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Abstract

Recently, caption generation with an encoder-decoder

framework has been extensively studied and applied in dif-

ferent domains, such as image captioning, code captioning,

and so on. In this paper, we propose a novel architecture,

namely Auto-Reconstructor Network (ARNet), which, cou-

pling with the conventional encoder-decoder framework,

works in an end-to-end fashion to generate captions. AR-

Net aims at reconstructing the previous hidden state with

the present one, besides behaving as the input-dependent

transition operator. Therefore, ARNet encourages the cur-

rent hidden state to embed more information from the previ-

ous one, which can help regularize the transition dynamics

of recurrent neural networks (RNNs). Extensive experimen-

tal results show that our proposed ARNet boosts the perfor-

mance over the existing encoder-decoder models on both

image captioning and source code captioning tasks. Ad-

ditionally, ARNet remarkably reduces the discrepancy be-

tween training and inference processes for caption genera-

tion. Furthermore, the performance on permuted sequen-

tial MNIST demonstrates that ARNet can effectively regu-

larize RNN, especially on modeling long-term dependen-

cies. Our code is available at: https://github.com/

chenxinpeng/ARNet.

1. Introduction

Caption generation [35, 5] is a fundamental research

problem, which has received increasing attention in both

computer vision and natural language processing commu-

nities. The task is to predict a syntactically and seman-

tically correct target sequence consisting of consecutive

words based on the provided source information. For ex-

ample, an image captioning task aims to generate an ap-

∗This work was done while Xinpeng Chen was a Research Intern with

Tencent AI Lab.
§Corresponding authors.
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Figure 1. An overview of our proposed ARNet coupling with the

conventional encoder-decoder framework. The encoder takes an

image or a source code file as input and generates its semantic

embedding, based on which the decoder, usually one RNN, can

thus generate the semantically-correlated captions. Other than an

input-dependent transition operator used in the decoder, the pro-

posed ARNet connects the neighboring hidden states together by

reconstructing the past hidden state with the present one. The blue

arrows indicate the state transitions in RNN.

propriate sentence to describe the image content [32, 15],

while a code captioning task targets at providing a sentence

to summarize the conceptual idea behind the given source

code file [13, 35]. Caption generation is a very challeng-

ing task. First, the semantic meaning of the given source

needs to be well learned and captured, especially for differ-

ent modalities, such as image and source code. Second, the

target sentence generating process needs to not only main-

tain the syntactical correctness but also ensure the seman-

tic correlations with the source information, which thus re-

quires complicated interactions between them.

Recent work on caption generation, such as image cap-
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tioning [32], counts on an encoder-decoder framework to

generate the corresponding sentence for one given image.

As illustrated in Fig. 1, the encoder takes one image or

source code file as input and generates its corresponding

semantic embedding. Due to the different behaviors and

characteristics of the source, different neural network archi-

tectures are used as the encoder, e.g., convolutional neural

networks (CNNs) for images and recurrent neural networks

(RNNs) for sequential data such as source code and natural

language. With the semantic embedding, the decoder em-

ploys another RNN to generate the target sentence to reflect

the content of the image or summarize the conceptual idea

of the source code. Moreover, in order to encourage the de-

coder to focus on the crucial information for generating cap-

tions, attention mechanisms were proposed for image cap-

tioning [34] and text abstractive summarization [13, 7]. At

each time step, the attention strategy measures the relevance

of the encoder’s hidden states given all the previously gen-

erated words in the target sentence. However, the attention

mechanism proceeds in a sequential manner, which lacks

global modeling capacities. In order to address this draw-

back, a review network [35] was proposed with review steps

lying between the encoder and the decoder. As such, a more

compact, abstractive, and global annotation vectors are gen-

erated, which have been demonstrated to further benefit the

sentence generation process.

Even though the encoder-decoder architecture and its

variants have achieved remarkable performance improve-

ments on caption generation tasks, two problems still re-

main. First, the decoder relies on an input-dependent tran-

sition operator to generate captions. Specifically, the word

y′t+1 is conditioned on the hidden state ht at time step t

independently, which has not fully exploited the latent re-

lationship with its previous one ht−1. Second, the discrep-

ancy, also named as exposure bias, in RNN between training

and inference still exists [18, 4]. During the training phase,

we take the ground-truth word yt as input of the RNN unit to

predict the next word y′t+1 and force it to stay close to yt+1.

However, the ground-truth word yt is unavailable during the

inference phase. The RNN unit depends on the generated

word y′t by the model from the previous time step for y′t+1

prediction.

In order to handle the aforementioned problems, in

this paper, we introduce an Auto-Reconstructor Network

(ARNet) coupling with the conventional encoder-decoder

framework for caption generation, as illustrated in Fig. 1.

Our proposed ARNet connects two neighbouring hidden

states by reconstructing the past hidden state with present

one. As such, ARNet encourages the current hidden state to

embed more information from the previous one. The tran-

sition dynamics of the RNN in the decoder are thus regular-

ized. Our main contributions lie in three-fold:

• We propose a novel architecture that introduces an

ARNet coupling with the encoder-decoder framework,

which strengthens the connection between neighbor-

ing hidden states by reconstructing the past with the

present.

• ARNet can help regularize the transition dynamics of

the RNN, therefore mitigating its discrepancy for se-

quence prediction.

• ARNet coupling with the encoder-decoder framework

and its variants achieve performance improvements

on both image captioning and source code captioning

tasks. Moreover, ARNet, conducting regularization on

RNN, can effectively model long term dependencies.

2. Related Work

2.1. Encoder­Decoder Framework

The encoder-decoder framework for caption generation

is inspired by its successful application to machine trans-

lation [6], where RNNs were used for both encoding and

decoding. Generally, in an encoder-decoder framework, the

encoder encodes the input into an informative vector and the

decoder translates the vector into a corresponding sequence.

Either image captioning or code captioning can be seen as a

task of translation. And the encoder-decoder framework has

achieved a great success on these tasks [32, 35, 14]. To al-

low the RNN unit to determine which sub-part of input data

is more important for each time step, the attention mech-

anism was introduced in the encoder-decoder framework

and remarkably improved the performance [34]. There-

after, many extensions of attention mechanism have been

proposed [37, 25] to push the limits of this framework for

caption generation tasks.

2.2. Exposure Bias and Regularization for RNN

An inevitable problem for sequence generation tasks is

exposure bias when the network is trained with the teacher

forcing technique [33]. Scheduled sampling [4] introduces

a sampling mechanism to imitate the sequence prediction

process during the training phase. While scheduled sam-

pling has achieved good performance on the image caption-

ing task, Huszar [11] demonstrated that this training tech-

nique is not a consistent estimation strategy. Furthermore,

the professor forcing [18] used generative adversarial net-

works [8] to encourage the distributions of recurrent hidden

states of training and inference phase to match with each

other. Recently, Krueger et al. proposed zoneout [17] to

regularize RNN. The values of the hidden states and mem-

ory cells of the RNN either maintain their previous values

or are updated as usual. Therefore, stochastic identity con-

nections between subsequent time steps were introduced in

zoneout. Note that the information of the previous hidden

state randomly enters the current time step in zoneout. In
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contrast, our model encourages the current hidden state to

absorb information from a previous time step by forcing the

current hidden state to reconstruct the previous one.

3. Background

ARNet is proposed to couple with the encoder-decoder

framework to improve the performance of caption genera-

tion tasks. In this section, we briefly review the encoder-

decoder framework.

3.1. Encoder

In the encoder-decoder framework, the encoder is used

to generate the semantic representation of input data. In

order to make a full understanding of the input data, the en-

coder generates not only the global information in the form

of one distributed vector g but also the local information

represented by a set of vectors s = {s1, s2, . . . , sn}, which

will be further used as the input of the decoder.

Due to different behaviors and characteristics of the

source input, different types of encoders have been used for

different caption generation tasks. For image captioning,

recently developed CNNs, such as Inception-X [29, 12, 30,

28] and ResNet [9], are usually utilized to generate global

and local representations of images. In this paper, we em-

ploy Inception-V4 to encode one given image I, with the

last fully-connected layer being the global representation g

and the outputs of the last convolutional layer composing

the local information vectors s, respectively.

For the task of source code captioning [35], RNNs are

more naturally suited for modeling the source code se-

quence. Given one input source code token sequence I =
{i1, ..., iT }, at time step j we feed ij into the RNN unit

and obtain the hidden state hj . The hidden state of the

last time step hT encodes the information of the whole se-

quence, which is regarded as containing the sequence global

information. And the hidden states generated during the en-

coding process contain the subsequence information, which

are composed as local information vectors. In order to

well capture long term dependencies, long short-term mem-

ory (LSTM) [10] and gated recurrent unit (GRU) [6] with

specifically designed gating mechanisms were proposed. In

this paper, LSTM is employed as the encoder for handling

input sequence data.

LSTM unit acts as a transition operator transferring the

previous hidden state ht−1 to the current hidden state ht

with the input xt at time t:

ht = LSTM(xt, ht−1). (1)

In this paper, we use the same definitions as [38]. Then the

LSTM transition process can be formulated as follows:








it
ft
ot
gt









=









σ

σ

σ

tanh









T

(

xt

ht−1

)

,

ct = ft ⊙ ct−1 + it ⊙ gt,

ht = ot ⊙ tanh(ct),

(2)

where it, ft, ot, ct, ht, and σ are input gate, forget gate,

output gate, memory cell, hidden state, and sigmoid func-

tion, respectively. T is a linear transformation matrix. ⊙
represents an element-wise product operator.

3.2. Decoder

Based on the global information vector g and local in-

formation vectors s generated by the encoder, the aim of

the decoder is to generate a natural sentence C consisting of

N words (y1, y2, · · · , yN ), which not only expresses con-

tent information of the input source, e.g., image or source

code, but also should be naturally coherent. To further ex-

ploit the contributions of the local information vectors and

improve the performance, the attention mechanism [2, 34]

was proposed. Therefore, the attentive LSTM can be further

reformulated as:








it
ft
ot
gt









=









σ

σ

σ

tanh









T





xt

ht−1

zt



 , (3)

where zt denotes the context vector, yielded by the attention

mechanism. Given the local information vectors s gener-

ated from the encoder, zt is computed by:

zt = fatt(s, ht−1) =

|s|
∑

i=1

exp (α(si, ht−1))
∑|s|

j=1
exp (α(sj , ht−1))

si. (4)

α(si, ht−1) measures the similarity between si and ht−1,

which is usually realized by a multilayer perceptron.

LSTMs with or without the attention mechanism can both

be used as the decoder. In this paper, in order to demonstrate

the effectiveness of our proposed ARNet, we experiment on

two LSTMs, attentive LSTM and LSTM without attention.

4. The Proposed ARNet

4.1. Architecture

As shown in Fig. 1, the proposed ARNet couples with the

encoder-decoder framework for caption generation. Con-

cretely, our proposed ARNet is realized by another LSTM,

taking the hidden states sequence yielded in the decoder as

inputs. The architecture of ARNet is illustrated in Fig. 2,

from which we can see that ARNet aims at exploiting the

relationships between neighboring hidden states.
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Figure 2. The framework of our proposed ARNet. At each time

step of the decoder, ARNet takes the present hidden state ht as the

input to reconstruct its previous hidden state ht−1. Lt
AR is defined

to match the reconstructed output ĥt−1 and the previous hidden

state ht−1.

LSTM unit is leveraged to reconstruct the past hidden

state ht−1 with the present one ht, which can be formulated

as:









i′t
f ′
t

o′t
g′t









=









σ

σ

σ

tanh









T

(

ht

h′
t−1

)

,

c′t = f ′
t ⊙ c′t−1 + i′t ⊙ g′t,

h′
t = o′t ⊙ tanh(c′t),

(5)

where i′t, f
′
t , o

′
t, c

′
t and h′

t are the input gate, forget gate,

output gate, memory cell and hidden state of the LSTM unit,

respectively. In order to further match the previous hidden

state ht−1, one fully-connected layer is employed to map

the generated h′
t into the common space with ht−1:

ĥt−1 = wfch
′
t + bfc, (6)

where wfc and bfc are the weight matrix and bias vector, re-

spectively. ĥt−1 is the reconstructed previous hidden state.

Afterwards, we define a reconstruction error in terms of Eu-

clidean distance between ht−1 and ĥt−1:

Lt
AR =‖ ht−1 − ĥt−1 ‖22, (7)

where Lt
AR measures the reconstruction error of the ARNet

at time step t. Through minimizing the defined reconstruc-

tion error, we encourage the current hidden state ht to em-

bed more information from the previous one ht−1.

Such a reconstruction strategy in our proposed ARNet,

behaving similarly to the zoneout regularizer [17], regular-

izes the LSTM during the caption generation process. Zo-

neout regularizes RNNs by randomly preserving hidden ac-

tivations, which stochastically forces some parts of hidden

unit and memory cell to maintain their previous values at

each time step. With such a process, gradient and state in-

formation are more steadily propagated through time [17].

However, zoneout can be regarded as one “hard” strategy,

which stochastically makes a binary choice between previ-

ous and current hidden states. On the contrary, the recon-

struction strategy of our ARNet presents to be one “soft”

scheme, which learns to adaptively embed the information

of the previous hidden state into the current one. There-

fore, the ARNet relies on LSTM to adaptively fuses both

the previous and current hidden states together, rather than

randomly chooses the previous or current one.

Moreover, with the ARNet reconstructing ht−1 from ht,

we encourage the backward information to flow through

the network, as shown in Fig. 1. The correlations between

ht and ht−1 are further exploited and enhanced. In doing

so, the transition dynamics through time on the LSTM is

regularized. Furthermore, since the ARNet couples with

the encoder-decoder framework, the exposure bias prob-

lem in sequence generation can be alleviated, which will be

demonstrated and discussed in the following experimental

section.

4.2. Training Procedure

The training procedure of our model consists of two

stages. First, we freeze the parameters of the ARNet and

pre-train the encoder-decoder architecture, which is usually

trained by the negative log-likelihood:

LNLL = − log p(C|I) = −

N
∑

t=2

log p(yt|yt−1), (8)

where I is the input source, particularly the image or

source code, C denotes the generated caption given I,

p(yt|yt−1) = Softmax(wht), with w being the linear trans-

formation matrix, and ht = LSTM(Eyt, ht−1). y1 is the

sign for the start of a sentence. And Eyt denotes the dis-

tributed representation of the word yt, where yt is the one-

hot representation for the word yt and E is the word embed-

ding matrix. After the encoder-decoder architecture con-

verges, the whole network is fine-tuned using the following

objective function:

L = LNLL + λ
∑

Lt
AR. (9)

Here, λ is a trade-off parameter to balance the contributions

from the ARNet and the encoder-decoder architecture.

5. Experimental Results

5.1. Image Captioning

Image captioning is a task to generate a natural sentence

to describe the visual content of one given image. In this

paper, we use the most popular MSCOCO dataset [21] to

demonstrate the effectiveness of our proposed ARNet.
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Table 1. Single model performance of a variety of models on Karpathy’s splits of the MSCOCO dataset. The highest entry for each

evaluation metric is highlighted in boldface.

Model Name BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

NIC [32] 0.663 0.423 0.277 0.183 0.237 - 0.855 -

m-RNN [23] 0.600 0.410 0.280 0.190 0.228 - 0.842 -

Soft-Attention [34] 0.707 0.492 0.344 0.243 0.239 - - -

Hard-Attention [34] 0.718 0.504 0.357 0.250 0.230 - - -

Semantic Attention [37] 0.709 0.537 0.402 0.304 0.243 - - -

Review Net [35] - - - 0.290 0.237 - 0.886 -

LSTM-A5 [36] 0.730 0.565 0.429 0.325 0.251 0.538 0.986 -

Encoder-Decoder 0.718 0.547 0.412 0.311 0.251 0.530 0.961 0.179

Encoder-Decoder + Zoneout 0.708 0.537 0.403 0.304 0.249 0.525 0.941 0.176

Encoder-Decoder + Scheduled Sampling 0.718 0.548 0.414 0.315 0.252 0.531 0.975 0.180

Encoder-Decoder + ARNet 0.730 0.562 0.425 0.321 0.252 0.535 0.988 0.182

Attentive Encoder-Decoder 0.727 0.557 0.421 0.318 0.259 0.537 0.996 0.185

Attentive Encoder-Decoder + Zoneout 0.720 0.549 0.415 0.314 0.251 0.532 0.975 0.181

Attentive Encoder-Decoder + Scheduled Sampling 0.731 0.563 0.426 0.322 0.256 0.538 1.006 0.187

Attentive Encoder-Decoder + ARNet 0.740 0.576 0.440 0.335 0.261 0.546 1.034 0.190

5.1.1 Dataset

The MSCOCO dataset contains 123,000 images with at

least 5 captions for each image. We use the same data split

as in [15] for performance comparisons, which reserves

5000 images for both validation and testing. We convert all

captions into lowercase, remove non-alphanumeric charac-

ters, and tokenize the captions using white space. We keep

the words that occur at least 5 times, resulting in a vocabu-

lary size of 10,516. We truncate all the captions longer than

30 words. The beginning of each sentence is marked with a

special BOS token, and the end with an EOS token.

5.1.2 Implementation Details

We take Inception-V4 model pre-trained on ImageNet as

encoder. More specifically, we define the output of Average

Pooling layer in Inception-V4 network as the global infor-

mation vector g, the output of the last Inception-C blocks as

local information vectors s. In this case, g is a vector with

dimension 1536, and s = {s1, ..., s64} is a set containing

64 vectors with dimension 1536. During the whole training

stage, we do not finetune encoder. For decoder, LSTM unit

with single layer is used. The dimensions of the hidden state

and word embedding are set as 512. For training, the con-

ventional encoder-decoder model is first trained until con-

vergence by only considering the negative likelihood as de-

fined in Eq. (8). Afterwards, the objective function defined

in Eq. (9) is used to train the proposed ARNet and finetune

the encoder-decoder. During the first training stage, we use

Adam [16] with an initial learning rate 5 × 10−4. Then,

we set the learning rate as 1× 10−4 to continue to train the

model with ARNet. Early stopping is used to prevent over-

fitting. Beam search with size as 3 is utilized to generate the

final caption for one given image.

5.1.3 Evaluation and Comparison

We use the MSCOCO evaluation toolkit∗ to compute

BLEU [26], METEOR [3], ROUGE-L [20], and CIDEr [31]

scores to measure the quality of captions. Since SPICE [1]

captures human judgments better than other automatic met-

rics, the resulting SPICE scores are also presented. Neural

Image Caption (NIC) [32] and Soft Attention model [34] are

used as the encoder-decoder and attentive encoder-decoder

for our proposed ARNet. We also report the metric scores

of models with scheduled sampling. Additionally, we also

compare with m-RNN [23], Semantic Attention [37], Re-

view Net [35], and LSTM-A5 [36]. Table 1 shows the per-

formance comparisons of different models. It can be ob-

served that ARNet can help improve the performance of

both encoder-decoder and attentive encoder-decoder. Our

proposed ARNet also outperforms scheduled sampling and

zoneout, which can be also viewed as RNN regulariz-

ers. Moreover the attentive encoder-decoder with ARNet

achieves the best performance. Therefore, the strategy forc-

ing the current hidden state embedding more useful infor-

mation from the past can more effectively regularize LSTM

and thus improve the generated caption quality.

Some qualitative results are shown in Fig. 3. It

can be observed that the attentive encoder-decoder model

with our proposed ARNet can generate more detailed and

vivid descriptions for given images, such as the words

“keyboard”, “flowers”, and so on.

5.1.4 Discrepancy Analysis between Training and In-

ference

Discrepancy between training and inference is a well known

problem for RNN [4, 18]. In the training stage, RNN is usu-

ally trained to maximize the likelihood of each token in the

∗https://github.com/tylin/coco-caption
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Images Generated Captions Ground Truth Captions

Attentive Encode-Decoder:

a close up of a cat on a desk.

Attentive Encode-Decoder-ARNet:

a cat sitting on a desk next to a keyboard.

1. a grey cat peers at a computer keyboard.

2. a cat laying down by a keyboard.

3. a kitty playing with the keyboard on a laptop.

4. a large cat laying atop a computer keyboard.

5. a cat that is laying on a computer keyboard.

Attentive Encode-Decoder:

a display of many different types of cake.

Attentive Encode-Decoder-ARNet:

a cake decorated with many different types of flowers.

1. a layered cake with many decorations on a table.

2. a large multi layered cake with candles sticking out of it.

3. a party decoration containing flowers, flags, and candles.

4. a cake decorated with flowers and flags on it.

5. a cake is decorated with flowers and flags.

Attentive Encode-Decoder:

a brown dog holding a blue frisbee in it’s mouth.

Attentive Encode-Decoder-ARNet:

a dog running in the grass with a frisbee in its mouth.

1. a very cute brown dog with a disc in its mouth.

2. a dog running in the grass with a frisbee in his mouth.

3. a dog in a grassy field carrying a frisbee.

4. a brown dog walking across a green field with a frisbee in it’s mouth.

5. a dog carrying a frisbee in its mouth running on a grass lawn.

Attentive Encode-Decoder:

a truck driving down a road next to a forest.

Attentive Encode-Decoder-ARNet:

a car driving down a road next to a lush green hillside.

1. a street scene of a road going through the mountains.

2. a road curving around hills has one car on it.

3. a yellow car driving away on the road.

4. a small yellow and black car driving around the bend of a road between.

5. a small yellow car going around a turn and a sign.

Figure 3. Example captions from the conventional model and our attentive encoder-decoder-ARNet model, along with their corresponding

ground truth captions. It can be observed that ours can yield more detailed descriptions with meaningful words highlighted in boldface,

such as “keyboard”, “flowers”, “grass”, and so on.

(a) (b)

Figure 4. Hidden states visualization of the attentive encoder-

decoder model (a) and the attentive encoder-decoder-ARNet

model (b). The filled circles in blue represent the hidden states

generated in the training mode, while the open circles in red are

obtained in the inference mode.

sequence given the current state and previous correct token

from ground truth. At inference stage, the previous token is

unknown and replaced by a token generated by the model

itself. Hence, errors can be accumulated quickly along the

generated sequence. To mitigate this problem, the distribu-

tion of sequences of training and inference state should be

non-distinguishable. Here, to study this problem, we con-

sider the distributions of last hidden states of sequences as

in [18], since they encode the necessary information about

the whole sequence.

We extract the hidden state of the LSTM unit which

emits the EOS token or reaches the maximum time step.

We visualize one batch with T-SNEs [22] both for train-

ing and inference, where the batch size is 80. Fig. 4

shows the T-SNE visualization of hidden states for atten-

tive encoder-decoder model and attentive encoder-decoder-

ARNet model. We can see that our ARNet can significantly

Table 2. Discrepancy between training and inference modes on

image captioning task measured by the mean centroid and point-

wise distances defined in Eqs. (11) and (12). Smaller distance

values indicate better performances.

Model Name dmc dpw

Encoder-Decoder 0.747 0.719

Encoder-Decoder + ARNet 0.514 0.561

Attentive Encoder-Decoder 0.773 0.760

Attentive Encoder-Decoder + ARNet 0.491 0.595

reduce the discrepancy between training and inference. We

believe that it is one of the reasons why models with ARNet

perform better than the counterparts.

For further evaluating the discrepancy quantitatively, a

appropriate metric is needed. Since the hidden states are

from different models lying in different spaces, comput-

ing the Euclidean distance between them is not reasonable.

In this paper, we thereby consider cosine distance between

hidden states, which is defined as follows:

d(h1, h2) = 1−
hT
1 h2

‖h1‖‖h2‖
. (10)

The cosine distance considers the angle between h1 and h2,

which will not be affected by the norm of h1 and h2.

Based on cosine distance, we define two different dis-

tance metrics to measure these different models. More

specifically, let U = {uI1 , ..., uIB}, V = {vI1 , ..., vIB} be

the last hidden states of decoder that we get from training

and inference modes given input images I1, I2, · · · , IB , re-

spectively. The first distance metric is the mean centroid
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Table 3. Performance comparison on the testing split of the HabeasCorpus dataset. The best results among all models are marked with

boldface.

Model Name BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Review Net [35] 0.192 0.105 0.074 0.057 0.085 0.200

Encoder-Decoder 0.183 0.093 0.063 0.047 0.080 0.188

Encoder-Decoder + Zoneout 0.182 0.080 0.063 0.047 0.080 0.181

Encoder-Decoder + Scheduled Sampling 0.186 0.098 0.067 0.051 0.082 0.194

Encoder-Decoder + ARNet 0.196 0.107 0.075 0.058 0.089 0.213

Attentive Encoder-Decoder 0.228 0.140 0.106 0.088 0.105 0.256

Attentive Encoder-Decoder + Zoneout 0.227 0.140 0.105 0.086 0.090 0.220

Attentive Encoder-Decoder + Scheduled Sampling 0.229 0.142 0.108 0.089 0.107 0.270

Attentive Encoder-Decoder + ARNet 0.255 0.173 0.139 0.120 0.123 0.289

distance dmc:

dmc (U,V) = d





1

B

B
∑

i

uIi ,
1

B

B
∑

j

vIi



 . (11)

The second distance metric dpw is the point-wise distance

between the hidden states of the same input but from train-

ing and inference respectively. And dpw can be computed

according to:

dpw (U,V) =
1

B

B
∑

i=1

d (uIi , vIi). (12)

dpw only measures the difference between the ground-truth

and sequence generated from the same image. By consider-

ing the two distances, a more accurate study of the discrep-

ancy between training and inference is conducted.

Table 2 shows the discrepancies between training and in-

ference of different models, measured by dmc and dpw. It

can be clearly observed that our ARNet yields smaller dif-

ferences between the representations of ground-truth and

sequence generated for the same image. Thus ARNet

can significantly reduce the discrepancies of the encoder-

decoder and attentive encoder-decoder models. As such,

the generated sequences are more semantically similar to

the ground-truth.

5.1.5 Effect of λ

The parameter λ balances the contributions from the

encoder-decoder and ARNet. If λ is set as 0, our model

downgrades as the conventional encoder-decoder model.

Different λ values are evaluated. Fig. 5 shows CIDEr scores

of attentive encoder-decoder-ARNet models with different

λ. Our model with these positive λ values always performs

better than the conventional encoder-coder model, which

proves that ARNet with the regularization on the transition

dynamics is effective to improve the image captioning per-

formance. If λ is too large, the performance will decrease,

since the model focuses too much on the reconstruction part
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Figure 5. The CIDEr scores with different λ weights as in Eq. (9),

ranging in {0, 0.001, 0.005, 0.01, 0.05, 0.1}. The first bin with

λ = 0 denotes the vanilla attentive encoder-decoder model.

and ignores the supervision signal from ground truth. To

achieve better performance, appropriate λ needs to be care-

fully selected on the validation set. In this paper, λ is exper-

imentally chosen as 0.01 for the image captioning task.

5.2. Code Captioning

5.2.1 Dataset

For the code captioning task, We utilize the HabeasCor-

pus [24] dataset which is collected from nine open source

JAVA projects and contains 6, 734 source code files. Fol-

lowing the public split [35], the training, validation and test-

ing datasets, containing 5, 370, 702 and 662 files, respec-

tively, are used for our experiments. Each source code se-

quence is associated with a comment sentence which sum-

marizes the intention of the file. We transform the code

comment sentences into lowercase, tokenize them with

white space, resulting in a vocabulary with size 12, 860.

We truncate all the code sequences and comment sentences

such that they have 300 tokens at most. BLEU, METEOR,

and ROUGE-L are also used to measure the relevance with

respect to the reference sentences.

5.2.2 Implementation Details

We realize our ARNet on both the plain and attentive

encoder-decoder frameworks. The encoder and decoder

network are both single layer LSTM with hidden unit size

256. The word embedding size is 512. We pre-train the
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Table 4. Discrepancy between training and inference modes on

code captioning task measured by the mean centroid and point-

wise distances defined in Eqs. (11) and (12). Smaller distance

values indicate better performance.

Model Name dmc dpw

Encoder-Decoder 0.643 0.722

Encoder-Decoder + ARNet 0.641 0.699

Attentive Encoder-Decoder 0.594 0.712

Attentive Encoder-Decoder + ARNet 0.322 0.465

model without ARNet with learning rate 1 × 10−3. Then

we train the whole model with learning rate 5× 10−4. The

batch size is set as 16. And the training procedure is ter-

minated with early stopping strategy when BLEU-4 score

reaches the maximum value on the validation set.

5.2.3 Evaluation and Comparison

Table 3 summarizes the results on the testing set of Habeas-

Corpus dataset. We implement all the models and report the

performances under the same settings. Our attentive ARNet

and non-attentive ARNet achieve 36.36% and 23.40% rela-

tive improvements on BLEU-4 metric over baseline model,

respectively. Again, our method significantly outperforms

scheduled sampling and zoneout. Moreover, comparing

with image captioning, the improvements brought by AR-

Net is even more significant. The main reason may due

to the time step length of the decoder. Our proposed AR-

Net make connections between neighboring hidden states

by the reconstruction strategy, which effectively regularize

the transition dynamics. Therefore, with time step increas-

ing, ARNet can make more effective gradient information

flow, compared to plain decoder.

5.2.4 Discrepancy Analysis

To study the discrepancy between training and inference on

this task, we also compute the distances measured by dmc

and dpw. The results of different models are shown in Ta-

ble 4. Similarly, we can observe that that our ARNet can

help mitigate the discrepancy between training and infer-

ence, thus making the inference more robust and improving

the quality of generated code captions.

5.3. Permuted Sequential MNIST

In this section, in order to further examine the regu-

larizing ability of our proposed ARNet on modeling long

term dependencies, a new task, namely permuted sequen-

tial MNIST [19, 17], is considered. Sequential MNIST is

first proposed [19] to classify MNIST digits, when the 784

pixels are presented sequentially to the recurrent net. Per-

muted sequential MNIST is an even more challenging prob-

lem, with the pixels presented in a (fixed) random order.

Table 5. Performance comparisons on permuted sequential

MNIST task. Our proposed ARNet outperforms recurrent dropout

and zoneout.

Model Name Test Accuracy

LSTM + recurrent dropout 0.925

LSTM + zoneout 0.931

Unregularized LSTM 0.914

LSTM + ARNet 0.933

The permuted pixel sequence is encoded by one single

LSTM layer with hidden size of 128. As introduced in

Sec. 4.1, ARNet is realized by another LSTM, coupling

with the encoder, to further regularize the LSTM transi-

tion dynamics. In this paper, the hidden size in ARNet

is also 128. The training is performed in two stages. We

first make pre-training on the encoder LSTM. Afterwards,

the two LSTMs of encoder and ARNet are jointly trained.

Adam [16] with learning rate 1 × 10−3 and 5 × 10−4 are

used for the two stages, respectively. The batch size is set

as 64.

Besides the unregularized LSTM, we also compare

with the other two regularziers, specifically the recurrent

dropout [27] and zoneout [17]. The performance compar-

isons are shown in Table 5, where the test accuracies of all

models are reported. First, the permuted sequential MNIST

is much more challenging, and LSTM can only achieve

91.4% accuracy. But by incorporating different regulariz-

ers, the test accuracies can be significantly improved. More-

over, with coupling ARNet with the unregularized LSTM,

we outperforms the recurrent dropout and zoneout. The

encouraging results on permuted sequential MNIST task

shows our ARNet can model long term dependencies more

effectively in the data.

6. Conclusion

In this paper, aiming at regularizing the transition dy-

namics and mitigating the discrepancy of RNN for se-

quence prediction, a novel auto-reconstructor network (AR-

Net) was proposed. ARNet, coupling with the conventional

encoder-decoder framework, reconstructs the past hidden

state with the current one, thus encouraging the present hid-

den state to embed more information from the previous one.

As such, ARNet can improve the performance of various

caption generation tasks. The extensive experimental re-

sults on image captioning, source code captioning, and per-

muted sequential MNIST tasks demonstrate the superiority

of our proposed ARNet.
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