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Abstract. In this survey article we discuss the problem of determining the number

of representations of an integer as sums of triangular numbers. This study reveals
several interesting results. If n ≥ 0 is a non-negative integer, then the nth triangular

number is Tn =
n(n+1)

2
. Let k be a positive integer. We denote by δk(n) the number

of representations of n as a sum of k triangular numbers. Here we use the theory of

modular forms to calculate δk(n). The case where k = 24 is particularly interesting.
It turns out that if n ≥ 3 is odd, then the number of points on the 24 dimensional

Leech lattice of norm 2n is 212(212 − 1)δ24(n − 3). Furthermore the formula for

δ24(n) involves the Ramanujan τ(n)−function. As a consequence, we get elementary
congruences for τ(n). In a similar vein, when p is a prime we demonstrate δ24(pk−3)

as a Dirichlet convolution of σ11(n) and τ(n). It is also of interest to know that

this study produces formulas for the number of lattice points inside k−dimensional
spheres.

1. Introduction

Representations of non-negative integers by quadratic forms and as sums of squares
have a long history [10]. For example, if k ≥ 1 is a positive integer, then the
number of representations of n as a sum of k squares, denoted by rk(n), has received
considerable attention from Rankin [20]. To study rk(n), he used the classical theta
function defined by

Θ(q) =
∞∑

n=−∞
qn2

= 1 + 2q + 2q4 + 2q9 + 2q16 + . . . .

Consequently, the values of rk(n) are the formal coefficients of the power series

Θk(q) =
∑
n≥0

rk(n)qn.

Fortunately, it is well known that Θ(q) is a modular form of weight 1
2 on Γ0(4). It

now follows that the modular form theory of Θk(q) defines rk(n). When k is odd,
these calculations can be troublesome since Θk(q) is a modular form of half integral
weight. Here we apply these classical methods to the representations of integers as
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sums of triangular numbers. Much of what follows is a special case of the problem
of representations of numbers as sums of figurate numbers. We will show that the
general case follows from the study of generalized Dedekind η−functions with little
complication [22].

First we define the triangular numbers.

Definition. If n is a non-negative integer, then the triangular number Tn is defined
by

Tn =
n(n + 1)

2
.

Note that geometrically Tn is equal to the number of nodes that complete an
equilateral triangle with sidelength n. Here are the first few triangular numbers:

T0 = 0 T1 = 1 T2 = 3 T3 = 6 T4 = 10.

If k ≥ 1 is a positive integer, then let δk(n) denote the number of representations
of n as a sum of k triangular numbers. We calculate δk(n) for several values of k
using modular form theory.

Incidentally, Gauss’ famous Eureka theorem asserts that every non-negative
integer is represented as a sum of three triangular numbers. In our notation this
says that if n ≥ 0, then δ3(n) > 0. The reader may consult [1] for a discussion of
this theorem.

Now we give some basic preliminaries in the theory of modular forms. Let N ≥ 1
be a rational integer. Then we define the following congruence subgroups of SL2(Z).
Let A denote the matrix below with integer entries in SL2(Z):

A =
(

a b
c d

)
.

Definition. The most common congruence subgroups of level N are defined below:
(i) Γ0(N) = {A ∈ SL2(Z) | c ≡ 0 mod N}
(ii) Γ1(N) = {A ∈ SL2(Z) | a ≡ d ≡ 1 mod N and c ≡ 0 mod N}
(iii) Γ(N) = {A ∈ SL2(Z) | a ≡ d ≡ 1 mod N and b ≡ c ≡ 0 mod N}.

Let χ be a Dirichlet character mod N and k ∈ Z+ satisfying χ(−1) = (−1)k.
Let A ∈ SL2(Z) act on H, the complex upper half plane, by the linear fractional
transformation

Aτ =
aτ + b

cτ + d
.

Let f(τ) be a holomorphic function on H such that

f(Aτ) = χ(d)(cτ + d)kf(τ)

for all A ∈ Γ0(N) and all τ ∈ H. We call such f(τ) a modular form of weight k and
character χ on Γ0(N). If f(τ) is holomorphic (resp. vanishes) at the cusps of Γ0(N)
then f(τ) is a holomorphic modular form (resp. cusp form). The holomorphic
modular forms and cusp forms of weight k and character χ form finite dimensional
C−vector spaces. These spaces are denoted by Mk(Γ0(N), χ) and Sk(Γ0(N), χ),
respectively. It is well known that Mk(Γ0(N), χ) is the direct sum of Sk(Γ0(N), χ)
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and forms known as Eisenstein series. When k = λ + 1
2 with λ ∈ N, there is a

similar theory of modular forms with half-integral weight [12].
Since the the transformation τ → τ + 1 is in Γ0(N), a holomorphic modular

form f(τ) admits a Fourier expansion at the point at infinity in the uniformizing
variable q = e2πiτ

f(τ) =
∞∑

n=0

a(n)qn.

Understanding the arithmetic nature of these coefficients a(n) has been a major
topic in number theory; their behavior is related to quadratic forms, elliptic curves,
integral lattices, the splitting of prime ideals in number fields etc... It is of interest to
know that the Fourier coefficients of Eisenstein series are determined by generalized
divisor functions.

There are natural linear transformations, the Hecke operators, which act on
Fourier expansions of modular forms preserving Mk(Γ0(N), χ) and Sk(Γ0(N), χ).
If p is prime, then the Hecke operator Tp is defined by

f | Tp =
∞∑

n=0

a(pn)qn + χ(p)pk−1
∞∑

n=0

a(n)qpn.

Note that if p | N, then χ(p) = 0, so Tp reduces to the dissection operator Up

defined by

f | Up =
∞∑

n=0

a(pn)qn.

For a thorough treatment of the theory of modular forms the reader should consult
[11], [12],[15], [23] or [28].

2. The generating function

To carry out our study, we will use the generating function Ψ(q)

Ψ(q) =
∞∑

n=0

qTn = 1 + q + q3 + q6 + q10 + . . . .

Consequently, it is easy to see that if k ≥ 1 then

Ψk(q) =
∞∑

n=0

δk(n)qn.

We will see that Ψ(q) is essentially a quotient of Dedekind η- functions. The
Dedekind η−function is a modular form of weight 1

2 that is defined by the infinite
product

η(τ) = q
1
24

∞∏
n=1

(1− qn) where q = e2πiτ .

Products and quotients of this function have been studied extensively because of its
applications to combinatorics and representations of the symmetric group [1],[2],[7],
[8], [18], [21].
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We are interested in qΨ(q8); it is the Fourier expansion for the weight 1
2 modular

form
η2(16τ)
η(8τ)

= q + q9 + q25 + q49 + . . . .

Using the Serre-Stark Basis theorem [27], it turns out that η2(16τ)
η(8τ) is the theta series

η2(16τ)
η(8τ)

=
∑

n ≥ 1
n odd

qn2
.

Here we use this result to derive an infinite product representation for Ψ(q) :

q
−1
8

η2(2τ)
η(τ)

=
∑

n≥0, n odd

q
n2−1

8 =
∞∑

n=0

qTn = Ψ(q).

This proves the following proposition.

Proposition 1. If Tn is the nth triangular number, then

Ψ(q) =
∞∏

n=1

(1− q2n)2

(1− qn)
=

∞∑
n=0

qTn .

Furthermore, we establish a simple relationship between square and triangular
representations:

Proposition 2. If δk(n) is the number of representations of n as a sum of k
triangular numbers and qk(n) is the number of representations of n as a sum of k
odd squares, then

δk(n) = qk(8n + k).

Proof. This follows by rewriting a representation of n as a sum of k triangular
numbers in the following way:

n =
k∑

i=1

xi(xi + 1)
2

⇔ 8n =
k∑

i=1

(4x2
i + 4xi)

⇔ 8n + k =
k∑

i=1

(2xi + 1)2.

�
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3. Formulae for some δk(n)

In this section we compute formulae for δk(n) for various values of k. When k =
2or3, this reduces to calculating r2(8n + 2) and r3(8n + 3). For other values of k
we apply classical modular form theory.

The case k = 2 :

By Proposition 2 we know that δ2(n) = q2(8n + 2). It is easy to see that if
α, β ∈ Z and are solutions to

α2 + β2 ≡ 2 mod 8,

then α and β are necessarily odd. Consequently, we obtain

δ2(n) = q2(8n + 2) =
1
4
r2(8n + 2).

The scalar 1
4 compensates for the 4 possible choices of sign that are counted with

multiplicity in r2(n). Here we state the well-known formula for r2(n) [10, p.15].

Theorem 1. Denote the number of divisors of n by d(n), and write da(n) for the
number of divisors d of n with d ≡ a mod 4. Let n = 2fn1n2, where the prime
factorizations of n1 and n2 are:

n1 =
∏

p≡1 mod 4

pr and n2 =
∏

q≡3 mod 4

qs.

If any of the exponents s are odd, then r2(n) = 0. If all s are even, then

r2(n) = 4d(n1) = 4(d1(n)− d3(n)).

As a simple corollary we get

Corollary 1. Let 8n + 2 = 2fn1n2, where

n1 =
∏

p≡1 mod 4

pr and n2 =
∏

q≡3 mod 4

qs.

If any of the exponents s are odd, then δ2(n) = 0. If all of the exponents s are even,
then

δ2(n) = d(n1) = d1(8n + 2)− d3(8n + 2).

The case k = 3 :

Here we make use of the identity

δ3(n) = q3(8n + 3).

It is easy to verify that if α, β, γ ∈ Z and are solutions to

α2 + β2 + γ2 ≡ 3 mod 8,

then α, β and γ are all odd. Consequently we obtain the following identity:

δ3(n) = q3(8n + 3) =
1
8
r3(8n + 3).

Here the scalar 1
8 compensates for the 8 choices of sign that are counted with

multiplicity in r3(n). Again we state a classical result [10,p.53] that gives a formula
for r3(n).
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Theorem 2. Let [x] be the greatest integer function and let
(

r
n

)
be the usual Jacobi

symbol.
If n ≡ 1 mod 4, then define R3(n) by

R3(n) = 24
[ n
4 ]∑

r=1

(
r

n

)
.

If n ≡ 3 mod 4, then define R3(n) by

R3(n) = 8
[ n
2 ]∑

r=1

(
r

n

)
.

Given these definitions, we obtain

r3(n) =
∑
d2|n

R3

( n

d2

)
.

As a corollary, we obtain

Corollary 2. Given the notation above, we have:

δ3(n) =
1
8

∑
d2|(8n+3)

R3

(
8n + 3

d2

)
.

The case k = 4 :

It is easy to see that qΨ4(q2) is the weight 2 modular form on Γ0(4) defined by

qΨ4(q2) =
η8(4τ)
η4(2τ)

= q

[ ∞∏
n=1

(1− q4n)2

(1− q2n)

]4

.

Its Fourier expansion is

qΨ4(q2) =
∞∑

n=0

δ4(n)q2n+1 = q + 4q3 + 6q5 + 8q7 + 13q9 + . . . .

Incidentally, note that if k ≥ 1 is a positive integer, then the kth power of qΨ4(q2)
defines δ4k(n) by

qkΨ4k(q2) =
η8k(4τ)
η4k(2τ)

=
∞∑

n=0

δ4k(n)q2n+k.

Since spaces of modular forms are finite dimensional, one easily determines that two
modular forms with the same level and weight are equal if their Fourier expansions
agree for sufficiently many terms. We only need to check the first k[SL2(Z):Γ′]

12 terms
where k is the weight and Γ′ is the relevant congruence subgroup [12] [28].

It turns out that qΨ4(q2) is the Eisenstein series on Γ0(4) defined by

qΨ4(q2) =
∞∑

n=0

σ1(2n + 1)q2n+1,

where σk(m) =
∑

d|m dk is the standard divisor function. We obtain
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Theorem 3. If δ4(n) is the number of representations of n as a sum of 4 triangular
numbers, then

δ4(n) = σ1(2n + 1).

This result was known to Legendre [6],[14].
As a consequence of the multiplicativity of σ1(n), we establish the following

interesting multiplicativity property for δ4(n) :

δ4(m)δ4(n) = δ4(2mn + m + n) when (2m + 1, 2n + 1) = 1.

Incidentally, qΨ4(q2) is a basis element for the spaces of modular forms of level 4.
Here we state a well known fact [12, p.184] that determines a polynomial basis for
modular forms on Γ0(4) of either integral or half integral weight.

Proposition 3. Define Θ(τ) and qΨ4(q2)) as above. Θ(τ) has weight 1
2 and

qΨ4(q2) has weight 2. If k ∈ Z, then M k
2
(Γ0(4)) is the space of all isobaric polyno-

mials in C[Θ(τ), qΨ4(q2)] with weight k
2 .

This proposition says that all modular forms on Γ0(4) have Fourier expansions
at i∞ coming from triangular numbers and squares. Later in this paper we define
generating functions for the generic figurate numbers as weight k = 1

2 modular
forms. Is there some general result which allows us to determine when the generat-
ing functions of a set of figurate numbers defines a polynomial basis for all modular
forms (i.e. integral and half-integral weight) of given level and character?

The case k = 6:

We consider the modular form q3Ψ6(q4) ∈ M3(Γ0(8)).

q3Ψ6(q4) =
η12(8τ)
η6(4τ)

= q3[
∞∏

n=1

(1− q8n)2

(1− q4n)
]6 = q3

∞∑
n=0

δ6(n)q4n =
∞∑

n=0

δ6(n)q4n+3.

The first few terms of the Fourier expansion of q3Ψ6(q4) are

q3Ψ6(q4) = q3 + 6q7 + 15q11 + 26q15 + 45q19 + 66q23 + 82q27 + . . . .

Define χ, the Dirichlet character mod 4, by

χ(1) = 1, χ(3) = −1,

define the generalized divisor function σ2,χ(n) by

σ2,χ(n) =
∑
d|n

χ(d)d2,

and define G2,χ(τ), a weight 3 Eisenstein series on Γ0(8), by

G2,χ(τ) =
∞∑

n=0

σ2,χ(4n + 3)q4n+3.

It turns out that our generating function q3Ψ6(q4) satisfies

q3Ψ6(q4) = −1
8
G2,χ(τ).

We obtain
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Theorem 4. If δ6(n) is the number of representations of n as a sum of 6 triangular
numbers, then

δ6(n) = −1
8
σ2,χ(4n + 3).

Note that this theorem naturally implies that δ6(n) satisfies some interesting
multiplicative properties.

The case k = 8 :

Here we consider the weight 4 modular form q2Ψ8(q2) on Γ0(4) defined by

q2Ψ8(q2) =
η16(4τ)
η8(2τ)

=
∞∑

n=0

δ8(n)q2n+2.

Here are the first few terms of the Fourier expansion of q2Ψ8(q2)

q2Ψ8(q2) = q2 + 8q4 + 28q6 + 64q8 + 126q10 + 224q12 + . . . .

Here we define E(τ),a well known weight 4 Eisenstein series on Γ0(2),

E(τ) =
∞∑

n=1

σ]
3(n)qn

where
σ]

3(n) =
∑
d | n

n
d odd

d3.

Replacing q by q2 gives us an Eisenstein series E(2τ) on Γ0(4) with Fourier expan-
sion

E(2τ) =
∞∑

n=1

σ]
3(n)q2n.

By equating Fourier coefficients we find that

q2Ψ8(q2) = E(2τ).

This proves

Theorem 5. If δ8(n) is the number of representations of n as a sum of 8 triangular
numbers, then

δ8(n) = σ]
3(n + 1).

As a consequence of the multiplicativity of σ]
3(n), we get following multiplicative

property for δ8(n).
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Corollary 3. If δ8(n) is the number of representations of n as a sum of 8 triangular
numbers and if (a + 1, b + 1) = 1, then

δ8(a)δ8(b) = δ8((a + 1)(b + 1)− 1).

The case k = 10 :

In this case we are interested in the weight 5 modular form on Γ0(8) given by
q5Ψ10(q4)

q5Ψ10(q4) =
η20(8τ)
η10(4τ)

=
∞∑

n=0

δ10(n)q4n+5.

Unfortunately, q5Ψ10(q4) is not an Eisenstein series; it is a linear combination of
an Eisenstein series and a cusp form with complex multiplication [24].

Let F (τ) be the modular form with complex multiplication by Q(i) defined as

F (τ) = η4(τ)η2(2τ)η4(4τ) =
∞∑

n=1

a(n)qn = q − 4q2 + 16q4 − 14q5 − 64q8 + . . . .

It turns out that

(1) q5Ψ10(q4) =
1

640

[
G4,χ(τ)− 2F (τ)− 1

4
(F (τ) | T2)

]
.

Here G4,χ(τ) is the Eisenstein series defined by

G4,χ(τ) =
∑

n≡1 mod 4

σ4,χ(n)qn

and
σ4,χ(n) =

∑
d|n

χ(d)d4.

The character χ is the same Dirichlet character mod 4 which occured when k = 6.
Now we can state the explicit formula for δ10(n).

Theorem 6. If δ10(n) is the number of representations of n as a sum of 10 trian-
gular numbers, then

δ10(n) =
1

640
[σ4,χ(4n + 5)− a(4n + 5)].

Proof. By equation (1), we obtain

δ10(n) =
1

640
[σ4,χ(4n + 5)− 2a(4n + 5)− 1

4
a(8n + 10)].

Since 2 divides the level, T2 = U2 and one easily verifies that

F (τ) | U2 = −4F (τ).
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This implies that −4a(n) = a(2n). Consequently, we obtain

δ10(n) =
1

640
[σ4,χ(4n + 5)− a(4n + 5)].

�

Incidentally, since all forms with complex multiplication are lacunary, (i.e. the
arithmetic density of their non-zero Fourier coefficients is 0) this theorem implies
that δ10(n) = 1

640σ4,χ(4n + 5) almost always. For lacunarity, the reader should
consult [9], [24], [25].

The case k = 12:

Here we consider the weight 6 modular form on Γ0(4) with Fourier expansion
q3Ψ12(q2),

q3Ψ12(q2) =
η24(4τ)
η12(2τ)

=
∞∑

n=0

δ12(n)q2n+3.

Here are the first few terms of the Fourier expansion of q3Ψ12(q2):

q3Ψ12(q2) = q3 + 12q5 + 66q7 + 232q9 + 627q11 + 1452q13 + . . . .

The space of cusp forms S6(Γ0(4)) is 1 dimensional and is spanned by the
η−product

η12(2τ) = q − 12q3 + 54q5 − 88q7 − 99q9 −+ . . . .

Our form q3Ψ12(q2) satisfies the following identity:

q3Ψ12(q2) =
1

256
[E(τ)− η12(2τ)]

where E(τ) =
∑∞

n=0 σ5(2n + 1)q2n+1. Consequently, we have proved the following
theorem.

Theorem 7. If η12(2τ) =
∑∞

n=1 a(n)qn and δ12(n) is the number of representa-
tions of n as a sum of 12 triangular numbers, then

δ12(n) =
σ5(2n + 3)− a(2n + 3)

256
.

As a simple consequence of this formula, we obtain the following mod 256
congruence for a(n), the Fourier coefficients of η12(2τ) :

a(2n + 1) ≡ σ5(2n + 1) mod 256.
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4. The Ramanujan function τ(n), the Leech Lattice, and δ24(n).

In this section we derive a formula for δ24(n), the number of representations of
n as a sum of 24 triangular numbers. It turns out that for odd n we obtain an
interesting relation between δ24(n − 3) and N2n, the number of lattice points on
the Leech lattice with norm 2n [3, p, 131]. As a corollary to the formula for δ24(n),
we get interesting congruences for the Ramanujan τ(n) function. Recall that τ(n)
is defined to be the nth Fourier coefficient of the unique normalized weight 12 cusp
form on SL2(Z), ∆(τ) = η24(τ).

The congruential behavior of τ(n) has been studied extensively by Rankin, Serre
and Swinnerton-Dyer [16], [17], [19], [26], [29],[30]. The theory of `−adic Galois
representations due to Deligne and Serre [4], [5] provide a theoretical interpretation
of these congruences. Here we recall the congruences for τ(n) mod 256 and
mod 691 :

τ(2n + 1) ≡ σ11(2n + 1) mod 256

and
τ(n) ≡ σ11(n) mod 691.

Kolberg [13], extended the mod 256 congruence by proving

τ(8n + 1) ≡ σ11(8n + 1) mod 211,

τ(8n + 3) ≡ 1217σ11(8n + 3) mod 213,

τ(8n + 5) ≡ 1537σ11(8n + 5) mod 212

and
τ(8n + 7) ≡ 705σ11(8n + 7) mod 214.

We will see that these congruences are closely related to the formula for δ24(n).
Here we consider the weight 12 modular form on Γ0(4)

q6Ψ24(q2) =
η48(4τ)
η24(2τ)

=
∞∑

n=0

δ24(n)q2n+6.

The first few terms of the Fourier expansion are

q6Ψ24(q2) = q6 + 24q8 + 276q10 + 2048q12 + 11178q14 + . . . .

We obtain the following identity

q6Ψ24(q2) =
1

176896
[

1
2048

E(τ)−∆(2τ)− 2072∆(4τ)].

E(τ) is the weight 12 Eisenstein series defined by

E(τ) =
∞∑

n=1

σ]
11(n)qn

where σ]
11(n) =

∑
d | n
n
d odd

d11. Note that σ]
11(2n + 6) = 211σ]

11(n + 3). This identity

proves the following formula for δ24(n).
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Theorem 8. If δ24(n) is the number of representations of n as a sum of 24 trian-
gular numbers, then

δ24(n) =
1

176896
[σ]

11(n + 3)− τ(n + 3)− 2072τ(
n + 3

2
)].

Before proceeding to congruences, we note the connection between δ24(n) and the
Leech lattice. The 24 dimensional Leech lattice is well known for its nice symmetric
solution to the sphere packing problem. Let Nm be the number of points on this
lattice with norm m. The lattice theta function Θ(τ) is defined by

Θ(τ) =
∞∑

m=0

Nmqm.

It turns out that

Θ(τ) = 1 + 196560q4 + 16773120q6 + 398034000q8 + . . .

is a weight k = 12 modular form. Using techniques from modular form theory [3,
p. 51], it is known that N2m is given by

N2m =
65520
691

(σ11(m)− τ(m)).

We obtain the following corollary to Theorem 8 connecting the representation of
n − 3 as a sum of 24 triangular numbers with the number of points on the Leech
lattice with norm 2n.

Corollary 4. If n ≥ 3 odd, then

N2n = N6 δ24(n− 3).

�

Now we list congruences for τ(n) that are consequences of this formula
(Note: 176896=256.691). The proofs are left to the reader.

(2) τ(n) + 2072τ(
n

2
) ≡ σ]

11(n) mod 176896

(3) τ(n) ≡ σ]
11(n) mod 8

(4) τ(2kn) ≡ σ11(n)
k∑

i=0

(−2072)i 2048k−i mod 176896, where (2, n) = 1

(5) τ(2kn) ≡ (−24)kσ11(n) mod 256,where (2, n) = 1

Along these lines we discuss the existence of many formal convolution identities.
It will be clear that this phenomenon occurs often when one considers modular
forms that are linear combinations of two eigenforms.

First we state and prove a general theorem.
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Theorem 9. Let F (n), G(n), and H(n) be functions on the non-negative integers
such that F (1) = G(1) = 1. Suppose α is a non-negative integer where F (α) 6= G(α)
and such that

F (αn+2) = F (α)F (αn+1) + H(α)F (αn)

and
G(αn+2) = G(α)G(αn+1) + H(α)G(αn)

for all positive integers n. Then

F (αn+1)−G(αn+1)
F (α)−G(α)

=
n∑

k=0

F (αn)G(αn−k).

Proof. Define two formal power series f(q) and g(q) by

f(q) =
∞∑

n=0

F (αn)qn

and

g(q) =
∞∑

n=0

G(αn)qn.

By hypothesis, the coefficients of f(q) and g(q) are second-order linear recurrances
in n. As a consequence, we obtain the following identities:

(6) f(q) =
1

1− F (α)q −H(α)q2

and

(7) g(q) =
1

1−G(α)q −H(α)q2
.

To prove the theorem it suffices to show that

f(q)− g(q) = [F (α)−G(α)]qf(q)g(q).

By (6) and (7) we find that

1
g(q)

− 1
f(q)

= [F (α)−G(α)]q

which proves the theorem.

�

At this time we recall the Dirichlet convolution of two arithmetical functions.
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Definition. If F (n) and G(n) are two such functions, then the Dirichlet convolu-
tion (F ∗G)(n) is an arithmetical function defined by

(F ∗G)(n) =
∑
d|n

F (d)G(
n

d
).

For our purposes let F (n) = σ11(n), G(n) = τ(n) and H(n) = −n11. Since
E12(τ) and ∆(τ) are eigenforms of the Hecke operators Tp, the conditions of the
theorem hold for n = p a prime and when the arithmetical functions are chosen to
be their Fourier coefficients. We obtain:

(8)
σ11(pn+1)− τ(pn+1)

σ11(p)− τ(p)
=

n∑
k=0

σ11(pk)τ(pn−k) = (σ11 ∗ τ)(pk).

We now apply these ideas to the formula for δ24(n) given in Theorem 8. Let
n + 3 = pk+1 where p is an odd prime. By Theorem 8 we find that

(9) δ24(pk+1 − 3) =
1

176896
[σ11(pk+1)− τ(pk+1)].

¿From the convolution identity (8) we obtain the following corollary to Theorem 8.

Corollary 5. If p is an odd prime and k is a positive integer, then

δ24(pk+1 − 3)
δ24(p− 3)

= σ11 ∗ τ(pk).

Proof. By (8) we obtain

δ24(pk+1 − 3) =
σ11(p)− τ(p)

176896
(σ11 ∗ τ)(pk) = δ24(p− 3)(σ11 ∗ τ)(pk).

�

5. Representations of integers as sums of figurate numbers

Here we suggest how modular form theory can be used to solve the general problem
of calculating the number of representations of integers as sums of figurate numbers.
The method requires defining a generating function that is a modular form of weight
1
2 .

The higher figurate numbers are given by the function

fa(n) =
an2 + (a− 2)n

2
.

Notice that a = 1 gives triangular numbers and a = 2 gives squares. Here we
derive the generating functions for all of these figurate numbers using generalized
Dedekind η−functions [21],[22].
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Definition. The generalized Dedekind η−function is defined by

ηδ,g(τ) = eπiP2(
g
δ )δτ

∏
n > 0

n ≡ g mod δ

(1− qn)
∏
n > 0

n ≡ −g mod δ

(1− qn),

where P2(t) = {t}2 − {t} + 1
6 is the second Bernoulli polynomial and {t} = t − [t]

is the fractional part of t.

Theorem 3 of [22] gives a nice criterion for when functions f(τ) of the form

f(τ) =
∏
δ | N

0 ≤ g < δ

η
rδ,g

δ,g (τ)

where

rδ,g ∈
{

1
2Z if g = 0 or g = δ

2
Z otherwise

are modular functions on Γ1(N).
We now define generating functions for the figurate numbers in terms of gener-

alized Dedekind η−functions.

Theorem 10. If a ≥ 1, then

q
(a−2)2

8a

∞∑
n=−∞

q
an2+(a−2)n

2 =
η(aτ)ηa,1(2τ)

ηa,1(τ)
.

Proof. By the Jacobi triple product identity [2]

∞∏
n=1

(1− q2n)(1 + q2n−1z)(1 + q2n−1z−1) =
∞∑

n=−∞
qn2

zn,

where z 6= 0 and | q |< 1. Replacing q by q
a
2 and z by q

a−2
2 , we get

∞∑
n=−∞

q
an2+(a−2)n

2 =
∞∏

n=1

(1− qan)(1 + q
a(2n−1)+a−2

2 )(1 + q
a(2n−1)−(a−2)

2 )

=
∞∏

n=1

(1− qan)(1 + qan−1)(1 + qan−(a−1))

= q−
a
24 η(aτ)

∞∏
n=1

(1− q2an−2)(1− q2an−2(a−1))
(1− qan−1)(1− qan−(a−1))

= q−
a
24 q−aP2(

1
a )+ a

2 P2(
1
a ) η(aτ)ηa,1(2τ)

ηa,1(τ)

= q−
(a−2)2

8a
η(aτ)ηa,1(2τ)

ηa,1(τ)
.
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�

Notice that the generating functions constructed in the previous theorem are
defined as a sum over all integers, in contrast to

Ψ(q) =
∞∑

n=0

q
n(n+1)

2 .

This difference is minor because

∞∑
n=−∞

q
n(n+1)

2 = 2
∞∑

n=0

q
n(n+1)

2 .

Example: For pentagonal numbers, we let a = 3 in the last theorem. We obtain

q
1
24

∞∑
n=−∞

q
3n2+n

2 =
η(3τ)η3,1(2τ)

η3,1(τ)
.

So if ρk(n) is the number of representations of n as a sum of k pentagonal numbers,
then we can calculate ρk(n) using modular forms. Note that ρk(n) will reflect the
multiplicity of representations resulting from the possible choices of sign allowed
for n in the generating function.

6. The number of lattice points in k−dimensional spheres

Gauss asked how many lattice points are contained in the circle of radius R cen-
tered at the origin. It is very difficult to calculate this number as a function of R
asymptotically. Although this problem is difficult, it is easy to see that one can
calculate the exact number of points in such a circle using r2(n). One simply must
sum r2(n) for all n up to R.

We generalize this question by asking: How many lattice points are contained in
a k−dimensional sphere with radius R centered at ( 1

2 , 1
2 , . . . 1

2 )? We are interested
in this question because it gives a geometric meaning to δk(n).

Proposition 4. The k−dimensional sphere of radius R centered at ( 1
2 , 1

2 , . . . , 1
2 )

contains
2k

∑
1≤n≤R2

2 − k
8

δk(n)

lattice points in Zk.

Proof. Consider concentric spheres centered at ( 1
2 , 1

2 , . . . , 1
2 ). If a sphere of radius

r contains a lattice point (x1, x2, . . . , xk), then we have

(x1 −
1
2
)2 + (x2 −

1
2
)2 + · · ·+ (xk −

1
2
)2 = r2.

This implies that
k∑

i=1

(x2
i − xi) = r2 − k

4
.
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Or equivalently,
k∑

i=1

(x2
i − xi)

2
=

r2

2
− k

8
.

We get a representation of r2

2 − k
8 as a sum of k triangular numbers. The number

of lattice points on this sphere is 2kδk( r2

2 −
k
8 ). Here the scalar 2k accounts for the

fact that xi and −xi−1 define the same triangular number. The result now follows.

�
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