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Abstract

State of the art deep generative networks have achieved

such realism that they can be suspected of memorizing

training images. It is why it is not uncommon to include

visualizations of training set nearest neighbors, to suggest

generated images are not simply memorized. We argue this

is not sufficient and motivates studying overfitting of deep

generators with more scrutiny. We address this question by

i) showing how simple losses are highly effective at recon-

structing images for deep generators ii) analyzing the statis-

tics of reconstruction errors for training versus validation

images. Using this methodology, we show that pure GAN

models appear to generalize well, in contrast with those us-

ing hybrid adversarial losses, which are amongst the most

widely applied generative methods. We also show that stan-

dard GAN evaluation metrics fail to capture memorization

for some deep generators. Finally, we note the ramifications

of memorization on data privacy. Considering the already

widespread application of generative networks, we provide

a step in the right direction towards the important yet in-

complete picture of generative overfitting.

1. Introduction and Related Work

In just a few short years, image generation with deep

networks has gone from niche to a center piece of ma-

chine learning. This was largely initiated by Generative

Adversarial Networks (GANs) [13] and since then incredi-

ble progress has been made, from deep convolutional GAN

(DCGAN) [32] producing artifacted faces, to progressive

GANS (PGGAN) [20] producing faces which are virtually

indistinguishable from real ones even to human observers

and at high resolution (see Fig. 1). While a large amount

of research has proposed new generative models, less re-

search has been devoted to the evaluation of such models.

Furthermore, evaluating overfitting of deep generators has

been performed via intuitive visual demonstrations, such as

training set nearest neighbor search and latent space inter-

polation [7, 20]. Fig. 1 (last column) illustrates the nearest

neighbor (NN) test, where NND(y) is the training dataset
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Figure 1: Rather than inspecting the most similar images

NND(y) in the training dataset D for sampled generated images

G(z) (row 3), we consider finding the most similar image in the

manifold NNG(y) of generated images (column 2). As seen in the

last two rows, NNG(y) is more meaningful under some transfor-

mations. Analysis of the discrepancy between reconstructions of

the train set D and reconstructions outside D makes it possible to

detect overfitting for some generators.

NN of a few images y. While NND(y) with the Euclidean

distance is a common heuristic (last column in Fig. 1), it is

purely visual and sensitive to transformations of the training

data.

In contrast, we suggest to rely on the opposite method-
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ology by optimizing the latent code z ∼ Z to find the near-

est neighbors NNG(y) in the manifold of generated faces

G = {G(z)}z∼Z of images from the training (y ∈ D) and a

validation set (y 6∈ D). Not only is this approach more ro-

bust, it provides us with reconstructions errors which can be

analyzed for different sets of images. Using this framework

that we refer to as latent recovery, we propose the following

contributions:

• A demonstration of successful latent recovery across

a variety of generators. In Section 2 we introduce our

optimization procedure and show it is meaningful even

if the target image is corrupted.

• Section 3 introduces a novel method to numerically es-

timate overfitting in deep generators via statistics of

recovery errors on test and train sets. Overfitting is

undetectable for GANs, which is corroborated visu-

ally in Fig. 3 and statistically in Table 1. Overfitting

is however detectable in hybrid adversarial losses sim-

ilar to CycleGAN [42], and easily detectable in non-

adversarial generators such as GLO [4]. Finally, we

show that standard evaluation metrics do not detect

overfitting in some models.

1.1. Related Work

Adversarial losses have seen successful applications in a

variety of settings beyond just image generation: unpaired

image to image translation in CycleGAN [42], face attribute

modification in StarGAN [8] and various image inpainting

techniques [17, 39] to name a few. This progress has created

a huge need to evaluate generated image quality, which to

some degree has not been fully answered [6].

GAN Evaluation Metrics The Fréchet Inception Dis-

tance (FID), recently introduced in [16], has become a stan-

dard for evaluating the quality of generated GAN images.

The FID is computed by computing the Fréchet Distance

between features of the Inception network [34] modeled as

multivariate gaussians. Furthermore, it was demonstrated

to be consistent with human evaluation. In the large scale

GAN study [24], FID was used to compare a huge variety of

GANs, wherein it was shown auxiliary factors such as hy-

perparameter tuning can obfuscate true differences between

GANs. In [33], notions of precision and recall are intro-

duced for generated images, to help characterize model fail-

ure rather than providing a scalar in image quality. While

these works have helped to compare GAN image quality,

they do not address overfitting of the training set.

Overfitting in Generative Networks For image classifi-

cation, a model is said to overfit when it performs signifi-

cantly better on training examples compared to test exam-

ples, and said to generalize otherwise. While the exact rea-

sons why deep nets generalize even when over parametrized

is an open question, they are certainly not immune to over-

fitting. In the extreme case, Zhang et al. [40] demonstrated

random labels can be perfectly memorized even on the large

scale ImageNet database.

Despite this, very little work has gone into defining over-

fitting for generative models. In [1], the authors defined

generalization for GANs in a largely theoretical setting. The

formulation was used to suggest a new GAN training pro-

tocol rather than provide an evaluation technique. In [2],

the support of a GAN generator, in terms of the number

of face identities it could produce, was estimated using the

birthday paradox heuristic. While crude, it suggested the

support of faces could be quite large with respect to the size

of the training set. The very recent work of [14] attempts to

numerically estimate the notion of overfitting with a Neural

Net Distance (NND). That is, they train a neural net to dif-

ferentiate generated samples from real samples and similar

to [18], use the resulting divergence as a measure of qual-

ity. Importantly, they are able to show a slight overfitting

for some GANs and show that this divergence penalizes a

generator trivially memorizing the train set. Unfortunately,

this approach requires a massive test set in order to train the

NND, which is unrealistic considering successful GANs al-

ready require massive train sets, not to mention the NND

itself needs to be trained. Furthermore, the NND may favor

GANs if the divergence they use resembles or is identical to

the GAN under evaluation.

Finally, a new class of generative models has recently

been proposed which involves invertible generators [10,

21]. These generators are attractive as they are mathemati-

cally well motivated and admit exact log-likelihood estima-

tions, via taking the determinant of each layer jacobian. [28]

examined the log likelihoods for such models and showed

that while some GAN models generalized nicely to vali-

dation samples, out of distribution samples, such as those

taken from completely different datasets, yield higher like-

lihoods. [37] also examined log-likelihood in the generative

setting, and both works ultimately cautioned against the use

of log-likelihood for generative evaluation.

Memorization and Privacy Beyond these aspects of

memorization and practical evaluation of generators lies the

important and debated issue of privacy: How to ensure that

the data used for training cannot leak by some reverse en-

gineering, such as reconstruction from features [25, 12] ?

Because GANs have seen such widespread application, it

is imperative that we have better evaluation tools to assess

how much these networks have overfit the training data. For

example, if a user is using a neural net to inpaint faces as in

[22] or to perform super-resolution enhancing [9], it seems

necessary to ensure verbatim copies of training images do

not appear, due to privacy or even copyright concerns. In-
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deed, several attacks against machine learning systems have

been exposed in the literature [30]. For instance, authors in

[12] designed an inversion attack to coarsely recover faces

used during the training of a white box facial recognition

neural network. More recently, [35] performed a successful

membership attack, which is the ability to discern training

examples from a model, in a purely black box setting. Very

recently [15] explored the potential of membership attacks

for GANs and exploited the tendency of the discriminator

to overfit the training set.

2. Reconstruction by Latent Code Recovery

This section proposes a methodology for reconstructing

the most similar images to target images with an existing

generator. Inversion of deep representations has been al-

ready addressed in the literature. [25] used a simple opti-

mization procedure to maximize an output class of a VGG-

like network. In the seminal works of [29, 36], a similar

inversion of deep nets unveiled adversarial examples. In

[24], generative networks are inverted to study recall, which

is the ability of the network to reproduce all images in the

dataset and finally [27] used latent recovery of a GAN gen-

erator to evaluate its quality.

Other works tackle recovering latent codes directly by

training an encoder network to send images back from im-

age space to latent space, such as the BEGAN model [3]

or Adversarially Learned Inference (AGI) [11]. In Genera-

tive Latent Optimization (GLO) [4], a generative model is

trained along with a fixed-size set of latent codes, so that

they are known explicitly when training finishes.

In this paper, we will proceed by recovering latent codes

via optimization, following [27, 5, 23, 24]. In contrast with

[27], we will ultimately be concerned comparing image re-

covery between train and validation sets.

2.1. Latent Code Recovery with Euclidean Loss

We explore recovery with a euclidean loss and find it is

effective at recovering latent codes for a variety of GAN

methods. Here, we consider the following latent recovery

optimization problem

z⋆(y) ∈ argmin
z

‖φ(G(z))− φ(y)‖22 (NNG)

where G is a deep generative network, z is the input la-

tent vector and y is the target image. Using a solution z∗

of Problem (NNG), we denote by NNG(y) = G(z∗) the

Nearest Neighbor recovery of a given image y in the set of

generated images, as opposed to the usual NN search in a

dataset D: NND(y) = argminx∈D ‖x − y‖. In this work,

we consider mostly φ as the identity, but other operators are

discussed in the next paragraph and for applications such as

super resolution in Section 4. Fig. 1 illustrates the differ-

ence between the two NN searches on a few examples.

Experimental Validation In every experiment, we em-

ploy LBFGS and noted it converges roughly 10x faster than

SGD (successful recovery requiring approximately 50 iter-

ations as opposed to 500 in [5, 23]). Although Eq. (NNG) is

highly non-convex, the proposed latent recovery optimiza-

tion works well, as shown in Fig. 1 and Fig. 3. In particular

for generated images y = G(z), where NNG(y) = z, a

global minimum (verbatim copy) is consistently achieved

(see third row of Fig. 1). Every network analyzed in this

document appeared to be able to verbatim recover generated

images, an observation also noted by [23] and exemplified

by the tight distribution of errors near zero in Fig. 4. Note

that we also considered the widely used perceptual loss [19]

by taking φ to be VGG-19 features, with either no improve-

ment or even degradation of visual results (see supplemen-

tary). Furthermore, we did not see any difference in the

statistical results of Section 3 for perceptual losses.

2.2. Latent Code Recovery Under Distortion

It should be noted that Eq. (NNG) by itself may not be

meaningful for some generators. For example, if the gen-

erator is invertible, errors will zero regardless of the target

image. To verify that Eq. (NNG) is meaningful, we want

to make sure the error is lower for images inside the con-

sidered manifold and large for those outside. To do this, we

follow [16] (used there to motivate the FID) wherein we test

Eq. (NNG) response to various distortions. We choose φ to

be one of the three distortions that are illustrated in Fig. 2:

• Smooth Vector Field Warp (Fig. 2a) Following [16,

41] we warp training images by bilinear interpolation

with a smooth 2D vector field Vσd
= V ∗ g, which is

obtained from the Gaussian smoothing g of a Gaussian

random vector field V (x, y) ∼ N (0, σ2
d);

• Corruption Noise Patches (Fig. 2b) As [22], we cor-

rupt training images by replacing patches of various

sizes with fixed Gaussian noise with variance σ2
d;

• Additive Noise (Fig. 2c) We add noise to each training

image with Xn = X+Wd, where Wd is sampled from

a Gaussian distribution Wd ∼ N (0, σ2
d).

Experimental Validation Fig. 2 demonstrates a few facts

about latent recovery. By inspection of recovered images, it

appears robust enough to recover faces semantically simi-

lar to the ground truth even if the image has been heavily

distorted. It also demonstrates the precision of the network,

for example the three networks highlighted will reject im-

ages only slightly outside the manifold. In Table 1, we can

see that not all networks share the same specificity. For

example, the GLO networks can recover distorted images

with similar MRE’s to training images, which means the

networks are less precise. This is coupled with a lower FID

of the network, for example see Fig. 5.
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(a) Deformation by smooth diffeomorphism (warping)

(b) Unsupervised inpainting (face completion)

(c) Additive white noise

Figure 2: Median recovery error (MRE, see Eq. (4))

for 1800 test images on various GAN generators (PG-

GAN [20], MESCH [26] and DCGAN [32]) under various

distortions φ in latent recovery optimization (NNG) (see text

for details).

3. Using Latent Recovery to Assess Overfitting

In this section, we train a variety of generative models

with a training and validation split. Then, we analyze the

difference between image recovery using Eq. (NNG), be-

tween training and validation images.

3.1. Training Protocols

We summarize the details of each generative model be-

low, in terms of their training procedure and purpose within

this work.

GAN Generative Adversarial Networks (GAN) involve a

stochastic training procedure which simultaneously trains a

discriminator and a generator. The original GAN [13] opti-

mization problem writes

max
D

min
G

Ez∼N (0,1),x∼pdata
[Ladv(D,G, z, x)] (1)

where Ladv(D,G, z, x) = log(D(x))+log(1−D(G(z))).
We examine three prominent GANs in the literature. First

is DCGAN [32], as it is one of the most widely used GAN

architectures and with still decent performance across a va-

riety of datasets [24]. Then we study two state-of-the-art

GANs for high resolution generation; progressive growing

of GANs [20], which we refer to as PGGAN and the zero

centered gradient penalty Resnet presented in [26], which

we refer to as MESCH. We train these three GANs on

CelebA-HQ with a training split of the first 26k images and

the first 70k images of LSUN bedroom and tower. We chose

these splits to preserve the quality of each method, as GAN

quality significantly degrades with small dataset sizes.

Generative Latent Optimization (GLO) The recently in-

troduced Generative Latent Optimization (GLO) creates a

mapping from a fixed set of latent vectors to training im-

ages. The GLO objective is as follows

min
G

∑

(zi,xi)

Lrec(G(zi), xi) := ‖G(zi)− xi‖
2
2 (2)

where xi ∈ D refers to training images, zi ∼ N (0, 1) sam-

ples a Gaussian distribution and the pairs (zi, xi) are drawn

once and for all before training begins1. Because we know

the latent distribution is Gaussian, we can easily sample the

network after it is trained.

AutoEncoder Finally, we train a vanilla autoencoder on

CelebA-HQ with the objective:

min
G,E

∑

xi∈D

Lrec(G,E, xi) (3)

Hybrid Losses We consider a generative model combining

both the adversarial loss Eq. (1) with euclidean auto encod-

ing loss (3) which we refer to as AEGAN.

Concerning models trained with a reconstruction loss

(GLO, AEGAN and AE), we selected these architectures

for a theoretical perspective, as they offer interesting win-

dows into how generators can memorize. In particular, we

will study the impact of the training set size N on the over-

fitting inclination. For example, while we were unable to

train a good quality GAN with a small set of images (say

256), GLO converges extremely quickly in such a case. See

the GLO-256 network in Fig. 3 (4th row) where memoriza-

tion is immediately apparent. As a result, we will refer re-

spectively to GLO-N , AEGAN-N and AE-N , to account

for this size. Besides, for both the AE and AEGAN models,

we forgo optimization in Eq. (NNG) and use the encoder

E (3) to recover the latent vector, as is natural for autoen-

coder models.

In the next paragraphs, we will proceed to show that it is

possible for generative networks to memorize in the sense

that validation and training sets have significantly different

recovery error distributions.

3.2. Comparison of recovery errors

Figure 4 shows the histograms of recovery errors on

train (D in green) and validation (T in red) datasets from

1 Contrary to [4], we do not optimize the latent space and found no

negative impact on the reconstruction capacity and generation quality.
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Figure 3: Latent recovery of training images from D (left, green frame) and test images from T (right, red frame) for 128×128
images of Celeba-HQ [20]. From top row to bottom are first target images, and then recovery from Progressive GANs [20]

(PGGAN), 0-GP resnet GAN [26] (MESCH), a GLO network [4], and finally a Cycle-GAN like network [42] (AEGAN).

While GLO obviously shows some memorization of training examples, it is hard to visually assess when overfitting happens

for other methods, as discussed in Section 3 (with additional details on architectures and training).

CelebA-HQ, for various generators. For the sake of read-

ability, the distribution of errors for generated images (yel-

low) from G and distorted images (blue) are only displayed

for PGGAN and MESCH. Confirming visual inspection

from Fig. 1, observe that the recovery errors for generated

images (in yellow) are quite low. Increasing the number of

iterations and using several random initializations improve

results, but have not been used to reduce computation costs.

Now we are going to consider the distribution of recov-

ery errors for test and train. For GLO-N and AEGAN-N
generators with N ∈ {128, 1024, 8192}, the difference is

clear, and is decreasing with the number of training im-

ages N . For very small datasets of N = 128, the train

and validation error distributions are disjoint. On the other

hand, pure GAN models can not be successfully trained

with small datasets. We therefore only trained PGGAN and

MESH with full datasets and in both cases, the difference

of recovery error distribution between the train (green) and

validation (red) set is barely noticeable. Further statisti-

cal analysis in the next paragraph shows indeed that such

a small gap is very likely for two samples drawn from the

same law, demonstrating generalization.

3.3. Statistical Analysis

In light of the previous results, we propose two simple

definitions to measure and detect overfitting without rely-

ing on histograms or image inspection. First, to summarize

the distribution of errors to a single value, we consider the

Median Recovery Error (MRE), defined for a generator G
and a dataset Y as

MREG(Y) = median
{

min
z

‖yi −G(z)‖2
}

yi∈Y
(4)

Table 1 reports such values for other deep generators and

other datasets.

Then to measure the distance between two distributions,

that is to estimate to which extent the generator overfits the

training set, we simply compute the normalized MRE-gap

between validation T and train D dataset, which writes

MRE-gapG = (MREG(T )− MREG(D)) /MREG(T ) (5)

These values are reported2 in Table 1.

2Notice that other metrics could have been used, such as the Wasser-

stein distance.
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(a) PGGAN (b) MESCH

(c) GLO-128 (d) AEGAN-128

(e) GLO-1024 (f) AEGAN-1024

(g) GLO-8192 (h) AEGAN-8192

Figure 4: Histograms of recovery errors on train D and

validation T datasets from CelebA-HQ showing that over-

fitting is not happening for PGGAN and MESCH generators

on the training dataset, but is for GLO-N and AEGAN-N
when training for a small dataset N ≤ 8192.

Instead of using an empirical threshold to automatically

assess if the amount of overfitting is significant regarding

the size of the training set, we rely on a statistical test. We

compute the p-value of the Kolmogorov-Smirnov test (KS)

which measures the probability that two random samples

drawn from the same distribution have a larger discrepancy,

defined as the maximum absolute difference between cumu-

lative empirical distributions, than the one observed.

Such p-values are displayed in Table 1, and a threshold of

1% is used to detect overfitting (values are highlighted). To

show the consistency between the two proposed metric, we

also highlight the values of MRE-gap that are above 10%.

Observe that the results are mostly confirming previous

empirical evidence: memorization is strongly correlated to

the number of images seen during training. We also see that

the same overfitting occurs on different datasets (CelebA-

HQ and LSUN), and for autoencoder (AE). At N = 26000

Figure 5: Comparison of FID versus Median Recovery Er-

ror (MRE) for various models computed over training im-

ages (in green) and validation images (in red). FID does

not detect memorization in GLO models.

on CelebA-HQ and N = 32768 on LSUN bedroom, over-

fitting is no longer detectable.

However, using the proposed statistics (p-value, normal-

ized MRE-gap) is much more practical to detect overfitting

than only inspecting histograms and easier to threshold than

MRE itself. It also illustrates that such statistical principle

overrules empirical evaluation, as memorization is indeed

sometimes quite hard to tell from simple visual inspection,

such as for the AEGAN generator in Fig. 3.

3.4. FID Does Not Detect Memorization

The FID is the standard GAN evaluation metric for im-

ages [16], so it is natural to ask whether this metric can be

used to detect memorization. Figure 5 displays FID scores

computed between generated and training images (in green)

and generated and test images (in red). While the median re-

covery error (MRE) is able to detect memorization in GLO

models, the FID is not sensitive to this (this fact was also

noted by [14]). We do not suggest replacing the FID, but

rather using MRE to provide a more complete picture of

generator performance. Besides, other metrics such as the

precision recall introduced in [33] can be considered as well

to tackle more subtle statistical biases such as mode drop-

ping versus mode invention.

4. Discussion and Future Work

4.1. Notes on Applications

Recently, GANs have seen wide application to vari-

ous face generation tasks, such as face attribute modifica-

tion [8], generative face completion [22] and face super-

resolution [9]. In a similar vein, deep image prior [38], re-

covers images by first fixing a random latent vector, then
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Table 1: Kolmogorov-Smirnov (KS) p-values, normalized median error difference (MRE-gap) Eq. (5), and Median recovery

errors (MRE) Eq. (4) for a variety of generators. Highlighted values indicate generators for which overfitting of the training

set has been detected: (in blue) with the KS test using 1% threshold on p-value, (in green) using 10% threshold on MRE-gap.

KS p-value MRE-gap MRE

train vs val train val generated distortion

CelebA-HQ

DCGAN 9.43e-01 1.79e-02 4.95e-02 5.04e-02 3.68e-03 5.69e-02

MESCH 4.55e-01 6.96e-03 3.40e-02 3.43e-02 1.77e-02 4.63e-02

PGGAN 2.22e-01 2.22e-02 3.31e-02 3.39e-02 1.78e-02 4.65e-02

GLO-128 0.00e+00 9.70e-01 9.94e-04 3.30e-02 5.10e-05 9.32e-03

GLO-1024 0.00e+00 7.59e-01 1.95e-03 8.08e-03 1.29e-03 4.46e-03

GLO-8192 2.25e-18 1.75e-01 3.00e-03 3.64e-03 1.04e-03 3.20e-03

GLO-26000 2.12e-01 3.69e-02 4.27e-03 4.44e-03 4.08e-04 4.43e-03

AE-128 0.00e+00 9.68e-01 3.36e-03 1.06e-01 N/A 1.80e-02

AE-1024 0.00e+00 9.35e-01 4.19e-03 6.45e-02 N/A 1.80e-02

AE-8192 0.00e+00 7.60e-01 8.04e-03 3.34e-02 N/A 1.67e-02

AEGAN-128 0.00e+00 9.02e-01 1.54e-02 1.57e-01 N/A 2.82e-02

AEGAN-1024 0.00e+00 2.68e-01 8.52e-02 1.16e-01 N/A 8.69e-02

AEGAN-8192 3.17e-27 1.61e-01 7.42e-02 8.84e-02 N/A 7.55e-02

AEGAN-26000 1.25e-01 1.85e-02 9.96e-02 1.01e-01 N/A 1.00e-01

LSUN

DCGAN (tower) 7.02e-02 1.36e-02 7.96e-02 8.07e-02 1.49e-02 7.31e-02

DCGAN (bedroom) 3.65e-01 5.34e-03 7.06e-02 7.10e-02 7.03e-02 7.09e-02

GLO-8192 (bedroom) 6.70e-06 1.70e-01 5.45e-03 6.56e-03 5.37e-04 5.01e-03

GLO-32768 (bedroom) 2.62e-01 5.40e-02 6.58e-03 6.25e-03 8.40e-04 5.44e-03

MNIST

DCGAN 2.41e-01 8.85e-02 3.00e-02 2.75e-02 6.89e-03 -

GLO-1024 0.00e+00 6.78e-01 2.86e-04 8.88e-04 1.49e-03 -

GLO-16384 3.48e-01 6.45e-03 8.72e-04 8.77e-04 1.41e-03 -

AEGAN-16384 7.43e-02 2.29e-02 4.56e-02 4.67e-02 N/A -

CIFAR10
DCGAN 5.40e-01 3.65e-03 2.29e-01 2.28e-01 1.30e-03 -

GLO-1024 0.00e+00 5.84e-01 2.77e-03 6.67e-03 8.53e-04 -

GLO-16384 3.48e-01 6.45e-03 8.72e-04 8.77e-04 1.41e-03 -

optimizing over the parameters of a randomly initialized

generator. We apply (NNG) to face inpainting and super

resolution for two reasons; first it shows off-the-shelf GAN

generators are well suited for a variety of downstream tasks,

which is also noted in [39] and second it provides additional

visual insight into the observations of the previous section.

Figure 6 shows the progressive GAN generator [20] ap-

plied to face inpainting (φ is a mask) and super-resolution

(φ is a 64x pooling). While the face inpainting is artifacted,

we note that the results are decent without any post process-

ing and similar to those presented in [22] (while being non-

feedforward). As for super-resolution, we obtain results at

least on par with [9]. An intriguing property of the images

is that the recovery is semantically accurate, in terms of at-

tributes such as gender, facial features and pose, whilst re-

covering a face that appears to be a different identity. This

happens despite the use of images that the PGGAN gener-

ator [20] was trained on, which is in accordance with the

observations of Sec. 3. Put in another way, we believe the

fact that PGGAN has generalized well to CelebA-HQ, also

means that it will not be able to verbatim recover an iden-

tity found in the dataset. For some applications this could be

seen as inadequate, such as the domain translation network

of StarGAN [8], wherein a user wants to retain identity but

change facial features. On the other hand, if a face dataset

is considered private or copyrighted, not verbatim copying

any training image can be seen as a benefit of the algorithm.

Quantifying whether GAN generators really do generalize

with respect to identity, using a face identification network

like VGG-Face [31], is an interesting issue that we leave for

future work.

4.2. Future Work

Our work is a part of a growing body of research con-

cerned with overfitting of deep generative models [15, 14].

For example, [14] takes a perspective of GAN evaluation,

arguing that evaluation with a neural net distance can pe-

nalize trivial memorization of the dataset whereas FID can-

not. We have a similar perspective, albeit with the goal of

merely detecting overfitting and with a simpler approach.

11279



φ(y) G(z∗(y)) y

Figure 6: Off the shelf application of Eq. (NNG) with a

1024×1024 generator PGGAN. From left to right: trans-

formed image φ(y), recovered image G(z∗(y)) and ground

truth image y. The first two rows are image super-resolution

(φ is a mask) and next two are image inpainting of images

downsampled by a factor of 64 (φ is an average pooling).

Unlike our approach, the NND [18, 14] was able to de-

tect slight overfitting of some GANs, however, the massive

size of the validation set and the fact that the NND must

be retrained for every generator under evaluation make the

analysis computationally burdensome. Additionally, the ar-

chitecture choice of the NND may be biased to reflect the

GAN loss function and not be universal across models, such

as the reconstruction based GLO model considered in this

work. On the other hand, we present a simple, computa-

tionally tractable solution requiring modestly sized (here,

just a few thousand) validation images. We found the re-

construction based generator GLO to be interesting from a

theoretical perspective. For example, optimization unveiled

strong overfitting; training images are nearly verbatim re-

covered and validation images are blurry (e.g. Fig. 3, row

4), whereas FID on GLO samples was insensitive to this

difference. Furthermore, a major advantage of our work is

the visual interpretability of our results. For example, one

can see in Fig. 3, the visual reconstructions do in fact reveal

visual quality of train versus validation samples. Namely,

both training and validation images are well reconstructed

for the GAN methods. We believe further work must be

done to synthesize the results of [14, 15] and our work. One

promising area would be to explore other loss functions.

We experimented briefly with perceptual losses (see sup-

plementary) but leave this possibility open. We also think

recovery could be guided with a learned NND loss. An-

other interesting direction is analysis of local overfitting on

image patches. Preliminary experiments can be found the

in supplementary material, which also show generalization

of GAN generators. Finally, Eq. (NNG) had mixed success

for more complex datasets such as LSUN in terms of visual

quality. We think that some datasets lead to more complex

latent space with many local minima and direct the reader

to the supplementary material for more details on optimiza-

tion.

Conclusion In this work, we studied overfitting of deep

generators through latent recovery. We saw that a sim-

ple Euclidean loss was effective at recovering latent codes

and recovers plausible images even after image transfor-

mations. We used this fact to study whether a variety of

deep generators memorize training examples by asking if

the network can generate validation samples. Our statisti-

cal analysis revealed that overfitting was undetectable for

GANs, but detectable for hybrid adversarial methods like

AEGAN and non-adversarial methods like GLO, even for

training sets of moderate sizes. Due to the ever-growing

concerns on privacy or copyright of training data and the

already widespread application of generative methods, we

provide methodology that is a step in the right direction to-

wards analysis of generative overfitting.
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