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Abstract

In this paper, a novel two-stream architecture has been

designed to improve action recognition accuracy for hockey

using three main components. First, pose is estimated via

the Part Affinity Fields model to extract meaningful cues

from the player. Second, optical flow (using LiteFlownet)

is used to extract temporal features. Third, pose and optical

flow streams are fused and passed to fully-connected lay-

ers to estimate the hockey players action. A novel publicly

available dataset named HARPET (Hockey Action Recog-

nition Pose Estimation, Temporal) was created, composed

of sequences of annotated actions and pose of hockey play-

ers including their hockey sticks as an extension of human

body pose. Three contributions are recognized. (1) The

novel two-stream architecture achieves 85% action recog-

nition accuracy, with the inclusion of optical flows increas-

ing accuracy by about 10%. Thus, demonstrating the com-

plementary nature of pose estimation and optical flow. (2)

The unique localization of hand-held objects (e.g., hockey

sticks) as part of pose increases accuracy by about 13%.

(3) For pose estimation, a bigger and more general dataset,

MSCOCO, is successfully used for transfer learning to a

smaller and more specific dataset, HARPET, achieving a

PCKh of 87%.

1. Introduction

Vision-based human action recognition has gained in-

creasing attention in the past few years because of broad ap-

plications in smart surveillance systems, smart elderly assis-

tance, human-computer interaction, and sports as examples.

Many challenges, such as lack of data, small human size due

to camera position, and motion blur from high speed human

actions exist in many applications. Other challenges known

to sports are noisy data from bulky clothing and equipment

and similarities between foreground and background. One

application that emulates all aforementioned challenges is

ice hockey.

This paper focuses on incorporating pose information

and optical flow for action recognition in a unified two-

stream architecture (shown in Fig. 1) to provide high-level

features unique to pose estimation and optical flow to de-

pict motion, thus, improving the overall accuracy of action

recognition. It also demonstrates the complementary na-

ture of pose estimation and optical flow in improving action

recognition accuracy. The two-stream architecture analyzes

pose and temporal features via a convolutional neural net-

work (CNN), then the outputs of the two streams are con-

catenated via fully-connected layers.

Although many works explore action recognition in

videos on large benchmark datasets such as UCF101 and

HMDB, few focus on sport videos [3, 22, 23, 28]. To date,

there are no publicly available temporal action recogni-

tion datasets in hockey considering individual players; one

dataset explores multiple players temporally [40], while,

another dataset only considers still images with no temporal

information considered [11]. To solve this problem, a novel

publicly available dataset, known as HARPET (Hockey Ac-

tion Recognition Pose Estimation Temporal), comprised of

hockey image sequences (three images per sequence) cap-

tured by a single RGB camera are used, with annotations in-

cluding pose (comprised of 18 joints including the hockey

stick) and actions, is generated. Four types of actions are

considered: skating forward, skating backward, passing and

shooting. The dataset contains around 100 sequences per

class, with around 1200 images in total.

Testing on HARPET dataset, the two-stream architec-

ture obtains around 85% end-to-end accuracy. For pose

estimation model, due to small number of examples in

dataset, transfer learning is leveraged to reduce overfit-

ting and is demonstrated to be effective with around 87%

PCKh@0.5 [1]. It is also demonstrated that localization of

hand-held objects can improve the accuracy of sports action

recognition, which to the best of our knowledge, has not

been explored in previous works.

The rest of the paper is organized as follows. In Sec-

tion 2, we view papers on action recognition, highlighting



Figure 1: Overall pipeline. Our method takes sequence of 3 images as input. Part confidence maps and part affinity fields are

predicted for each spatially transformed image, and converted into a latent joint feature vector. Optical flows are generated

in the second stream. Optical flows and the latent feature vector are used as the input of the action recognition component,

which predicts probabilities of skating forward, skating backward, passing, and shooting.

two-stream-based and pose-based frameworks, and discuss

works on hockey action recognition. The architecture, com-

prising of pose estimation and action recognition models, is

illustrated and implementation details are explained in Sec-

tion 3. We evaluate accuracy of both pose estimation and

end-to-end action recognition on HARPET in Section 4.

2. Background

Action recognition is a widely researched topic which,

before the advent of deep networks, employed hand-crafted

features, dense trajectories [48] and improved dense tra-

jectories [50]. State-of-the-art action recognition models

incorporate these features in action recognition [8, 9, 19,

20, 49]. Recently, deep networks have shown promising

action recognition accuracy through the use of 3D con-

volutions in demonstrating better capability of capturing

spatiotemporal latent structure in videos than 2D convolu-

tions [7, 21, 42, 44–46]. The major downside of 3D CNNs

is the large number of parameters, making it easy to overfit

on small datasets which is common in many practical appli-

cations. Also, the use of recurrent neural networks, which

are manifested to be adept at modeling sequential data are

explored [3,10,34]. Li et al. [25] introduce spatio-temporal

attention networks for action recognition, enabling identifi-

cation of the key video frames and spatial focus in frames

for recognizing actions. To summarize, mainstream meth-

ods improve action recognition using several overlapping

categories including: hand-crafted features [41,48,50], two-

stream neural networks [7, 12, 38, 52, 55], 3D convolutional

networks [7,21,42,44–46], recurrent neural networks [3,10,

34], and pose-based methods [2, 9, 11, 14, 32, 54].

Besides the techniques mentioned above, pose features

are widely used in works on action recognition. Pose esti-

mation and action recognition are two problems that lever-

age information from each other. Yao et al. [2,54] claim that

pose-level features are useful for action recognition and in-

troduce an architecture for coupled 3D pose estimation and

action recognition. Gall et al. [14] also use action recogni-

tion for 3D pose estimation. Luvizon et al. [32] use a multi-

task framework for joint action recognition and 2D/3D pose

estimation. Wang et al. [47] develop action representations

based on 2D human poses. Fani et al. [11] use 2D pose from

stacked hourglass network to infer action from still images.

Iqbal et al. [18] introduce a framework to help estimate pose

with action priors and then improve action priors with up-

dated pose information and hence, oscillate between pose

estimation and action recognition. Nie et al. [35] combine

action recognition and video pose estimation in a unified

framework with a spatial-temporal And-Or Graph model.

Chéron et al. [8] use a pose-based CNN as a descriptor for

action recognition.

Pose is a high-level spatial feature, while optical flows

represent temporal information. Two-stream networks,

[7,12,15,16,53,55] is one of the prominent category of the

state-of-the-art approaches in recent years, first proposed

in [38]. A spatial stream analyzes a single video frame and

a temporal stream uses multi-frame optical flow, both via a

series of convolutions and fully-connected layers. Classifi-

cation scores predicted by the two streams with softmax are

fused via averaging or linear SVM. One of the advantage of



separate streams is that they can be trained independently,

and thereby spatial stream can be pre-trained on large still

image classification datasets (such as ImageNet).

Plenty of variants of two-stream networks exist. Wang et

al. [52] model long-range temporal structure by uniformly

segmenting videos and selecting a snippet from each seg-

ment. Two-stream networks are applied to each snippet and

results are fused. Zhu et al. [55] learn to estimate optical

flow with an unsupervised architecture. It is done by mini-

mizing the difference between the first frame and the frame

reconstructed from the second frame by inverse warping ac-

cording to predicted optical flow. Carreira et al. [7], use 3D

convolutions in a two-stream architecture by pre-training

original 2D filters on ImageNet and inflating them into 3D

by repeating weights.

Our work is similar to these two-stream-based methods

in the sense that we extract pose information and temporal

information (optical flow parsed by CNN) in two separate

streams before combining them. The pose stream is trained

using transfer learning using pre-trained weights of the Part

Affinity Fields model [5] trained on MSCOCO dataset.

In the context of hockey, tracking is a major research fo-

cus [4,24,26,33,36,37]. Most of the works on action recog-

nition in hockey look at the game with a wider perspective,

keeping event detection as the main focus [6, 40, 43]. Ac-

tion recognition, paying attention to individual players, is

explored in very few works [11, 29–31]. In these works,

hand-crafted HOG features are first computed for tracking

multiple individuals, and then a probabilistic framework is

devised to model the action. They do not leverage high-

level unique-to-human feature such as pose. In Fani et

al. [11], pose is considered but temporal information is ne-

glected. Analyzing spatial and temporal information in two

streams of CNNs is a powerful technique in understand-

ing spatiotemporal structure, and pose features can provide

valuable information for analyzing actions. In our work,

two-stream-based architecture, combining pose and optical

flow, applied to hockey action recognition concentrated on

individual player, is presented.

3. Methodology

3.1. Overview

The overall network architecture, as shown in Fig. 1,

illustrates the proposed approach of implementing a two-

stream network incorporating pose estimation, via the

model using part affinity fields (PAFs) [5], and optical flow

estimation, via LiteFlowNet [17]. The network takes a se-

quence of three images as an input, which is then used in

the first stream by spatially transforming and cropping the

image to a pixel size of 368×368, centering the person and

applying the pose estimation model, which is described in

Section 3.2. Afterwards, the pose features are then concate-

Figure 2: Multi-stage pose estimation architecture. Each

stage predicts part confidence maps and part affinity fields

through a series of convolutions. Prediction is iteratively

refined and loss is computed at the end of each stage.

nated in a latent feature vector layer (Section 3.3). The sec-

ond stream then applies optical flow estimation to extract

features at a macroscopic level (Section 3.4). From both

the streams, the action of the given sequence is then clas-

sified and the output of the network determines whether a

hockey player is skating forward, skating backwards, pass-

ing or shooting. The training details are illustrated in Sec-

tion 3.5.

3.2. Pose Estimation

Cao et al. [5] propose a novel feature representation

called part affinity fields, which evaluates association be-

tween two joints. In PAFs the, 2D vector at each pixel indi-

cates position and orientation for a certain limb [5]. Fig. 2

shows the network generating part confidence maps and

PAFs.

The feature maps extracted by VGG-19 [39], after two

3×3 convolutions, are passed through six stages. Each stage

is split into two branches predicting part confidence maps

and part affinity fields via a series of convolutions. Then

part confidence maps and part affinity fields as well as the

aforementioned feature maps (passed through two convolu-

tions) are concatenated together and taken as input by the

next stage. Stage 1 has five convolutions, where the first

three employ a kernel size of 3×3 and the last two employ a

kernel size of 1×1. Stage 2-6 each has seven convolutions,

where the first three employ a kernel size of 7×7 and the

last two employ a kernel size of 1×1. Strides of all convo-

lutions are 1, and paddings are all set to keep the size of the

feature maps same. The prediction is refined iteratively, and

loss is calculated for maps and fields output by every stage.

3.3. Latent Feature Transformer

Fig. 3 briefly shows the pipeline for transforming part

confidence maps and part affinity fields to a latent joint fea-

ture vector. To obtain the full pose of a single person, an

existing algorithm [5] is modified, which first obtains limb

connection candidates and then assembles them into pose of



multiple persons. For each joint, we reserve two peaks with

the highest score in corresponding part confidence map, in-

stead of filtering candidates with threshold. This ensures

no joint will be lost. The joint with the highest score is

not selected because the best location cannot be determined

merely according to part confidence maps because the net-

work sometimes makes mistakes, and that we want to lever-

age information provided by PAFs.

Then, a single candidate is selected for each joint. We

start from the candidate of head top with the higher value,

and expand it into full pose by iteratively selecting joint

candidates which are most probable to associate with de-

termined joints. Head top, being a relatively easier joint to

detect as compared to limbs, is set to be the starting point

since the network is less likely to make mistakes on it. The

score of association between joint candidates is determined

by calculating the line integral over the corresponding PAF

along the limb, formally shown by Eq. (10) and (11) in Cao

et al. [5]. Other joints that are easy to predict, such as the

pelvis, were tried as the starting point, however, the accu-

racy is nearly the same.

After locations of all joints in three images are obtained,

the procedure mentioned in Fani et al. [11] is applied to

each one of them. In Fani et al. [11], joints identified in all

images are scaled by the average head segment length (dis-

tance between head top and upper neck) in all training im-

ages. We normalize joints of each image with the head seg-

ment length in order to eliminate the impact of discrepancy

in human’s size between different images. Angles between

certain limbs are also calculated (Table 1). Scaled joint lo-

cations and computed angles are concatenated to form a fea-

ture vector for each image. We concatenate vectors for three

images into a one dimensional feature vector of size 156

which is fed to an action recognition component.

3.4. Action Recognition Component

LiteFlowNet (Hui et al. [17]) is a state-of-the-art network

for optical flow estimation. In their work, pyramidal fea-

tures are received by cascaded flow inference and flow reg-

ularization modules, which iteratively increase resolution of

flow fields. Pre-trained LiteFlowNet is used in our pipeline.

Since LiteFlowNet takes two images as input, two optical

flows are generated from three images.

The action recognition component leverages information

provided by joint locations and optical flows. The archi-

tecture is illustrated in Fig. 4. The optical flow fields ob-

tained are concatenated into a 4-channel map and resized

to 56×56 pixels. Then, the map is passed through sev-

eral convolutional and max-pooling layers followed by two

fully-connected layers and converted into a flat feature vec-

tor. Relu activation is used for all convolutional and fully-

connected layers in this part. The feature vector generated

from optical flows is concatenated with the latent joint fea-

Figure 3: Latent feature transformer. Pose is obtained from

part confidence maps and part affinity fields for each im-

age, and transformed into a flat latent joint feature vector.

Dashed box on the right shows details of this transforma-

tion. The vector contains coordinates of all joints and an-

gles between some limbs (green dots indicate angles be-

tween limbs that are to be calculated, which are shown more

clearly in Table. 1). Finally, latent feature vectors of 3 im-

ages are concatenated.

head top upper neck thorax

upper neck thorax left shoulder

pelvis thorax left shoulder

thorax left shoulder left elbow

left shoulder left elbow left wrist

upper neck thorax right shoulder

pelvis thorax right shoulder

thorax right shoulder right elbow

right shoulder right elbow right wrist

thorax pelvis left hip

pelvis left hip left knee

left hip left knee left ankle

thorax pelvis right hip

pelvis right hip right knee

right hip right knee right ankle

left hip pelvis right hip

Table 1: Angles calculated in latent feature transformer.

Each row in the table indicates an angle. A row whose items

are A, B, C from left to right represents ∠ABC.

ture vector. The flow feature vector concatenated with latent

joint feature vector is passed through four fully-connected

layers, the first three of them with sigmoid activation and



Figure 4: Action recognition architecture. Optical flows

are resized and passed through interwoven convolutions and

max-pooling, followed by fully-connected layers, and con-

verted into a vector. It is concatenated with latent joint fea-

ture vector. Fully-connected network predicts probabilities

of each class from the vector.

the last with softmax to output probabilities of four classes.

A dropout layer is added after the second fully-connected

layer (50 units) to reduce overfitting.

3.5. Training Details

Since our dataset is small, various methods are employed

to reduce overfitting such as dropout, dataset augmentation

and early stopping.

As a basic method of transfer learning, pose estima-

tion network is fine-tuned based on weights pre-trained on

MSCOCO dataset [27]. The dataset contains over 100K

person instances and covers various real-world scenarios,

which can provide relevant knowledge for transfer learning.

In order to avoid overfitting, weights of all layers, except

last 3 layers of the stage 5 and all layers of the stage 6 are

frozen. However, joints we want to learn here are differ-

ent from that in the MSCOCO dataset. In order to perform

transfer learning, only the last two stages of the pose esti-

mation network are trained such that, the loss of the rest of

the stages is not computed and the last two stages output 18

new joints.

A variety of data augmentation is performed in train-

ing to make our dataset appear more diverse. For the pose

estimation network, original images are randomly flipped,

scaled, rotated, similar to Cao et al. [5]. For the action

recognition network, in addition to the methods applied to

pose estimation network, we perturb the location of each

joint. Note that whenever flipping is applied to joints while

training action recognition component, it is also applied to

optical flows, because direction of background movement

and orientation of person, which is represented by pose, are

tied together when telling the direction of person’s move-

ment.

The pose estimation network and the action recognition

network are trained separately. Validation loss of the pose

estimation network decreases with training loss, so the net-

work is trained until convergence and the last model check-

point is selected. However, the action recognition part starts

to overfit after 30 epochs. So an early stopping technique of

training 30 epochs and picking up the checkpoint with high-

est validation accuracy was adopted. We select three models

with highest validation accuracy at test time, which will be

explained in Section 4.3.

In addition, we found that the action recognition network

is difficult to train if the input is the prediction of the pose

estimation network, so we instead train the pose estimation

network with augmented ground truth of joint locations and

validate it with the prediction. The network generalizes

well to the case where joints are not precisely localized.

This is because augmentation applied to joints eliminates

the impact of possible discrepancy between distribution of

ground-truth and predicted joint locations, which makes the

network able to tolerate joint errors.

The training hyperparameter configurations are as fol-

lows. Weights are learned using mini-batch stochastic gra-

dient descent with batch size set to 2 and momentum set to

0.9 for both two sub-networks. For the pose estimation net-

work, L2 regularization is added to the convolution kernel

weights with a regularization coefficient of 5×10
−4. In ev-

ery epoch, all training images are fed once, so the number of

iterations per epoch is N

2
(N training images). Training lasts

300 epochs. The learning rate is initially set to 10
−2 and

changed to 10
−3 after 200 epochs. For the action recogni-

tion network, learning rate is 10−2 throughout the 30-epoch

training. The dropout ratio is set to 0.3. The training pro-

cess takes about 14 hours for the pose estimation network

and about 13 minutes for the action recognition network, on

a TITAN X GPU.

4. Testing and Results

4.1. Dataset Preparation

The model is trained and tested on the HARPET dataset

which is composed of sequences of 3 images with time in-

terval of 1

6
seconds between any two successive frames in



30 frames per second video. Sequence length is set accord-

ing to previous work on temporal modeling [13,51,52]. The

sequences are collected from video clips scraped from the

internet and from several instructional DVDs about hockey.

Video segments were extracted from these videos and bro-

ken up into consecutive frames. Next, the sequences are

classified into one of 4 classes: forward, backward, passing

and shooting. Finally, 18 joints (16 human joints and 2 stick

joints) are annotated in all images.

The dataset has 106 sequences for forward, 104 for back-

ward, 113 for passing and 101 for shooting. There are a total

of 1272 images of which joints are annotated respectively.

The HARPET dataset is randomly split into three sets: 70%

for training, 15% for validation and 15% for testing. The

pose estimation component and the action recognition com-

ponent are both trained on training set. The validation set is

used to pick the best model.

4.2. Accuracy of Pose Estimation

To evaluate the pose estimation network, PCKh@0.5 [1]

metric is used. According to the PCKh@0.5 metric, a joint

is localized correctly if distance between prediction and

ground truth is less than one-half of head segment length

(distance between top of head and upper neck), and per-

centage of correctly-localized joints is computed. Results

are illustrated in Table. 2.

The results demonstrates that the network trained on

MSCOCO dataset can be transferred to the hockey domain

with good accuracy (86.95% overall accuracy). Stick pre-

diction has the worst precision (75.40%), which, several

reasons account for poor precision of the hockey stick. (1)

Joints, minus the hockey stick, are inferred from joints con-

sidered in the MSCOCO dataset which makes it easier for

the network to transfer those joints, however, the stick is a

new concept which takes more effort to learn. (2) The cur-

rent model does not have a large enough receptive field to

capture the whole stick that can be very long in images. (3)

In many images, the stick is occluded or moves too quickly,

adding difficulties to recognition. Prediction of elbows and

wrists is also unsatisfactory, due to frequent occlusions.

Common failure cases are shown in Fig. 5. Left-and-

right error and stick mislocalization due to occlusion and

high-speed motion are typical.

4.3. Accuracy of Action Recognition

To show that the hand-held object is a strong cue for ac-

tion recognition in hockey, coordinates of stick top (butt

end) and stick end (stick blade) are purposely ignored by

latent feature transformer (denoted by -ST) for a compari-

son with the original method which takes all joints including

the stick into consideration (denoted by +ST). Besides, the

temporal stream which analyzes optical flows is removed

so that the action recognition network only looks at the la-

Parts PCKh@0.5 (left/right, top/end)

Head 94.18%

Upper Neck 97.25%

Thorax 96.30%

Shoulder 85.19%/89.42%

Elbow 78.31%/80.95%

Wrist 76.72%/80.42%

Pelvis 97.35%

Hip 92.06%/87.83%

Knee 91.53%/91.00%

Ankle 89.42%/86.24%

Stick 71.96%/78.84%

Overall 86.95%

Table 2: Results of pose estimation. Values of left and

right shoulder/elbow/wrist/hip/knee/ankle, as well as stick

top and stick end, are averaged to shorten the table.

Figure 5: Common failure cases of pose estimation.

tent joint feature vector (denoted by -OF), for a comparison

with the original two-stream architecture (denoted by +OF).

Hence, we have four combinations.

As mentioned above, since the validation accuracy does

not steadily increase throughout training, selecting a check-

point with the highest validation score is appropriate com-

pared to simply picking up the last checkpoint. Moreover,

due to lack of data, validation accuracy fluctuates drastically

throughout training and there is an inevitable gap between

validation and test accuracies. To evaluate the overall per-

formance of each combination more appropriately, we test

on 3 checkpoints of action recognition model with top 3

validation accuracy.

Table 3 shows the precision and recall for each



(a) Passing (b) Passing

(c) Backward (d) Shooting

Figure 6: Some examples of correct classification. Action recognition network can tolerate joint localization errors.

(a) Forward→Passing (b) Forward→Shooting

(c) Shooting→Forward (d) Shooting→Passing

Figure 7: Common failure cases of action recognition (ground truth→prediction).

class of each combination (Fw.=Forward, Bw.=Backward,

Ps.=Passing, St.=Shooting for convenience). Here values

of 3 checkpoints of every combination is averaged. Overall

accuracy of each combination is illustrated in Table 4. In

this table, the results of all selected checkpoints are shown

(1st, 2nd, 3rd refer to validation accuracy ranking) along

with average values.

From the macro view, both stick information and optical

flow, complementary to each other, help improve the over-

all accuracy as well as precision and recall rate for most

classes. Exceptions lie in precision and recall rate of shoot-

ing and recall rate of skating forward. The stick plays a

more important role than optical flow, as indicated by the

combination of +ST, -OF outperforms -ST, +OF. When

leveraging both stick and optical flow, end-to-end action

recognition accuracy can be boosted to about 85%.

From the micro view, precision rate for passing is un-

satisfying while the recall rate for passing is comparable to

other classes, which means in many cases, other actions are

mistaken for passing. This can also be seen from confu-

sion matrices (Fig. 8). From comparison between -ST, -OF

and +ST, -OF as well as -ST, +OF and +ST, +OF, stick

increases accuracy of other 3 classes except shooting. This

can be justified by observing that shooting is the only action

among the 4 that is likely to lead to drastic change in pose

so that joints are sufficient to recognize it. From compari-

son between -ST, -OF and -ST, +OF as well as +ST, -OF

and +ST, +OF, it is demonstrated that optical flows improve

results under most circumstances.

Some examples of correct classification are displayed in

Fig. 6. In Fig. 6 (a) and (c), pose is correctly obtained thus

leading to correct classification. In contrast, Fig. 6 (b) and

(d), joints (sticks, more specifically) failed to be localized

accurately but still produced correct results in the action



Methods
Precision

Fw. Bw. Ps. St.

-ST, -OF 69.25% 81.82% 46.18% 82.63%

-ST, +OF 77.73% 82.05% 49.26% 77.22%

+ST, -OF 79.12% 88.08% 53.36% 80.65%

+ST, +OF 96.06% 95.83% 56.67% 87.22%

Methods
Recall

Fw. Bw. Ps. St.

-ST, -OF 71.67% 50.00% 66.67% 80.39%

-ST, +OF 70.00% 50.00% 73.33% 88.24%

+ST, -OF 80.00% 62.50% 83.33% 72.55%

+ST, +OF 80.00% 87.50% 90.00% 80.40%

Table 3: Precision and recall rate of each combination, for

4 classes. Each value in the table is the average of corre-

sponding values of 3 checkpoints.

Methods
Accuracy

1
st

2
nd

3
rd Avg.

-ST, -OF 71.43% 68.25% 63.49% 67.72%

-ST, +OF 68.25% 68.25% 74.60% 70.37%

+ST, -OF 74.60% 73.02% 74.60% 74.07%

+ST, +OF 84.13% 85.71% 80.95% 83.60%

Table 4: Overall accuracy of each combination. Results of

all selected checkpoints are shown as well as average val-

ues. 1st, 2nd, 3rd refer to validation accuracy ranking

recognition network, thus indicating that the action recog-

nition network can tolerate some joint localization errors.

Fig. 7 shows some failure cases. It can be seen that ac-

curacy of action recognition is limited by accuracy of pose

estimation. Misclassification of Fig. 7 (c) and (d) is due

to the failure in predicting stick top and stick end. This is

common in shooting case because the stick is likely to move

too fast, or be lifted too high (lifting stick too high is a rare

case in training images, so the network cannot recognize

the stick well in this situation). Fig. 7 (a) and (b) reveal

a major inherent downside of the method. Even if pose is

predicted precisely, correctness cannot be guaranteed. Un-

der many circumstances, contextual information is helpful,

such as movement of the puck, position of the goal, action

of surrounding players. Pose does not contain these factors,

and it is also difficult for the network to learn to capture

crucial detailed information from optical flows, especially

when the dataset is too limited.

5. Conclusion

In this paper, we propose a novel two-stream architecture

for action recognition. The two streams estimate pose and

parse optical flows via CNN, which are then concatenated

and passed through fully-connected layers to output classifi-

(a) -ST, -OF (b) -ST, +OF

(c) +ST, -OF (d) +ST, +OF

Figure 8: Confusion matrices for 4 combinations. In each

cell is percentage of sequences which belong to a certain

class and are mistaken for a certain class. Cells indicating

misclassfication with ratio higher than 3% are highlighted.

cation scores. The architecture extends general two-stream

networks by leveraging pose, which is a high-level feature

that is shown to be suitable for action recognition, achiev-

ing 85% end-to-end accuracy. Experimental results demon-

strate that pose and optical flows, as different-level features,

are complementary to each other. It is also demonstrated

that hand-held objects, sticks in the context of ice hockey,

play an important role in analyzing the sport actions. In

addition, we transfer the information from the pose estima-

tion model pre-trained on MSCOCO dataset to our small

hockey dataset achieving 87% overall accuracy measured

by PCKh@0.5.

There is room for improvement. (1) Although three

sparsely-sampled images are generally adequate to depict

an action, considering additional images can be more reli-

able and accurate. (2) Sometimes, a joint in an image that is

difficult, even for a human to localize, can be better inferred

by utilizing the neighboring frames i.e., temporal informa-

tion can also be leveraged in pose estimation. (3) High-level

activities such as puck location and goal scored, can also be

taken into consideration.
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