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Abstract
We present the NBA framework, which extends the ar-

chitecture of the Click modular router to exploit mod-
ern hardware, adapts to different hardware configurations,
and reaches close to their maximum performance with-
out manual optimization. NBA takes advantages of exist-
ing performance-excavating solutions such as batch pro-
cessing, NUMA-aware memory management, and receive-
side scaling with multi-queue network cards. Its abstraction
resembles Click but also hides the details of architecture-
specific optimization, batch processing that handles the path
diversity of individual packets, CPU/GPU load balancing,
and complex hardware resource mappings due to multi-core
CPUs and multi-queue network cards. We have implemented
four sample applications: an IPv4 and an IPv6 router, an
IPsec encryption gateway, and an intrusion detection system
(IDS) with Aho-Corasik and regular expression matching.
The IPv4/IPv6 router performance reaches the line rate on
a commodity 80 Gbps machine, and the performances of
the IPsec gateway and the IDS reaches above 30 Gbps. We
also show that our adaptive CPU/GPU load balancer reaches
near-optimal throughput in various combinations of sample
applications and traffic conditions.

1 Introduction
High-performance commodity hardware has enabled

emergence of software packet processing systems that ex-
tract close to maximum performance out of the given hard-
ware [3, 5, 21, 33, 44, 54]. Key hardware enablers include
multi-core CPUs, mass-market many-core processors such
as GPUs, and cheap 10 GbE network cards. The key tech-
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niques in software to exploit hardware performance include
batching, pipelining, and parallelization.

The challenge is that implementing and tuning such a
complex mix is costly. Combining existing techniques re-
quires architecture-specific expertise for application devel-
opers, which is difficult to generalize for diverse hardware
and applications. As a result, many systems resort to rein-
venting the wheel due to a lack of general frameworks or
reusable libraries. The current best practice for optimiza-
tion is ad-hoc and manual, as well. Searching the space of
inter-dependent tuning parameters such as the batch size and
the processor load balancing ratio is time-consuming and
configuration-dependent. The diversity in hardware and soft-
ware, such as the application behaviors, heterogeneous pro-
cessor architectures, and dynamically changing workloads,
often result in suboptimal performance.

We argue that existing work should become a reusable
building block for future systems. Historically, the Click
modular router has laid the foundation for a programmable
router framework [31], and follow-up work has improved
Click’s performance. DoubleClick [29] has demonstrated the
potential of computation batching. Snap [47] adds GPU-
offloading abstractions to Click.

In this work we propose a software-based packet process-
ing framework called NBA (Network Balancing Act). It ex-
ploits the latest hardware advances, but encapsulates their
low-level specifics. It provides application developers with
a familiar programming model that follows the Click mod-
ular router, while it achieves close to maximum application
performance. This way, developers can focus on the appli-
cation logic and leave the architecture-specific tuning to the
framework.

The key contributions of this work are the following de-
signs in NBA:

• A batch-oriented modular architecture with minimal
performance overheads by applying efficient memory
management and branch prediction,

• A declarative abstraction for GPU offloading that re-
duces the learning cost for application developers and
eases implementation effort,
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Criteria
Click Modular Router

[31]
RouteBricks

[15]
PacketShader

[21]
DoubleClick

[29]
Snap

[47] NBA

Established
Techniques

IO Batching © (with netmap) © © © © ©
Modular Programming Interface © © × © © ©

Our
Contributions

Computation Batching × × 4
(no branches)

4
(manual)

4
(partial)

©

Declarative Offloading
Abstraction

× × 4
(monolithic)

×
4

(procedural
abstraction)

©

Adaptive Load Balancing for
Heterogeneous Processors

× × × × × ©

Table 1: Comparison of existing packet processing frameworks and NBA.
• An adaptive CPU/GPU load balancing algorithm that

eliminates optimization effort by finding the maximum
throughput under any mix of workloads.

Our implementation of NBA reaches up to 80 Gbps
for IP routing and above-30 Gbps for IPsec encryption
and pattern-matching intrusion detection system (IDS) on
a single commodity machine comprised of dual Intel Sandy
Bridge CPUs, two desktop-class NVIDIA GPUs, and eight
10 GbE ports, under the hardware budget $7, 0001. We also
show general applicability of NBA’s adaptive load balancer
by comparing its performance on multiple combinations of
application and traffic conditions.

The rest of the paper is organized as follows. In the next
section (§ 2) we introduce the requirements and technical
challenges. § 3 describes concrete design choices and the
implementation details. We evaluate our framework in § 4
and introduce related work in § 5, followed by discussion in
§ 6, future work in § 7, and finally conclusion in § 8.

2 Motivations and Challenges
The requirement of high performance and programmabil-

ity poses the following recurring challenges in packet pro-
cessing frameworks:

• Achieving performance scalability on multi-core/multi-
socket systems

• Providing an abstraction for packet processing to ease
adding, removing, and changing the processing func-
tions

• Reducing overheads of frequent operations, particularly
per-packet function calls and resource allocation

• Handling the complexity of offloading computations to
accelerators such as GPUs

In Table 1, we summarize how existing body of work has
addressed the above challenges. For example, batch process-
ing for packet IO and computation is the essential method to
reduce per-packet overheads. As all work facilitates some
form of batch processing for packet IO (IO batching), we
conclude it has become the intrinsic part of packet process-
ing frameworks. For the abstractions, that of the Click mod-
ular router has been reused over time in nearly every work,

1 All prices are from http://amazon.com in October 2014.

showing versatility and popularity of Click’s abstraction.
The missing pieces are batch processing in packet process-
ing pipelines (computation batching) and facilities to ease
the complexity of offloading, such as an easy-to-use offload-
ing abstraction and adaptive load balancing. These are where
NBA comes in.

Below we investigate why the mentioned challenges are
important and overview our solutions.
Multi-core and multi-socket scalability

Scalability in packet processing frameworks has be-
come an intrinsic requirement as high line rates per port
(≥ 10 Gbps) are becoming common [12]. The current com-
modity servers have two fundamental limits that mandate
scalable software designs: i) the PCIe and memory band-
width limit which necessitates scalability on NUMA (non-
uniform memory access) multi-socket systems, and ii) the
clock speed limit which necessitates scalability on multi-
core CPUs. Prior work has already shown that both types
of scalability are important: i) using remote sockets’ mem-
ory increases the packet processing latency by 40-50% and
reduces the throughput by 20-30% [21], and ii) exploiting
all cores is essential to reach beyond 10 Gbps line rates
[5, 15, 16, 18, 21, 27, 29, 44].

Following prior work, NBA carefully chooses and em-
braces known techniques for high scalability. We describe
the details in § 3.1 and § 3.2.
Packet processing abstraction

We reuse and extend the Click modular router’s abstrac-
tion [31] for NBA. In Click, the packet processing operators
are represented as elements that generate, process, or dis-
card packet objects. The elements are written as C++ classes
with a standard packet manipulation interface including raw
buffer access so that they can implement any kind of new
packet operators. It composes elements into a directed graph
using a declarative composition language, which exposes the
pipelining structure. NBA extends Click’s abstraction by im-
plementing batch processing of elements and adding packet-
level parallelization to each element by supporting accelera-
tors.

We believe that Click will continue to be a dominant
abstraction due to its extensive set of reusable elements that
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Figure 1: Throughput drops by the relative size of split
batch (the smaller one among two split batches).

come with the easy-to-use composition language and C++’s
versatility on writing new elements.
Reducing per-packet overheads

The number of minimum-sized packets in a 10 Gbps link
is over 14 millions per second. The CPU cycle budget for
each packet is less than 200 cycles with a single CPU core
running at 2.67 GHz. This means that any per-packet oper-
ation cost must be minimized and amortized via batch pro-
cessing. Prior work has already demonstrated the effective-
ness of batch processing in both packet IO [3, 5, 6, 44] and
computation [21, 29].

However, a new challenge arises in combination of com-
putation batching and the fine-grained element abstraction
from Click. Since each element may have multiple output
edges and individual packets in a batch may take differ-
ent edges (processing paths), the batch needs to be reorga-
nized after such branches. The challenge here is to avoid
such batch reorganization overheads. We take an approach
similar to [29]: split the batch into smaller batches where
each split batch has packets taking the same path only so
that later elements do not have to check the applicability
of operations packet by packet. However, splitting batches
causes two types of performance impacts: allocation over-
heads for new batch objects and decreased batch sizes. Fig-
ure 1 demonstrates the performance degradation by batch
splits, up to 40%. The result suggests that the primary over-
head (25%) comes from memory management, allocating
new batches and releasing the old batch, since the split batch
sizes impact the throughput within 15%.

We tackle this issue in two ways: (i) avoiding branches
with multiple output edges and (ii) devising a simple batch-
level branch prediction technique to reduce the memory
management overheads. We describe the details in § 3.2.
Complexity of exploiting accelerators

A series of prior work have shown the potential of GPUs
as packet processing accelerators [21, 26, 27, 47, 52]. Ac-
celerators compliment the computation power of CPUs with
their specialization to exploit data parallelism. Examples of
accelerators range from general-purpose GPUs to many-core
processors such as Intel Xeon Phi coprocessor and Tilera.
They invest most of their silicon budget to a massive number
of arithmetic processing cores (a few tens to thousands) to
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Figure 2: Performance variations of the IPsec encryp-
tion gateway with varying offloading fractions. The of-
fered workload is a packet trace from CAIDA 2013 July
dataset.

exploit data parallelism, in contrast to desktop/server CPUs
that have a small number of fat cores (four to eight typically)
with large caches to run individual threads faster.

We have two challenges to fully exploit such accelera-
tors. First, it is difficult and time-consuming to write codes
that cover GPU offloading specifics and run fast by carefully
handling vendor-specific details. Second, offloading every-
thing always may not yield the best achievable performance.

Offloading abstraction: The major hassle to handle ac-
celerators is data copy and synchronization between the host
and accelerator device with concerns on vendor-specific de-
tails. For example, GPU networking solutions [26, 27, 51]
have used multiplexed command queues to exploit pipelin-
ing opportunities in data copies and kernel execution. When
doing so it is performance-critical to avoid implicit syn-
chronization of command queues, but unfortunately it is
easy to overlook vendor-specific caveats. One such exam-
ple is cudaStreamAddCallback() in CUDA [2]. Its in-
tention is to add a completion notification point to a com-
mand queue which asynchronously notifies the caller thread
via a callback function, but it actually synchronizes with
all ongoing requests in other queues when invoked. To this
end, we argue that existing frameworks expose too much
of such details to application developers. PacketShader [21]
offers a simple interface to write packet processing appli-
cations using preprocessing, computing, and postprocessing
callbacks. Inside them, application developers are forced to
write codes that deal with all GPU offloading specifics such
as buffer management, pipelining, and synchronization by
themselves. Snap [47] is the first to have offloading abstrac-
tions as composable Click modules, but it remains in a pro-
cedural abstraction where application developers must un-
derstand, specify, and optimize the order of offloading steps
such as data copies and kernel execution.

Load balancing: Offloading computations for all incom-
ing packets may not yield the best performance; we need
to find the optimal balance between the CPU and accelera-
tors. Offloading requires preprocessing and postprocessing
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Figure 3: The high-level software architecture.

steps and has inevitable overheads due to them. If not used
judiciously, offloading may hurt the performance instead of
improving it. For example, our experiment using a sample
implementation of IPsec encryption gateway shows a corner
case where offloading all workloads does not yield the op-
timal performance. Encryption is a compute-intensive task
and offloading it is expected to yield better performance, but
it does not always. Figure 2 illustrates the performance vari-
ation by the fraction of offloading. Here the offloading frac-
tion 30% means that 70% of input packets are processed by
the CPU and 30% by the GPU. The packets to offload are
selected randomly with the probability 0.3. The result shows
that the maximum performance is achieved when we offload
80% of traffic to GPUs, yielding 20% more throughput com-
pared to GPU-only and 40% more than CPU-only settings.

We explain the structure of offloadable elements with a
suggested declarative offloading I/O abstraction in § 3.3 and
describe our adaptive load balancing scheme in § 3.4.

3 Design and Implementation
In this section we describe details on how we address

the challenges in the framework design and implementation.
Our primary concern is to hide the details of batch process-
ing and offloading from application developers. As Figure 3
shows, we implement our framework on top of Intel DPDK
and NVIDIA CUDA runtime.

3.1 Packet IO Layer
The packet IO layer is the most performance-sensitive

component in the framework as it decides the available bud-
get for packet processing. As prior work has reported [21,
33, 54], passing through the Linux kernel network stack im-
pairs the raw packet IO performance due to unnecessary pro-
tocol handling and memory management overheads inside
the kernel. As NBA itself becomes a base for customized
packet processing applications, we need to minimize the
overheads between NIC and NBA. For this purpose, we have
a number of choices [3, 5, 6, 44] that offer high-performance
user-level packet IO schemes suitable for NBA.

Among them we choose Intel DPDK [3] because it does
not only have zero-copy packet IO APIs but also provides

Figure 4: The structure of a packet batch.

a comprehensive NUMA-aware, architecturally optimized
memory management libraries that ease development of
a multi-socket/multi-core scalable framework. For exam-
ple, its memory pool library is particularly useful for han-
dling the path diversity of packets in a modular pipeline
where we need to allocate and release individual packet
buffers at different times with minimal overheads. It pro-
vides other useful utilities as well, such as lock-free rings
and thread management libraries that ease development of
a high-performance packet processing framework. Yet an-
other advantage of DPDK is participation of NIC vendors in
its development process, which allows us to test latest NIC
models in a timely manner. Nonetheless, NBA itself is not
fundamentally limited to work with DPDK only, because
NBA is not tied with DPDK’s internals. Adding a wrapper
to the DPDK APIs will be sufficient to replace DPDK with
other user-level packet IO libraries.

3.2 Batch-oriented Modular Pipeline
Packet batches as first-class objects

On top of the packet IO layer, NBA wraps received pack-
ets into packet batches for computation batching and feeds
them into the modular pipeline (ElementGraph in Figure
3). Similarly to Click, the ElementGraph traverses user-
defined modules (elements) in the pipeline until an element
claims to store the batch or all its packets are dropped or
transmitted out. Each element defines a reusable packet pro-
cessing function. Although NBA’s programming model fol-
lows Click, we use packet batches as our universal input/out-
put object type for elements instead of individual packets.

We design packet batches to be a light-weight, efficient
data structure as our system should cope with 10K to 100K
of packet batches per second. To avoid excessive copy over-
heads when creating new batches, packet batches do not
carry actual packet contents but only the pointers to packet
buffers. Hence, its structure is a simple set of arrays as shown
in Figure 4: an array of pointers to packet buffers, an array
of per-packet processing results including the output link IDs
to next elements, a per-batch annotation set, and an array of
per-packet annotation sets. We use annotations to attach ex-
tra metadata to packets (e.g., timestamp and input NIC port
index) and allow data sharing between different elements
(e.g., flow IDs for protocol handling). The commonly used
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Figure 5: How NBA avoids multi-edge branches.

annotation fields are restricted to 7 entries to make the anno-
tation fit into a cache line for performance.
Hiding computation batching

NBA runs an iteration loop over packets in the input batch
at every element whereas elements expose only a per-packet
function interface. The framework handles the processing
results of individual packets (e.g., drop or send it to a specific
next element) by splitting packet batches when the element
is a branch, i.e., has multiple next-hop elements.

In addition to per-packet elements, we introduce per-
batch elements as well to run coarse-grained operations ef-
ficiently. For example, making load balancing decisions in
packet granularity incurs high overheads and coarse-grained
decisions still work since we have a very high packet in-
put rates, millions per second. Another example is a queue
element because storing packets can be done in the unit of
incoming batches “as-is” without decomposing them. NBA
keeps universal composability of both per-packet and per-
batch elements as it decides whether to use an iteration loop
or direct function call depending on the type of element.

NBA takes advantage of the Click configuration language
to compose its elements, with a minor syntax modification
to ease parsing element configuration parameters by forcing
quotation marks around them. We have plans to extend and
clarify our modified Click syntax 2.
Dealing with the batch split problem

Per-packet semantic of elements raises the batch split
problem with multiple output edges, or branches, as we dis-
cussed in § 2. NBA tackles it in two ways: avoiding branches
with multiple output edges that originate from system re-
source mappings and use of a branch prediction technique

2 We have open-sourced our parser as a separate library at
https://github.com/leeopop/click-parser

10 GbE port

Worker Thread

Device Thread

Offloaded Functions

HW RXQ HW TXQ

CPU

GPU

NIC

...

Figure 6: An example of thread and core mapping on a
system with a single socket quad-core CPU and one GPU
running three worker threads and one device thread. Ad-
ditional CPU cores in a socket add more worker threads.

to reuse the batch object for the processing path that most
packets take.

To reduce the occurrence of such multi-edge branches,
we separate out the hardware resource mappings from ele-
ments. For example, Click’s IO elements such as ToDevice
and meta-elements such as StaticThreadSched represent
not only the functionality but also hardware resources. This
coupling causes configurations to have multi-edge branches
(e.g., IPLookup) to split the traffic into multiple resources
(e.g., multiple outgoing NIC ports). As Figure 5 illustrates,
NBA moves the hardware resource mapping and the split-
forwarding logic into the framework to remove multi-edge
branches where batches are split into similar-sized batches.
Routing elements now use annotation to specify the outgo-
ing NIC port and the framework recognizes it after the end
of the pipeline. It allows us to simply drop invalid packets so
that we have no branches at all in the configurations used in
this paper.

With the help of removing multi-edge branches, we ap-
ply a simple branch prediction technique because (i) most
branches have only two edges and (ii) most packets take one
path and only few exceptional packets (e.g., invalid ones)
take the other path after such branches. A typical case is the
CheckIPHeader element. The branch prediction works as
follows. Each output port of a module tracks the number of
packets who take the path starting with it, and the frame-
work reuses the input packet batch object for the output port
where the largest number of packets has passed last time. In
the reused packet batch, dropped packets and packets that
have left are masked out instead of shrinking the pointer/an-
notation arrays to avoid extra overheads.
Multi-core scalable pipelines

NBA uses the replicated pipeline model combined with
RSS. As [16, 18] analyze and [26] confirms, this model
minimizes cache bounces caused by moving packets core to
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core and synchronization overheads. NBA has two types of
threads: worker threads and device threads.

Worker threads run the replicated pipelines (with repli-
cated instances of ElementGraph) following the run-to-
completion processing model offered by Intel DPDK3. They
run IO loops that synchronously fetch received packets from
NICs, process them, and transmit out or discard. The IO
loop also checks offload completion callbacks from the de-
vice thread. The other possible model is pipelining, at which
we separate IO and computation threads (and cores): the IO
threads enqueue the received packets into a ring shared with
computation threads that asynchronously process the pack-
ets. In early stages of NBA development, we have tested the
pipelining model with and without hyperthreading but the
performance was lower than the run-to-completion model,
as also reported by [26]. Worker threads also follow the
shared-nothing parallelization model; there is no synchro-
nization between worker threads at all because nothing is
shared. However, to reduce cache misses, we allow sharing
of large read-dominant data structures such as forwarding ta-
bles via a node-local storage by which elements can define
and access a shared memory buffer using unique names and
optional read-write locks.

Device threads manage communications with accelera-
tors such as GPUs. As worker threads send offload tasks
containing packet batches and element information, they ex-
ecute them on a pool of command queues for the configured
accelerators. There is one device thread per NUMA node per
device, assuming all NUMA nodes have the same set of of-
fload devices.

Putting them together, Figure 6 illustrates NBA’s thread
and core mappings. We provide a scripting interface to al-
low customized mapping of system resources and NBA’s
software components such as threads and queues between
worker and device threads.
Scheduling of elements

As the result of tailoring Click’s modular abstractions
for the run-to-completion model, NBA unifies its separate
push/pull processing semantics into push-only processing.

Like Click [13], NBA has schedulable elements where the
processing begins. But differently, the packet output element
(ToOutput) are not schedulable as we transmit packets syn-
chronously and no queue is required by default. Schedulable
elements have a special method named dispatch() which
the framework executes on every iteration of the IO loop.
The element optionally returns a packet batch object to con-
tinue processing with descendant elements. It can also set
the delay until next invocation to make a timer. FromInput
element is a typical example of schedulable elements, as it
returns the packet batch by querying the framework on every
IO iteration.

3 Section 8 Poll Mode Driver, Intel DPDK Programmer’s Guide, from
http://intel.ly/1vVKc1D accessed at Oct 10, 2014.

Figure 7: How NBA interprets an offloading element with
a load balancer element. The shaded parts are executed
in device threads and accelerators (GPUs).

3.3 Offloading to Accelerators
Offloadable elements and their interpretation

Offloadable elements define a CPU-side function and an
accelerator-side function and its input/output data formats.
As Figure 7 shows, if the load balancer decides to offload
the input batch, NBA automatically handles the process of
running the accelerator-side functions including preprocess-
ing of the input data, host-to-device data copies, kernel exe-
cution, device-to-host data copies, and postprocessing of the
output data.
Declarative input/output formats

We suggest a declarative abstraction to express input/out-
put data definitions: datablocks. Using a declarative abstrac-
tion has two advantages: safety guarantee and automatic op-
timization. Safety means that the framework validates packet
data and datablock fields prior to execution. It allows ap-
plication developers to forget buffer management details,
which is bug-prone and time-consuming, by specifying what
packet processing functions uses what data only. Declarative
abstraction creates the room for automatic optimization as
well. The framework can analyze the datablock fields and
extract chances of reusing GPU-resident data between dif-
ferent offloadable elements or coalescing copies of different
datablocks. Individual elements are still independent and un-
aware of other elements accessing the same datablocks or
not, but the framework can reuse datablocks by calculating
the lifecycle of datablocks and delay postprocessing until all
offloadable elements finish using relevant datablocks.

Datablocks contain the input/output byte ranges in pack-
ets and/or user-defined preprocessing/postprocessing func-
tions as shown in Table 2. Each datablock is mapped to
a page-locked memory buffer for host-to-device and/or
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IO Type Fields

partial pkt offset, length, alignment
whole pkt offset, alignment, size-delta
user length, pre/postproc func.

Table 2: Datablock format information.

device-to-host data copies depending on their I/O seman-
tics. partial pkt and whole pkt copies input/output data
from/to packet buffers and user lets a user-defined function
take the packet batch and write or read what it wants.

In this paper, we leave the full implementation and sug-
gested optimization as future work. The implementation
used in the evaluation mandates all offloadable elements to
implement I/O buffer management and pre-/post-processing
steps manually and monolithically. At the time of writing,
our on-going implementation has 10 to 30% performance
overheads with datablock abstraction, but we expect that the
automated optimization techniques and further framework
optimization would reduce the overhead.
How offloading works

We use NVIDA’s GPU and CUDA to implement acceler-
ation in this paper. NBA offers a shim layer that resembles
the OpenCL API [46], and it is easy to extend to support
other accelerators such as Intel Xeon Phi or AMD’s GPU.

Exploiting parallelism is essential to achieve maximum
utilization of GPUs. The batch size requirement for max-
imum throughput can be as large as thousands of packets
[21], which is much larger than the IO and computation
batch size. Simply increasing the computation batch size
leads to problems in CPU processing performance due to
increased cache misses. To solve this, NBA aggregates mul-
tiple packet batches just before accelerator offloading. We
find that approximately thousands of packets are enough for
all the workload in this paper, and set the maximum aggre-
gate size to 32 batches.

3.4 Adaptive CPU/GPU Load Balancing
To minimize manual performance optimization, we de-

sign a simple adaptive load balancer. Our focus is to avoid
specialization to specific applications or hardware and to
find an optimal offloading fraction that yields the maximum
performance in any combination of them. Without any prior
knowledge or assumption of the environment, adaptive (or
feedback-controlled) load balancing is the way to go because
the only information available for load balancing decision is
the history system states.
How load balancing works

We implement our load balancer as elements to allow
application developers to easily replace the load balancing
algorithm as needed. A load balancer element chooses the
processor of packet batches before they enter the offloadable
elements as illustrated in Figure 7. The load balancing deci-
sion is stored as a batch-level annotation indicating the index
of available computation devices. NBA reads this value and

offloads the batch to the designated device, the GPU in our
setup. If it is not set, NBA executes the CPU-side function
like non-offloadable modules. We expose a system inspector
interface to load balancer modules to help their load balanc-
ing decision and give feedbacks. The system states include
a variety of statistics such as the number of packets/batches
processed after startup. Using our batch-level or packet-level
annotation support, the users can even add new load balanc-
ing targets instead of selection of CPU/GPU, e.g., load bal-
ancing between multiple output NIC ports.
Balancing target and algorithm

We devise a load balancing algorithm that maximizes
the system throughput. A few existing approaches have de-
vised algorithms with the same goal, namely, opportunistic
offloading [27] and dynamic offloading [26]. These two al-
gorithms observe the input queue length and choose to use
GPUs when the length exceeds a certain threshold. Dynamic
offloading is an advanced version of opportunistic offload-
ing as it has buffers to absorb small fluctuations of the queue
length when changing the processor.

Unfortunately, we cannot directly use their algorithms be-
cause we have no input queues due to the run-to-completion
processing model, at which we process packets in the speed
that the CPU can sustain. Even if it is possible, we need
to manually tune optimal thresholds for our system and for
each application, and that is what we want to avoid.

Avoiding such complexities, we let our load balancer to
observe the system throughput directly, squashing all the
implementation-specific and application-specific details into
a black-box. It chooses the direction (increment or decre-
ment) of the offloading fraction w ∈ [0%, 100%] by δ ob-
serving if throughput increases or decreases. The through-
put is measured by the number of packets transmitted out
per 10K CPU cycles. To avoid being trapped inside local
jitter, we use the moving average of throughput and let the
load balancer wait for all worker threads to apply the updated
fraction values before next observation and update.

By trial and error, we find the generally applicable param-
eters: how much δ should be, how big history we need to ob-
serve, and how long the update interval should be. It is suffi-
cient to smooth out jitter and converge by setting the moving
average history size of w to 16384, δ to 4%, and the update
interval to 0.2 second. Considering that the arrival rate of
packet batches ranges from 10K to 220K in our settings de-
pending on the workloads and the history size corresponds
to about 0.1 to 1.5 seconds. We also gradually increase the
waiting interval from 2 to 32 update intervals when we in-
crease w from 0 to 100% as higher w incurs jitter persisting
for a longer period of time. We continuously insert perturba-
tions (same to δ) to the value of w, to allow it to find new a
convergence point when the workload changes.

7



Category Specification

CPU
2x Intel Xeon E5-2670 (Sandy Bridge)
(octa-core 2.6 GHz, 20 MB L3 cache)

RAM 32 GB (DDR3 1,600 MHz 4GB x8)

NIC
4x Intel X520-DA2 (dual-port 10 GbE, total
80 Gbps)

GPU
2x NVIDIA GTX 680 (1536 CUDA cores,
RAM 192 GB/s, PCIe 3.0)

Table 3: Hardware configuration

3.5 Implementation Efforts
NBA consists of 24K lines of C++ and CUDA code,

excluding configurations and micro-benchmark scripts4. It
took almost a full year from scratch to a working version
including the adaptive load balancer.

4 Evaluation
4.1 Experiment Setup
Hardware and software: Table 3 lists the specification of
the machine we used. All machines have the same Ubuntu
Linux 14.04.1 with unmodified Linux kernel, NVIDIA
CUDA 6.5, and Intel DPDK 1.7.0.
Notation: When we say “CPU-only” in the following exper-
iments, it means all elements including offloadable elements
are processed using their CPU-side functions only. “GPU-
only” means all offloadable elements are processed using
their GPU-side functions only, but all other elements are still
processed by the CPU.
Sample applications: We choose four sample applications,
IPv4 router (“IPv4”), IPv6 router (“IPv6”), IPsec encryp-
tion gateway (“IPsec”), and IDS, that have various perfor-
mance characteristics to show NBA’s general applicability.
IPv4 is memory-intensive as it performs at most two table
lookups with bit-masking IP destination addresses. IPv6 is
both memory and computation-intensive as it performs bi-
nary search for every destination address over a large ta-
ble. IPsec is highly computation-intensive as it performs
encryption and hashing, but is also IO-intensive because it
needs to copy the packet payloads from/to the GPUs. IDS is
compute-intensive as it performs pattern matching and also
IO-intensive like IPsec, but with only host-to-device copies.

Figure 8 shows our sample routing applications expressed
in pipeline configurations. IP lookup elements are based on
PacketShader’s implementation, used under authors’ grant
[21], using DIR-24-8 algorithm for IPv4 [20] and binary
search for IPv6 [53]. The IPv4 lookup algorithm performs
two random memory accesses while the IPv6 lookup algo-
rithms performs at most seven random memory accesses.
IPsec encryption uses HMAC-SHA1 to authenticate the
packets and AES-128CTR to encrypt them. We implement
it to exploit AES-NI for faster computation AES in recent
CPU models. To enable AES-NI for OpenSSL in the CPU
version, we use its envelope API but with a trick: initialize

4 Measured using CLOC. See http://cloc.sourceforge.net/.

Figure 8: The configurations of our sample applications.
The highlighted elements are offloadable. We omitted
common FromInput and ToOutput elements for space.

envelope contexts for all flows on startup and reuse them
by only changing initial vector (IV) values to avoid mem-
ory management overheads in the data-path. Otherwise we
see context initialization overheads overshadow the perfor-
mance benefit of AES-NI. Our IDS uses Aho-Corasik algo-
rithm for signature matching and PCRE for regular expres-
sion matching [4, 8] with their DFA forms using standard
approaches [48].
Workloads: Unless otherwise specified, we use a randomly
generated IP traffic with UDP payloads and offer 40 Gbps
load from two separate packet generator machines, 80 Gbps
in total. For IPv6 router application, we use IPv6 headers
and IPv4 headers for other cases.

4.2 Minimizing Abstraction Overhead
Computation batching: Figure 9 shows how helpful com-
putation batching is in small packet sizes. IPv4/IPv6 routers
and IPsec encryption gateway with 64 B packets shows sig-
nificant performance improvements, by 1.7 to 5.2 times.
With large packets, we see IP routing applications reach 80
Gbps regardless of batch sizes but IPsec has about 10% of
performance degradation with no computation batching.

Among various combinations of IO and computation
batch sizes, we set the default IO and computation batch
sizes to 64 packets and the offloading batch size to 32 packet
batches as described in § 3.3. In all sample applications, this
default IO and computation batch sizes give 97 to 100%
of the maximum throughput found by manually searching
different combinations of IO and computation batch sizes
using minimum-sized packets. The default offloading batch
size yields 92 to 100% as well compared to manually found
optimal values. Hence, all experiments use the same setting.
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Figure 9: Performance improvements by computation
batching.
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Figure 10: Performance benefit of our branch prediction
technique compared to the worst case in Figure 1.

Composition overhead: We evaluate the overhead of pass-
ing multiple modules using a linear pipeline configuration
with many no-op elements. We measure the latencies of a
linear path consisting of multiple no-op elements without
any computation. To see the minimal processing time except
extra queuing delays in the switch and NICs, we offer 1 Gbps
traffic. The baseline latency with zero no-op elements and
minimal L2 forwarding is 16.1 µsec on average. Adding no-
op elements increases the latency, but only by about 1 µsec
after adding 9 no-op elements. This result indicates that the
major performance impacting factor for a linear pipeline is
the computation complexity, not the number of elements.
Gains of branch prediction: Next we evaluate the gains of
branch prediction using a synthetic configuration that has
two paths after a branch in Figure 8(d). In Figure 10 we
compare three cases: i) baseline that simply echoes back all
packets without any branch (the solid black line), ii) a worst
case that put all packets into new split batches (the dotted
red line), and iii) our branch prediction case that reuses the
input batch for the majority of packets and masks their slots
in the reused batch (the dotted black line). The worst case
degrades the performance 38 to 41% due to excessive mem-
ory/pointer copies and allocation of new packet-batch ob-
jects. Our branch prediction also has overheads but limiting
the degradation to 10% when 99% of packets remain in the
reused batch. It also shows that linearization of pipelines is
critical to achieve high performance with branch prediction,
to decrease the amount of minority packets.

4.3 Multicore Scalability
In this experiment we show how scalable NBA is by us-

ing different numbers of worker threads. Figure 11 shows
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Figure 11: Performance variation of applications de-
pending on the number of worker threads, using either
CPUs only or GPUs only. Note that the last CPU core is
dedicated for the device thread, limiting the maximum
number of worker threads to 7.

that NBA has marginal overheads when the number of cores
increases to more than 4, and the GPU-only cases have more
overheads than the CPU-only cases. The reason is that a sin-
gle dedicated device thread handles all offload tasks from
the worker threads in the same CPU, and this incurs syn-
chronization overhead of task input queues. We also observe
that the CUDA runtime has significant internal locking over-
head by profiling, which consumes from 20% (in IPv4 router
with 1 worker threads) to 30% (in IPsec encryption with 7
worker threads) of CPU cycles in cores where the device
threads run and the CUDA runtime implicitly spawns its
own child threads to poll the device states. We suspect that
this is due to our excessive calls of cudaStreamQuery() to
check if device-to-host copies are finished, but we do so be-
cause its performance was better than other methods such as
cudaStreamAddCallback() or waiting for event objects in
the command queue. Nonetheless, we believe that this over-
head is specific to CUDA’s implementation, not a fundamen-
tal problem in other types of accelerators as well.

4.4 Variability of Optimal Points
Figure 12 shows that the optimal balance between CPUs

and GPUs highly depends on the workloads including both
application type and packet sizes.

For each sample application, we vary the packet size from
64 to 1500 bytes and configure the system to run in extreme
conditions: either CPU-only or GPU-only mode. Overall, the
IPv4 router and IPv6 router shows increasing throughputs
as the packet size increases, reaching up to 80 Gbps. IPsec
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Figure 12: NBA’s application performance depending on packet sizes, showing necessity of CPU/GPU load balancing.
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Figure 13: The performance of our adaptive load balancer under several types of workloads.

encryption gateway achieves 23 to 33 Gbps and IDS up to 35
Gbps. In IPv4 router, the CPU performs always better (0 to
37%) in contrast to the IPv6 router where the GPU performs
always better (0 to 75%). In IPsec, the GPU performs better
(up to 68%) in small packet sizes (< 256 bytes) but this is
reversed in large packet sizes as the GPU performs almost
twice better. The IDS has significant performance boosts
by GPU acceleration, showing from 6x to 47x throughput
improvments compared to its CPU-only cases.

As the result indicates, IP routing applications and IDS
have consistent trends that either CPU or GPU performs bet-
ter regardless of packet size, but IPsec encryption gateway
shows that the optimal processor may be different depend-
ing on packet size and traffic conditions.

4.5 Adaptive Load Balancing
Figure 13 shows the performance of our adaptive load

balancer (ALB), compared with the CPU-only/GPU-only
cases and manually tuned throughput with exhaustive searches
on the offloading fractions. The cases are categorized by the
pair of application type and traffic type (randomly generated
packets with fixed sizes or a trace replay). We have chosen
the representative cases from Figure 12 where the CPU per-
forms better (IPv4 64 B, IPsec 512 B, IPsec 1024 B), the
GPU performs better (IPv6 64 B, IPsec 64 B, and IDS 64
B), or mixing them performs better (IPsec 256 B and IPsec
with CAIDA trace as in Figure 2).

In all cases, ALB achieves more than 92% of the maxi-
mum possible throughput. The particular cases of IPsec 256
B and IPsec with CAIDA traces show the necessity of ALB,
as either using the CPU or GPU only does not yield the max-
imum throughput. Other cases prove that at least ALB does
not perform worse than a dumb balancing to use either CPU
or GPU only.

4.6 Latency
Figure 14 illustrates the latency distribution of NBA

with CPU-only and GPU-only configurations. We have of-
fered medium-level workloads that can be processed without
packet drops, and measured round-trip latency using time-
stamped packets. The latency of the L2 forwarder (L2fwd in
Figure 14a) shows the minimum latency of the NBA frame-
work, where 99.9% of packets return within 43 µsec. The
L2 forwarder is composed of a single element that transmits
the packets in a round-robin fashion using all NICs after
exchanging the source and destination MAC addresses. In
the CPU-only configurations of IPv4/IPv6 routers, 99.9% of
packets return within 60 µsec and IPsec-encrypted packets
return within 250 µsec. For each configuration we used the
optimal batch sizes, e.g., used large batches (128 packets) in
L2fwd and small batches (64 packets) in others. The GPU-
only configurations have higher average latency than the
CPU-only ones, about 8 to 14×, with higher variances. The
large gap between 64 B and 1024 B cases in IPsec exhibits
the data copy overhead for offloading to GPUs.

Overall, NBA’s minimum and average latency come close
to the state-of-the-art. Snap [47] reports the minimum la-
tency of its CPU-only and GPU-only configurations of an
IDS router as 31.4 µsec and 292 µsec on average respec-
tively, where they are composed of radix-tree lookup and
Aho-Corasick string matching algorithms. The latency of
the CPU-only and GPU-only configuration for our IPsec
application has the minimum of 15 µsec and 287 µsec re-
spectively. Though we have different set of modules, it is
a promising result as AES encryption and HMAC-SHA1
hashing are heavier computations than radix-tree lookup and
string matching because they need to read all payload bytes,
encrypt/hash all bytes, and write them back to the packets
whereas lookup and string matching only read the packets.
Moreover, the average latency of the GPU-only configura-
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Figure 14: NBA’s latency distribution. 3 Gbps workload is offered to IPsec and 10 Gbps to others.

tion of NBA’s IPv6 router (234 µsec) is roughly same to that
of PacketShader (240 µsec) under the same load.

However, the latency distribution of the GPU-only con-
figuration for NBA’s IPsec application spreads over a wide
range, from hundreds of µsec to a few milliseconds. For ex-
ample, the average latency is 800 µsec larger than the min-
imum latency when using 64 B packets. NVIDIA’s profiler
confirms that the minimum latency observed in our exper-
iment results, 287 µsec, is the minimum possible: the GPU
kernel execution takes about 140 µsec (100 µsec for HMAC-
SHA1 and 40 µsec for AES-128CTR), and data copies take
about 150 to 200 µsec. There is no huge variance in the mea-
sured kernel execution latency. Then, we conclude that all
additional delays come from NBA and the CUDA runtime.

Our current observations suggest that the primary sources
of additional delays are aggressive batching, synchroniza-
tion overheads in worker-device thread pairs and device-
CUDA thread pairs, and queuing delays in both NBA and the
CUDA runtime. First, in all GPU-only configurations, the
latency is highly sensitive to the batch aggregation size for
offloading. The batch aggregation size of 32 batches yields
the minimum average latency for IP routers and 64 batches
does for IPsec when using 64 B packets. Changing it to other
values (twice or half) results in at least 20% of latency in-
creases. Second, as mentioned in § 4.3, the CUDA runtime
implicitly spawns an internal GPU handling thread for each
runtime context (one per device thread) and uses pthread
locks to synchronize. Those locks are potential sources of
increased latency. We leave further dissemination of addi-
tional delays and optimization as future work.

5 Related Work
Packet processing on commodity hardware: IP routers
based on dedicated hardware platforms achieved tens of gi-
gabits per second in mid 90s [40] and today’s core routers
claim an aggregate speed of hundreds of terabits. Software
routers on commodity hardware platforms lag in speed but
offer flexible programming environments for quick develop-
ment and evaluation of new protocols and services. Osiris
is one of the early efforts that investigated the performance
issues between the network adapters and CPUs [17]. Click
offers a modular software architecture for router implemen-
tation and has been adopted in many router projects [31].

Egi et al. reports on the need of fine-grain control in
the forwarding path architecture for task synchronization on
software routers [18]. Dobrescu et al. reviews pipelining and
cloning for parallelism in packet processing and propose an
optimization framework that maps data flows to cores. Both
use Click [31] as a building block. RouteBricks takes Click
to a multi-core PC with 10 Gbps NICs and RB4 has become
the first PC-based router to achieve over 10 Gbps speed with
four interconnected RouteBricks [15].

The FPGA (Field Programmable Gate Array) technology
bridges the gap between customized hardware and commod-
ity technology. NetFPGA is gaining momentum as a devel-
oper’s platform and has been used by SwitchBlade [9, 34].
Orphal [38] is proposed as a open router platform for propri-
etary hardware. ServerSwitch [35] uses a custom-designed
network card to accelerate certain types of packet process-
ing such as IP lookup with TCAM. Recent developments in
Software-Defined Networking (SDN) technologies stress the
importance of high-performance commodity-technology-
based networking platforms [25, 41].
High-speed packet IO libraries: PacketShader IO Engine
(PSIO) [6] is a batch-oriented packet IO API implementation
based on Intel’s vanilla ixgbe driver. It uses a huge buffer
to store multiple packets and thus reduce the kernel-user
copy overheads. Its forwarding performance reaches up to
28 Gbps with a single socket of Intel Xeon CPU and four 10
GbE cards. netmap is a kernel-space framework for multi-
ple NIC models to offer high-speed packet IO to userspace
applications in Linux and FreeBSD [44]. Its baseline per-
formance can saturate the 10 Gbps line rate with minimum-
sized packets on a single CPU core running at 900 MHz.
Similarly to netmap, Intel DPDK [3] offers a framework
to develop burst-oriented poll-mode drivers for diverse NIC
models. The major difference is that all driver codes are also
in the userspace for ease of debugging and development. It
can process 80 millions of packets per second using a sin-
gle socket of latest Intel Xeon CPUs. PF RING ZC [5] is
yet another user-level packet IO library that is developed as
a part of packet capture and analysis framework. It reports
14.8 Mpps using a single CPU core of Intel Xeon CPUs.
Virtualization for networking: A handful work have sug-
gested fast packet IO schemes for virtual machines (VMs)
sharing physical NICs. NetVM [24] implements shared
huge-pages and ring-based packet transfers between VMs
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on top of Intel DPDK. ClickOS [7] tailors the kernel for
execution of the Click modular router and puts many inde-
pendent instances of ClickOS VMs to reach line rates. IX
[11] is a dataplane OS designed to run with Linux control-
plane on virtualized environments, with latest hardware sup-
ports and optimization. Arrakis [43] uses virtualization to al-
low direct accesses to the hardware for the raw performance
while keeping the same control semantics enforced by the
OS. Our work is complimentary to them because NBA is an
application-side framework and can be plugged in to other
virtualized networking schemes by adding a compatibility
IO layer.
New OS abstractions and network stack optimization:
Another approach to improve software-based packet pro-
cessing performance is to tackle the network stacks of oper-
ating systems. MegaPipe [22] suggests a light-weight socket
optimized for message-dominating workloads. Pesterev et
al. optimizes Linux’s stack to achieve connection locality
on multi-core systems [42]. mTCP [28] is an implementa-
tion of user-level TCP stack on top of psio [6], yielding
33-320% performance improvements. Sandstorm [37] is a
clean-slate userspace network stack based on netmap [44].
These approaches have advantages in compatibility with ex-
isting applications. Our work focuses on packet-level pro-
cessing (data-plane) instead of flow-level processing or op-
timization of generic socket applications.
GPUs for specific networking applications: Parallel com-
puting architecture has a long history in supercomputing and
has become a key technology in commodity processors as in
multi-core CPUs and many-core GPUs. The original target
applications for GPUs were in computer graphics and visu-
alization, but are now broadening to many other scientific
computations often referred to as GPGPU (General-Purpose
computation on GPUs) [1, 39].

PacketShader [21] demonstrates the feasibility of 40 Gbps
on a single PC with optimized packet I/O processing and
GPU offloading. Gnort [50], MIDeA [51], SSLShader [27],
and Kargus [26] all exploit GPU to accelerate network ap-
plications, such as SSL (Secure Sockets Layer) and Snort5.
Our work is a framework to host such specific applications
on a unified abstraction.
GPU networking frameworks: GASPP [52] shows an ex-
treme approach to GPU-oriented packet processing. It deliv-
ers all packets directly to GPUs via a shared DMA buffer
and implements a protocol-oriented modular architecture
including transport layers and stateful stream processing.
GPUnet [30] is a socket abstraction for GPUs, which allows
GPU programs to control RX/TX with remote machines.
Snap [47] shares most goals with our work. It uses netmap,
adds a set of extensions to Click to integrate GPU elements,
and delivers 30.97 Gbps on a single-node quad-core system.
NBA is different from them because we treat the CPU as

5 http://www.snort.org

primary processor since it offers low latency and we offload
only when GPUs give throughput benefits.
Load balancing and scheduling on heterogeneous proces-
sor systems: The problem of finding an optimal schedule
for multiple types of tasks on multiple processors is NP-
complete, and deadline-based scheduling algorithms cannot
be optimal on multiple processors [14, 19, 23, 45]. Qilin [36]
targets a set of problems where a small program runs for a
long period of time and dynamic compilation at run time
is justified for performance over initial overhead of first-
run training. It provides an API to be compiled for either
or both CPU and GPU and allows runtime adaptation to
changing input sizes. Our system targets a very different
workload, network traffic, which stresses not only CPU, but
also I/O, depending on the traffic composition. Topcuoglu et
al. [49] study greedy scheduling methods for heterogeneous
processor environment. They show that EFT (Earliest Finish
Time first) scheduler outperforms in most cases. However, it
also requires a performance model and parameters for given
tasks before scheduling. StarPU [10] is a generic schedul-
ing framework for systems with heterogeneous processors.
It uses heterogeneous earliest finish time (HEFT) schedul-
ing algorithm, which is the best among greedy algorithms,
and automatically calibrates the performance model by ob-
serving task completion times. Koromilas et al. [32] tackles
asymmetric scheduling problem of network packet process-
ing workloads running on both integrated GPUs and discrete
GPUs. Differently from above work, our framework targets
a complex system where the performance of heterogeneous
processors have interdependencies to each other and IO as
well as computation has critical impacts to the performance.

6 Discussion
Throughput vs. latency: GPU offloading trades off latency
with throughput, and is beneficial for specific applications,
not all, that require huge parallelism. Our adaptive load bal-
ancing currently considers throughput only because latency-
oriented optimization would let the system use either the
CPU or the GPU only, depending on the application. In
this work we have focused on demonstration of the maxi-
mum achievable processing capability of our system. A more
interesting problem space lies in throughput maximization
with a bounded latency, as described in § 7.
Packet reordering: Our current implementation does not
guarantee the ordering of packets when using adaptive load
balancers, because the CPU and GPU have different process-
ing speeds and NBA transmits the packets as soon as they are
processed. However, since NBA drops no packets inside the
pipeline except intentionally dropped ones like invalid pack-
ets, we expect this will have minimal performance impacts
to endpoints if the NICs are configured to use flow control
for lossless transfers.
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7 Future Work
Migration of existing Click elements: Basing on Click’s
element abstraction is a huge advantage in that we can mi-
grate existing Click elements. Though, for easier migration
we need a wrapper layer for packets because current NBA
just exposes DPDK packet buffers directly to elements. For-
tunately DPDK’s packet buffer API has similar functional-
ity to that of Click’s packet objects, and adding thin func-
tion wrappers will let only a handful of regular expressions
do the job. A more challenging part is to translate push()

and pull() calls to returning the output edge ID. Nonethe-
less, we expect above tasks would not require major design
changes of NBA and can be done in the near future.
Throughput maximization with bounded latency: As we
see in § 4.6, offloading to GPUs exhibits high latency in the
order of hundreds of µsec. Although there is no standard
“acceptable” latency and it depends on what environment
NBA is used for, it would be nice if we can limit the maxi-
mum latency within a certain threshold because bounded la-
tency makes the system predictable. There may be multiple
challenges to tackle, such as designing a new load balancer
and/or further optimization of the framework. We are inves-
tigating the sources of delays, and guaranteeing bounded la-
tency could be our next step forward.
Extension to other accelerators: NBA’s device wrapper
(Figure 3) is designed to adapt to multiple different types of
accelerators by providing an OpenCL-like interface. Since
there is a wide range of devices that support OpenCL, in-
cluding AMD GPUs and Intel Xeon Phi, we believe that it
is viable to expect contributions from the users of NBA. It
would be interesting to examine differences of the optimiza-
tion points and performance characteristics using accelera-
tors with different architectures.

8 Conclusion
We have designed and implemented a software-based

packet processing framework for commodity hardware plat-
forms with latest performance optimization techniques.
NBA captures underlying architectural details, while pro-
viding abstractions of computation batching, GPU offload-
ing and adaptive load balancing to application developers. It
delivers up to 80 Gbps performance in IP routing applica-
tions and near 30 Gbps in IPsec encryption gateway and a
pattern-matching based IDS. We demonstrate that a simple
adaptive load balancing scheme can optimize the throughput
without manual optimization efforts, even for corner cases
where using either CPUs only or GPUs only does not yield
the maximum performance. We expect that with 40 Gbps
NICs on the market6 a 100 Gbps software router on a sin-
gle PC is not far off. We plan to make the source code of
the NBA framework publicly available, to motivate develop-
ment of high-performance software routers.

6 http://www.mellanox.com/ethernet/40gbe_index.php
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