33µs

6.47ms
±95µs

6.91ms
±183µs

Table 6.20: Mean winner determination time.

The data show that for the problem sizes that occur in our simulations, even
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a relatively unoptimized BOB is fast in the average case. Solution time increases

with the number of traffic flows and the sparseness of the network. In the more

structured mobility models, individual routes are less likely to have nodes in com-

mon, so the number of relays submitting asks increases. Also, as mentioned earlier,

the ability to preprocess unaffordable bids has a visible impact on solution perfor-

mance. Credit Balance pricing reduces solution time by up to 27% relative to Time

Balance pricing.

Figure 6.41 plots solution time vs. the number of input bids |B| over all runs of

the algorithm in the initial winner determination step. The graphs show 95% con-

fidence intervals for the sample mean at each input size. The intervals grow as the

input size increases, due to the decreased number of samples for larger problems.

Under both valuation functions, problem sizes of 30 bids or greater account for 5%

of the sample data.

6.5.2 Vickrey Clarke Groves Mechanism Solution

The solution of the Vickrey Clarke Groves mechanism requires the solution of the

winner determination problem once for all the bids B, then again for each set B−i

with winning agent i removed. The smaller problems are solved to compute each

agent’s Vickrey discount, which determines the agent’s payment to the mecha-

nism. Bid preprocessing, described in Section 4.4.3.2, is helpful in containing the

computational costs of these additional solutions.
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(b) Credit Balance valuation.

Figure 6.41: Winner determination time.
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1-flow 2-flow

Mobility XPM
Time

XPM
Credit

XPM
Time

XPM
Credit

Unstructured 500µs
±9µs

466µs
±10µs

745µs
±19µs

685µs
±24µs

Moderately
Structured

2.64ms
±40µs

1.73ms
±45µs

11.6ms
±202µs

8.19ms
±225µs

Highly
Structured

8.59ms
±121µs

4.95ms
±172µs

31.6ms
±549µs

24.7ms
±863µs

Table 6.21: Mean VCG mechanism solution time.

Table 6.21 shows the total solution time for the VCG mechanism, including

winner determination and Vickrey payment computation. Compared to the costs

of winner determination presented in Table 6.20, full mechanism solution typi-

cally requires no more than 3.5 times as much compute time. Also, the greatest

mean solution time, for Time Balance valuation in the highly structured mobility

model with 2-flow traffic, is still 87% less than the simulated time we allocated for

mechanism solution in our experiments. In many cases, we could have reduced

the simulated time budgeted for this activity, and improved both the time and en-

ergy required for the negotiation process. Also, Section 4.5.1 explained that since

buyers using Time Balance valuation are insensitive to their payment amounts,

the use of Vickrey payments provides no incentives. We could eliminate Vick-

rey payment computation, and reduce the amount of work to just that of winner

determination (Table 6.20).

Finally, Figure 6.42 shows the mechanism solution time as a function of input

size. (Note that the magnitude of the vertical axis differs between Figures 6.42(a)
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Figure 6.42: VCG mechanism solution time.
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and 6.42(b).) This representation shows why a more efficient winner determination

algorithm is important to the future scalability of XPM. For Time Balance valua-

tion, mechanism solution requires one fifth of a second for the largest problem sizes

encountered in our simulations, and will require more time as the number of flows

increases.

6.5.3 Effects of Optimizations

The Branch-on-Bids heuristic search algorithm (§4.4.3.2) employs a number of op-

timizations that estimate when the search tree may be pruned, and determine the

order in which bids are explored in the tree. The major optimizations are:

• h upper revenue bound (Procedure 11, line 4). Estimates revenue achievable

from bids that have not been assigned winning or losing.

• L lower revenue bound (Procedure 11, line 7). Finds a single bid that can be

feasibly added to the current allocation.

• H lower revenue decrease bound (Procedure 11, line 15). When the cur-

rent allocation is infeasible, estimates the least decrease in revenue needed to

make the currently-infeasible item allocations feasible.

• Overlap branching bids (Procedure 11, line 19). When the current allocation

is infeasible, branch on a bid that demands additional units of a currently-

infeasible item, thus forcing the search of multi-unit asks early.
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• Min branching bids (Procedure 11, line 21). When the current allocation

is infeasible, branch on a bid that most reduces the magnitude of the net

demand for some item which is currently infeasible.

In order to measure the relative impact of these optimizations, we ran the 30

trials for the 2-flow highly structured scenario using Credit Balance valuation. We

then measured the time required to complete VCG mechanism solution, as in Sec-

tion 6.5.2, with each optimization disabled in turn. In the case of the three pruning

heuristics, these were disabled simply by not computing their value, and never

executing the respective pruning step. For the two bid ordering techniques, these

were disabled by replacing them with the descending-price bid selection, which

uses a bid order computed in advance. This is exactly the same bid ordering used

on line 10 of Procedure 11.

All On h Off L Off H Off
Overlap

Branching
Off

Min
Branching

Off

Min and
Overlap

Branching
Off

213ms
±14.1ms

233ms
±15.6ms

245ms
±20.7ms

91.0s
±7.81s

24.7ms
±863µs

99.1ms
±6.54ms

77.3ms
±4.77ms

Table 6.22: Mean VCG solution times with individual optimizations disabled.

Table 6.22 shows the mean VCG solution times, with 95% confidence intervals,

for each disabled optimization. We also measured performance with all optimiza-

tions enabled, and with both bid ordering techniques disabled. As expected, h, L,

and H improve performance. Surprisingly, our bid ordering optimizations were

not as helpful. In particular, by disabling the overlap branching bid technique,
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we were able to improve solution performance by more than a factor of 8. As a

result of these measurements, the data presented in Sections 6.5.1 and 6.5.2 were

collected with the overlap branching bid technique disabled.

6.6 Summary

We have shown that Exchange Power Management can be an effective tool for

limiting the worst case energy consumption of nodes in a mobile ad hoc network.

When maximal message delivery is required, XPM reduces the magnitude of the

energy consumption range by up to a factor of 5 compared with 802.11 power

management. If unaffordable routes are permitted, the energy shaping capabili-

ties of XPM improve, and can reduce this magnitude by up to a factor of 12. These

energy shaping capabilities give XPM an advantage over non-negotiated schemes

such as Local Power Management, which was shown to have poor worst case

energy consumption in highly structured environments. Energy shaping is a con-

tribution of XPM which distinguishes it from prior work in the area of cross-layer

power management for ad hoc networks.

The improved worst case behavior does not come at the expense of average

energy consumption. XPM energy savings are comparable to, or better than, IBSS

power management mode. Relative to the case of no power management, XPM

yields energy savings of 56%–69%, compared with 53%–63% for 802.11 power

management. XPM is competitive with earlier cross-layer power management de-
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signs in the average case. When the network is idle, XPM nearly achieves the

optimal energy savings, something proactive protocols cannot do.

Using techniques such as fast wakeup and power management suspension,

we showed that XPM provides better latency than IBSS power management. DSR

Route Discovery latency improved by up to a factor of 16, giving better perfor-

mance than previous on-demand designs. Application message delivery latency

improved upon IBSS power management by up to a factor of 61. Table 6.23 high-

lights these experimental results.

Feature Description

Energy Range Reduced magnitude by up to factor of 5 relative to
IBSS PM, by up to factor of 12 using unaffordable routes.

Energy Mean Savings of 56%–69% relative to no power management,
competitive with previous work.

Route Discovery
Latency Improved by up to factor of 16 relative to IBSS PM.

Message Delivery
Latency Improved by up to factor of 61 relative to IBSS PM.

Table 6.23: Exchange Power Management results summary.

When using Time Balance valuation, XPM was shown to deliver a proportion

of application messages comparable to the “gold standard,” IBSS-mode. Credit

Balance pricing trades off delivery ratio to limit the energy consumption of nodes.

We explained how applications that are aware of route route affordability might

in the future reschedule their communications for times when affordable routes

are available.

We profiled the XPM negotiation procedure, and found that the practice of
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restarting the procedure “from scratch” in the event of a tree edge break does not

harm performance too much. For most workloads, the average number of restarts

per run of the procedure is close to the minimum, and in all cases averages fewer

than two restarts per run. Also, for most workloads, the average time required to

complete the negotiation procedure is about half a second. Negotiations typically

last for at least 75% of their nominal lifetime before events such as traffic flow

changes or route breakage interrupt them.

Finally, we presented measurements of our Vickrey Clarke Groves mechanism

implementation. Our version of the Branch on Bids algorithm provided satisfac-

tory performance for the problem sizes encountered in our simulations. We indi-

cated that additional optimization would be necessary in order for XPM to scale

to larger or more active networks.



Chapter 7

Conclusion

The use of economic tools such as game theory in the analysis and operation of

networks has recently become a field of interest for research. Multihop ad hoc net-

works, in which nodes relay messages for other nodes, are an important class of

networks characterized by a conflict between individual energy performance and

system-wide communications performance. Understanding the energy costs ex-

perienced by network agents, we can design a negotiation framework that enables

agents to report their preferences over network configurations. If a credit system

is available to account for the value exchanged in this environment, these negotia-

tions can be made incentive compatible.

This thesis represents the first application of game theory and mechanism de-

sign to the problem of power management in realistic ad hoc networks. Taking

a systems view, we have shown that the energy costs are dominated by the idle

344
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power state in wireless interfaces such as the popular 802.11 radios. In this con-

text, the marginal energy costs of relaying additional similar traffic flows, given

that a relay is active at all, are small. We showed that an incentive-compatible

mechanism for this environment must account for marginal costs by considering

the overlap between different source routes. A mechanism based on the combi-

natorial exchange — which incorporates the reported preferences of overlapping

sources, relays, and sinks — solves a network configuration that maximizes sur-

plus over the agent valuations. Only an optimal solution to the combinatorial ex-

change winner determination problem incents the agents to truthfully report their

value, or loss of value, from network participation.

We have developed a practical method called Exchange Power Management to

implement exchange-based negotiation in on-demand source routing networks.

Our design augments existing protocols such as Dynamic Source Routing and

802.11 by using higher-level information to direct the use of low-level power man-

agement. XPM is an instance of a general four-phase framework for negotiations

in ad hoc networks. We described specific algorithms and actions for each phase,

but noted that the phases are somewhat orthogonal and that the algorithms could

be replaced. The first phase uses DSR Route Discovery to identify a set of demand

routes for which a traffic source will submit bids. In the second phase, a spanning

tree overlay is constructed in on-demand fashion across the overlapping routes.

Next, a wave algorithm is used to collect bids, the mechanism is solved using
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heuristic search techniques, and the results are distributed to the agents. Finally,

the agents implement the results by participating in active routes, or by entering a

low-power state.

Using a realistic simulation environment, we demonstrated the practical per-

formance of XPM under a range of mobility and communications workloads.

Quantitative measurements based on the power profile of a well-known 802.11

interface show that XPM reduces the variability of node energy consumption. The

greatest improvement occurs when relays and sinks are allowed to become unaf-

fordable to traffic sources. This enables XPM to reduce the energy consumption

range by an order of magnitude, at the cost of making some messages undeliver-

able. Future applications could adapt to this characteristic by rescheduling their

communications for a time when affordable routes become available. We also

showed that the degree of structure in the topology of the network has a signif-

icant impact on the worst-case energy consumption for nodes in distinguished

positions.

This improvement in variability does not come at the cost of average-case en-

ergy performance. Our measurements showed that XPM saves at least as much

energy as 802.11 power management, and that it is comparable to timer-based

designs such as Local Power Management. We also showed that the techniques

of fast wakeup and power management suspension dramatically improve com-

munications latency in power-managing networks. Compared with 802.11 power
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management, we improved the latency of DSR Route Discovery by up to a factor

of 16, and improved application message delivery latency by up to a factor of 61.

This thesis has identified many interesting areas for future research on the ap-

plication of mechanism design to power managing networks, including:

• More sophisticated agent valuation functions could yield even better con-

straints on energy variability.

• Application awareness of the underlying negotiation system may, through

rescheduling, allow a high message delivery ratio without sacrificing tight

energy bounds.

• The use of interim mechanism solutions may reduce the overhead of nego-

tiation by localizing the response to topology or traffic flow changes.

• An improved spanning tree formation algorithm will increase scalability and

reduce the communications and energy costs of negotiation.

• Optimizations to the Branch on Bids heuristic search algorithm — or a new

algorithm entirely — will allow the mechanism itself to scale to larger and

more active networks.

The use of game theory in the design of networked systems is still young, and

the ultimate rôle of these techniques is not yet clear. What is already clear is that

these approaches will add to the complexity of conventional protocols. This thesis

has contributed a new result: game theoretic techniques can yield practical benefits
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to system performance. We have demonstrated the kinds of energy variability

improvements that future designs might expect to realize. Now that the concepts

have been introduced, the long road of engineering optimization begins.
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