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Evaluation of Bayesian Model and MCMC Validity in Verification 
of Piecewise Smooth Signature

(Penilaian Model Bayesian dan Kesahihan MCMC dalam Mengesahkan 
Kelicinan Tandatangan Cebis demi Cebis)

M. BEHBOUDI*, E. PASHA & K. SHAFIE

ABSTRACT

McKeague offered a new method for verification of off-line signature based on Bayesian Model and Markov Chain 
Monte Carlo (MCMC), in which smoothness of the signature curve seems a necessity (it should have no singular point), 
but when a signature is piecewise smooth, can we use this method for verification of this signature? If yes, how can we 
use that? And is this method appropriate for piecewise-smooth signatures too? In the current article, we give an idea for 
verification of a piecewise smooth signature based on McKeague’s method. We suggest to separate the smooth segments 
from singular points and then each segment is verified by McKeague’s method independently. Finally, according to the 
result from smooth segments, we determine the correctness of this signature. Then we will check the validity of this idea 
with computing errors via simulation. 

Keywords: Biometric identification; functional data analysis; spatial point process; time warping 

ABSTRAK

McKeague menawarkan satu kaedah baru untuk pengesahan tandatangan luar talian berdasarkan Model Bayesian dan 
Rantai Markov Monte Carlo (MCMC) dengan kelancaran lengkung tandatangan seolah-olah satu keperluan (ia tidak 
seharusnya mempunyai titik tunggal), tetapi apabila kelicinan tandatangan cebis demi cebis, bolehkah kita gunakan 
kaedah ini untuk pengesahan tandatangan ini? Jika ya, bagaimana boleh kita menggunakannya? Adakah kaedah ini 
juga sesuai untuk kelicinan tandatangan cebis demi cebis? Dalam kajian ini, kami memberikan idea untuk pengesahan 
kelicinan tandatangan cebis demi cebis berdasarkan kaedah McKeague. Kami cadangkan supaya segmen kelicinan 
dipisahkan daripada titik tunggal dan setiap segmen kemudiannya disahkan melalui kaedah McKeague secara berasingan. 
Kesimpulannya, berdasarkan hasil daripada segmen kelicinan, kami menentukan ketepatan tandatangan ini. Kemudian 
kami akan menyemak kesahihan idea ini dengan kesilapan pengkomputeran melalui simulasi.
 
Kata kunci: Analisis data fungsi; masa meleding; pengenalan biometrik; proses titik reruang 

INTRODUCTION

Every day, millions of signatures are being produced, most 
of them applied to biometric identification. There are also a 
few signatures used for evaluation of checks, deals, official 
documents and business contracts. Though many studies 
have been carried out in the fields of signature verification 
and we have observed many salient developments in this 
regard, verification of signature has been regarded as an 
important and challenging subject. 
	 Finding an appropriate statistical model to examine 
a signature is one of the well sought after researcher 
favorites. The systems of on-line signature verification 
have greatly developed (Plamondon. 2000). Hastie et 
al (1991) introduced a method based on dynamic time 
warping (DTW) and area of geometric shape analysis for 
verification of on-line signature. Ramsay (2000, 1997) 
have applied functional data analysis for verification of 
on-line signature. System of serial three stage multi-expert 
is presented to solve signature verification problems in 
Sansone and Vento (2000).

	 Although in recent years a number of studies have 
been carried out regarding off-line signature, the problem 
of verification of off-line signature has experienced no 
outstanding achievements compared with the on-line 
method. The reason might be the absence of information 
about velocity, pressure and hand angle. Kalera et al. 
(2003) describe an exquisite approach for off-line signature 
verification and identification using gradient, structural and 
concavity (GSC) features for feature extraction. Several 
learning strategies for signature verification were evaluated 
using a high-dimensional feature space that captures both 
local geometric information as well as stroke information 
by Srihari et al. (2004). Some methods for verification 
of off-line signature introduce a distance based non-
parametric non-Bayesian method. These plans was to 
find changes and similarities (distances) among genuine 
signature samples and then using them for classification of 
the new signature sample. By this, forgery or correctness 
can be determined. As an example, please refer to Srihari 
et al. (2008). Fang et al (2003) and Matsuura and Sakai 
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(1996) have proposed a number of other important methods 
regarding off-line signature verification. 
	 A method for verification of off-line signature based 
on Bayesian model and MCMC approach developed by 
McKeague (2005), and with the aid of this method and 
using MATLAB software, successfully verified ‘S’ in 
Shakespeare’s signature that has a smooth curve. 
	 In this study, we give an idea for verification of 
piecewise-smooth signatures based on McKeague’s 
method and we did by using R software. An Iranian 
signature sample which has a singular point is verified 
by using this idea. In order to evaluate the validity of our 
idea, the errors are computed for this signature sample via 
simulation. The suitability of R software is checked for 
verification of piecewise-smooth signatures based on our 
idea.

This article is organized in the following manner:

In the next section, we will introduce the Bayesian model 
for this research. Here, at first some basics of geometry of 
curves will be expressed and thereafter, the observation 
model, prior and posterior densities signature verification 
method will be discussed. In the section that follows, 
we will examine a signature sample through the method 
expressed. In the last section, we compute errors and 
discuss the presented idea. 

BAYESIAN MODEL

In this section, we will introduce the proposed Bayesian 
model.

BASIC DEFINITIONS

It is essential at first to review some basics of geometry of 
curves. Consider parameterized curve a:[a, b] →  with 
coordinate display α(t) = (x(t), y(t))τ. We say that a curve is 
smooth (differentiable) whenever x(t) and y(t) at all points 
have derivatives of second order. In addition, we say the 
parameterized differentiable curve a:[a, b] →  is regular 
if for each t ∈ [a, b], α´(t) ≠ 0.
	 Supposing t ∈ [a, b], the velocity vector (tangent) is 
in the form of:

	 V(t) = α´(t) = (x´(t), y´(t))τ,	 (1)
  
In addition, arc-length is as follows:

	 L(t) = 	 (2)
 
where  is the length of the vector 
α´(u).
	 The regular curve will be re-parameterized by arc-
length as, β(s) = α(L–1(s)), s ∈ [0, L(b)]. The curvature for 
curves parameterized by arc-length is defined as follows:

	 κ(t) = x´(t)y̋(t) – x̋(t)y´(t).	 (3)

	 The trace of curve is image set ([a, b]). For more 
details refer to Carmo (1976).
	 One of the important features of curvature is that for c 
> 0, the curve ca(t) has curvature  When we compare 
a number of sample personal signatures, at first sight, it 
may seem that they have the same length; though, they 
are a little different. Therefore, we should standardize the 
observed signatures to be able to compare them. To do 
this, we rescale them to have equal arc-lengths τ > 0. As 
a result, the curvature of all signatures belongs to C[0, τ] 
(space of continuous function on [0, τ]). 

OBSERVATION MODEL AND LOG-LIKELIHOOD

In this section, we present the observation model and 
the log-likelihood. As noted before, since velocity, 
acceleration, pressure and hand angle are not available 
in off-line signatures, the signature is presented through 
its curvatures. Consequently, it becomes an essential that 
tangent (velocity vector) exists in all points of the curve. In 
addition, in the parameterized differentiable curve a:[a, b] 
→ , the tangent exists if for each t ∈ [a, b], α´(t) ≠ 0. As a 
result, there is no tangent in singular points. Therefore, this 
method is only possible for smooth signatures or smooth 
segments of the signature. Our plan for verification of 
signature which has singular points (which is piecewise-
smooth) is to separate smooth segments of this signature 
from singular points and then verify each one individually 
and finally evaluate the correctness of the signature based 
on obtained results.
	 At first, we choose one of the signature samples as a 
template. We denote throughout the paper, subscript j = 1,  
…, m, refers to segment j in a signature.
	 Smooth and arc-length parameterized approximation 
for signature curve, which is attained by image processing 
is named αj,obs(t), t ∈ [0, τj]. Then we calculate the velocity 
vector vj(t) = , t ∈ [0, τj] and also the arc-length and 
curve curvature of the signature, using (2) and (3).
	
The observed velocity vector is modeled as follows:

	 	
	
	 θj(t) = ϕj +  ds + σjWj(t),		 (4)
 
where κj = C[0, τj], is the underlying curvature function, 
Wj(t) is the standard Brownian motion and ϕj is the angle 
of Vj(0) with x-axis. Here, θj(t) shows the angle of the 
velocity vector with x-axis in a state that white noise with 
variance  > 0 is added to underlying curvature. Also, 
with αj(t) = αj(0) +  dt formula, we can construct 
the curve from the velocity vector.
	 Suppose that σj is given, then the log-likelihood for is 
as follows (McKeague 2005):
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	 	 (5)

	 To calculate the numerical evaluation of likelihood, 
velocity vector Vj(t), t ∈ [0, τj] are approximated on a 

regular grid , nj = 0, …, Nj. Also in this article, 

the amount of σj was chosen via experimental studies.
	 Now, we expand the model to signature samples. 
Because the obtained arc-lengths are different, we re-
scale all signatures in order acquire their arc-length equal 
to the template arc-length, . Then, the velocity vector for 
signature samples are computed. Suppose Vj

(i), i = 1, …, n, 
is the velocity vector for ith sample.
	 Some slight differences in velocity vectors of samples 
lead to the time difference in curvature peaks of samples. 
Accordingly, to make the model flexible, we use the time 
warp function hj,i:[0,τj] → [0,τj], i = 1, …, n, as hidden 
variables or random effects.
	 The full log-likelihood for vector of time-warp 
functions hj = (hj,i; i = 1, …, n) and underlying curvature 
function is as below:

	

where κj,i = κj(hj,i) is the curvature function segment j of 
sample i. 

PRIOR

As noted before, Vj(i), i = 1, …, n, are model observations, 
and hj and κj are the parameters. According to the 
Bayesian model definitions, we define an appropriate prior 
distribution for the parameters named as baseline curvature 
process and time warping processes. 

Baseline curvature process We choose the curvature of 
the template sample as a template curvature function and 
name it κj,0. Then by specifying an appropriate value for 
εj, we define the buffer region around the κj,0 as:
	
	 Bj = {(t, y): κj,L(t) ≤ y ≤ κj,U(t), t ∈ [0, τj]},

where κj,U(t) = Kj,0(t) + εj and κj,L(t) = κj,0(t) – εj are template 
curvature bounds. Supposing that Xj, is the baseline 
curvature process of segment j and to be a Strauss process 
i.e. it has unnormalized density:

	 f(xj) = ,

with respect to unite rate Poisson process in Bj, the points 
(tj,mj

, yj,mj
), mj = 1, …, n(Xj), that 0 < tj,1 < tj,2 < … < tj,n(Xj)

 < τj 
will be generated completely randomly in the buffer region 
Bj  where 0 ≤ γj ≤ 1 and βj > 0 are tuning parameters,  d(xj)
is the of paired points that their maximum metric distance 
(distance between their time coordinate) is ρj and n(xj) is 
the total number of randomly generated points. See van 

Lieshout (2000) for details. By adding (tj,n(X)+1, yj,n(X)+1) = 
(τj, κj,0(τj)) and (tj,0, yj,0) = (0, κj,0(0)) as the fixed member 
to randomly generated points, we define baseline curvature 
function as bellow (McKeague 2005):

	

where tj,mj ≤ t ≤ tj,mj+1
, mj = 0, 1, …, n(Xj). 

Time warping process The time warping process, is an 
increasing and continuous process, which is linear between 
the grid points uj,s = , sj = 0, …, pj and constrained so that 

hj,i(τj) ≤ τj. Also is determined by the user. The parameters 

θj,isj
 = hj,i(uj,sj

) – hj,i(uj,sj
), sj = 1, …, pj, determine hj,i and 

we combine θj,isj
 into a vector θj ∈ 0j = [0, τj]

npj to give hj.
	 To provide the prior on hj,i, we utilize functional data 
analysis in curve registration. Prior density on hj,i (base on 
its parameters) is specified as follows:

	 πj(hj,i) ∝ exp{–ηjJj(hj,i⎜κj)},

where ηj > 0 is the precision parameter determined by 
the user. In this method, deviation of data from the fitted 
velocity vector is penalized and its function is as follows:

	 Jj(hj,i⎜κj) = 

	 The velocity vector , is a velocity vector 
according to curvature function κj(hj,i(t)) with an initial 
value of Vj

(i)(0) =  and angle(u, v) = cos–1(uTv) is 
the angle between unit vectors u and v in radians. 

POSTERIOR DISTRIBUTION AND SAMPLING FROM IT

Assuming the base curvature κj is shown with its xj points, 
time warp vector hj is shown with θj and data are known. 
The posterior density is proportional to:

	 g(xj, θj) = exp{l(κj, hj⎜dataj)}

		  f(xj) (hj,i⎜κj, dataj),

where the dominating measure is the product of unit-rate 
Poisson distribution on Bj and the Lebesgue measure on Θj. 
	 The MCMC scheme used to detect this posterior 
is Metropolis within Gibbs. For background, refer to 
NtZoufras (2009). Each component θj of θj is updated 
via the Random Walk Metropolis. The distribution of 
proposal  is normal with zero mean and restricted to the 
compact interval [0, τj]. The xj-component is updated by 
a Metropolis Hastings Algorithm, which was presented 
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by Geyer and Moller (1994). According to this algorithm, 
either a point ξ is born uniform randomly in Bj, where in 
this state we have a movement as (xj, θj) → (xj ∪ξ,θj) and 
the Hastings ratio is as follows:

	 αj,b(xj, θj, ξ) = 
Bj θ

θ

or a point ξ is randomly selected from the points inside 
and is killed. In this state, we have a movement as (xj, θj) 
→ (xj\ξ, θj) and the Hastings ratio is as follows:

	 αj,d(xj, θj, ξ) =  
θ

θBj

	 Moreover, the probability of born or killed points are 
equal and the mentioned ⎜ Bj ⎜ in αj,b and αj,d is the buffer 
region area.

SIGNATURE VERIFICATION

As apparent from the study’s title, it became clearer that 
the present paper aimed to evaluate correctness of a new 
signature that is technically called verification of new 
signature sample. We are going to do this via Bayesian 
model and MCMC scheme. What has been said up to this 
point are preliminaries we need for verification of the new 
signature.
	 We re-scale the new signature which we want to 
know that this is genuine signature or a forgery. Then we 
compute its velocity vector and name it Vnew. To evaluate 
the correctness of this signature, first the forgery index Fj 
should be calculated. Firstly, compare  with each Vj

(i), 
i = 1, …, n, in order to find the difference rate. So rotate 

 clockwise to have the initial direction Vj
(i)(0), i =  1, …, 

n and name it  i = 1, …, n. Next, compute the forgery 
index Fj as bellow (McKeague 2005):

	

	 In fact, the forgery index calculates the difference 
between the new signature and the most similar signature 
sample to it. To range Fj between 0 and 1, we normalize 
it. We expect it to be small for genuine signatures because 
small magnitude of forgery index indicates that the new 
signature is similar to one of the samples.
	
	 Actually, the null hypothesis (H0) is that the new 
signature is genuine and is the test statistic. The reason 
that new signature is a forgery is determined by p-value 
P(Fj

* > Fj). The velocity vector Vj
* is the velocity vector 

of the fitted observation model that has forgery index Fj
*. 

Replacing Vj
new by Vj

* in Fj  to compute Fj
*. 

	 P-value is determined by bootstrap simulation. 
After MCMC scheme, we have posterior mean of baseline 
curvature,  and posterior mean of time warping functions 
hj,i that is , and can easily compute ( (.)) which I is 
randomly selected from i = 1, …, n. 

Then replace  ( (.)) by κj model (5) and simulate it 
10000 times by using bootstrap method. Now we compute 
p-value. 
	 Moreover, our aimed was to assess the new signature 
validity in significance level 0.05. To do this, suppose two 
segments of the signature are independent. As a result, 
we should evaluate the correctness of each segment in 
significance level 0.0255. Moreover, to accept the new 
signature as a genuine signature, it required both segments 
to be genuine and if one segment is a forgery, the signature 
will be rejected.

APPLICATION

In order to examine the correctness of a new signature 
sample, it is obligatory to possess information about that 
individual’s signature. Achieving this, in the first stage, 
four samples of his/her signatures, shown in Figure 1, 
was obtained.

FIGURE 1. Four samples of the examined signature

	 Based on Figure 2, we separate smooth segments from 
singular points and consider each segment independently. 
Here, signature sample has one singular point. Whenever it 
has more than one singular point, the procedure is similar.

FIGURE 2. Separated segments of four sample signatures

	 Firstly, by use of the read.jpeg command we load the 
scanned image of the signature into software R. Secondly, 
we click on important points of the signature curve and 
register coordinates of these points. In the next stage, 
through interpolation by cubic spline functions in 1001 
knots and separately in x and y coordinates, we calculate a 
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smooth and relatively exact approximation for the signature 
curve. Now, selecting 100 knots from 1001 knots make a 
regular grid of 100 knots on the signature curve. The rule 
for choosing these knots is that knot 1 is the first knot (the 
first point we clicked on) and knot 1001 is the 100th knot 
(the point in which the signature arc-length is equal to, after 
re-scaling). The remaining 98 knots are located between 
these two knots and along the signature. 
	 In this paper, we choose signature sample 3 as the 
template sample. Because these signatures have 2 smooth 
segments, subscript j =1, 2 refer to segment in signatures. 
	 We calculate Vj(t), j = 1, 2, by calculating component 
derivatives for 100 chosen knots. After calculating which 
was introduced in the previous section, arc-lengths 
of first and second segments, τ1 and τ2, were obtained 
1.85320653861 and 2.180766843, respectively. In this 
situation, 0.15 is an appropriate value for σj, j =1, 2, in the 
model (4). Figure 3 shows the curve of both segments of 
the sample 3, their simulated curvature, the third sample 
curvatures on which white noise superimposed and 
obtained trace from latter curvatures. Left part belongs 
to the first segment of the signature and the right part is 
related to the second one.
	 Now, we expend the model to 4 signature samples. 
At first we calculate the arc-length samples. The arc-
length of segment 1 for signature samples 1, 2 and 4 
are 1.793639223, 1.8657510341 and 1.6417542252, 
respectively, and the arc-length of segment 2 for signature 
samples 1, 2, and 4 are 2.209253905, 1.909385592 and 
1.907520967, respectively. Because the arc-length of 
signature samples differs together, we re-scale signatures. 
Then, we calculated the V1

(i) and V2
(i), i=1,2,3,4, which are 

demonstrated in Figures 4 and 5, respectively. 

	 We choose the curvature function of signature sample 
3 as the κj,0, j =1, 2 and here ε1 = ε2 = 0.5, β1 = 5, β2 = 2, γ1 
= γ2 = 0.01, ρ1 = 0.005τ1, and ρ2 = 0.001τ2 are appropriate 
values for the baseline curvature process. 
	 As can be seen in Figure 6 the curvature function 
κj(t), j = 1, 2, is completely inside the buffer region and 
passes through points generated by the Strauss process. 
Furthermore, the resulted trace from the curvature function 
is compatible to shape of the signature. 
	 In this study, p1 = p2 = 20 and η1 = η2 = 500 are suitable 
values for prior density parameters on hj,i and burn1 = burn2 
= 2000 and afterburn1 = afterburn2 = 2000  are proper 
values for parameters related to doing MCMC scheme.
	 By running the MCMC program, an estimation of 
curvature function (posterior mean of curvature), and 
estimation for time-warping functions (posterior mean of 
time–warping functions hi, i = 1, 2, 3, 4) was obtained. 
	 Figure 7 shows the posterior mean of curvatures of 
segments 1 and 2 without posterior mean of time warping 
functions. As seen in the right images, the achieved traces 
(simulated curves) have a proper compatibility with the 
picture of observed signature samples.
	 It’s worth noting εj = 2, j = 1, 2, in Figures 6 and 7. 
The acceptance rate for the used MCMC scheme for accept 
θ́, dead one point in xi and born one point in xi for first 
segment are 2, 16.375 and 15.7% and for second segment 
are 1.275, 14.625 and 13.725%, respectively.
	 It should mention that since the achieved results of 
MCMC appropriately adapt with the signature samples, 
the acceptance percentage becomes reasonable. The main 
reason for low acceptance rate to accept θ́ can be accepted 
and be found in the complexities of signature curves. 
Because of this, we should consider a very low acceptance 

FIGURE 3. The curve of the segments of signature sample 3 (top-left row); simulated curvature from the segment curves of 
sample 3 (top-right row); curvatures of the third sample to which a little white noise is added (bottom-left row); 

re-constructed curves (obtained trace) from related curvatures (bottom-right row)
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FIGURE 4. Components of velocity vector V1
(i), i = 1, 2, 3, 4

FIGURE 5. Components of velocity vector V2
(i), i = 1, 2, 3, 4

FIGURE 6. Bracketing functions for the buffer region (dotted line), generated points via Strauss process, and approximated 
curvature on points (bold line) (left); points generated via Strauss process and approximated curvature 

on points (bold line) (center); obtained trace from approximated curvature (right)
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rate. Figures 8 and 9 illustrate the reconstructed curves 
from the posterior mean of baseline curvature function 
and the posterior mean of time warping functions for the 
first and secong segments of samples, respectively.
	 To verify the correctness of a new signature, we 
scanned image of the new signature and separated its 
smooth segments from the singular point as presented in 
Figure 10.

	 After the primary computations, the arc-length of 
segments 1 and 2 of the new signature are 1.8868456831 
and 2.2399613739, respectively. We re-scale the new 
signature. Then we compute its velocity vector and name 
it Vnew.
	 After calculating, as you can see in Figure 11, the 
forgery index of segments 1 and 2, F1, F2, are 0.1158795 
and 0.1721104, respectively as well as the obtained 

FIGURE 7. Posterior mean of curvature (bold line) and bracketing functions for the buffer region (dotted lines) (left); posterior 
mean of curvature (center); simulated curve (obtained trace) from the posterior mean of curvature (right)

FIGURE 8. Traces of first segment of 4 signature samples(first line); reconstructed curves (obtained 
traces) from posterior mean of baseline curvature function that adjusted by posterior mean of time 

warping functions (the second line); posterior mean of time warping functions (the third line)
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FIGURE 9. Traces of second segment of 4 signature samples (first line); reconstructed curves (obtained 
traces) from posterior mean of baseline curvature function that adjusted by posterior mean of time 

warping functions (the second line); posterior mean of time warping functions (the third line)

FIGURE 10. New signature; Smooth segments have separated from the singular point

FIGURE 11. Simulated histogram of and vertical line as the forgery index for the first segment of the new signature (left); 
and simulated histogram of and vertical line as forgery index for segment 1 of new signature (right)

results for p-value of segments 1 and 2 are 0.006 and 
0.0079, respectively. Since the p-values are small, the null 
hypothesis in both segments is rejected. We conclude that 
the new signature is a forgery.

DISCUSSION AND RESULTS

In order to evaluate the validity of this method, we 
compute errors of this method. Therefore, we consider 

two signatures, one is a forgery and the other is a genuine 
signature. Then we examine to find the percentage of 
situations in which the genuine signature is identified as 
a forgery and find the percentage of situations in which 
the forgery is identified as a genuine signature. Figure 12 
presents the scanned image of both forgery and genuine 
signature.
	 In order to compute errors, after the initial computations 
and re-scaling arc-length, we calculate the velocity vectors 
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of the genuine and forgery signatures. At the beginning, the 
percentage of situations in which the the genuine signature 
is defined as a forgery is calculated.
	 After calculation, the forgery index for segments 1 and 
2 of the genuine signature, F1, F2, are obtained 0.0177887 
and 0.01410058, respectively. Then we simulate the index 
Fj

*, j = 1, 2, via bootstrap method and compute P(Fj
* > 

Fj), j = 1, 2. In order to obtain error, we repeat this process 
500 times and calculate the percentage of situations in 
which the genuine signature is identified as a forgery. 
Consequently, we can get the cases in which P(Fj

* > Fj), j = 
1, 2, is less than 0.0255. Error of segments 1 and 2 are 0.01 
and 0.012, respectively. Suppose that signature segments 
are independent and considering that the signature is a 
forgery when at least one of the segments is a forgery, the 
error is equal to 0.02188.
	 In order to compute the percentage of situations 
in which the forgery is defined as a genuine signature, 
after doing the initial computations, the forgery index for 
segments 1 and 2 of the forgery signature are 0.1261095 
and 0.1541828, respectively. As before, in order to obtain 
error, we compute P(Fj

* > Fj), j = 1, 2, in 500 times and 
find out the cases wherein P(Fj

* > Fj), j = 1, 2, was greater 
than 0.0255. The error of segments 1 and 2 are 0.11 and 
0.226, respectively. Supposing the smooth segment is 
independent, the error will be 0.336.
	 According to the attained results of errors, we calculate 
that the idea of separating smooth segments of the signature 
from singular points is a proper idea in verification of 
piecewise smooth signature by Bayesian model and MCMC 
scheme. Generally speaking, this could be a perfect method 
in verifying signatures of any type. It is necessary to note 
that through calibrating σj, j = 1, 2, we can optimize errors. 
	 The required time for signature verification, in 
addition, will be less than 30 min with this method and 
using software R. Since it is free software and keeping 
in mind this fact that its applications can be provided as 
various packages for interested people, using this software 
would be better and more applicable.
	 To sum up, a question remains that do the Bayesian 
model and MCMC work well in verification of on-line 
signatures.
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