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Abstract 

 
Content-based Image Retrieval (CBIR) is a computer vision 

application that aims at automatically retrieving images based on 
their visual content. Linear Discriminat Analysis and its variants 
have been widely used in CBIR applications because of their 
effectiveness in finding a projection that maps the original high-
dimensional space to a low-dimensional one and preserves the most 
discriminant features. Those techniques assume images from certain 
class(es) are all visually similar and try to cluster them in the 
projected space. In this paper we show that the human high-level 
concept of semantic similarity between images may not arise only 
from the low-level visual similarity and consequently that assumption 
is inappropriate in many cases. We propose an Adaptive Discrimant 
Projection framework which could model different data distributions 
based on the clustering of different classes. To learn the best model 
fitting the real scenario, Boosted Adaptive Discriminant Projection is 
further proposed. Extensive experiments are designed to evaluate our 
methods and compare them to the state-of-the-art techniques on 
benchmark data set and real image retrieval applications. The 
results show the superior performance of our proposed methods.  
 
1. Introduction 
 

Content-based image retrieval is a computer vision application 
that automatically retrieves images of user interest from large image 
databases based on the visual content. The mapping between high-
level semantic concept and low-level image features is obtained by a 
learning process. The images could be pre-processed to extract 
statistical features, such as color, texture and shape. An image feature 
vector is often used to represent an image as data point in a high-
dimensional space. Although Content-based image retrieval has been 
successfully applied in many fields, it still faces two major 
challenges. 

Small Sample Set: In CBIR, a set of samples with categorical 
information are used to train a classifier. Because labeling the 
training samples requires human interference and could be 
computational expensive, the size of the training set is often very 
small. In that case the learning process tends to bias to the training 
set and overfitting could occur.  

High Dimensionality: In many data analysis application, the 
observed data have very high dimensionality. Specifically the images 
in CBIR are represented by image feature vector whose 
dimensionality ranges from tens to hundreds in most cases. 
Traditional statistical approaches have difficulties in modeling data 
directly in such a high dimensional space.  

Some techniques have been proposed to alleviate the two 
problems. For the small sample set problem, researchers have been 
using unlabeled data along with the labeled data to avoid overfitting. 
However our research in [1] shows that the unlabeled data and 

labeled data must be from the same statistical source to improve the 
performance. Otherwise using unlabelled data may deteriorate the 
classification. For the high dimensionality problem, it is almost a 
common practice to conduct dimension reduction to find a compact 
representation of data in a low dimensional space. Traditional 
techniques, such as Principal Component Analysis (PCA) [2] and 
Linear Discriminat Analysis (LDA) [3], are widely used. For a 
classification task such as CBIR, LDA is often preferred because it 
incorporates class information and discovers the most discriminant 
features in the projected space. 
 
2. LDA and BDA 
 
2.1. Linear discriminat analysis 
 

LDA tries to find a mapping from originally high-dimensional 
space to a low-dimensional space in which the most discriminant 
features are preserved. Intuitively it makes samples from same class 
cluster to each other and samples from different classes separate from 
each other. Mathematically it could be modeled as finding an optimal 
projection that maximizes the following ratio: 
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If the number of classes C is greater than 2, we obtain a Multiple 
Discriminant Analysis (MDA). Otherwise the two-class discriminant 
analysis is obtained and often known as Fisher Discriminat Analysis 
(FDA). In most CBIR applications, the users only label the images as 
relevant to their interest (positive) or irrelevant to their interest 
(negative). The reason lies in two folds: 1) the precise subjects of 
images within positive and negative classes are still too complicated 
and ambiguous to define and 2) the user may group images with 
dramatically different visual contents into the same semantic class. 
For instance one who is interested in images of fruit may result in 
labeling strawberry and banana as positive in spite of the fact that 
they are visually quite dissimilar.  

Although LDA is one of the most widely used techniques in 
CBIR, it still faces some major problems: 

Effective Dimension: The number of non-zero eigen values in 
SBSW

-1 determines the maximal dimensionality of the projected space 
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for LDA, which is known as effective dimension. Because the rank of 
SB is less than or equals to C-1, the effective dimension could be at 
most C-1. As we discussed before, for most CBIR applications C=2. 
Thus the projected space can only have dimensionality of 1, which 
prevents accurate modeling of the data in higher dimensional 
projected space.  

Regularization: Before conducting eigen operation on SBSW
-1, we 

have to make sure the SW is a full rank matrix to calculate its inverse. 
When the small sample set and/or high dimensionality problem 
occurs, SW is often singular and has no inverse. A common practice to 
handle this problem is to use regularization by adding small 
quantities to the diagonal elements of Sw and force it to be full rank 
[5]. However the soundness of the regularization technique hasn’t 
been theoretically justified. 
 
2.2. Biased discriminant analysis 
 

In two-class LDA, the equivalent effort has been taken to cluster 
negative and positive samples. Intuition suggests that clustering the 
negative samples may be difficult and unnecessary because they may 
be from visually different classes. Zhou and Huang propose a Biased 
Discriminant Analysis (BDA) which clusters only positive samples 
and makes the negative samples far away from the positive ones [3]. 
There is no effort to cluster negative samples. The assumption behind 
the BDA is that the samples from the positive class are visually 
similar and should be clustered in the projected space. On the other 
hand the negative samples might be from different classes and it is 
difficult to find a mapping to make them close to each other. For 
classification tasks we just need to make the negative samples far 
away from the center of positive ones.  

Although the idea of BDA is easy to accept, we found that its 
assumption is inappropriate in some scenarios which will be 
explained in Section 3. The complex nature of human concept 
requires a classification method that can adaptively fit the 
distribution of images from different classes. 

 
3. Boosted adaptive discriminant projection 
 

As we discussed in Section 2, LDA assumes images from 
positive and negative classes are from the same sources respectively 
and they could be clustered in the projected space. BDA assumes that 
positive samples must be visually similar and negative samples may 
be from different sources. However one can easily find many CBIR 
applications that don’t fit into either assumption.  
 
3.1. Adaptive discriminant projection 
 

To provide a more accurate model of the complex distribution for 
positive and negative images, we propose an Adaptive Discriminant 
Projection (ADP) framework: 
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The mP and mN are the means of positive and negative 
samples, respectively. The two parameters λ and η controls the 
bias between positive and negative samples. Proper setting of 
parameters may fit the real distribution of data. The following 
table gives examples of the special cases for ADP: 

 
Table 1. Special cases of ADP 
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From the above table we can find that the ADP recovers BDA 

when λ and η are set to 0 and 1, respectively in Case 2. Case 5 
corresponds to a LDA-like projection which assumes the positive and 
negative sample are both from single sources, respectively. Case 3 
finds a projection that is on the contrary side of BDA while Case 1 
and 4 show some distribution scenarios that haven’t been discussed 
in literature before. We find that all 5 cases fit certain distributions 
and have correspondence with some CBIR query scenarios as 
illustrated in Figure 1.  

Case 1 may handle the distribution that the size of positive 
sample set is much larger than that of negative samples and the 
negative samples may be from different smaller classes (Fig. 1 (a)). 
Normal LDA or BDA would severely bias to cluster the positive 
samples (SP) since they dominate the training set. A real CBIR query 
scenario that fits this case would be quality control based on the 
scanned image of internal structure of material. In that application 
most images are scanned from qualified products (positive) and only 
few of them reflects defectiveness in unqualified products (negative).  

       . 
(a) Case 1                               (b) Case 2 (BDA)                                  

 
(c) Case 3                       (d) Case 4                      (e) Case 5 

 
Figure 1. Distributions and labels corresponding to special cases (P: 

positive samples, N: negative samples) 
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Similarly Case 3 may correspond to applications where the size 
of negative sample set is much larger than that of positive samples 
and the positive samples may from different sub-class clusters. One 
possible application with this distribution is medical imaging, 
radiation or MRI, for diagnosis. In that case most images are from 
normal person (negative) and one may only interest in the images 
that are from patients (positive).  

Case 2 may best fit distribution illustrated in Figure 1 (b) where 
positive images all look alike while negative ones may be irrelevant 
to each other and from different distributions. BDA finds the optimal 
projection that fits that situation. In practice one may find that case 
fits the face identification application where one person’s facial 
images need to be classified from among facial images of 4 persons. 

Case 4 is on the opposite side of Case 2, in which negative 
samples share strong correlation while positive samples may be quite 
different. An example of this kind of application will be telling 
images of fruit, e.g. apple, orange and banana, from those of green 
vegetables. 

The above discussion shows that our ADP framework could 
model more distributions than LDA and BDA. The case 1 and case 4 
could handle the imbalanced size of positive and negative training set 
while case 2 and 3 may correspond to the scenario that one semantic 
class contain multiple subclasses. Although we give example 
applications that fit the extreme cases of ADP, more accurate fitting 
could be achieved by parameter tuning. 

 
3.2. Boosting adaptive discriminant projection 
 

To find the best parameter setting for a particular application, one 
may compare the performance of the ADP projection corresponding 
to different settings. 

 

 
 

Figure 2. Best ADP found in the parameter space by subsampling may 
not be the one with optimal setting. 

 
However to find an optimal setting one has to do exhaustive 

searching in the square region in Figure 2, which is computational 
expensive. Besides, the parameter setting one find to perform the best 
on training set can’t guarantee best performance on real data set as 
illustrated in Figure 2. To solve that problem, we adopt the idea of 
AdaBoosting [6] to generalize a set of classifiers that are trained on 
different data sets projected by ADP with different parameter settings 
into a more accurate one. 

The basic idea of AdaBoosting lies in the following two folds: 1) 
the boosting process trains each classifier iteratively with weighted 
training samples. The misclassified training samples receive more 
weights in the next run. Thus the classifier is forced to pay more 
attention to those difficult to learn samples; 2) the final classifier is 
the weighted combination of a set of weak classifiers. The weight for 
each classifier is set according to its performance, that is, the better 
the performance the larger the weight.  

4. Experiments and analysis 
 
4.1 ADP vs LDA 

Our first experiment is designed to evaluate the effectiveness of 
the proposed ADP and its boosted version. The methods are tested on 
benchmark data sets from UCI repository. For comparison purpose, 
LDA and BDA is also implemented and tested. Due to limited space 
Figure 3 only shows the results on Heart data set. Similar results are 
obtained on other data sets. In all the experiments we conducted, our 
boosted ADP is trained on 36 ADP classifiers with ),( ηλ  evenly 
sampled from 0 to 1 with step size of 0.2. In all the experiments, 
Bayesian classifier is used on the projected data. 

In Figure 3 as iteration goes on, the error rate decreases for best 
single ADP classifier and the boosted ADP. The performance of 
LDA and BDA are shown for reference as straight line. Although 
Boosted ADP starts with a set of weak classifiers (compared to the 
best ADP classifier), but after one iteration, the boosted ADP 
outperforms the single best ADP classifier. Both the ADP and its 
boosted version outperform the LDA and BDA in this experiment. 
Although the improvement seems not significant, it could be because 
the benchmark data sets usually contain clean and sufficient data for 
training. 
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Figure 3. AdaBoost on Heart benchmark data set 

 
4.2. Comparison to state-of-the-art 
 

In the second experiment, we test the performance of our 
proposed methods when handling the small sample set problem. The 
state-of-the-art linear and nonlinear variants of discriminant analysis 
including DEM, kernel DEM (KDEM) [7], BDA, kernel BDA 
(KBDA) [4] are also tested as comparison to our methods. The 
boosted ADP used in this experiment are trained on ADP classifiers 
with parameters evenly sampled from 0 to 1 with step size of 0.05. 

The data sets used in the experiments are the MIT facial image 
dataset  [8] and non-face images  from Corel database. All the face 
and non-face images are scaled down to 1616× gray images and 
normalized feature vector of dimension 256 is used to represent each 
image. The size of the training set is 100, 200, 400, and 800, 
respectively. Compared with the feature vector dimension of 256, the 
training sample size is set from relatively small to relatively large. 
Table 2 gives the experiment results with smallest error rate in bold. 

From the results in Table 2 we find that our proposed methods 
perform well when the training set size is small compared to the 
feature dimensionality. When compared with linear techniques of 
DEM and BDA with simple regularization, the ADP performs much 
better than them and doesn’t require regularization. Even when 
compared with the KDEM and KBDA, the boosted ADP performs 
better in 3 out of 4 tests. It should be noted only linear transformation 
is used in our ADP, but it is more efficient than nonlinear algorithms 



such as KDEM and KBDA. All these show the robust performance of 
the ADP. 

 
Table 2. Comparison to DEM, BDA, KDEM and KBDA 

Size of Training Set Error Rate (%) 100 200 400 800 
DEM w/ reg. 10.5 19.3 15.0 9.0 
BDA w/ reg. 34.7 25.4 18.5 19.3 

KDEM 6.93 1.93 1.7 0.5 
KBDA 3.04 2.89 2.58 1.44 
ADP 

*)*,( ηλ  
2.5 

(0.35,0.1) 
1.9 

(0.55,0.2) 
1.7 

(0.1,0.15) 
1.6 

(0.1,0.1) 
Boosted ADP 1.85 1.63 1.41 0.84 

 
We also compare the performance of our proposed methods with 

the state-of-the-arts on Harvard facial image database with different 
illumination conditions. The experiment settings are the same as in 
[9].  The following are examples of the images: 

 

 
Figure 4. Facial images with different illumination condition 

From the experiment result in the Table 3, we can find the 
proposed projection could find the most discriminant features given 
the change in illumination condition and perform better than the 
other techniques. 

Table 3. Comparison of PCA, LDA and its variants with ADP and 
Boosted ADP 

Error Rate (%) Method Subset 1 Subset 2 Subset 3 
PCA w/o 1st 3 

features 1.2 5.4 25.3 

LDA 0.7 1.4 3.7 
BDA 1.5 3.2 7.5 

KDEM 0.6 1.1 2.9 
KBDA 1.3 1.9 3.4 
ADP 

*)*,( ηλ  
0.42 

(0.35,0.1) 
0.67 

(0.25,0.15) 
2.01 

(0.3,0.2) 
Boosted ADP 0.33 0.52 1.84 

 
4.3. Effective dimension 
 

In the last experiment, we test the ADP versus the projection 
dimension using the same MIT face databases and COREL databases. 
Since it is a two-class classification problem (face vs. non-face) in 
traditional LDA, the effective projection dimension is one. The 
feature dimension and experimental setting are same as before except 
that the size of the training dataset is fixed at 100.  
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Figure 5. Precision-Recall graph for different Project Dimension (P.D.) 

Figure 5 shows the Precision-Recall graph for different 
projection dimensions. Clearly, the projection dimension of 4 gives 
the best performance and all the higher projection dimensions yield 
smaller error rate than that of C-1 (C=2).  This shows that the ADP 
increases the effective dimension and as a result the classification 
performance improves since the data structure can be more 
accurately modeled in a space with dimensionality higher than C-1 . 
 

5. Conclusions and future work 
 

In this paper, we propose a novel Adaptive Discriminat 
Projection to better model the distribution of image data from 
different classes. It provides a much richer set of alternatives to LDA 
and BDA. As a result, it not only compensates for regularization that 
is afflicted by all sample-based estimation methods, but also 
increases the effective dimension of the projected subspace. In order 
to avoid parameter searching, the boosted ADP is also proposed. We 
found it can provide the two desirable properties. First, the boosted 
ADP can provide a unified and stable solution to finding optimal 
projection. Second, the weighted training schemes in boosting add 
indirect non-linearity and adaptivity to the linear methods and thus 
enhance it by iterations. The experimental tests on benchmark 
databases and image retrieval applications have shown the superior 
performance of ADP and boosted ADP.  

In the future, we are interested in continuing this research work 
in the following two directions: 1) using fusion methods to combine 
ADP classifiers and 2) exploring learning based approaches to find 
optimal parameter settings for ADP. 
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