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On information-theoretic secrecy for wireless
networks

Etienne Perron, Suhas Diggavi and Emre Telatar
EPFL, Lausanne, Switzerland

Email: {etienne.perron,suhas.diggavi,emre.telatar}@epfl.ch

Abstract—In this paper we summarize our recent work on
information-theoretically secure wireless relay network commu-
nication. In such communication, the goal is to send informa-
tion between two special nodes (“source” and “destination”) in
a (memoryless) network with authenticated relays, where the
secrecy is with respect to a class of eavesdroppers. We develop
achievable secrecy rates when authenticated relays also help
increase secrecy rate by inserting noise into the network.

I. INTRODUCTION
The seminal paper of Wyner [20] on the degraded wiretap

channel and its generalization in [5] laid the foundations for
information-theoretic secrecy in broadcast channels. In the
recent past, information-theoretic secrecy has been applied to
wireless networks with results on secrecy for MIMO broadcast
channels, multiple access channels, interference channels and
relay channels (see [10] and references therein). Cooperative
strategies in wireless networks has been an active area of
research (see [8] and references therein). In [16], [17] coopera-
tive secrecy for arbitrary wireless networks was studied1. This
work was inspired by recent (approximate) characterizations
of the wireless relay network [3].

In this paper we summarize the studies in [16], [17], [14].
We will state the results for layered relay networks2. The
main results are as follows. We first develop a “separable”
strategy to provide information-theoretic secrecy for wireless
networks, which operates on the principle of providing end-to-
end secrecy, while the network operates without presupposing
the secrecy requirement. This is developed for (layered) deter-
ministic, Gaussian and discrete memoryless networks. We also
develop a noise insertion strategy that allows a subset of the
nodes in the network to insert random noise to aid in secure
communication. We state the achievable secrecy rates for such
active relay strategies, again for deterministic, Gaussian and
discrete memoryless networks. We also state a simple outer
bound for secrecy of such networks.

The paper is organized as follows. In Section II, we set up
the problem and the notation. Some basic results for informa-
tion flow without secrecy constraints are also established. We
summarize the main results in Section III. We end with a short
discussion in Section IV.

1The case when a single relay node present, as an extension of the classical
relay channel to the secrecy problem was studied in [13], [9].

2A layered network (given more precisely in Definition 1, is loosely that all
paths from source to destination are the same length. As in [3], we can extend
the results for layered networks to non-layered networks using time-expansion
on the network.

II. PRELIMINARIES
We consider transmission over a relay network G = (V ,L),

where V is the set of vertices representing the communication
nodes in the relay network and L is the set of annotated chan-
nels between the nodes, which describe the signal interactions.
Note that these channels are not point-to-point links, rather,
they model how the transmitted signals are superimposed and
received at the receiving nodes (i.e., there is broadcast and
interference). We consider a special node S ∈ V as the
source of the message which wants to securely communicate to
another special node D ∈ V (the destination) with the help of
a set of (authenticated) relay nodes A ⊂ V in the network. We
assume that a subset B ⊆ A of the relay nodes is allowed to
generate and use independent random messages. These special
relay nodes are called “noise inserting” nodes. The secrecy
is with respect to a set of possible (passive) eavesdropper
nodes E ⊂ V where E is disjoint from A ∪ {S,D}. We want
to keep all or part of the message secret if any one of the
possible eavesdropper nodes E ∈ E listens to the transmissions
in the relay network. Note that the class of eavesdroppers
that we define is discrete, i.e., we assume that all possible
eavesdroppers and their channels can be enumerated. If there
is a continuum of possible eavesdropper channels, our model
can approximate this via “quantization” of this continuum.
A. Signal interaction models

The results in this paper are stated for layered networks
formally defined as follows.
Definition 1: A relay network is layered if for every (i, j)

such that i ∈ {S} ∪ B and j ∈ V , all the paths from i to
j have the same length (the same number of hops in L). A
non-layered network is a network in which at least one node
pair (i, j) does not have this property.
Using the time-expanded networks, as used in [3], we can
extend the results for layered networks to non-layered net-
works. The network we consider is constituted by (layered)
memoryless channel interactions, which include broadcast and
multiple access interference [4] in the following ways.

Wireless interaction model: In this well-accepted model
[19], transmitted signals get attenuated by (complex) gains to
which independent (Gaussian) receiver noise is added. More
formally, the received signal yj at node j ∈ V at time t is
given by,

yj [t] =
∑

i∈Nj

hijxi[t] + zj [t], (1)
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where hij is the complex channel gain between node i and
j which is the annotation of the channels in L, xi is the
signal transmitted by node i, and Nj are the set of nodes
that have non-zero channel gains to j. We assume that the
average transmit power constraints for all nodes is 1 and the
additive receiver Gaussian noise is of unit variance. We use
the terminology Gaussian wireless network when the signal
interaction model is governed by (1).

Deterministic interaction model: In [1], a simpler de-
terministic model which captures the essence of wireless
interaction was developed. The advantage of this model is
its simplicity, which gives insight to strategies for the noisy
wireless network model in (1). The linear deterministic model
of [1] simplifies the wireless interaction model in (1) by elim-
inating the noise and discretizing the channel gains through a
binary expansion of q bits. Therefore, the received signal y(d)j
which is a binary vector of size q is modeled as

y(d)j [t] =
∑

i∈Nj

Gijx
(d)
i [t], (2)

where Gij is a q × q binary matrix representing the (dis-
cretized) channel transformation between nodes i and j and
x(d)
i is the (discretized) transmitted signal. All operations in

(2) are done over the binary field. We use the terminology
linear deterministic network when the signal interaction model
is governed by (2).

Discrete memoryless interaction model: The received
signal yj at node j ∈ V in layer l of the network, at time
t is related to the inputs at time t through a DMC specified
by, p(yj[t]|{xi[t]}i∈Nl−1), where Nl−1 are the nodes in layer
l − 1.

To simplify the comparison between different results, we
group the most important definitions below.
Definition 2: For I ⊆ V and j ∈ V , define Λ(I; j) to be

the set of all cuts (Ω,Ωc) that separate set I from j. More
precisely, Λ(I; j) is the set of all Ω ⊂ V such that I ⊆ Ω and
j ∈ Ωc.
Definition 3: For a (layered) relay network the transmit

distribution p({xi}i∈V) and quantizers p(ŷi|yi), belong to the
class P if for all p ∈ P , we have

p =

[
∏

i∈V
p(xi)

]
p({yj}j∈V |{xi}i∈V)

∏

i∈V
p(ŷi|yi). (3)

For given I ⊆ V and j ∈ V , we define an achievable rate
between between I and j as

R̂I;j(p) ! min
Ω∈Λ(I;j)

[
I(XΩ; ŶΩc |XΩc)−

∑

i∈Ω

I(Yi; Ŷi|XV)

]

(4)
where XV are channel inputs, YV correspond to the channel
outputs, and ŶV are the quantized variables, all governed by
p ∈ P .
Definition 4: For a given transmit and quantization distri-

bution p ∈ P , a subset ψ ⊆ V , a node j ∈ E ∪ {D}, define
Rψ;j(p) to be the set of all tuples Bψ = (Bi)i∈ψ such that

the components of the tuple are non-negative and such that for
any subset I ⊆ ψ, ∑i∈I Bi ≤ RI;j(p), where the quantity
RI;j(p) is the information-theoretic min-cut defined below,

RI;j(p) ! min
Ω∈Λ(I;j)

I(XΩ;YΩc |XΩc). (5)

Note that there is a difference between R̂I;j(p) given in (4)
and RI;j(p) given in (5), since R̂I;j(p) is the achievable
rate induced by a given (quantize-map-forward) relay strategy,
whereas RI;j(p) is related to a cut-value, both evaluated for
p ∈ P .
Definition 5: For a given input and quantization distribution

p ∈ P , a subset ψ ⊆ V \{S}, and a node j ∈ E ∪ {D}, define
R̂ψ;j(p) to be the set of all tuples (B′, Bψ) = (B′, (Bi)i∈ψ)
such that the components of the tuple are non-negative and
such that for any subset I ⊆ ψ,

B′ +
∑

i∈I
Bi ≤ R̂I∪{S};j(p).

Note that for a given ψ ⊆ V \ {S}, R̂ψ;j(p) differs from
Rψ∪{S};j(p) in two ways. First, Rψ∪{S};j(p) is related to
information-theoretic cut-values, evaluated for a particular p ∈
P , and R̂ψ;j(p) is related to the achievable rate for a particular
(quantization) relay strategy. Secondly, Rψ∪{S};j(p) imposes
constraints for all subsets of ψ including those that do not
contain S, i.e., like a MAC region. In Definition 5 for R̂ψ;j(p),
all the rate-constraints involve S.

Secrecy requirements:: The notion of information-
theoretic secrecy is defined through the equivocation rate Re,
which is the residual uncertainty about the message when
the observation of the strongest eavesdropper is given. More
formally, [20], [5], given a (T,ε)-code, the equivocation rate is
1
T minE∈E H(W |YE), where W is the uniformly distributed
source message, YE is the sequence of observations at eaves-
dropper E and H(·|·) denotes the (conditional) entropy [4].
The “perfect” (weak) secrecy capacity is the largest transmitted
information rate R, such that R = Re is achievable. This
notion can be strengthened to strong perfect secrecy, if the
equivocation is defined in bits minE∈E H(W |YE), instead of
a rate [12]. Using the tools developed in [12], we can convert
all the results to strong secrecy, once we have proved it for
weak secrecy (see also [14]).
B. Information flow over layered networks

Here we summarize results about communication in layered
networks that form an ingredient to our main results on
secrecy over relay networks. With no secrecy requirements,
the transmission scheme is the same as developed in [3], and
is informally described below.

Network operation:: Each node in the network generates
codes independently using a distribution p(xi). The source S
chooses a random mapping from messages w ∈ {1, . . . , 2RT }
to its transmit typical set TxS , and therefore we denote by
x(w)
S , w ∈ {1, . . . , 2TR} as the possible transmit sequences

for each message. Each received sequence yi at node i is
quantized to ŷi and this quantized sequence is randomly
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mapped onto a transmit sequence xi using a random function
xi = fi(ŷi), which is chosen such that each quantized
sequence is mapped uniformly at random to a transmit se-
quence. This random mapping can be represented by the
following construction. Generate 2TRi sequences xi from
the distribution ∏

j p(xi[j]), and generate 2TRi sequences
ŷi using a product distribution ∏

j p(ŷi[j]). We denote the
2TRi sequences of ŷi as ŷ(ki)

i , ki ∈ {1, . . . , 2TRi}. Note
that standard rate-distortion theory tells us that we need
Ri > I(Yi; Ŷi) for this quantization to be successful. Note that
since the uniformly at random mapping produces xi = fi(ŷi),
for a quantized value of index ki, we will denote it by ŷ(ki)

i

and the sequence it is mapped to by x(ki)
i = fi(ŷ

(ki)
i ).

In [3], this scheme was analyzed for deterministic and
Gaussian networks. It was established that for deterministic
networks, all rates up to minΩ∈Λ(S:D) H(YΩc |XΩc) for any
product distribution of the nodes can be achieved. For linear
deterministic networks, (2), this coincides with the cut-set
outer bound. For Gaussian networks, an approximate max-
flow, min-cut bound was established, which showed that all
rates up to minΩ∈Λ(S:D) I(XΩ;YΩc |XΩc)−κ, was achievable,
where κ was a universal constant, independent of SNR and
channel parameters [3].

In the multisource problem, a set of sources S ⊂ V wish
to communicate independent messages to the destination D
over the network. Each of the relay nodes operate as above,
except if it is also a source, then the transmitted sequence
is a (uniform random) mapping of both its message and its
received (quantized) signal. This scheme, which is a simple
extension of the scheme studied in [3], was studied for the
deterministic and Gaussian interaction models in [17], [14]. Its
simple extension to (layered) memoryless networks is stated
below.
Theorem 1: For any memoryless layered network, from a

set of sources S to a destination D, we can achieve any rate
vector satisfying

∑

k∈I⊆S
Rk ≤ R̂I;j(p)

for some distribution p ∈ P defined in (3), where R̂I;j(p) is
defined in (4).

III. MAIN RESULTS
Broadly there are a sequence of three (increasing generality)

ideas to the achievability scheme. (i) Separable scheme: The
relay network is operated as described in Section II-B, but
the secrecy is induced by an end-to-end scheme overlaid on
this. (ii) Noise insertion: In addition to the above operation, a
subset of the authenticated relays insert independent messages
(noise) which are intended to disrupt the eavesdropper and are
not required to be decoded. (iii) Auxiliary variables: In addition
to the above, the source prefixes an artificial multiuser channel
in order to allow multiple auxiliary variables.

We will state the results in increasing generality in order
to clarify and interpret the results. For the simplest case,

where relay nodes operate using the quantize-map-forward
strategy described in Section II-B, without regard to secrecy
requirements, the end-to-end separable scheme achieves the
following secrecy region.
Theorem 2: For a given distribution p ∈ P defined in (3),

the (strong) perfect secrecy rate between the source S and
destination D with respect to a class of eavesdroppers E , with
R̂S;D(p) given in (4), is lower bounded as

C̄s ≥ R̂S;D(p)−max
E∈E

min
Ω∈ΛE

I(XΩ;YΩc |XΩc),

where the second term is evaluated for p ∈ P .
Special cases of this result for deterministic and Gaus-

sian networks was shown in [16]. In the deterministic
case, as in [2], the relays do not quantize the inputs,
but map-and-forward it. Therefore, for deterministic net-
works the perfect secrecy rate is minΩ∈ΛD H(YΩc |XΩc) −
maxE∈E minΩ∈ΛE H(YΩc |XΩc). In the Gaussian case, by us-
ing a quantizer that gets distortion equal to the noise variance
(see [3]), I(Yi; Ŷi|XV) is a constant (depending on the noise
variance and not the channels), for every relay node i.

We can improve and generalize the result in Theorem 2
by using noise insertion at an arbitrary subset B ⊂ V. These
independent messages are not needed to be decoded anywhere,
but can be used to “jam” the eavesdroppers.
Definition 6: For an input distribution p, we define the

following function:
F (p) = max

BB∈∩E∈ERB;E(p)

[
max

x
{x : (x,BB) ∈ R̂B;D(p)}

−max
x

{x : (x,BB) ∈ ∪E∈ERB∪{S};E(p)}
]
.

Theorem 3: The (strong) perfect secrecy for any (layered)
relay network is lower bounded as

C̄s ≥ max
p∈P

F (p),

Basically the idea in Theorem 3 is that the noise insertion
effectively creates virtual MAC regions (for the eavesdroppers
and the legitimate receiver). The projection of the difference of
these regions onto the source message rate yields the secrecy
rate3. That is, the noise insertion “fills” up the eavesdropper
rate region with “junk” information, thereby protecting the
information. This notion can actually be formalized, as seen
in [14]. Also note that this is a way to think of the wiretap
channel [20], where all the junk information is at the source.
The noise insertion just distributes the origins of the junk all
over the network. This strategy was analyzed for deterministic
and Gaussian networks in [14], and the above result is its
simple generalization for memoryless networks.

In order to introduce auxiliary variables, we prefix an arti-
ficial memoryless channel in the sources, thereby modifying
the channel law for the networks. Since this does not change
the basic arguments for Theorem 3 (or its special case of

3A related strategy was developed in [9] for the Gaussian (single) relay
channel where the relay forwarded Gaussian noise along with decoded
information.
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Theorem 2), we do not restate the result. Note that in this
case the form of the secrecy rate is the same, except that we
can also optimize over the choice of the artificial channels.
This essentially would be generalization of the approach taken
in [15] for the wiretap channel, to the case of relay networks.
Also, following the program of [12] one can focus on showing
results for weak secrecy, but (as mentioned earlier), using the
techniques of [12] we can obtain it for strong secrecy (see
[14] for more details).

The next result is a simple upper bound on the perfect
secrecy rate for an arbitrary number of noise-inserting nodes
presented in [17].
Theorem 4: For a single eavesdropper E,

Rs ≤ max
p({xi}i∈V )

min
Ω∈Λ(SB,D)

I(XΩ;YΩc |YE , XΩc), (6)

where, in contrast to Theorems 2 and 3, the maximization
is not only over product distributions but over all possible
p({xi}i∈V).
The statement of Theorem 4 is valid for any type of signal
interaction, including noisy channels.

IV. DISCUSSION
In this paper we have summarized some of our studies

on a communication scenario with secrecy requirement for
wireless relay networks. We attempt to model the uncertainty
in the eavesdropper’s wireless channel, by developing the
secrecy rates for a class of eavesdropper channels. It is
possible to interpret the secret message generated as secret
key generation, and therefore we can use the techniques
outlined in this paper to generate an unconditionally (strongly)
secure key. One of the important open questions is to develop
characterizations of secrecy rates over networks. To obtain
such a characterization we need a matching converse stating
that no scheme can do better. The outer bound developed in
Theorem 4 is quite simple, and we need more sophisticated
outer bounding techniques. Another important issue to address
is the relevance of these results for wireless networks. In order
to make them more applicable, we need to ensure robustness of
these results to uncertainties in (network) channel knowledge
and eavesdroppers. An interesting approach to addressing this
might be the use of feedback. In the seminal paper [11],
Maurer showed the surprising result that feedback can allow
information-theoretic secrecy, even when the eavesdropper
channel dominates that of the legitimate receiver. The use of
feedback for network secrecy is a scarcely explored topic and
one we believe is worth pursuing. Some preliminary results in
this direction were presented in [18]. The recent results of [6],
[7] have established strategies also for key-agreement between
a set of nodes in a single-hop network. Therefore, we believe
that robustness using feedback, is another promising research
direction.
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Abstract—Existing edge-cut bounds for network coding are
refined to include different rate weights.

EDGE-CUT BOUNDS AND RATE WEIGHTS

Cut-set bounds that partition network nodes are a standard
method for understanding network information flow [1]. Sev-
eral recent improvements of these methods focus instead on
network edges [2]–[5]. One limitation of the new bounds is
that they treat source messages “equally” in the sense that each
source rate Rs has the same weight. We here outline a simple
refinement that introduces variable rate weights. We focus on
the methods of [2], [5] but our approach also applies to the
methods described in [3], [4], for example.

Consider a network graph (V, E) where V is a set of vertices
(or nodes) and E is a set of edges. Consider the derivation in [5,
Appendix] where the first few steps give

∑

k∈Sd

Rk ≤
1

N
I(WSd ;Y

N
Ed

| ZN
EC
d
WSC

d
) (1)

where Sd is a set of source indexes, Rk is the rate of message
Wk, N is the number of clock-ticks, Ed is a subset of E , Y N

Ed
=

{Y N
e : e ∈ Ed} is the set of output streams corresponding to

edges in Ed, EC
d is the complement of Ed in E , ZEC

d
= {ZN

e :
e ∈ EC

d } is the noise corresponding to edges not in Ed, and
WSC

d
= {Ws : s ∈ SC

d }. The derivation in [5, Appendix]
continues and gives a single-letter bound of the form

∑

k∈Sd

Rk ≤ I(XV(Ed);YEd |XV̄(Ed)∩s(Sd)C ) (2)

where V̄(Ed) is the set of vertices in which the edges of Ed
terminate, and s(Sd) is the set of vertices corresponding to the
sources with indexes in Sd. The next step requires optimizing
the joint probability distribution of the network inputs Xv , v ∈
V . For classical networks, the best inputs Xv are independent
and the right-hand side of (2) is a sum of edge capacities.
Observe that (2) has rate-weights of unity.

However, consider the classical network shown in Fig. 1
where message W1 is destined for both nodes 2 and 3 (the
variable Ŵ1(v) is the estimate of W1 at vertex v). Message
W1 must clearly use twice the network resources to reach these
nodes as compared to W2 reaching node 4, and this fact should
be reflected in a bound of the form

2R1 +R2 ≤ C1,2 + C1,3 (3)

2
4

1

3

W1

Ŵ2

Ŵ1(3)Ŵ1(2)

W2

Fig. 1. Example network.

where Ce is the capacity of edge e. To prove that (3) is valid,
consider Sd = {1, 2} and Ed = {(1, 2), (1, 3)}, and follow the
steps in [5] to arrive at the bound (1) which we expand as

R1 +R2 ≤
1

N
H(Y N

1,2Y
N
1,3)

=
1

N

[
H(Y N

1,2) +H(Y N
1,3)− I(Y N

1,2;Y
N
1,3)

]
. (4)

We now observe that W1 must effectively be a function of both
Y N
1,2 and Y N

1,3 and so it follows that I(Y N
1,2;Y

N
1,3) ≥ NR1.

Inserting this bound into (4) and using standard steps, we
arrive at (3). Furthermore, this idea generalizes in several
ways to strengthen the results of [2]–[5]. Some of these
generalizations will be discussed in the presentation.
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Abstract—We study the state-dependent multiple access chan-
nel (MAC) with causal side information at the encoders. We
consider two general models. In the first model, the state sequence
is available at the two encoders in a strictly causal manner.
We derive an achievable region, which is tight for the special
case of a Gaussian MAC where the state sequence comprises the
channel noise. Although the two senders do not have access to
each other’s massage and no feedback is present, the capacity for
this case coincides with the capacity of the same MAC without
side information, but with full cooperation between the users. A
Schalkwijk-Kailath type algorithm is developed, which achieves
this capacity with a double exponential decay of the maximal
probability of error. In the second model we consider, the state
sequence is available, as in Shannon’s model, to the two encoders
in a causal manner. A simple extension of the previous result,
with the inclusion of Shannon strategies, yields an achievability
result for this problem.

Index Terms—Causal state information, feedback, multiple
access channel, strictly-causal state-information.

I. INTRODUCTION

The problem of coding for state dependent channels with
state information at the encoder has been studied extensively
in two main scenarios: causal state information and noncausal
state information. The case where the state is available in a
strictly-causal manner or with a given fixed delay, has not
attracted much attention, possibly because in single-user chan-
nels, strictly-causal state-information (SI) does not increase
capacity. However, like feedback, strictly-causal SI can be
beneficial in multiple user channels. This can be seen using
the examples of Dueck [1]. Specifically, Deuck constructs
an additive noise broadcast channel (BC), where the noise
is common to the two users. The input and additive noise
are defined in a way that the resulting BC is not degraded.
The encoder learns the channel noise via the feedback, and
transmits it to the two users. Although valuable rate–that
otherwise could be used to transmit user messages–is spent
on the transmission of the noise, the net effect is an increase
in channel capacity, due to the noise being common to both
users. In Dueck’s example, the noise is transmitted losslessly
to the two users. However, based on his observations, it
is straightforward to construct examples where only lossy
transmission of the noise is possible, and yet the capacity
region is increased by this use of feedback. There is only one

encoder in the BC and thus, identifying the additive noise as
channel state, feedback in Dueck’s example is equivalent to
knowledge of the state in a strictly causal manner.

In this paper we study the state-dependent multiple access
channel (MAC) with common state information at the en-
coders. Two main models are considered: the strictly causal
model, where at time i both encoders have access to a common
state sequence up to time i−1 (or possibly with larger delay),
and the causal model, in the spirit of Shannon [4], where at
time i both encoders have access to a common state sequence
up to (and including) time i.

As in the case of broadcast channels, strictly causal knowl-
edge of the state increases the MAC’s capacity. Since only past
(or delayed) samples of the state are known, neither binning
(as in Gel’fand and Pinsker’s channel [2]) nor strategies [4]
can be employed. Instead, we derive a general achievable
region based on a block-Markov coding scheme. The encoders,
having access to a common state sequence, compress and
transmit it to the decoder. The users cannot establish co-
operation in the transmission of the messages, but they do
cooperate in the transmission of the compressed state, thus
increasing the achievable rates. The resulting region is tight
for the Gaussian MAC where the state comprises the channel
noise. Specifically, it is shown that for this channel, a proper
choice of the random variables in our achievable region yields
the capacity region of the same MAC without side information
but with full cooperation between the encoders. Since strictly
causal state information does not increase the capacity of
single user channels, it also cannot increase the capacity of the
MAC with full cooperation. Consequently, full cooperation is
the best that one can hope for, and thus the region must be
tight. Although the users do not have access to each other’s
message and no feedback is available, a Schalkwijk-Kailath
type algorithm can be devised for this channel, yielding the
full cooperation region with a double exponential decay in
the probability of error. The general achievability result, and
the Schalkwijk-Kailath algorithm, make use of all the past
samples of the channel noise. It turns out, however, that
much less is needed to achieve the full cooperation region.
Assume that, instead of having all the past noise samples,
only S1 and S2 are known to the encoders, in a strictly causal
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manner (i.e., available at times 3,4,....). As demonstrated in
Section II, althought only two noise samples are known, the
full cooperation region can still be achieved.

The causal model is also treated with block Markov coding,
but the transmission at time i can depend on the state Si.
All other ingredients of the coding scheme remain intact. The
resulting achievable region contains the naive region, which
uses Shannon strategies for the MAC without block Markov
coding, with the inclusion being in some cases strict.

II. PROBLEM FORMULATION AND MAIN RESULTS

A. Basic definitions
We are given a discrete memoryless state-dependent MAC

PY |S,X1,X2
with state alphabet S , state probability mass

function (PMF) PS , input alphabets X1 and X2, and output
alphabet Y . Sequences of letters from S are denoted by sn =
(s1, s2, . . . , sn) and sji = (si, si+1 . . . , sj). Similar notation
holds for all alphabets, e.g. xn

1 = (x1,1, x1,2, . . . , x1,n), xj
2,i =

(x2,i, x2,i+1, . . . , x2,j). When there is no risk of ambiguity, n-
sequences will sometimes be denoted by boldface letters, y,
x1, etc. The laws governing n sequences of state and output
letters are given by

Pn
Y |S,X1,X2

(y|s,x1,x2) =
n∏

i=1

PY |S,X1,X2
(yi|si, x1,i, x2,i),

Pn
S (s) =

n∏

i=1

PS(si).

For notational convenience, we henceforth omit the superscript
n, and we denote the channel by P . Let φk : Xk → [0,∞),
k = 1, 2, be single letter cost functions. The cost associated
with the transmission of sequence xk at input k is defined as

φk(xk) =
1

n

n∑

i=1

φk(xk,i), k ∈ {1, 2}.

B. The strictly causal model
Definition 1: Given positive integers M1, M2, let M1

be the set {1, 2, . . . ,M1} and similarly, M2 the set
{1, 2, . . . ,M2}. An (n,M1,M2,Γ1,Γ2, ε) code with strictly
causal side information at the encoders is a pair of sequences
of encoder mappings

fk,i : Si−1 ×Mk → Xk, k = 1, 2, i = 1, . . . , n (1)

and a decoding map

g : Yn →M1 ×M2

such that the input cost costs are bounded by Γk

φk(xk) ≤ Γk, k = 1, 2,

and the average probability of error is bounded by ε

Pe = 1− 1

M1M2

M1∑

m1=1

M2∑

m2=1

∑

s
PS(s) ·

P
(
g−1(m1,m2)|s,f1(s,m1),f2(s,m2)

)
≤ ε,

where g−1(m1,m2) ⊂ Yn is the decoding set of the pair of
messages (m1,m2), and

fk(s,mk) = (fk,1(mk), fk,2(s1,mk), . . . , fk,n(s
n−1,mk)).

The rate pair (R1, R2) of the code is defined as

R1 =
1

n
logM1, R2 =

1

n
logM2.

A rate-cost quadruple (R1, R2,Γ1,Γ2) is said to be achievable
if for every ε > 0 and sufficiently large n there exists
an (n, 2nR1 , 2nR2 ,Γ1,Γ2, ε) code with strictly causal side
information for the channel PY |S,X1,X2

. The capacity-cost
region of the channel with strictly causal SI is the closure
of the set of all achievable quadruples (R1, R2,Γ1,Γ2), and
is denoted by Csc. For a given pair (Γ1,Γ2) of input costs,
Csc(Γ1,Γ2) stands for the section of Csc at (Γ1,Γ2). Our
interest is in characterizing Csc(Γ1,Γ2).

Let Psc be the collection of all random variables
(U, V,X1, X2, S, Y ) whose joint distribution satisfies

PU,V,X1,X2,S,Y = PSPX1|UPX2|UPUPV |SPY |S,X1,X2
. (2)

Note that (2) implies the Markov relations X1−◦ U−◦ X2 and
V−◦ S−◦ Y , and that the triplet (X1, U,X2) is independent of
(V, S). Let Rsc be the convex hull of the collection of all
(R1, R2,Γ1,Γ2) satisfying

R1 ≤ I(X1;Y |X2, U, V ) (3)
R2 ≤ I(X2;Y |X1, U, V ) (4)

R1 +R2 ≤ I(X1, X2;Y |U, V ) (5)
R1 +R2 ≤ I(X1, X2, V ;Y )− I(V ;S) (6)

Γk ≥ IEφk(Xk), k = 1, 2

for some (U, V,X1, X2, S, Y ) ∈ Psc. Our main result for the
strictly causal case is the following.

Theorem 1: Rsc ⊆ Csc.
The proof is based on a scheme where a lossy version
of the state is conveyed to the decoder using Wyner-Ziv
compression [7] and block-Markov encoding for the MAC
with common message [5]. The proof is omitted. In some
cases, the region Rcs coincides with Ccs. The next example
is such a case. Although Theorem 1 is proved for the discrete
memoryless case, we apply it here for the Gaussian model.
Extension to continuous alphabets can be done as in [6].

Example 1: Consider the Gaussian MAC, with input power
constraints IEX2

k ≤ Γk, k = 1, 2, where the state comprises
the channel noise:

Y = X1 +X2 + S, S ∼ N(0,σ2
s). (7)

The capacity region of this channel, when S is known strictly
causally at the two encoders, is the collection of all pairs
(R1, R2) satisfying

R1 +R2 ≤
1

2
log

(
1 +

(Γ
1
2
1 + Γ

1
2
2 )

2

σ2
s

)
. (8)

The region (8) is the capacity region of the same MAC when S
is not known to any of the encoders, but with full cooperation
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between the users—a situation equivalent to a single user
channel with a vector input constraint. Since strictly causal
SI does not increase the capacity of a single user channel,
we only have to show achievability in (8). We show it by
properly choosing the random variables in (3)–(6). Let us first
examine the maximal R1. Set U = X2, and let X1, X2, V, S
be zero mean, jointly Gaussian, with X1, X2 independent of
V, S. Then (3)-(6) reduce to the two bounds on R1:

R1 ≤ 1

2
log

(
σ2
x1|x2

+ σ2
s|v

σ2
s|v

)
(9)

R1 ≤ 1

2
log

(
ΓΣ + σ2

s

σ2
s

)
(10)

where σ2
x1|x2

is the variance of X1 conditioned on X2; σ2
s|v is

analogously defined; and ΓΣ is the power of the sum X1+X2.
In full cooperation, ΓΣ = (Γ

1
2
1 + Γ

1
2
2 )

2, but then σ2
x1|x2

= 0,
which nullifies the right hand side of (9). Note, however, that
we can take the limit σ2

s|v → 0 without effecting (10). Thus
we can approach the full cooperation rate as closely as desired,
by first reducing σ2

s|v , so that the right hand side of (9) is kept
high, and then reducing σ2

x1|x2
. This proves that with R2 = 0,

the rate

R1 =
1

2
log

(
1 +

(Γ
1
2
1 + Γ

1
2
2 )

2

σ2
s

)
(11)

is achievable. By symmetry and time sharing, (8) is achievable.
We next describe a Schalkwijk-Kailath type algorithm [3],

that achieves the same rate, with double exponential decay in
the maximal probability of error. As with the proof of (8),
first the achievability of (11) is shown. The rest will follow
by symmetry and time sharing. Split the interval [0, 1] into
M1 equally spaced sub-intervals. Let θ1 be the center of one
of these sub-intervals, representing the message of user 1, as
in [3]. At the first time instance, the users transmit

X1,1 = θ1, X2,1 = 0. (12)

The corresponding channel output is

Y1 = θ1 + S1. (13)

Starting from time instance i = 2 and on, the noise sample
S1 is known at both encoders. Thus the two encoders now
cooperate to transmit S1 to the decoder. Since they now have
a common message to transmit, knowing the states in a strictly
causal manner is equivalent to feedback. Applying the same
algorithm as in [3], after n iterations the receiver constructs
a Maximum Likelihood estimate of S1, denoted Ŝ(n)

1 , whose
error satisfies

IE((S1 − Ŝ(n)
1 )2|S1) =

σ2
s

(α2)n
(14)

with

α2 = 1 + γ2, γ2 = (Γ
1
2
1 +Γ

1
2
2 )2

σ2
s

. (15)

Based on this estimate and on Y1, the decoder can now
construct an estimate θ̂(n)1 of θ1

θ̂1 = Y1 − Ŝ(n)
1 (16)

whose error satisfies

IE((θ1 − θ̂(n)1 )2|S1) =
σ2
s

(α2)n
. (17)

Therefore, choosing M1 = nr1, with r1 ≤ 1
2 log(1 + γ2), the

probability of error vanishes doubly exponentially as n→∞.
This proves that (11) is achievable. By symmetry, and applying
time sharing, this algorithm achieves the region (8).

We next show that the region (8) is achievable also when the
states at only two time instances, say S1 and S2, are known
from time i = 3 and on. It suffices to show achievability
of (11) with only S1 known, from time i = 2. First trans-
missions and output are given by (12), (13). At times i = 2
and on, both users know S1. They cooperate in transmitting
to the receiver a quantized version of S1 via a regular code
for the single user Gaussian channel. Specifically, fix ε > 0
and choose β such that PS(|S1| > β) ≤ ε. Define r1 =
1
2 log(1 + γ2). We employ two partitions. First, partition the
interval [0, 1] into M1 = 2nr1/(4β) sub intervals, where the
centers represent the messages of user 1. Let θ1 be the center
of one of these sub intervals. Partition the interval [−β,β] into
2nr1 sub intervals, and denote by mq, q = 1, 2, . . . , 2nr1 their
center points. Define

Sq = argmin
mq

|S1 −mq| (18)

The two users transmit Sq to the receiver, via a single user
code. Denote by Ŝq the receiver’s estimate of Sq . Clearly, for
n large enough,

P

(∣∣∣S1 − Ŝq

∣∣∣ ≥
2β

(1 + γ2)n/2

)
≤ 2ε (19)

implying that the receiver can detect θ1 with probability of
error not exceeding 2ε. Note that M1 provides the claimed
rate.

C. The causal model

The definition of codes and achievable rates remain as in
Section II-B, with the only difference being the definition of
encoding maps: in the causal case (1) is replaced by

fk,i : Si ×Mk → Xk, k = 1, 2, i = 1, . . . , n. (20)

The capacity region and its section at (Γ1,Γ2) are denoted by
Cc and Cc(Γ1,Γ2), respectively. Let Pc be the collection of
all random variables (U,U1, U2, V,X1, X2, S, Y ) whose joint
distribution can be written as

PUPU1|UPU2|UPV |SPSPX1|U,U1,SPX2|U,U2,SPY |S,X1,X2
.

(21)
Observe that (21) implies the Markov relations U1−◦ U−◦ U2

and V−◦ S−◦ Y , and that the triple (U1, U, U2) is independent
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of (V, S). Let Rc be the convex hull of the collection of all
(R1, R2,Γ1,Γ2) satisfying

R1 ≤ I(U1;Y |U2, U, V ) (22)
R2 ≤ I(U2;Y |U1, U, V ) (23)

R1 +R2 ≤ I(U1, U2;Y |U, V ) (24)
R1 +R2 ≤ I(U1, U2, V ;Y )− I(V ;S) (25)

Γk ≥ IEφk(Xk), k = 1, 2

for some (U,U1, U2, V,X1, X2, S, Y ) ∈ Pc. Our main result
for the causal case is the following.

Theorem 2: Rc ⊆ Cc.
The proof proceeds along the lines of the proof of Theorem 1,
except that the inputs Xk, k = 1, 2, are allowed to depend on
the state S, and that additional external random variables U1

and U2 that do not depend on S are introduced. This resembles
the situation in coding for the single user channel with causal
side information, where a random Shannon strategy can be
represented by an external random variable independent of the
state. The proposed scheme outperforms the naive approach of
using strategies without block Markov encoding of the state.
This latter naive approach leads to the region comprising all
(R1, R2) satisfying

R1 ≤ I(T1;Y |T2, Q)

R2 ≤ I(T2;Y |T1, Q)

R1 +R2 ≤ I(T1, T2;Y |Q) (26)

for some PQPT1|QPT2|Q, where Tk are random Shannon
strategies [4], whose realizations are mappings tk : S → Xk,
k = 1, 2; Q is a time sharing random variable; and

PY |T1,T2
(y|t1, t2) =

∑

s∈S
PS(s)PY |S,X1,X2

(y|s, t1(s), t2(s)).

Clearly Rc contains the region of the naive approach as we
can choose V in (22)–(25) to be a null random variable. The
next example demonstrates that the inclusion can be strict.

Example 2: Noiseless binary MAC, with input selector.
Consider the noiseless binary MAC where X1 = X2 = Y =
{0, 1}, S = {1, 2} and PS(S = 2) = p for some p > 0.5.
The state S determines which of the two inputs is connected
to the output:

Y = XS .

Block Markov Coding. Both users know the state and hence
know, at each time, which user is connected to the output.
Thus, they can compress the state using H(S) = Hb(p) bits
per channel use and transmit the state sequence to the decoder,
via block Markov coding. If they do so, the decoder knows S,
and the users can now share between them a clean channel.
Since they already spent Hb(p) bits in transmitting the state,
the net rate remaining to share between them is

R1 +R2 = 1−Hb(p). (27)

Note, however, that not all the line (27) is achievable. The
users do not know each other’s message. Thus, user 1 can

transmit its own message only (1 − p) fraction of the time.
We conclude that the following rate is achievable for user 1:

R1 = [1−Hb(p)](1− p) [bits]. (28)

The Naive Approach. From the region (26) and the extreme
points of the capacity region of the classical MAC, the
maximal rate that user 1 can transmit is:

R1 = max I(T1;Y |T2 = t2), (29)

where the maximum is over the distribution of T1 and over all
mappings t2 : S → X2. The strategy t2 influences the output
only when S = 2, in which case it gives a certain input X2,
connected directly to the output. User 1 is then disconnected.
Therefore, the exact value of t2 is immaterial. Assume that
t2(s = 2) = 0.

Similarly, t1 influences the output only when S = 1, in
which case it gives a certain input X1 directly connected to
the output. Since the strategies are chosen independently of S,
the MAC reduces to a Z-channel from user 1:

P (Y = 0|X = 0) = 1, P (Y = 0|X = 1) = p. (30)

The capacity of this channel is given by

C(p) = log2

(
1 + (1− p)p

p
1−p

)
[bits]. (31)

At the limit where p approaches 1, we have

C(p) ≈ (1− p)e−1 log2 e ≈ 0.53(1− p), (32)

which, at the limit p→ 1, is strictly less than (28).
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Abstract—In this paper, we investigate the binary symmetric
wiretap channel. We show that the secrecy capacity can be
achieved by using random linear codes. Furthermore, we explore
the coset coding scheme constructed by linear codes. As a result,
we give an upper bound on the total information loss, which sheds
light on the design of the applicable coset codes for the secure
transmission with limited information leakage.

I. INTRODUCTION
The concept of the wiretap channel was first introduced

by Wyner [1]. His model is a form of degraded broadcast
channel. Assume that the wiretapper knows the encoding
scheme used at the transmitter and the decoding scheme used
at the legitimate receiver. The objective is to maximize the rate
of reliable communication from the source to the legitimate
receiver, subject to the constraint that the wiretapper learns
as little as possible about the source output. In fact, there is
a maximum rate, above which secret communication between
the transmitter and the legitimate receiver is impossible. Wyner
[1] has determined this secrecy capacity when both main
channel and the wiretap channel are discrete memoryless.

In this paper, we focus on the problem of developing a
forward coding scheme for provably secure, reliable communi-
cation over a wiretap channel. Basic idea has been introduced
by Wyner in [1] for the special case when the main channel
is noiseless and the wiretap channel is a binary symmetric
channel (BSC). Another example is given by Thangaraj et
al. [3] for the case with a noiseless main channel and a
binary erasure wiretap channel. In this paper, we consider the
specific case when both the main channel and the wiretap
channel are BSCs. Our main contribution is twofold. We start
with a random coding scheme similar to the one proposed
in [4]. We give a strict mathematical proof to show that
the secrecy capacity can be achieved by using random linear
codes. Furthermore, we address the coset code constructed by
linear codes and analyze its information leakage. We derive an
upper bound on the total information loss and show that under
certain constraint one can construct a coset code to insure a
secure transmission with limited information leakage.

II. MODEL DESCRIPTION
We consider the communication model as shown in Fig. 1.

Suppose that all alphabets of the source, the channel input and
the channel output are equal to {0, 1}. The main channel is a
BSC with crossover probability p and we denote it by BSC(p).

BSC

Source Encoder Decoder Legitimate receiver

Wiretapper

BSC
SK XN Y N ŜK

ZN

Fig. 1. Binary symmetric wiretap channel.

The wiretap channel is a BSC(pw), where 0 ≤ p < pw ≤ 1/2.
Note that a BSC(pw) is equivalent to the concatenation of a
BSC(p) and a BSC(p∗), where p∗ = (pw−p)/(1−2p). Thus
the channel model shown in Fig. 1 is equivalent to Wyner’s
model with a BSC(p) main channel and a BSC(p∗) wiretap
channel. Its secrecy capacity due to [1] is Cs = h(pw)−h(p).

To transmit a K-bit secret message SK , an N -bit codeword
XN is sent to the channel. The corresponding output at the
legitimate receiver is Y N , at the wiretapper is ZN . Thus the
error occurred over the main channel is EN = Y N−XN , over
the wiretap channel is EN

w = ZN −XN . Assume that SK is
uniformly distributed. The transmission rate to the legitimate
receiver is

R = K/N. (1)
The equivocation of the wiretapper is defined to be

d =
H(SK |ZN )

H(SK)
=

H(SK |ZN)

K
. (2)

At the legitimate receiver, on receipt of Y N , the decoder
makes an estimate ŜK of the message SK . The error proba-
bility Pe of decoding is defined to be

Pe = Pr{ŜK .= SK}. (3)
We refer to the above as an encoder-decoder (K,N, d, Pe).

In this paper, when the dimension of a sequence is clear
from the context, we will denote the sequences in boldface
letters for simplicity. For example, x is the sequence xN and
s is sK , etc. A similar convention applies to random variables,
which are denoted by upper-case letters.

III. SECRECY CAPACITY ACHIEVING CODES
In this section, we perform a random linear code to establish

the achievability of the secrecy capacity. For this aim, we need
to construct an encoder-decoder (K,N, d, Pe) such that for
arbitrary ε, ζ, δ > 0,

R ≥ h(pw)− h(p)− ε, d ≥ 1− ζ, Pe ≤ δ. (4)
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A. Parameter settings
First, we set up the parameters for the encoder-decoder

(K,N, d, Pe). Randomly choose a binary matrix H1 with
N − K1 rows and N columns. Independently and randomly
choose another binary matrix H with K rows and N columns.
Assume that K ≤ K1 and let K2 = K1 −K. We construct

H2 =

[
H1

H

]
. (5)

Then H2 is a binary matrix with N−K2 rows and N columns.
For arbitrary small ε > 0, we take

K1 = /N [1− h(p)− 2ε]0;
K2 = /N [1− h(pw)− 2ε]0.

Here /x0 stands for the maximal integer≤ x. For given ε > 0,
let N0 > 1/ε. It is easy to verity that for N > N0, we have

R = K/N ≥ h(pw)− h(p)− ε. (6)
In what follows, we will assume that H1, H and H2 are of full
rank. The reason is due to Lemma 6 in [2]. In order to send a
secret message s, a sequence x is chosen at random from the
solution set of the following equation

xH2
T =

[
xH1

T xHT
]
=

[
0 s

]
, (7)

where H2
T,H1

T and HT are the transposes of the matrices
H2,H1 and H, respectively.

In the following, we will show that the secrecy capacity
can be achieved by the random linear codes in two parts, the
reliability: Pe → 0 as N → ∞; and the security: d → 1 as
N →∞.

B. Reliability proof
In this subsection, we will prove that Pe → 0 as N →∞.
The legitimate receiver uses typical set decoder. The decoder

examines the typical set TN
E (ε), the set of error sequences e

that satisfy
2−N [h(p)+ε] ≤ Pr(E = e) ≤ 2−N [h(p)−ε]. (8)

If exactly one sequence e satisfies eH1
T = yH1

T, the typical
set decoder reports it as the hypothesized error sequence.
Otherwise, the typical decoder reports an error.

The error probability of the typical set decoder at the
legitimate receiver, can be written as follows,

Pe = PT + PH1 , (9)
where PT is the probability that the true error sequence is
itself not typical, and PH1 is the probability that the true error
sequence is typical and at least one other typical sequence
clashes with it.

We first analyze PT . For given ε, δ > 0, there exists N1,
such that Pr{e ∈ TN

E (ε)} ≥ 1− δ/2 for N ≥ N1. Therefore,
when N ≥ N1, PT = 1− Pr{e ∈ TN

E (ε)} ≤ δ/2.
Now we consider PH1 . Suppose that the true error sequence

is e ∈ TN
E (ε). If any of the typical error sequence e′ .= e,

satisfies (e′ − e)H1
T = 0, then we have an error. Let

Te(ε) = {e′ : e′ ∈ TN
E (ε), e′ .= e}. (10)

We have
PH1 ≤

∑

e∈TN
E (ε)

Pr(E = e)
∑

e′∈Te(ε)

1[(e′ − e)H1
T = 0],

where 1[·] is the truth function, whose value is 1 if the
statement in the bracket is true and 0 otherwise.

Consider the average of PH1 , P̄H1 , over all possible H1.
Denote averaging over all possible H1 by 〈·〉H1 . We have
P̄H1 ≤

∑

e∈TN
E (ε)

Pr(EN = e)
∑

e′∈Te(ε)

〈1[(e′ − e)H1
T = 0]〉H1 .

Since for any non-zero binary sequence v, the probability that
vH1

T = 0, averaging over all possible H1, is 2−(N−K1), so
P̄H1 < |TN

E (ε)|2−(N−K1) ≤ 2−N(1−h(p)−ε−K1/N).

Note that K1/N < 1−h(p)−ε. For given ε, δ > 0, there exists
an N2, when N ≥ N2, P̄H1 ≤ δ/8. By Markov inequality,

Pr(PH1 > δ/2) <
P̄H1

δ/2
≤ δ/8

δ/2
=

1

4
.

Thus we have Pr(PH1 ≤ δ/2) = 1− Pr(PH1 ≥ δ/2) > 3/4.
So far we have shown that there are more than 3/4 random

choices from all possible H1 such that, for given ε, δ > 0,
when N ≥ max{N1, N2}, Pe = PT + PH1 ≤ δ/2+ δ/2 = δ.
This concludes the proof of reliability.
C. Security proof

In this subsection, we will prove that d→ 1 as N →∞.
Consider the wiretapper’s equivocation in three steps:
1) show that H(S|Z) ≥ N [h(pw)− h(p)]−H(X|S,Z).
2) show that H(X|S,Z) ≤ h(Pew) + PewK2. Here Pew

means a wiretapper’s error probability to decode x in
the case that s is known to the wiretapper.

3) show that for arbitrary 0 < λ < 1/2, Pew ≤ λ.

Combining the above steps, we obtain that d→ 1 as N →∞.
First we prove step 1 by considering

H(S|Z) = H(S,Z)−H(Z)

= H(S,X,Z)−H(X|S,Z) −H(Z)

= H(X|Z) +H(S|X,Z)−H(X|S,Z)
(a)
= H(X|Z) −H(X|S,Z)
≥ H(X|Z)−H(X|Y)−H(X|S,Z)
= I(X;Y) − I(X;Z)−H(X|S,Z)
= N [I(X ;Y )− I(X ;Z)]−H(X|S,Z)
= N [h(pw)− h(p)]−H(X|S,Z),

where (a) follows from the fact that H(S|X,Z) = 0;
Now we prove step 2. Suppose that S takes value s. For

given H2, s, we consider the solution set of equation (7)
as a codebook, X in the codebook as the input codeword,
wiretapper’s observation Z as the corresponding output of
passing X through the wiretap channel. From Z, the decoder
estimates X as X̂ = g(Z). Define the probability of error

Pew = Pr(X̂ .= X). (11)
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From Fano’s inequality, we have H(X|s,Z)≤h(Pew) +
PewK2. Therefore, H(X|S,Z) ≤ h(Pew)+PewK2. Thus we
complete the proof of step 2.

Now we proceed to step 3. Note that the estimate g(Z) of the
decoder can be arbitrary. Here we use the typical set decoder.
With the knowledge of s and z, the decoder tries to find the
codeword x sent to the channel. The decoder examines the
typical set TN

Ew
(ε), the set of error sequences ew that satisfy

2−N [h(pw)+ε] ≤ Pr(Ew = ew) ≤ 2−N [h(pw)−ε].

If exactly one sequence ew satisfies ewH2
T = zH2

T, the de-
coder reports it as the hypothesized error sequence. Otherwise,
a decoding error is reported.

The error probability of the typical set decoder at the
wiretapper can be written as follows,

Pew = PTw + PH2 , (12)
where PTw is the probability that the true error sequence is
itself not typical, and PH2 is the probability that the true error
sequence is typical and at least one other typical sequence
clashes with it.

We first analyze PTw . For given ε,λ > 0, there exists N3,
such that Pr{ew ∈ TN

Ew
(ε)} ≥ 1 − λ/2 for N ≥ N3. There-

fore, when N ≥ N3, PTw = 1− Pr{ew ∈ TN
Ew

(ε)} ≤ λ/2.
Now we consider PH2 . Suppose that the true error sequence

is ew ∈ TN
Ew

(ε). If any of the typical error sequence e′w .= ew,
satisfies (e′w − ew)H2

T = 0, then we have an error. Let
Tew(ε) = {e′w : e′w ∈ TN

Ew
(ε), e′w .= ew}. (13)

We have
PH2 ≤

∑

ew∈TN
Ew

(ε)

Pr(Ew = ew)
∑

e′w∈Tew (ε)

1[(e′w − ew)H2
T = 0].

Consider the average of PH2 , P̄H2 . We have
P̄H2 ≤

∑

ew∈TN
Ew

(ε)

Pr(Ew = ew)
∑

e′w∈Tew (ε)

〈1[(e′w−ew)H2
T = 0]〉H2 .

Note that for fixed ew, e′w,

〈1[(e′w − ew)H2
T = 0]〉H2

= 〈〈1[(e′w − ew)H1
T = 0] · 1[(e′w − ew)H

T = 0]〉H1〉H
= 〈1[(e′w − ew)H1

T = 0]〉H1 · 〈1[(e′w − ew)H
T = 0]〉H

= 2−(N−K1) · 2−K = 2−(N−K2).

Therefore,
P̄H2 < |TN

Ew
(ε)|2−(N−K1+K) ≤ 2−N(1−h(pw)−ε−K2/N).

Note that K2/N < 1 − h(pw) − ε. For given ε,λ > 0, there
exists N4, when N ≥ N4, P̄H2 ≤ λ/8. By Markov inequality,

Pr(PH2 > λ/2) <
P̄H2

λ/2
≤ λ/8

λ/2
=

1

4
.

Thus we have Pr(PH2 ≤ λ/2) = 1− Pr(PH2 > λ/2) > 3/4.
So far we have shown that there there are more than 3/4

random choices from all possible H1 and more than 3/4

random choices from all possible H, such that, for given ε > 0
and λ > 0, when N ≥ max{N3, N4}, Pew = PTw + PH2 ≤
λ/2 + λ/2 = λ. This completes the proof of step 3.

As a conclusion of above discussion, for given ε, δ, ζ, ε > 0,
when N ≥ max{N0, N1, N2, N3, N4}, there are more than
1/2 (3/4 + 3/4 − 1) random choices of all possible H1 and
more than 3/4 random choices from all possible H such that
Pe ≤ δ and Pew ≤ λ. In addition to (6), it is shown that there
are H1 and H that lead to a random linear code satisfying (4).

IV. ANALYSIS OF INFORMATION LEAKAGE
In this section, we adopt the code structure of the random

coding scheme but use normal linear codes in our construction
for ease of implementation. We address the security of the
coset coding scheme by analyzing its total information loss.
A. Coset coding scheme

Consider the communication model in Fig. 1. Note that in
this section, H1 and H2 (thus H) are certainly of full rank.
In particular, H1, H2 are parity check matrices of an (n, k1)
linear code C1 and an (n, k2) linear code C2, respectively.
Here C2 ⊂ C1 and k = k1 − k2. We use the same encoding
strategy (equation (7)). The codebook in the encoding scheme
is shown in Table I. At the legitimate receiver, the decoder

TABLE I
THE CODEBOOK IN THE ENCODING SCHEME

Space of input x Secret s Set of codewords w.r.t. secret s

C1

s(1)
s(2)

...
s(2k)

x(1) + C2
x(2) + C2

...
x(2k) + C2

uses syndrome decoding. It is easy to see that the coset code
by C1 and C2 has error correcting capability beyond C1.

B. Security analysis
The total information obtained by the wiretapper through

his observation is I(S;Z). We define it as the information
loss (IL) of the scheme. First we have the following lemma.
Lemma 4.1: H(Z|S) = H(Z|S = 0).
Proof: For given s(i), 1 ≤ i ≤ 2k, we have

pZ|S(z|s(i)) =
∑

x∈x(i)+C2

pX|S(x|s(i))pZ|X,S(z|x, s(i))

(a)
=

1

2k2

∑

x∈x(i)+C2

pw(x+z)
w (1− pw)

n−w(x+z)

=
1

2k2

∑

v∈z+x(i)+C2

pw(v)
w (1 − pw)

n−w(v), (14)

where w(v) is the Hamming weight of sequence v and (a)
follows that pX|S(x|s(i)) = 1/2k2 , p(z|x, s(i)) = p(z|x),
and the fact that the wiretap channel is a BSC(pw).

From (14), we see that pZ|S(z|s(i)) is determined by the
weight distribution of the coset z + x(i) + C2. Note that for
given s(i), {z + x(i) + C2, z ∈ {0, 1}n} is a permutation
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of {z + C2, z ∈ {0, 1}n}. As a straightforward consequence,
{pZ|S(z|s(i)), z ∈ {0, 1}n} is a permutation of {pZ|S(z|s =
0), z ∈ {0, 1}n}. Thus we have H(Z|S) = H(Z|S = 0).

Let C be a set of binary sequences of length n. We define
PC(r) =

1

|C|
∑

v∈C

rw(v)(1− r)n−w(v). (15)

where 0 ≤ r ≤ 1/2 and |C| is the cardinality of C. Note that
the set of x corresponding to s = 0 is C2. We easily derive

pZ|S(z|s = 0) = Pz+C2(pw); (16)
pZ(z) = Pz+C1(pw). (17)

Then we have the following theorem.
Theorem 4.2: (An upper bound on IL)

IL ≤ log[2nPC2(pw)]. (18)
Proof: The proof outline is as follows. By Lemma 4.1,

IL = I(S;Z) = H(Z)−H(Z|S = 0). (19)
We divide IL into two parts: IL = IL1 + IL2, where

IL1 =
∑

z

Pz+C2(pw) log
Pz+C2(pw)

PC2(pw)
; (20)

IL2 =
∑

z

Pz+C1(pw) log
PC2(pw)

Pz+C1(pw)
. (21)

We can easily bound IL1 by applying Theorem 1.19 in [5],

IL1 ≤ [
∑

z/∈C2

Pz+C2(pw)] log
1− (1− 2pw)k2+1

1 + (1− 2pw)k2+1
≤ 0. (22)

For IL2, we apply the log-sum inequality and obtain
IL2 ≤ log[2nPC2(pw)]. (23)

Combining (22) and (23), we complete our proof.
Note that 2nPC2(pw) has a close relation with the proba-

bility of undetected error Pue(C2, pw) defined in [5]. In fact,
2nPC2(pw) = 2n−k2 [(1− pw)

n + Pue(C2, pw)];
(a)
= 1 + [2(1− pw)]

nPue(C
⊥
2 , (1− 2pw)/(2− 2pw)),

where C⊥
2 is the dual code of C2 and (a) is due to the

MacWilliam’s identity and Theorem 2.1 in [5].
A binary (n, k) linear code C is called good for error

detection if Pue(C, r) ≤ 2−n(2k − 1), for all r, 0 ≤ r ≤ 1/2.
Let R2 = k2/n and γ = 2(1−R2)(1−pw). Applying Theorem
2.43 and Theorem 2.51 in [5], we have
Lemma 4.3: 1 ≤ 2nPC2(pw) ≤ [2(1− pw)]n−k2 .
Corollary 4.4: IL ≤ (n− k2)[1 + log(1− pw)].
Lemma 4.5: If C⊥

2 is good for error detection, then
1 ≤ 2nPC2(pw) < 1 + γn. (24)

In the following, we consider 2nPC2(pw) as a random
variable and investigate its first moment EH2 [2

nPC2(pw)]
and the second moment EH2 [(2

nPC2(pw))
2] over all possible

binary matrices H2 of full rank. We will show that under
certain constraint, our bound is asymptotically tight.

Lemma 4.6: (First and second moment of 2nPC2(pw))
EH2 [2

nPC2(pw)] = γn + θ1[1− (1− pw)
n];

EH2 [(2
nPC2(pw))

2] = θ1θ2 + γ2n + 2θ1γn + θt1 + θt2 .

Here θ1 = (2n−2n−k2 )/(2n−1); θ2 = (2n−2n−k2+1)/(2n−2);
θt1 = θ1γ

n{[(p2w + (1− pw)
2)/(1− pw)]

n − 3(1− pw)
n};

θt2 = −θ1θ2{[p2w + (1− pw)
2]n + 2(1− pw)

n[1− (1− pw)
n]}.

Lemma 4.7: If R2 > 1 + log(1− pw), then γ < 1 and
lim
n→∞

EH2 [2
nPC2(pw)] = 1. (25)

Note that as n → ∞, θ1, θ2 → 1, θt2 → 0. If R2 >
1 + log(1 − pw), then θt1 → 0 and thus the variance of
2nPC2(pw) approaches to 0 as n → ∞. Based on this
argument and Chebyshev’s inequality, we have Theorem 4.8.
Theorem 4.8: If R2 > 1 + log(1− pw), for any ε > 0,

Pr{2nPC2(pw) ≤ 2ε}→ 1, as n→∞. (26)
As a conclusion of above discussion, C2 plays a crucial

role in insuring the secure transmission. For coset codes of
short length, the code which minimizes 2nPC2(pw) might be
a good candidate of C2 by Theorem 4.2. Lighted by Lemma
4.5, codes, whose dual codes are good for error detection, can
be good choices for C2 especially when R2 > 1 + log(1 −
pw). If we allow n to grow, by Theorem 4.8 one can bound
the information leakage arbitrarily small once we add enough
randomness into the coding scheme via C2. Furthermore, due
to the constraint R2 > 1+ log(1−pw), the maximum secrecy
rate in this case is − log(1−pw)−h(p) instead of h(pw)−h(p).

V. CONCLUSION
In this paper, we investigate the binary symmetric wiretap

channel. We give a strict mathematical proof that its secrecy
capacity can be achieved by using random linear codes.
Furthermore, we explore the coset coding scheme and give an
upper bound on its total information loss. The bound implies
the significance of C2 in limiting the information leakage and
gives hints on how to choose a satisfactory C2. In particular,
due to its close relation with the concept of undetected error
probability, numerous results on codes for error detection can
be applied to the design of applicable coset codes. We further
show that the bound is asymptotically tight under certain
constraint. The last but not least, we point out that the scheme
has a sacrifice on efficiency and it is not very suitable for the
case when p < pw ≤ 1− 2−h(p).
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Abstract—Consider the multi-terminal source coding (MSC)
problem wherein l discrete memoryless sources are compressed
by l physically separate encoders, and a decoder is required to
reconstruct the sources within certain distortion constraints. This
paper focuses on the following question: Does the removal of
a zero-rate link change the rate region? Though the question
seems simple, its complication lies in the limiting nature of
the rate region definition. Although intuition suggests that the
answer should be no, resolving this question appears to be
difficult for at least three reasons: (1) there is no known single-
letter characterization of the MSC rate region; (2) there is no
known elementary argument for rate-transfer from a zero-rate
encoder to others; and (3) there is no known exponentially strong
converse, whose existence would otherwise answer the question.
In this paper, we answer the question for a number of special
cases of the general MSC problem. Our proof techniques use
a “super-code” style analysis along with new results from the
helper problem. We note, however, that these techniques appear
to fall short of answering the question in general.

I. INTRODUCTION
One of the primary goals of information theory is the

explicit characterization of rate regions for transmitting data
over a network meeting certain requirements. The require-
ments are either lossless reconstructions of sources or lossy
reconstructions certified by a prescribed distortion measure [1].
Such network rate regions are usually defined using sequences
of block codes [2] and have a form as follows.

R(D) =
⋂

ε>0

⋃

n∈N
R(D, n, ε) = lim

ε↓0

( ⋃

n∈N
R(D, n, ε)

)
. (1)

Here, R(D) represents the rate region for demands D, and
R(D, n, ε) represents the set of rates at which there exists
a block code of length n meeting the demands within a
failure probability of ε. While properties such as convexity and
closedness of the rate regions are straightforward to verify [1],
continuity of rate regions w.r.t. the source statistics and the
demands is harder to establish. Gu et al. have established the
continuity of rate regions w.r.t. demands and source distribu-
tion for general classes of network problems [3]–[5]. Note
that when a single-letter characterization of the rate region
of a problem is known, it is almost trivial to ascertain the
verity of such properties. However, multi-terminal information
theory is fraught with simple problems such as the partial side-
information (PSI) problem [6], multiple descriptions (MD)
problem [7], and the multi-terminal source coding (MSC)
problem [8] that remain unsolved.

In this work, we focus on one question: Is the rate region
of a network with zero rate on a link, the same as that
of the network with that link deleted? Though the question

seems simple, its complication lies in the limiting nature
of the definition of rate regions. When the sources in the
network emit non-i.i.d. symbols, several examples can be
designed to show that asymptotically zero-rate links can alter
the region (see Example 1 of Sec. IV-B). However, when the
sources emit i.i.d. symbols, and when the demands are lossy
(within a required distortion) and/or lossless reconstructions,
the answer to this question (in cases where it is known) has
always affirmed that zero-rate links do not alter the region.
In a majority of network cases where the answer is known,
an explicit description of the rate region is also known. In
some cases, even if the rate region is unknown, the existence
of an exponentially strong converse suffices to answer this
question [5], [9]. However, the existence of such suitably
strong converses is a hard information-theoretic problem in
itself. Here, we attempt to answer this question for the multi-
terminal source coding problem that is formalized in Sec. III.
Note that for this problem in its generality, neither is the rate
region, nor is the existence of a strong converse known.

We have been able to use standard information-theoretic
tools in a constructive fashion to show that under many settings
of the MSC problem, the rate region with zero rate on a
link is the same that when the link is absent. In specific,
we establish that in both PSI and MSC problems with two
discrete memoryless sources (DMSs), zero-rate links can be
deleted without altering the rate region. However, for more
than two correlated sources, this result is established only
when a certain Markov property holds for the source joint
distribution and for specific distortion requirements.

The remainder of the paper is organized as follows. Sec-
tion II summarizes the notations employed throughout this
paper. Section III presents the formulation of the PSI and
MSC problems and various terminologies associated with the
definition of the rate region. Section IV presents the results
and proofs and Section VI concludes the paper.

II. NOTATIONS
Throughout the paper, the following notations are em-

ployed. For n1, n2 ∈ N, n1 ≤ n2, [n1] ! {1, . . . , n1} and
[n1 ∼ n2] ! {n1, . . . , n2}. 0k represents the 1 × k all-zero
vector. Uppercase letters (e.g., X , Y ) are reserved for random
variables (RVs) and the respective script versions (e.g., X ,
Y ) correspond to their alphabets. The realizations of RVs are
usually denoted by lowercase letter (e.g., x, y). Subscripts are
used for components of vectors, i.e., x[n] denotes a vector of
length n and xi represents the ith component of x[n]. We let
Sε
n(P ) to denote the set of all ε-strongly P -typical sequences
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of length n [1]. When the underlying probability distribution
is clear, H and I refers to the entropy and mutual information
functionals. The Hamming distortion measure on a set X is
denoted by ∂X

H , and lastly, E denotes the expectation operator.
III. PROBLEM DEFINITION

Given a DMS emitting (X(1)
i , . . . , X(l)

i )i∈N in an i.i.d.
fashion with each symbol l-tuple having a joint distribution
pX(1)···X(l) , the multi-terminal source coding (MSC) problem
aims to identify rates at which encoders have to separately
encode sequences {x(k)

i }i∈N, k ∈ [l], using l encoders so that
l suitably distorted reconstructions can be constructed at the
joint decoder (see Fig. 1).

X(1)
[n]

X(2)
[n]

X(l)
[n]

X̂(1)
[n]

X̂(2)
[n]

X̂(l)
[n]

M (1)

M (2)

M (l)

φ(1)
[n]

φ(2)
[n]

φ(l)
[n]

ψ
(1

)
[n

]
,·
··

,ψ
(l
)

[n
]

SO
UR

CE

Fig. 1. The multi-terminal source coding problem

For k ∈ [l], the reconstruction (X̂(k)
i )i∈N is a sequence of

elements from the reconstruction alphabet X̂ (k) and the ac-
ceptability of the reconstruction is evaluated by a distortion cri-
terion using the distortion measure ∂(k) : X (k)×X̂ (k) → R+.
A rate-distortion pair (R,∆) ! (R1, . . . , Rl,∆1, . . . ,∆l) is
said to be achievable if for each ε > 0, there exists an ε-
achievable block code (φ(1)

[n] , . . . ,φ
(l)
[n],ψ

(1)
[n] , . . . ,ψ

(l)
[n]). That is,

∀ ε > 0, ∃n ∈ N, s. t. ∀ k ∈ [l], there exist encoders
φ(k)
[n] : X (k)

[n] → M (k) and decoders ψ(k)
[n] : M (1) × · · · ×

M (l) → X̂ (k)
[n] satisfying:

A1. 1
n

∑n
i=1 E ∂(k)(X(k)

i , X̂(k)
i ) ≤ ∆k + ε, where

X̂(k)
[n] ! ψ(k)

[n]

(
φ(1)
[n] (X

(1)
[n] ), . . . ,φ

(l)
[n](X

(l)
[n])

), and
A2. |M (k)| ≤ 2n(Rk+ε).

Given ∆ ≥ 0, we say a rate vector R is achievable
if (R,∆) is achievable in the aforementioned sense, and
denote RMSC(∆)[pX(1)···X(l) ] to be the set of achievable
rate vectors. This set, known as the rate region, is con-
vex and closed [1]. For each distortion measure, we let
∂(k)
max ! min

x̂∈X̂ (k)

∑
x∈X (k) pX(k)(x)∂(k)(x, x̂). Note that

when ∆k ≥ ∂(k)
max, the kth encoder can even operate at zero

rate. However, any message from this encoder can help de-
coders to obtain less-distorted reconstructions of other sources.
Given distortions ∆, we set H(∆) ! {k ∈ [l] :∆k ≥ ∂(k)

max}
to be the set of helper sources.

As a special case, the MSC problem with l = 2 and ∆2 ≥
∂(2)
max is called as the partial side-information (PSI) problem. In

this case, the rate region is independent of the actual value of
∆2 and is denoted by RPSI(∆1)[pX(1)X(2) ]. Lastly, when clear,
we drop the reference to the underlying source distribution in
rate region notations.

IV. THE RESULTS
In this section, we present the results and proofs. First, the

invariance of the rate region under the deletion of zero-rate
links is established for the PSI problem. The invariance is then
proved for the MSC problem with two sources followed by a
direct extension to multiple sources. Although the invariance
result for the MSC problem subsumes that of the PSI problem,
the proof techniques for the two cases are very different. While
the proof for the MSC problem exploits the knowledge of the
rate region for the common helper problem (See Appendix A),
that of the PSI problem is self-contained and constructive in
nature. Finally, the invariance for the MSC problem when
l > 2 is established for a class of sources that have certain
Markovian property.
A. The Partial Side-information Problem
Theorem 1: Let RX(1) be the rate-distortion function for a

DMS with distribution pX(1) under the distortion measure ∂(1).
Then,

inf
{
R : (R, 0) ∈ RPSI(∆1)[pX(1)X(2) ]

}
= RX(1)(∆1) (2)

Proof: Since R ≥ RX(1)(∆1) ⇒ (R, 0) ∈ RPSI(∆1),
we only need to show the reverse implication. Let ε > 0
and (R, 0) ∈ RPSI(∆1). Let (φ(1)

[n] ,φ
(2)
[n] ,ψ

(1)
[n] ,ψ

(2)
[n] ) be an

ε-achievable code for this rate-distortion tuple. Set U !
φ(1)
[n] (X

(1)
[n] ) and V ! φ(2)

[n] (X
(2)
[n] ) and let U ,V be their

alphabets, respectively. Notating qn ! p
UX(1)

[n] V
, we have

∑

u∈U ,v∈V

x[n]∈X (1)
[n]

qn(u, x[n], v)

n

n∑

j=1

∂(1)((ψ(1)
[n] (u, v))j , xj) ≤ ∆1 + ε.

Now, choose m ∈ N and a code Cm of 2m(I(UX(1)
[n]

;V )+ε)

codewords from V[m] (with each component of each codeword
selected independently and identically using PV ) such that
B1. Pr[(X[n])[m] ∈ Sε

m(PX[n]
)] ≥ 1− ε.

B2. Pr
[{(

u[m], (x[n])[m]

)
∈ U[m] × (X[n])[m] : ∃ c ∈

Cm s.t. (u[m], (x[n])[m], c) ∈ Sε
m(qn)

}]
≥ 1− ε.

Consider the scheme where the X(2) encoder sends a con-
stant message and X(1) encoder sends the index of a v ∈ Cm

that is jointly typical with (U[m], (X
(1)
[n] )[m]) in addition to

U[m] ! (φ(1)
[n] (X

(1)
[n] )), . . . ,φ

(1)
[n] (X

(1)
[nm−n+1∼nm])). Note that

by B2, for almost all source realizations, at least one such v
exists. If no such typical vector exists, the first codeword is
transmitted by default. This scheme can be effected with a rate

R̃1 = R1 +
1

n
I(UX(1)

[n] ;V ) + ε
(a)
≤ R1 + 2ε, (3)

where (a) follows because the data processing inequality for
UX(1)

[n] ! X(2)
[n] ! V ensures I(UX(1)

[n] ;V ) ≤ I(X(2)
[n] ;V ) ≤

log2 |V | ≤ nε. The decoder uses the indices to generate
X̂(1)

[ln+1∼(l+1)n] = ψ(1)
[n] (Ul+1, Vl+1), l = 0, . . . ,m − 1. By

construction, we guarantee an average distortion of no more
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than (∆1+ ε)(1+ ε)(1−2ε)+2ε∂(1)
max < ∆1+ ε(1+2∂(1)

max).
Since ε is arbitrary, we see that if (R1, 0) ∈ RPSI(∆1), then the
rate R1 suffices to construct a rate-distortion code for pX(1)

meeting a distortion of ∆1 under ∂(1).
B. Multi-terminal Source Coding Problem with Two Sources

We first present an example that shows that the i.i.d. nature
of the source is important for zero-rate links to play an
insignificant role in shaping rate regions.
Example 1: Consider the MSC problem for the

{X(1)
i , X(2)

i }i∈N, where {X(1)
i } are i.i.d. with each index

X(1)
i having a distribution pX(1) , and X(2)

i = (X(1)
i , A),

where A is a discrete RV over A with distribution pA that:
(1) is statistically independent of each X(1)

[s] for s ∈ N,
and (2) meets H(A) > 0. Then, for ∂(1) = ∂X (1)

H and
∂(2) = ∂X (2)

H and ∆ = 02, (H(X), 0) is achievable, since
one can use a good compression scheme for the X(1) side
and convey A using 6log2 |A |7 bits from the X(2) side.
However, by deleting the link from the X(2) encoder, one
cannot reconstruct the X(2) with zero distortion.

The following result shows such an event cannot occur for
i.i.d. sources.
Theorem 2: Let RH, RPRD denote the rate region for the

common helper problem and the rate-distortion function for
the partially-blind rate-distortion problem (see Appendix A),
respectively. Then, the following are equivalent.
C1. (R, 0) ∈ RH(∆1,∆2)[pX(1)X(2) ].
C2. (R, 0) ∈ RMSC(∆1,∆2)[pX(1)X(2) ].
C3. R ≥ RPRD(∆1,∆2)[pX(1)X(2) ].

Proof: It is straightforward to see that C3 ⇒ C2 and
C2 ⇒ C1. To show C1 ⇒ C3, let (R, 0) ∈ RH(∆1,∆2).
Then, from the rate region for the common helper problem
(Appendix A), we have pU∗V ∗X(1)X(2) ∈ PH(∆1,∆2), such
that R2 = I(X(1)X(2);V ∗|U∗) = 0. This functional being
zero in conjunction with the chain U∗!X(1)!X(2) establish
V ∗ ! U∗ ! X(1) ! X(2). Now, for j = 1, 2, let fj denote
functions that map U ∗ × V ∗ to the respective reconstruction
alphabets X (j), such that fj(U∗, V ∗) meets required distor-
tion constraint of ∆j under ∂(j). Define for j = 1, 2, functions
hj : U ∗ → V ∗, f̃j : U ∗ → X̂ (j) by
hj(u)! arg min

v∈V ∗

∑

x∈X (j)

pX(j)|U∗(x|u)∂(j)(x, fj(u, v)). (4)

f̃j(u)! fj(u, hj(u)). (5)
Observe that by construction, for j = 1, 2,
E ∂(j)(X(j), f̃j(U

∗)) ≤ E ∂x(X
(j), fj(U

∗, V ∗)) ≤ ∆j . (6)
Thus, there exists a distribution pU∗X(1)X(2) with (1) |U ∗| ≤
|X (1)||X (2)| + 4; (2) U∗ ! X(1) ! X(2); and (3) functions
f̃j that provide reconstructions X̂(j) from U∗ meeting the
required distortions. Therefore, pU∗X(1)X(2) ∈ P PRD(∆1,∆2)
(possibly after altering the definition of RPRD to include auxil-
iary RVs with alphabet sizes up to |X (1)||X (2)|+ 4, which
does not alter the PRD rate region). Therefore, we have
(R, 0) ∈ RH(∆1,∆2)⇒ R ≥ RPRD(∆1,∆2).

At this point, we would like to remark that the inner bound
RMSC

in (∆1,∆2) by Berger and Tung [10] and the outer bound
RMSC

out(∆1,∆2) obtained from traditional converse techniques
(that replaces the chain U ! X(1) ! X(2) ! V in the inner
bound with U !X(1)!X(2) and X(1)!X(2)!V ) also agree
on the R2 = 0 plane. That is,

(R, 0) ∈ RMSC
in (∆1,∆2)⇔ (R, 0) ∈ RMSC

out(∆1,∆2) (7)
⇔ R ≥ RPRD(∆1,∆2), (8)

thereby providing an alternate proof of the invariance result
for the MSC problem when l = 2. Further, Theorem 2 can be
extended for the l > 2 setting to show that zero-rate encoders
cannot help when there is only one link carrying positive rate.
Theorem 3: For l > 2 and ∆ ≥ 0

(R,0l−1) ∈ RMSC(∆)[pX(1)···X(l) ]⇔ R ≥ RPRD(∆)[pX(1)···X(l) ].

Proof: Note that
(R,0l−1) ∈ RMSC(∆)[pX(1)···X(l) ]⇒ (R, 0) ∈ RMSC(∆)[pX(1)Y ],

where Y = (X(2) · · ·X(l)). Notice here that the distortions
∂(k) for k > 1 can be equivalently seen as distortion measures
for the Y -source. However, from Theorem 2, we notice that
(R, 0) ∈ RMSC(∆)[pX(1)Y ]⇒ R ≥ RPRD(∆)[pX(1)Y ]. (9)

However, since RPRD(∆)[pX(1)Y ] = RPRD(∆)[pX(1)···X(l) ], the
proof is complete because R ≥ RPRD(∆)[pX(1)···X(l) ] is achiev-
able for the MSC problem.
C. Multi-terminal Source Coding Problem for l > 2 sources

Here, we show that for a class of sources and under certain
distortions ∆, the MSC rate region with zero rates on certain
links is the same as that of the MSC problem with the same
constraints and with the zero-rate links deleted.
Theorem 4: Suppose ∃S ⊂ [l], i ∈ [l]\S, such that X(S)!

X(i) ! X((S∪{i})c). Additionally, if S ⊆ H(∆), then all rate
vectors in RMSC(∆)∩{Rj = 0 : j ∈ S} are achievable even if
the encoders encoding X(j), j ∈ S send a constant message.

Proof: Since the proof is a simple multi-source adaptation
of that of Theorem 1 that establishes a rate-transfer argument,
we present only an outline of the proof. Given an ε-achievable
code C with l encoders, construct a block supercode C′ with a
bigger block length, wherein the encoders corresponding to the
indices of S transmit constant messages, and the ith encoder
constructs a codebook that will transmit along with its usual
message, additional message that corresponds to a typical
realization of the messages that would be originally sent over
the |S| zero-rate links, i.e., from the encoders encoding X(j),
j ∈ S. In doing so, the rate from the encoders encoding
{Xj : j ∈ S} is transferred to that of i. Note that this
additional rate incurred is bounded above by |S|ε. The proof
is complete by noting that ε is arbitrary.

Note that the above result is different from that of l = 2
case, since for l > 2, the rate regions of suitable sub-networks
may be unknown. For example, consider the MSC problem
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for a DMS with distribution pX1X2X3 s. t. X1 ! X2 ! X3.
Theorem 4 guarantees
RMSC(∆1,∆2, ∂

(3)
max) ∩{R3=0}∼=RPSI(∆1,∆2)[pX(1)X(2) ],

RMSC(∂(1)
max,∆2,∆3) ∩{R1=0}∼=RPSI(∆2,∆3)[pX(2)X(3) ],

where ∼= signifies that the right-hand region is the appropriate
projection of the one on the left. Note that this result is
previously unknown, since the rate region for the PSI problem
remains open. Additionally, ∀∆ ≥ 03, Theorem 3 guarantees

(0, R2, 0) ∈ RMSC(∆)⇒ R2 ≥ RPRD(∆)[pX(1)X(2)X(3) ].
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VI. CONCLUSIONS

The invariance of the MSC rate region under the deletion of
zero-rate links was studied. Though the question of invariance
remains open in general, it was shown that the rate region
remains unaltered if zero-rate links are deleted from the PSI
and MSC problems with two correlated DMSs. When more
than two correlated DMSs are present, it was established that
the deletion of zero-rate links from some helper encoders do
not alter the MSC rate region provided the source distribution
has a certain Markov structure.

APPENDIX A
ALLIED PROBLEMS AND THEIR RATE REGIONS

Problem 1: (The partially-blind rate-distortion problem)
Given a discrete source emitting (X(1)

i , . . . , X(l)
i )i∈N in an

i.i.d. fashion with each symbol l-tuple having the joint dis-
tribution pX(1)···X(l) . The problem aims to identify the rates
at which the X(1) sequence can be encoded so that suitably
“noisy” reconstruction (X̂k

i )i∈N for each k ∈ [l] is constructed
by the block decoder. The acceptability of the reconstructions
are determined by distortion criteria using distortion measures
∂(k) : X (k) × X̂ (k) → R+. A pair (R1,∆) is said to be
achievable if for each ε > 0, ∃n ∈ N, φ(1)

[n] : X[n] → M (1)

and ψ[n] : M (1) → X̂ (1)
[n] × · · ·× X̂ (l)

[n] s. t.:
D1. 1

n

∑n
i=1 E ∂(k)(X(k)

i , X̂(k)
i ) ≤ ∆k + ε, ∀k ∈ [l], and

D2. |M (1)| ≤ 2n(R1+ε).

The infimum of achievable rates RPRD(∆)[pX(1)···X(l) ] can be
shown to be as follows.

RPRD(∆) = inf
p
UX(1)···X(l)∈PPRD(∆)

I(X(1);U),

where P PRD(∆) is the set of distributions pUX(1)···X(l) s. t.:
E1. U ! X(1) ! (X(2) · · ·X(l)), |U | ≤ |X (1)|+ l, and
E2. ∀ k∈ [l], ∃ f (k): U→X̂ (k),E ∂(k)(X(k), f (k)(U))≤∆k .
Problem 2: (The common helper problem) Given a discrete

source emitting (X(1)
i , X(2)

i )i∈N in an i.i.d. fashion with each
pair having the joint distribution pX(1)X(2) . The problem aims
to identify the rates at which information must be sent by

encoders so that suitably “noisy” versions (X̂(1)
i )i∈N and

(X̂(2)
i )i∈N are constructed by a joint block decoder. Here,

the first encoder (the helper encoder) has access to the X(1)-
sequence, whereas the second one has access to both X(1)- and
X(2)-sequences. As before. the acceptability of reconstructions
are evaluated by distortion criteria using distortion measures
∂(1) : X (1) × X̂ (1) → R+ and ∂(2) : X (2) × X̂ (2) → R+.
A quadruplet (R1, R12,∆1,∆2) is said to be achievable if
for each ε > 0, ∃n ∈ N, φ(1)

[n] : X (1)
[n] → M (1), φ(12)

[n] :

X (1)
[n] ×X (2)

[n] → M (12), ψ(1)
[n] : M (1) ×M (12) → X̂ (1)

[n] and
ψ(2)
[n] : M (1) ×M (12) → X̂ (2)

[n] s. t.
F1. 1

n

∑n
i=1 E ∂(j)

(
X(j)

i , X̂(j)
i

)
≤ ∆j + ε, j = 1, 2, where

X̂(j)
[n] ! ψ(j)

[n]

(
φ(1)
[n] (X

(1)
[n] ),φ

(12)
[n] (X(1)

[n] , X
(2)
[n] )

), and
F2. |Mt| ≤ 2n(Rt+ε), t = 1, 12.

Even though the problem defines two separate encoders,
allowing the X(1) encoder to send its encoded message to the
X(1)X(2) encoder does not alter the rate region. This setting
is the more readily seen as the common helper setup [11]. The
set RH(∆1,∆2) of achievable rates is given by

RH(∆) =

{
R1 ≥ I(X(1);U)

R12 ≥ I(X(1)X(2);V |U)
: pX(1)X(2)UV ∈ PH(∆)

}
,

where PH(∆) is the set of distributions PUV X(1)X(2) s. t.:
G1. U ! X(1) ! X(2), |U | ≤ |X (1)||X (2)|+ 4.
G2. |V | ≤ (|X (1)||X (2)|+ 2)2 − 2.
G3. ∃ f1 : U × V → X̂ (1), E ∂(1)(X(1), f1(U, V )) ≤ ∆1.
G4. ∃ f2 : U × V → X̂ (2), E ∂(2)(X(2), f2(U, V )) ≤ ∆2.
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Abstract— We consider a discrete memoryless relay channel,
where both relay and destination may have an incorrect esti-
mation of the channel. This estimation error is modeled with
mismatched decoders. In this paper, we provide a lower-bound
on the mismatch capacity of the relay channel. Moreover, we
prove that this lower-bound is indeed the exact capacity for the
degraded relay channel when random coding is used.

I. INTRODUCTION

The decoding method that minimizes the error probability
is the maximum-likelihood (ML) decoder. However, it cannot
always be implemented in practice because of some channel
estimation errors or hardware limitations. An alternative de-
coder can then be a mismatched one, based on a different
metric. The theoretical performance of mismatched decoding
has been studied since the 1980’s when Csiszàr and Körner
in [1], and Hui in [2] both provided a lower-bound on the
achievable capacity in a point-to-point communication chan-
nel. In [3], the authors proved that this lower-bound is the exact
capacity when random coding is used. The mismatch capacity
of multiple-access channels has also been characterized in [4].

There is increasing evidence that future wireless commu-
nications will be based not on point-to-point transmission
anymore, but on cooperation between the nodes in a network
(see [5],[6]). The simplest model of a cooperative network is
the relay channel for which capacity bounds have been derived
in 1979 by Cover and El Gamal in [7].

In this paper, we consider a discrete memoryless relay
channel with mismatched decoders at both receivers (the
relay and the destination). We provide a lower-bound on the
mismatch capacity of such a channel and prove that it is indeed
the exact capacity of the mismatched degraded relay channel
when random coding is used.

II. THE RELAY CHANNEL AND MISMATCHED DECODER

We consider a discrete memoryless relay channel consisting
of one source, one relay and one destination. We use the same
setup as in [7]: The source broadcasts a signal x1 ∈ X1

which is received by both the relay and the destination.
The relay transmits a signal x2 ∈ X2 which is received by
the destination. Received signals at relay and destination are
denoted by y1 ∈ Y1 and y ∈ Y respectively (see Figure 1).

The channel is modeled by a set of probability distributions
p(y1, y|x1, x2). We consider three mismatched decoders us-
ing the metrics qsr(x1, x2, y1), qrd(x2, y) and qsd(x1, x2, y),
where the subscripts sr, rd and sd stand for the source-relay,
relay-destination and source-destination links, respectively.

encoder decoder

decoder/encoder
relay

yx1w w̃
p(y1, y|x1, x2)

x2y1

Fig. 1. Relay channel

The following setup is used to prove the achievability of the
lower-bound on the mismatch capacity derived in this paper.

We consider the transmission of B blocks of length n. In
each block i ∈ {1, . . . , B}, a message wi ∈ {1, . . . , 2nR}
is transmitted from the source. Let us partition the set
{1, . . . , 2nR} into 2nR0 independent subsets denoted by
Ss, s ∈ {1, . . . , 2nR0}, such that any wi ∈ {1, . . . , 2nR}
belongs to a unique subset Ssi . The message is then coded
as x1(wi|si) ∈ Xn

1 and x2(si) ∈ Xn
2 at the source and relay,

respectively.
Random coding: The choice of the set C = {x1(.|.), x2(.)}

of codewords is random:
• 2nR0 iid codewords in Xn

2 are first generated according
to the probability distribution p(x2) =

∏n
i=1 p(x2i) and

indexed by s ∈ {1, . . . , 2nR0}: x2(s);
• for each x2(s), 2nR iid codewords in Xn

1 are generated
according to the probability distribution p(x1|x2(s)) and
indexed by w ∈ {1, . . . , 2nR}: x1(w|s).

Two transmission steps: Let us assume that (i − 2) blocks
have already been sent. Thus the relay has already decoded
wi−2 and si−1, the destination has decoded wi−3 and si−2.
In order to derive a lower bound on the capacity of the mis-
matched relay channel, we choose to use threshold decoders
as in [2], [4]. Indeed, it can be proven that the decoding
error probability of an ML mismatched decoder (which is
implemented in practice) is upper-bounded by the decoding
error probability of the considered threshold decoder.

In block (i−1), the source and relay transmit x1(wi−1|si−1)
and x2(si−1), respectively; the relay and destination receive
y1(i − 1) and y(i − 1). The relay is able to detect wi−1

as the unique w such that (x1(w|si−1),x2(si−1),y1(i − 1))
is jointly typical and qsr(x1(w|si−1),x2(si−1),y1(i − 1)) is
larger than a threshold to be defined later. The relay is thus
able to determine si such that wi−1 ∈ Ssi . The source is
obviously also aware of si.

In block i, the source and relay transmit x1(wi|si) and
x2(si), respectively; the relay and destination receive y1(i)
and y(i). The destination can detect si as the unique s
such that (x2(si),y(i)) is jointly typical and qrd(x2(si),y(i))
is larger than some threshold. It is then able to detect
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wi−1 as the unique w such that w ∈ Ssi ∩ L(y(i − 1)),
where L(y(i − 1)) is the set of all w ∈ {1, . . . , 2nR}
such that (x1(w|si−1),x2(si−1),y(i − 1)) is jointly typical
and qsd(x1(w|si−1),x2(si−1),y(i − 1)) is larger than some
threshold.
Notation: Let Ep(q(x)) denote the expected value of q(x)

w.r.t. the probability distribution p(x). Let If (X ;Y ) denote
the usual mutual information between X and Y w.r.t. the
probability distribution f(x, y).

For a probability distribution p(x) on a finite set X
and a constant δ > 0, let N δ

p(x) denote the set of all
probability distributions on X that are within δ of p(x):
N δ

p(x) = {f ∈ P(X ) : ∀x ∈ X , |f(x)− p(x)| ≤ δ}. Let T δ
p(x)

be the set of all sequences in Xn whose type is in N δ
p(x):

T δ
p(x) =

{
x ∈ Xn : fx ∈ N δ

p(x)

}
, where fx(x) is the number

of elements of the sequence x that are equal to x, normalized
by the sequence length n. In the following, we drop the
subscript arguments when the context is clear enough and write
f(x) ∈ N δ

p and (x,y) ∈ T δ
p .

III. MAIN RESULTS
Theorem 1: (Achievability) Consider a discrete memo-

ryless relay channel described by the probability distri-
bution p(y1, y|x1, x2). The capacity CM obtained using
the mismatched decoders qsr(x1, x2, y1), qrd(x2, y) and
qsd(x1, x2, y) is lower-bounded by:

CLM = max
p(x1,x2)

ILM (p(x1, x2)) (1)
ILM (p(x1, x2)) =min{Isr(p(x1, x2)), Ird(p(x2))

+ Isd(p(x1, x2))} (2)
where

Isr(p(x1, x2)) = min
f∈Dsr

If (X1;Y1|X2) + If (X1;X2) (3)
Ird(p(x2)) = min

f∈Drd

If (X2;Y ) (4)
Isd(p(x1, x2)) = min

f∈Dsd

If (X1;Y |X2) + If (X1;X2) (5)

and
Dsr ={f(x1, x2, y1) : f(x1) = p(x1), f(x2, y1) = p(x2, y1),

Ef (qsr(x1, x2, y1)) ≥ Ep(qsr(x1, x2, y1))} (6)
Drd ={f(x2, y) : f(x2) = p(x2), f(y) = p(y),

Ef (qrd(x2, y)) ≥ Ep(qrd(x2, y))} (7)
Dsd ={f(x1, x2, y) : f(x1) = p(x1), f(x2, y) = p(x2, y),

Ef (qsd(x1, x2, y)) ≥ Ep(qsd(x1, x2, y))}. (8)

Let now suppose that there exist three probability distribu-
tions f̂i, i ∈ {sr, rd, sd} such that Ef̂i

(qi) > Ep(qi) with
strict inequality.
Theorem 2: (Converse) With the above assumption and

for a degraded relay channel, if for some input distribution
p(x1, x2), the rate R > CLM , then the average probability of
error, averaged over all random codebooks drawn according to

p(x1, x2), approaches one as the block length tends to infinity.

IV. PROOF OF THEOREM 1
A. Upper-bounding the error probability

In order to prove the achievability of this lower-bound, we
consider the four possible error events described in [7] adapted
to the use of a threshold decoder. For each block i, these
possible error events are:

• E0i: (x1(wi|si),x2(si),y1(i),y(i)) is not jointly typical;
• E1i: there exists w̃ .= wi such that

(x1(w̃|si),x2(si),y1(i)) is jointly typical and
qsr(x1(w̃|si), x2(si),y1(i)) is larger than some
threshold;

• E2i: there exists s̃ .= si such that (x2(s̃),y(i)) is
jointly typical and qrd (x2(s̃),y(i)) is larger than some
threshold;

• E3i = E′
3i ∪ E′′

3i

– E′
3i: wi−1 /∈ Ssi ∩ L(y(i − 1))

– E′′
3i: there exists w̃ .= wi−1 such that w̃ ∈ Ssi ∩

L(y(i − 1)).
Let Fi be the decoding error event in block i. Let us assume

that no error has occurred till block i− 1. Thus, the decoding
error probability in block i is given by:

pe(i) =
3∑

k=0

Pr

{
Eki ∩ F c

i−1

k−1⋂

l=0

Ec
li

}
!

3∑

k=0

pek(i).

1) Probability of error event E0i: By Sanov’s theorem [8,
Theorem 11.4.1], this probability is exponentially small in n.
There exists ψ > 0 such that pe0(i) < 2−nψ.
2) Probability of error event E1i: An error oc-

curs if there exists w̃ .= wi such that the metric
qsr(x1(w̃|si),x2(si),y1(i)) is greater than the threshold
Υδ

sr = min
p̃∈Nδ

p

∑

(x1,x2,y1)∈X1×X2×Y1

p̃(x1, x2, y1)qsr(x1, x2, y1),

(9)
where δ is a small positive number.

The probability of error event E1i is thus given by
pe1(i) = Pr{∃w̃ .= wi,x1(w̃|si) ∈ T δ

p ,

qsr(x1(w̃|si),x2(si),y1(i)) ≥ Υδ
sr|F c

i−1}.
Using Sanov’s theorem, we obtain the upper-bound

pe1(i) ≤ (2nR − 1)(n+ 1)|X1‖X2‖Y1|2−nR̃δ
sr

≤ (n+ 1)|X1‖X2‖Y1|2−n(R̃δ
sr−R),

where
R̃δ

sr = min
f(x1,x2,y)∈Dδ

sr

D(f(x1, x2, y1)‖p(x1)p(x2, y1))

(10)
Dδ

sr = {f(x1, x2, y1) : f(x1) ∈ N δ
p , f(x2, y1) ∈ N δ

p ,

Ef (qsr(x1, x2, y1)) ≥ Υδ
sr}, (11)

with D(.‖.) denoting the KL divergence [8, equation (2.26)].
Thus, if R < R̃δ

sr, the probability of error event E1i is
exponentially small in n: pe1(i) < 2−nψ for some ψ > 0.
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3) Probability of error event E2i: Using the threshold
Υδ

rd = min
p̃∈Nδ

p

∑

(x2,y)∈X2×Y

p̃(x2, y)qrd(x2, y), (12)

we can write the probability of error event E2i as
pe2(i) = Pr

{
∃s̃ .= si,x2(s̃) ∈ T δ

p , qrd(x2(s̃),y(i)) ≥ Υδ
rd|F c

i−1

}

≤ (n+ 1)|X2‖Y|2−n(R̃δ
rd−R0),

where the upper-bound is obtained using Sanov’s theorem with
R̃δ

rd = min
f(x2,y)∈Dδ

rd

D(f(x2, y)‖p(x2)p(y)) (13)

Dδ
rd = {f(x2, y) : f(x2) ∈ N δ

p , f(y) ∈ N δ
p ,

Ef (qrd(x2, y)) ≥ Υδ
rd}. (14)

If R0 < R̃δ
rd, then pe2(i) < 2−nψ for some ψ > 0.

4) Probability of error event E3i: Error event E3i can be
decomposed into two different events E′

3i and E′′
3i.

If we assume that the previous transmission was correctly
received at destination, then wi−1 ∈ L(y(i − 1)). Moreover,
the fact that the error event E2i does not occur implies that
wi−1 ∈ Sŝi = Ssi . Thus the first term of the decomposition
has a probability zero and we only need to consider E′′

3i.

pe3(i) = Pr
{
∃w̃ .= wi−1, w̃ ∈ Ssi ∩ L(y(i − 1))|F c

i−1

}

≤ E





∑

w̃ /=wi−1,w̃∈L(y(i−1))

Pr {w̃ ∈ Ssi} |F c
i−1






≤ E
{
‖L(y(i − 1))‖2−nR0 |F c

i−1

}

where ‖.‖ denotes the cardinality of the considered set.
Let

ϕ(w̃|y) =






1, x1(w̃|si−1) ∈ T δ
p ,

qsd(x1(w̃|si−1),x2(si−1),y(i − 1)) ≥ Υδ
sd

0, otherwise.
where the threshold is defined by
Υδ

sd = min
p̃∈Nδ

p

∑

(x1,x2,y)∈X1×X2×Y

p̃(x1, x2, y)qsd(x1, x2, y).

(15)
Using Sanov’s theorem, we can upper-bound the expected

cardinality of L(y(i − 1)) given that w̃ .= wi−1

E
{
‖L(y(i − 1))|w̃ .= wi−1‖

∣∣F c
i−1

}

= E





∑

w̃ /=wi−1

ϕ(w̃|y)
∣∣F c

i−1






≤ (2nR − 1)(n+ 1)|X1‖X2‖Y|2−nR̃δ
sd

≤ (n+ 1)|X1‖X2‖Y|2−n(R̃δ
sd−R),

where
R̃δ

sd = min
f(x1,x2,y)∈Dδ

sd

D(f(x1, x2, y)‖p(x1)p(x2, y)) (16)

Dδ
sd = {f(x1, x2, y) : f(x1) ∈ N δ

p , f(x2, y) ∈ N δ
p ,

Ef (qsd(x1, x2, y)) ≥ Υδ
sd}. (17)

The error probability is then upper-bounded by
pe3(i) ≤ (n+ 1)|X1‖X2‖Y|2−n(R̃δ

sd−R)2−nR0

≤ (n+ 1)|X1‖X2‖Y|2−n(R̃δ
sd+R0−R).

Replacing R0 by the constraint previously computed
pe3(i) ≤ (n+ 1)|X1‖X2‖Y|2−n(R̃δ

sd+R̃δ
rd−R).

If R < R̃δ
sd + R̃δ

rd, then pe3(i) < 2−nψ for some ψ > 0.
B. Existence of a random code

If R < R̃δ
sr and R < R̃δ

rd + R̃δ
sd, then the total error

probability is exponentially small in n: pe < 4B × 2−nψ.
Thus, as n tends to infinity, the probability of finding a set of
codewords C respecting pe(C) < 4B × 2−nψ tends to one.

Let C be such a set of codewords of length n. Its average
error probability is lower than 4B × 2−nψ. Throwing away
the worst half of the codewords, we end up with a set of
codewords C∗ of length n

2 whose maximum error probability
is lower than 2× 4B× 2−nψ, which tends to zero, and whose
rate is R− 1

n which tends to R.
C. Letting δ tend to zero

We note that limδ→0 Υ̃δ
sr = Ep(qsr(x1, x2, y1)). Thus, the

set Dδ
sr becomes

Dsr ={f(x1, x2, y1) : f(x1) = p(x1), f(x2, y1) = p(x2, y1),

Ef (qsr(x1, x2, y1)) ≥ Ep(qsr(x1, x2, y1))}

and with these new constraints on the probability distribution
D(f(x1, x2, y1)‖p(x1)p(x2, y1)) = If (X1;Y1|X2)+If (X1;X2).

Thus the first constraint of the rate becomes
Isr(p(x1, x2)) ! min

f∈Dsr

If (X1;Y1|X2) + If (X1;X2). (18)

In the same way, we find the final expressions of
Ird(p(x1, x2)) and Isd(p(x1, x2)).

V. PROOF OF THEOREM 2
The proof of Theorem 2 is in essence similar to the one of

[4, Theorem 3].
A. Decoding at relay

Let us assume that
R > min

f∈Dsr

If (X1;Y1|X2) + If (X1;X2). (19)

Let f∗ be the probability distribution that achieves (19).
Let f̃ = (1 − ε)f∗ + εf̂sr. We recall that f̂sr is a probability
distribution that respects Ef̂sr

(qsr) > Ep(qsr). Then, for
sufficiently small ε,

R > If̃ (X1;Y1|X2) + If̃ (X1;X2) (20)
Ef̃ (qsr) > Ep(qsr). (21)
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Using (20), (21) and the continuity of the divergence, we
can find ∆ > 0, ε > 0 and a neighborhood U of f̃(x1, x2, y1)
such that for all f ∈ U and p′(x2, y1) ∈ N ε

p , we have
R > D(f(x1|x2, y1)‖p(x1)|p′(x2, y1)) +∆ (22)
Ef (qsr) > Ep(qsr) +∆, (23)

where D(.‖.|.) is defined in [4].
Let V be a sufficiently small neighborhood of p(x1, x2, y1),

such that for every p′(x1, x2, y1) ∈ V , then p′(x2, y1) ∈ N ε
p

and
Ep′(qsr) < Ep(qsr) +∆. (24)

Let us assume that the true message in block i is wi and that
the triple (x1(wi|si),x2(si),y1(i)) has empirical type in V .
If there exists another message w̃ .= wi such that the empirical
type of (x1(w̃|si),x2(si),y1(i)) is in U , then a decoding error
occurs.

Let W (w̃) take the value 1 if the empirical type of
(x1(w̃|si),x2(si),y1(i)) is in U and 0 otherwise.

The expectation of W =
∑

w̃ /=wi
W (w̃) given y1 is

E(W |y1) = (2nR − 1)π0
.
= 2nRπ0, (25)

where .
= denotes the behavior of the expression when n→∞

and π0 = E(W (w̃∗)|y1) = Pr{W (w̃∗) = 1|y1} with w̃∗

being a random message different from wi.
For two different messages w̃ and w̃′, the events W (w̃) and

W (w̃′) are independent. Thus the variance of W given y1 is
Var(W |y1) =

∑

w̃ /=wi

Var(W (w̃)|y1).

Since W (w̃) can only take the values 0 and 1, we can upper-
bound Var(W (w̃)|y1) ≤ E(W (w̃)|y1). Thus

Var(W |y1) ≤
∑

w̃ /=wi

E(W (w̃)|y1)
.
= 2nRπ0. (26)

Using (25), (26) and the fact that for any random variable
X , Pr(X = 0) ≤ Var(X)

E(X)2 , we can write

Pr(W = 0|y1)≤̇
2nRπ0

(2nRπ0)2
= 2−nR 1

π0
. (27)

Using the second part of Sanov’s theorem, we obtain
the asymptotic behavior π0

.
= 2−nR̃sr , where R̃sr =

minf∈U D(f(x1|x2, y1)‖p(x1)|p′(x2, y1)). Using (22), we
can then lower-bound π0≥̇2−n(R−∆) and conclude that the
probability of no decoding error tends to 0 when n→∞:

Pr(W = 0|y1)≤̇2−nR2n(R−∆) = 2−n∆. (28)
B. Decoding at destination

The second inequality can be dealt in two separate parts.
Indeed, we have shown in the direct part that

R0 ≤ min
f∈Drd

If (X2;Y ) (29)
R ≤ R0 + min

f∈Dsd

If (X1;Y |X2) + If (X1;X2). (30)
We thus have to show that if one of these inequalities is

reversed, an error occurs with asymptotic probability one.

This can be done using the same reasoning as in previous
subsection.

VI. MATCHED DECODING CASE
In the matched decoding case, i.e. qsr(x1, x2, y1) =

log p(y1|x1, x2), qrd(x2, y) = log p(y|x2) and
qsd(x1, x2, y) = log p(y|x1, x2), the capacity coincides
with the one of degraded relay computed by Cover and El
Gamal in [7]. Indeed, for any distribution f ∈ Dsr, we have
If (X1;Y1|X2) + If (X1;X2)

≥ If (X1;Y1|X2)

= H(Y1|X2)−Hf (Y1|X1, X2) (31)
≥ H(Y1|X2) +

∑

x1,x2,y1

f(x1, x2, y1) log p(y1|x1, x2) (32)

≥ H(Y1|X2) +
∑

x1,x2,y1

p(x1, x2, y1) log p(y1|x1, x2) (33)

= I(X1;Y1|X2),

where (31) holds because f(x2, y1) = p(x2, y1), (32) follows
from the non-negativity of the divergence and (33) is obtained
using Ef (log p(y1|x1, x2)) ≥ E(log p(y1|x1, x2)).

Moreover, by choosing f(x1, x2, y1) =
p(x1)p(x2)p(y1|x1, x2) ∈ Dsr, If (X1;X2) = 0 and
If (X1;Y1|X2) + If (X1;X2) = I(X1;Y1|X2). The bound is
achievable, so Isr(p(x1, x2)) = I(X1;Y1|X2).

In the same way, we can prove that Ird(p(x1, x2)) =
I(X2;Y ) and Isd(p(x1, x2)) = I(X1;Y |X2).

Finally, in the matched case, the following rate is achievable
R = min{I(X1;Y1|X2), I(X2;Y ) + I(X1;Y |X2)} (34)

= min{I(X1;Y1|X2), I(X1, X2;Y )}. (35)
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Abstract—In this paper, a polar code for the m-user multiple
access channel (MAC) with binary inputs is constructed. In
particular, Arıkan’s polarization technique applied individually
to each user will polarize any m-user binary input MAC into
a finite collection of extremal MACs. The extremal MACs have
a number of desirable properties: (i) the ‘uniform sum rate’1

of the original channel is not lost, (ii) the extremal MACs have
rate regions that are not only polymatroids but matroids and
thus (iii) their uniform sum rate can be reached by each user
transmitting either uncoded or fixed bits; in this sense they are
easy to communicate over. Provided that the convergence to the
extremal MACs is fast enough, the preceding leads to a low
complexity communication scheme that is capable of achieving
the uniform sum rate of an arbitrary binary input MAC. We
show that this is indeed the case for arbitrary values of m.

I. INTRODUCTION

In [2], Arıkan shows that a single-user binary input channel
can be “polarized” by a simple process that coverts n indepen-
dent uses of this channel into n successive uses of “extremal”
channels. These extremal channels are binary input and either
almost perfect or very noisy, i.e., having a uniform mutual
information either close to 1 or close to 0. Furthermore, the
fraction of almost perfect channels is close to the uniform
mutual information of the original channel. For a 2-user binary
input MAC, by applying Arikan’s construction to each user’s
input separately, [6] shows that a similar phenomenon appears:
the n independent uses of the MAC are converted into n
successive uses of “extremal” binary inputs MACs. These
extremal MACs are of four kinds: (1) each users sees a very
noisy channel, (2) one of the user sees a very noisy channel
and the other sees an almost perfect channel, (3) both users
see an almost perfect channel, (4) a pure contention channel: a
channel whose uniform rate region is the triangle with vertices
(0,0), (0,1), (1,0). Moreover [6] shows that the uniform sum
rate of the original MAC is preserved during the polarization
process, and that the polarization to the extremal MACs occurs
fast enough. This allows the construction of a polar code to
achieve reliable communication at uniform sum rate.

In this paper, we investigate the case where m is arbitrary.
In the two user case, the extremal MACs are not just MACs for
which each users sees either a perfect or pure noise channel,
as there is also the pure contention channel. However, the
uniform rate region of the 2-user extremal MACs are all

1In this paper all mutual informations are computed when the inputs of a
MAC are distributed independently and uniformly. The resulting rate regions,
sum rates, etc., are prefixed by ‘uniform’ to distinguish them from the capacity
region, sum capacity, etc.

polyhedron with integer valued constraints. We will see in
this paper that the approach used for the 2-user case faces a
new phenomenon when the number of users reaches 4, and the
extremal MACs are no longer in a one to one correspondence
with the polyhedron having integer valued constraints. To
characterize the extremal MACs, we first show how an unusual
relationship between random variables defined in terms of
mutual information falls precisely within the independence
notion of the matroid theory. This relationship is used to show
that the extremal MACs are equivalent to linear deterministic
channels, which is then used to conclude the construction of
a polar code ensuring reliable communication for arbitrary
values of m. Finally, the problem of considering m arbitrary
large is of interest for a polarization of the additive white
Gaussian noise channel.

II. THE POLARIZATION CONSTRUCTION

We consider a m-user multiple access channel with binary
input alphabets (BMAC) and arbitrary output alphabet Y . The
channel is specified by the conditional probabilities

P (y|x̄), for all y ∈ Y and x̄ = (x[1], . . . , x[m]) ∈ Fm
2 .

Let Em := {1, . . . ,m} and let X[1], . . . , X[m] be mu-
tually independent and uniformly distributed binary random
variables. Let X̄ := (X[1], . . . , X[m]). We denote by Y the
output of X̄ through the MAC P . For J ⊆ Em, we define

X[J ] := {X[i] : i ∈ J},
I[J ](P ) := I(X[J ];Y X[Jc]),

where Jc denotes the complement set of J in Em. Note that

I(P ) := {(R1, . . . , Rm) : 0 ≤
∑

i∈J

Ri ≤ I[J ](P ), ∀J ⊆ Em}

is an inner bound to the capacity region of the MAC P . We
refer to I(P ) as the uniform rate region and to I[Em](P )
as the uniform sum rate. We now consider two independent
uses of such a MAC. We define X̄1 := (X1[1], . . . , X1[m]),
X̄2 := (X2[1], . . . , X2[m]), where X1[i], X2[i], with i ∈ Em,
are mutually independent and uniformly distributed binary
random variables. We denote by Y1 and Y2 the respective
outputs of X̄1 and X̄2 through two independent uses of the
MAC P :

X̄1
P→ Y1, X̄2

P→ Y2. (1)

We define two additional binary random vectors Ū1 :=
(U1[1], . . . , U1[m]), Ū2 := (U2[1], . . . , U2[m]) with mutually
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independent and uniformly distributed components, and we
put X̄1 and X̄2 in one to one correspondence with Ū1 and Ū2

with X̄1 = Ū1 + Ū2 and X̄2 = Ū2, where the addition is the
modulo 2 component wise addition.

Definition 1. Let P : Fm → Y be a m-user BMAC.
We define two new m-user BMACs, P− : Fm

2 → Y2

and P+ : Fm
2 → Y2 × Fm

2 , by P−(y1, y2|ū1) :=∑
ū2∈Fm

2

1
2mP (y1|ū1+ū2)P (y2|ū2) and P+(y1, y2, ū1|ū2) :=

1
2mP (y1|ū1 + ū2)P (y2|ū2) for all ūi ∈ Fm

2 , yi ∈ Y , i = 1, 2.

That is, we have now two new m-user BMACs with
extended output alphabets:

Ū1
P−
→ (Y1, Y2), Ū2

P+

→ (Y1, Y2, Ū1) (2)

which also defines I[J ](P−) and I[J ](P+), ∀J ⊆ Em.
This construction is the natural extension of the construction

for m = 1, 2 in [2], [6]. Here again, we are comparing two
independent uses of the same channel P (cf. (1)) with two
successive uses of the channels P− and P+ (cf. (2)). Note
that I[J ](P−) ≤ I[J ](P ) ≤ I[J ](P+), ∀J ⊆ Em.

Definition 2. Let {Bn}n≥1 be i.i.d. uniform random variables
valued in {−,+}. Let the random processes {Pn, n ≥ 0} and
{In[J ], n ≥ 0}, for J ⊆ Em, be defined by P0 := P ,

Pn+1 := PBn+1
n , In[J ] := I[J ](Pn), ∀n ≥ 0.

III. RESULTS

Summary: In Section III-A, we show that {In[J ], J ⊆ Em}
tends a.s. to sequence of number which defines a matroid
(cf. Definition 5). We then see in Section III-B that the extreme
points of a uniform rate region with matroid constraints can
be achieved by each user sending uncoded or frozen bits;
in particular the uniform sum rate can be achieved by such
strategies. We then show in Section III-D, that for arbitrary m,
{In[J ], J ⊆ Em} does not tend to an arbitrary matroid but to a
binary matroid (cf. Definition 6). This is used to show that the
convergence to the extremal MACs happens fast enough, and
that the construction of previous section leads to a polar code
having a low encoding and decoding complexity and achieving
the uniform sum rate on any binary MAC.

A. The extremal MACs
Lemma 1. {In[J ], n ≥ 0} is a bounded super-martingale
when J ! Em and a bounded martingale when J = Em.

Proof: For any J ⊆ Em, In[J ] ≤ m and

2I[J ](P ) = I(X1[J ]X2[J ];Y1Y2X1[J
c]X2[J

c])

= I(U1[J ]U2[J ];Y1Y2U1[J
c]U2[J

c])

= I(U1[J ];Y1Y2U1[J
c]U2[J

c])

+ I(U2[J ];Y1Y2U1[J
c]U2[J

c]U1[J ])

≥ I(U1[J ];Y1Y2U1[J
c])

+ I(U2[J ];Y1Y2Ū1U2[J
c])

= I[J ](P−) + I[J ](P+), (3)

where equality holds above, if Jc = ∅, i.e., if J = Em.

Note that the inequality in the above are only due to
the bounds on the mutual informations of the P− channel.
Because of the equality when J = Em, our construction
preserves the uniform sum rate. As a corollary of previous
Lemma, we have the following result.

Theorem 1. The process {In[J ], J ⊆ Em} converges a.s..

Note that for a fixed n, {In[J ], J ⊆ Em} denotes the col-
lection of the 2m random variables In[J ], for J ⊆ Em. When
the convergence takes place (a.s.), let us define I∞[J ] :=
limn→∞ In[J ]. From previous theorem, I∞[J ] is a random
variable valued in [0, |J |]. We will now further characterize
these random variables.

Lemma 2. For any ε > 0 and any m-user BMAC P , there
exists δ > 0, such that for any J ⊆ Em, if I[J ](P+) −
I[J ](P ) < δ, we have I[J ](P )− I[J \ i] ∈ [0, ε) ∪ (1− ε, 1],
∀i ∈ J, where I[∅] = 0.

Lemma 3. With probability one, I∞[i] ∈ {0, 1} and I∞[J ]−
I∞[J \ i] ∈ {0, 1}, for every i ∈ Em and J ⊆ Em.

Note that Lemma 3 implies in particular that {I∞[J ], J ⊆
Em} is a.s. a discrete random vector.

Definition 3. We denote by Am the support of {I∞[J ], J ⊆
Em} (when the convergence takes place, i.e., a.s.). This is a
subset of {0, . . . ,m}2m .

We have already seen that not every element in
{0, . . . ,m}2m can belong to Am. We will now further char-
acterize the set Am.

Definition 4. A polymatroid is a set Em, called the ground
set, equipped with a function f : 2m → R, called a rank
function, which satisfies

f(∅) = 0

f [J ] ≤ f [K], ∀J ⊆ K ⊆ Em,

f [J ∪K] + f [J ∩K] ≤ f [J ] + f [K], ∀J,K ⊆ Em.

Theorem 2. For any MAC and any distribution of the inputs
X[E], we have that ρ(S) = I(X[S];Y X[Sc]) is a rank
function on E, where we denote by Y the output of the MAC
with input X[E]. Hence, (E, ρ) is a polymatroid.

(A proof of this result can be found in [7].) Therefore, any
realization of {In[J ], J ⊆ Em} defines a rank function and
the elements of Am define polymatroids.

Definition 5. A matroid is a polymatroid whose rank function
is integer valued and satisfies f(J) ≤ |J |, ∀J ⊆ Em. We
denote by MATm the set of all matroids with ground state
Em. We also define a basis of a matroid by the collection of
maximal subsets of Em for which f(J) = |J |. One can show
that a matroid is equivalently defined from its bases.

Using Lemma 3 and the definition of a matroid, we have
the following result.

Theorem 3. For every m ≥ 1, Am ⊆ MATm.
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We will see that the inclusion is strict for m ≥ 4.

B. Communicating On Matroids

We have shown that, when n tends to infinity, the MACs
that we create with the polarization construction of Section
II are particular MACs: the mutual informations I∞[J ] are
integer valued (and satisfy the other matroid properties). A
well-known result of matroid theory (cf. Theorem 22 of [4])
says that the vertices of a polymatroid given by a rank function
f are the vectors of the following form:

xj(1) = f(A1),

xj(i) = f(Ai)− f(Ai−1), ∀2 ≤ i ≤ k

xj(i) = 0, ∀k < i ≤ m,

for some k ≤ m, j(1), j(2), . . . , j(m) distinct in Em and
Ai = {j(1), j(2), . . . , j(i)}. He hence have the following.

Corollary 1. The uniform rate regions of the MACs defined
by Am have vertices on the hypercube {0, 1}m. In particular,
when operating at a vertex each user sees either a perfect or
pure noise channel.

C. Convergence Speed and Representation of Matroids

Convention: for a given m, we write the collection
{I∞[J ], J ⊆ Em} by skipping the empty set (since I∞[∅] =
0) and as follows: when m = 2, we order the sequence as
(I∞[1], I∞[2], I∞[1, 2]), and when m = 3, as (I∞[1], I∞[2],
I∞[3], I∞[1, 2], I∞[1, 3], I∞[2, 3], I∞[1, 2, 3]), etc.

When m = 2, [6] shows that {I∞[J ], J ⊆ Em} belongs
a.s. to {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (1, 1, 2)}. These
are precisely all the matroids with two elements. The speed
of convergence to these matroids is shown to be fast in [6]
through the following steps. The main idea is to deduce
the convergence speed of In[J ] from the convergence speed
obtained in the single user setting, which we know is fast
enough, namely as o(2−nβ

), for any β < 1/2, cf. [3]. We
do not need to check the speed convergence for (0, 0, 0).
For (1, 0, 1), the speed convergence can be deduced from
the m = 1 speed convergence result as follows. First note
that I(X[1];Y ) ≤ I[1](P ) = I(X[1];Y X[2]). Then, it is
shown that, if I[1](Pn) tends to 1, it must be that along
those paths of the Bn process, Î[1](Pn) tends to 1 as well,
where Î[i](P ) = I(X[i];Y ). Now, since Î[1](Pn) tends to 1, it
must tend fast from the single user result. A similar treatment
can be done for (0, 1, 1) and (1, 1, 2). However, for (1, 1, 1),
another step is required. Indeed, for this case, Î[1](Pn) and
Î[2](Pn) tend to zero. Hence, Î[1, 2](P ) = I(X[1]+X[2];Y )
is introduced and it is shown that Î[1, 2](Pn) tends to 1.
Moreover, if we denote by Q the single user channel be-
tween X[1] + X[2] and Y , we have that Î[1, 2](P ) =
I(Q), Î[1, 2](P−) = I(Q−) and Î[1, 2](P+) = I(U2[1] +
U2[2];Y1Y2U1[1]U1[2]) ≥ I(U2[1] + U2[2];Y1Y2U1[1] +
U1[2]) = I(Q+). Hence, using the single user channel result,
Î[1, 2](Pn) tends to 1 fast. Note that a property of the matroids
{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (1, 1, 2)} is that we can

express any of them as the uniform rate region of a deter-
ministic linear channel: (1, 0, 1) is in particular the uniform
rate region of the MAC whose output is Y = X[1], (0, 1, 1)
corresponds to Y = X[2], (1, 1, 1) to Y = X[1] +X[2] and
(1, 1, 2) to (Y1, Y2) = (X[1], X[2]).

Now, when m = 3, all matroids are also in a one to one
correspondence with linear forms and a similar treatment to
the m = 2 case is possible. This is related to the fact that any
matroid on 2 or 3 elements can be represented in the binary
field. We now introduce the definition of binary matroids.

Definition 6. Linear matroids: let A be a k ×m matrix over
a field. Let Em be the index set of the columns in A. The
rank of J ⊆ Em is defined by the rank of the sub-matrix with
columns indexed by J .
Binary matroids: A matroid is binary if it is a linear matroid
over the binary field. We denote by BMATm the set of binary
matroids with m elements.

1) The m = 4 Case: We have that MAT4 contains 17
unlabeled matroids (68 labeled ones). However, there are only
16 unlabeled binary matroids with ground state 4. Hence, there
must be a matroid which does not have a binary representation.
This matroid is given by (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)
(one can easily check that this is not a binary matroid). It
is denoted U2,4 and is the uniform matroid of rank 2 with 4
elements (for which any 2 elements set is a basis). Luckily,
one can show that there is no MAC leading to U2,4 and the
following holds.

Lemma 4. A4 ⊂ BMAT4 " MAT4.

Hence, the m = 4 case can be treated in a similar manner
as the previous cases. We conclude this section by proving the
following result, which implies Lemma 4.

Lemma 5. U2,4 cannot be the uniform rate region of any MAC
with four users and binary uniform inputs.

Proof: Assume that U2,4 is the uniform rate region of a
MAC. We then have

I(X[i, j];Y ) = 0, (4)
I(X[i, j];Y X[k, l]) = 2, (5)

for all i, j, k, l distinct in {1, 2, 3, 4}. Let y0 be in
the support of Y . For x ∈ F4

2, define P(x|y0) =
W (y0|x)/

∑
z∈F4

2
W (y0|z). Then from (5), P(0, 0, ∗, ∗|y0) =

0 for any choice of ∗, ∗ which is not 0, 0 and P(0, 1, ∗, ∗|y0) =
0 for any choice of ∗, ∗ which is not 1, 1. On the other hand,
from (4), P(0, 1, 1, 1|y0) must be equal to p0. However, we
have form (5) that P(1, 0, ∗, ∗|y0) = 0 for any choice of ∗, ∗
(even for 1, 1 since we now have P(0, 1, 1, 1|y0) > 0). At the
same time, this implies that the average of P(1, 0, ∗, ∗|y0) over
∗, ∗ is zero. This brings a contradiction, since from (4), this
average must equal to p0.

Moreover, a similar argument can be used to prove a
stronger version of Lemma 5 to show that no sequence of
MACs can have a uniform rate region that converges to U2,4.
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2) Arbitrary values of m: We have seen in previous sec-
tion that for m = 2, 3, 4, the extremal MACs are not any
matroids but binary matroids. This allows us to conclude that
{In[J ], J ⊆ Em} must tend fast enough to {I∞[J ], J ⊆ Em}.
Indeed, by working with the linear deterministic representation
of the MACs, the problem of showing that the convergence
speed is fast in the MAC setting is a consequence of the
single-user setting result shown in [2]. We now show that this
approach can be used for any values of m.

Definition 7. A matroid is BUMAC if its rank function r
can be expressed as r(J) = I(X[J ];Y X[Jc]), J ⊆ Em,
where X[E] has independent and binary uniformly distributed
components, and Y is the output of a binary input MAC.

Theorem 4. A matroid is BUMAC if and only if it is binary.

The converse of this theorem is easily proved and the direct
part uses the following steps, which are detailed in [1]. First
the following theorem on the representation of binary matroids
due to Tutte, whose proof can be found in [5].

Theorem 5 (Tutte). A matroid is binary if and only if it has
no minor that is U2,4.

A minor of matroid is a matroid which is either a restriction
or a contraction of the original matroid to a subset of the
ground set. A contraction can be defined as a restriction on
the dual matroid, which is another matroid whose bases are
the complement set of the bases of the original matroid. Using
Lemma 4, we already know that U2,4 is not a restriction of
any BUMAC matroid. To show that a BUMAC matroid cannot
have U2,4 as a contraction, Lemma 4 can be used in a dual
manner, since one can show that the rank function of the dual
of a BUMAC matroid is given by r∗(J) = |J |− I(X[J ];Y ).

Theorem 6. Let X[E] have independent and binary uniformly
distributed components. Let Y be the output of a MAC with
input X[E] and for which f(J) = I(X[J ];Y X[Jc]) is integer
valued, for any J ⊆ Em. We know from previous theorem that
f(·) is also the rank function of a binary matroid, so let A be
a matrix representation of this binary matroid. We then have

I(AX[E];Y ) = rankA = f(Em).

The proof of previous theorem, with further investigations
on this subject can be found in [1]. Moreover, one can show a
stronger version of these theorems for MACs having a uniform
rate region which tends to a matroid. Now, this result tells us
that the extremal MACs are equivalent to linear deterministic
channels. This suggests that we could have started from the be-
ginning by working with S[J ](P ) := I(

∑
i∈J Xi;Y ) instead

of I[J ](P ) = I(X[J ];Y X[Jc]) to analyze the polarization
of a MAC. The second measure is the natural one to study a
MAC, since it characterizes the rate region. However, we have
just shown that it is sufficient to work with the first measure
for the purpose of the polarization problem considered here.
Indeed, one can show that S[J ](Pn) tends either to 0 or 1 and
Eren Şaşoğlu has provided a direct argument showing that
these measures are fully characterizing the extremal MACs.

Moreover, the process of identifying which matroids can
have a rank function derived from an information theoretic
measure, such as the entropy, has been investigated in different
works, cf. [8] and references therein. In the next section, we
summarize our polar code construction for the MAC.

D. Polar code construction for MACs

Let n = 2l for some l ∈ Z+ and let Gn =

(
1 0
1 1

)⊗l

denote the lth Kronecker power of the given matrix. Let
U [k]n := (U1[k], . . . , Un[k]) and

X[k]n = U [k]nGn, k ∈ Em.

When X[Em]n is transmitted over n independent uses of P
to receive Y n, define the channel P(i) : Fm

2 → Yn × Fm(i−1)
2

to be the channel whose inputs and outputs are Ui[Em] →
Y nU i−1[Em]. Let ε > 0 and let A[k] ⊂ {1, . . . , n} denote
the sets of indices where information bits are transmitted by
user k, which are chosen as follows: for a fixed i ∈ {1, . . . , n},
if ‖{I[J ](P(i)) : J ⊆ Em}−B‖ < ε for some binary matroid
B (where the distance above refers to the euclidean distance
between the corresponding 2m dimensional vectors), then pick
a basis of B and include i in A[k] if k belongs to that basis.
If no such binary matroid exists, do not include i in A[k]
for all k ∈ Em. Choose the bits indexed by A[k]c, for all k,
independently and uniformly at at random, and reveal their
values to the transmitter and receiver.

For an output sequence Y n, the receiver can then decode
successively U1[Em], then U2[Em], etc., till Un[Em]. More-
over, since I[Em](P ) is preserved through the polarization
process (cf. the equality in (3)), we guarantee that for ev-
ery δ > 0, there exists a n0 such that

∑m
k=1 |A[k]| >

n(I[Em](P ) − δ), for n ≥ n0. Using the results of previous
section, we can then show the following theorem, which
ensures that the code described above allows reliable com-
munication at sum rate.

Theorem 7. For any β < 1/2, the block error probability
of the code described above, under successive cancellation
decoding, is o(2−nβ

).

Moreover, this codes has an encoding and decoding com-
plexity of O(n log n), from [2].
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Abstract1 –This paper presents the capacity of a 
modulo-sum simple relay network. In previous work 
related to this paper, capacity was characterized for the 
case where the noise was transmitted to the relay. And 
the closed-form capacity was derived only for the noise 
with a Bernoulli-(!"#$ distribution. However, in this 
paper, the source is transmitted to the relay, and a more 
general case of noise with an arbitrary Bernoulli-(%$ 
distribution, % & '() (* +,, is considered. The relay 
observes a corrupted version of the source, uses a 
quantize-and-forward strategy, and transmits the 
encoded codeword through a separate dedicated 
channel to the destination. The destination receives both 
from the relay and source. This paper assumes that the 
channel is discrete and memoryless. After deriving the 
achievable capacity theorem (i.e., the forward theorem) 
for the binary symmetric simple relay network, this 
paper proves that the capacity is strictly below the cut-
set bound. In addition, this paper presents the proof of 
the converse theorem. Finally, this paper extends the 
capacity of the binary symmetric simple relay network 
to that of an m-ary modulo-sum relay network. 
 
!"#$%& '$()*& – Channel capacity; relay network; 
modulo-sum channel; quantize-and-forward; single-
input single-output; cut-set bound. 

I.! INTRODUCTION 
The relay network is a channel that has one sender 
and one receiver, with a number of intermediate 
nodes acting as relays to assist with the 
communications between sender and receiver. This 
paper exchanges the terminology of the relay channel 
in [1] with the relay network frequently because here 
a network is defined as a system consisting of more 
than two nodes [2], whereas a channel is for 
communication between two nodes. The simplest 
relay network or channel has one sender, one 
receiver, and one relay node. Fig. 1 shows this type 
of relay network, which is called a “simple” relay 
network. 
 
The first original model of a relay network was 
introduced by van der Meulen in 1971 [3]. After that, 
extensive research was done to find the upper 
bounds, cut-set bounds, and exact capacity for this 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!This work was partly sponsored by the Army Research Office 
under DEPSCoR ARO Grant W911NF-08-1-0256, and by NASA 
under EPSCoR CAN Grant NNX08AV84A.!

network. In 1979, Cover and El Gamal obtained the 
capacity for a special class of channels called 
physically degraded relay channels [4]. In that paper, 
they discussed the capacity of the relay channel with 
feedback and found an upper bound for a simple 
relay network, which is shown in Fig. 1. Later, El 
Gamal and Aref found the capacity for a special class 
of relay channels called “semideterministic relay 
channels” in [5]. Then, Kim found the capacity for a 
class of deterministic relay channels in [6], where he 
modeled the simple relay network as a noiseless 
channel between the relay and the destination. Also, 
van der Meulen corrected his previous upper bound 
on the capacity of the simple relay network with and 
without delay in a paper [7]. 
 
Using Kim’s results in [6], Aleksic et al. modeled the 
channel between the relay and the destination as a 
modular sum noise channel in [8]. Binary side 
information or channel state information is 
transmitted to the relay in [8]. He mentioned that the 
capacity of the simple relay network is not yet 
known. Recently, Tandon and Ulukus found a new 
upper bound for the simple relay network with 
general noise, obtained the capacity for symmetric 
binary erasure relay channel, and compared them 
with the cut-set bound in [9]. 
 
Aleksic et al. in [8] introduced a corrupting variable 
to the noiseless channel in [6], whereby the noise in 
the direct channel between the source and the 
destination is transmitted to the relay. The relay 
observes a corrupted version of the noise and has a 
separate dedicated channel to the destination. For this 
case, the capacity was characterized in [8]. However, 
the closed-form  capacity was derived only for the 
noise with a Bernoulli-(- . /"0$. distribution. 
 
The objective of this paper is to find the capacity of 
the simple modular sum relay network and show that 
its capacity is strictly below the cut-set bound [4]. 
This paper also presents a closed-form capacity for a 
general case, such as for any - where the source is 
transmitted to both the relay and the destination. 
 
This paper considers all noisy channels, i.e., from the 
source to the destination, from the source to the relay, 
and from the relay to the destination, as shown in Fig. 
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1, where all noisy channels are binary symmetric 
channels (BSCs) with a certain crossover probability, 
e.g., -. This paper also derives the capacity for this 
class of relay channels. In other words, the capacity 
of a modulo-sum simple relay network is presented 
here. The capacity proof for the binary symmetric 
simple relay network and the proof for the converse 
depend crucially on the input distribution. 
 
For the BSC, a uniform input distribution at the 
source is assumed because this distribution 
maximizes the entropy of the output (or the capacity) 
regardless of additive noise. Furthermore, because of 
the uniform input distribution, the output of a binary 
symmetric relay network is independent of additive 
noise. After presenting the proof for the capacity of a 
binary symmetric simple relay network, this paper 
proves that the capacity obtained is strictly below the 
cut-set bound by using the results in [4]. Finally, this 
paper shows the converse theorem for this class of 
networks. 
 
Section II describes the system model and presents 
the capacity of the binary symmetric simple relay 
network. Section III discusses the cut-set bound for 
the binary symmetric simple relay network and 
presents the numerical analysis results. Section IV 
extends the capacity to the )-ary modular additive 
case. Finally, Section V concludes the paper. 

II.! SYSTEM MODEL AND NETWORK 
CAPACITY 

Fig. 2 shows a realistic binary phase-shift keying 
(BPSK) system under additive white Gaussian noise 
(AWGN), where 1 and 23are the binary input and 
output signal, respectively. Here, 2 is obtained with a 
hard decision on the demodulated signal. 

Fig. 1. Simple relay network. 
 

" #  
 

Fig. 2. Realistic BPSK communication system under AWGN. 
 

 

!" $%&'() *+ !# $%&'() *+

Fig. 3. BSC equivalent to Fig. 2. 
 

! "!(, $%& ! ! "!*, $%& "

! "!- $%& .

! "!" $%& () *

Fig. 4. Binary symmetric simple relay network. 
 
Fig. 3 shows a BSC with the crossover probability3- 
equivalent to the realistic communication system in 
Fig. 2. Here, the crossover probability3- is equal to 456078 9:; 3<, where 4=>$ . ? =/ @0A; $!B CDEF"GHI, 
and 78 and 9: denote the bit energy and the one-side 
AWGN power spectral density, respectively. 
 
This paper models a channel between any adjacent 
nodes in Fig. 1 as a BSC that has one sender, one 
receiver (or destination), and one relay node [1]. The 
random variable 2 represents the received signal 
through the direct channel and is written as 2 . 1JK, where 1 and K denote the transmitted and noise 
random variable with distribution LCM=/"0$ and LCM=-$, respectively, and J denotes the binary 
modulo-sum, i.e., K = 1 with probability -, and K = 0 
with probability =/ N 3-$. 
 
The simple relay network in Fig. 1 can be redrawn as 
Fig. 4. Here, the relay node has an input 32O&and an 
output 1O. The relay node observes the corrupted 
version of 1, i.e., 2O . 1J9O, encodes it using a 
codebook PQ of jointly typical strong sequences [1], 
and transmits the code symbol 1O through another 
separate BSC to the destination node, where P, R, 
and  9O denote the alphabet of code symbols, the 
codeword length, and the noise random variable at 
the relay with distribution LCM=S$, respectively. The 
destination receives both 2, through the direct 
channel, and3T: . 1O J9G, through the relay node, 
where 9GULCM=V$ represents the noise at the 
destination for the relay network. 
  
Note that the binary modulo-sum and the BSC can be 
extended to an W–ary modulo-sum and an W–ary 
symmetric channel (MSC). 
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To the authors’ knowledge, there is no network 
capacity expression in the literature, even for the 
simple relay network shown in Fig. 4. Only the 
capacity of a deterministic relay channel, i.e., the 
case of 9G3 . X in Fig. 4, is presented in [6]. The 
capacity of a relay network by replacing 1 with K, 
i.e., the case where the relay observes a corrupted 
version of the direct channel noise K, is presented in 
[8]. This paper presents the capacity of the simple 
relay network shown in Fig. 4 in the following 
theorem. 
 
Theorem 1+&The capacity Y of the binary symmetric 
simple relay network shown in Fig. 4 is Y . 3 Z[\]=^_`a$bc=defa$ghi 3j/ k l=2_m$ N l=K$ Nl=1_m$n,                                                                  (1) 
where the maximization is over the m’s conditional 
probability density function (p.d.f.) given 2O; the 
cardinality of the alphabet P, is bounded by _P_ 3o3_pO_ k 30; and3q: is the capacity for the channel 
between 1O and T:, which can be written as  

                         q: . 3 Z[\]=\a$ 3r=1Oe T:$.                     (2) 

The closed-form network capacity for the simple 
relay network shown in Fig. 4 can be written as Y . 3/ ks=jV t Sn t -$ Ns=-$ Ns=V t S$.      (3) 

Here, l=1$ and r=1e 2$ are the entropy of 1 and the 
mutual information between 1 and 2, respectively 
[1]; s=>$ is the binary entropy function written as s=>$ . N>uvwG> N =/ N >$uvwG=/ N >$; and > t x . >=/ N x$ k =/ N >$3x [10]. 
 
Proofs of the converse and achievability for this 
theorem are provided in appendices A and B of [12]. 
Proofs of other theorems in this paper are also in 
[12]. 
 
Note that if the direct channel noise K is transmitted 
through the relay rather than31, then (1) becomes (3) 
of [8] or (4), written as 
                  Y . 3 Z[\]=^_`a$bc=defa$ghi 3/ N l=K_m$.       (4)                                                  
This is because l=2_m$ and l=K$ in (1) will become / and l=1$ . /, respectively. 

III.! CUTSET BOUND AND ANALYTICAL 
RESULTS 

This section shows that the capacity of the binary 
symmetric simple relay network in Fig. 4 is strictly 
below the cut-set bound, except for the two trivial 
points at q: . X and q: . / when - . X*y. The 
capacity in (1) can be upper-bounded by the cut-set 
bound as 

  Y o Z[\]=\)3\a$ 3z{|3jr=1) 1Oe 2) T:$) r=1e 2) 2O$n       (5) 

where the Ford-Fulkerson theorem [11], [4] is 
applied to the simple relay network in Fig. 4. Using 
(5), Theorem 2 can be established. 
 
Theorem 2+&The cut-set bound for the capacity of the 
binary simple relay network shown in Fig. 4 can be 
written as Y o z{|j/ N l=K$ k q:) / N l=K$ k / N l=9O$n 
     . z{|j/ Ns=-$ k q:) / Ns=-$ k / Ns=S$n. 
                                                                    (6) 

Figs. 5(a) and 5(b) show the capacity in bits per 
transmission versus q: bits for S . X*/, when - . X*/ and - . X*y, respectively. If - . X*y, then 
the results are the same as those in [8]. Only the 
closed form of the capacity for the special case of - . X*y was analyzed and presented in [8], where the 
capacity Y of the binary simple relay network was 
obtained by replacing 1 with K at the relay input 
shown in Fig. 4 and written as [8] 

                Y . 3/ Ns=sDOj/ N q:n t S$.           (7) 

Here sDO=}$ is the inverse of s=-$ in the domain - & 'X)X*y,. Note that the capacity in (3) of this paper 
is valid for a general - between 0 and 0.5, whereas 
the one in (34) of [8] or (7) is valid for only - . X*y. 
 
Note that the capacity in (3) is strictly below the cut-
set bound in (6). Refer to Figure 5(b). 

IV.! CAPACITY FOR M-ARY MODULO-SUM 
RELAY NETWORK 

This section extends the capacity derived for the 
binary symmetric simple relay network to the )-ary 
modular additive relay network. The received signal 
at the destination node can be written as 2 . 1 kK3=W~H3W$. The relay observes the corrupted version 
of 1, i.e., 2O . 1 k 9O3=W~H3W$, and the relay also 
has a separate channel to the destination: T: . 31O k39G3=W~H3W$ with a capacity3q: . 3 Z[\]=\a$ 3r=1Oe T:$. 
Therefore, (1) becomes (8) in Theorem 3. 
 
Theorem 3+ The capacity Y of the symmetric )-ary 
modulo-sum simple relay network is Y . 3 Z[\]=^_`a$bc=defa$ghi 3�W k l=2,m$ N l=K$ Nl=1,m$n                                                                 (8) 

where maximization is over the conditional3m’s p.d.f. 
given 2O with3_P_ 3o 3 _pO_ k 30, and3q: is defined in 
(2).  
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Proof:&The achievability for Theorem 3 follows the 
same steps as Theorem 1 by changing the binary to 
the )-ary case. Also, the uniform input distribution at 
the source maximizes the entropy of the output, 
regardless of the additive noise. Furthermore, 
because of the uniform input distribution, the output 
of an )-ary modulo-sum relay network is 
independent of the additive noise. Therefore, (8) 
holds true. The converse for Theorem 3 also holds 
true using the same steps of Theorem 1 by changing 
the binary modulo-sum to the )-ary modulo-sum. 
 

 
Fig. 5(a). Capacity of a binary symmetric simple relay network 

shown in Fig. 4 for S . X*/ and - . X*/. 
 

 
Fig. 5(b). Capacity and cutest bounds of a binary symmetric simple 

relay network shown in Fig. 4 for S . X*/ and - . X*y. 

V.! CONCLUSIONS 
It has been an open problem to find the capacity of 
the simple relay network. This paper presented the 
closed form capacity of the binary symmetric simple 
relay network. Also, this paper extended the capacity 
for the binary to the )-ary modulo-sum symmetric 
simple relay network. Two conditions are necessary 
for the derivation of this capacity: (1) a uniform 
Bernoulli-(/"0) input distribution, and (2) a modular 
additive channel between the two adjacent nodes. 

Using these conditions, both proofs for the 
achievability and the converse of the capacity 
theorem were presented. Furthermore, this paper 
derived the cut-set bound and presented the 
numerical results for this network. Finally, this paper 
claimed that the capacity is strictly below the cut-set 
bound and achievable using a quantize-and-forward 
strategy at the relay. 
 

REFERENCES 
 
1.! T. M. Cover and J. A. Thomas, “Elements of Information 

Theory,” second edition, New York: Wiley, 2006. 
2.! M. Schwartz, “Telecommunication Networks: Protocols, 

Modeling and Analysis,” Menlo Park, CA: Addison-Wesely 
Publising Co., 1988. 

3.! E. C. Van Der Meulen. “Three-Terminal Communication 
Channels,” -#./&-001/&2(34., vol. 3, pp. 120-154, 1971. 

4.! T. M. Cover and El Gamal, “Capacity Theorems for the 
Relay Channel"5&!666&'(7"*/&!"8/&'9$3(:" vol. IT-25, no. 5, 
pp. 572-584, Sept. 1979. 

5.! A. El Gamal and M. Aref, “The Capacity of the 
Semideterministic Relay Channel,” !666& '(7"*/& 3"& !"8/&
'9$3(:" vol. IT-28, no. 3, p. 536, May 1982. 

6.! Y. H. Kim, “Capacity of a Class of Deterministic Relay 
Channels,” !666&'(7"*/&3"&!"8/&'9$3(:" vol. IT-54, no. 3, pp. 
1328-1329, Mar. 2008. 

7.! E. C. Van Der Meulen and P. Vanroose, “The Capacity of a 
Relay Channel, Both with and without Delay,” !666&'(7"*/&
3"&!"8/&'9$3(:" vol. 53, no.10, pp. 3774-3776, Oct. 2007. 

8.! M. Aleksic, P. Razaghi, and W. Yu, “Capacity of a Class of 
Modulo-Sum Relay Channels,” !666&'(7"*/&3"& !"8/&'9$3(:, 
vol. 55, no. 3, pp. 921-930, Mar. 2009. 

9.! R. Tandon and S. Ulukus, “A New Upper Bound on the 
Capacity of a Class of Primitive Relay Channels,” 
;3))<"=>7?=3""&;3"?(31"&7"#&;3)0<?="@"&ABBC&DE?9&-""<71&
-11$(?3"&;3"8$($">$" pp. 1562-1569, Sept. 2008. 

10.! A. D. Wyner and J. Ziv, “A Theorem on the Entropy of 
Certain Binary Sequences and Applications” !666&'(7"*/&!"8/&
'9$3(:" vol. IT-19, no. 6, pp. 769-777, Nov. 1973. 

11.! L. R. Ford and D. R. Fulkerson, F13G*& ="& H$?G3(I*, 
Princeton, NJ: Princeton University Press, 1962. 

12.! Youvaraj T. Sagar, Hyuck M. Kwon, and Yanwu Ding, 
"Capacity of a Modulo-Sum Simple Relay Network," 
submitted to !666& '(7"*7>?=3"*& 3"& !"83()7?=3"& '9$3(: in 
September 2009, and is available at the website: 
http://webs.wichita.edu/?u=ECE&p=/Wireless/Publications/ 

/ /0( /0* /01 /02 /03 /04 /05 /06 /07 (
/03

/033

/04

/043

/05

/053

8/!'$9:;+

<
=.

=>
9:?
!'$

9:;
+

/ /0( /0* /01 /02 /03 /04 /05 /06 /07 (
/

/0(

/0*

/01

/02

/03

/04

/05

/06

/07

(

8/!'$9:;+

<
=.

=>
9:?
!'$

9:;
+

!

!
<=.=>9:?
$&@=A>=;:!$@BCA
DBE:9.E%F=>>%;;!$@BCA

Int. Zurich Seminar on Communications (IZS), March 3-5, 2010

36



Improved Related-Key Impossible Differential
Attacks on 8-Round AES-256

Hadi Soleimany, Alireza Sharifi, Mohammadreza Aref
Information Systems and Security Lab (ISSL)

EE Department, Sharif University of Technology, Tehran, Iran
E-mail: hadi.soleimany@gmail.com, asharifi@alum.sharif.edu, aref@sharif.edu

Abstract—In this paper, we propose two new related-key
impossible differential attacks on 8-round AES-256, following the
work of Zhang, et al. First, we propose a carefully chosen relation
between the related keys, which can be extended to 8-round
subkey differences. Then, we construct a 5.5-round related-key
impossible differential. Using the differential, we present two new
attacks on the 8-round AES-256 with 32 and 64 bit structures.
Our 8-round AES-256 attacks leads to the best known attack
on AES-256 with 2 related keys. The time complexity of the
proposed related-key impossible differential attacks on 8-round
AES-256 is 2102.5 and its data complexity is 2103.5 .

keywords: AES-256, related-key differentials cryptanalysis,
impossible differential

I. INTRODUCTION

Rijndael [1] is an iterated block cipher with variable key
and block lengths of 128 to 256 bits in steps of 32 bits.
Rijndael versions with a block length of 128 bits, and key
lengths of 128,192 and 256 bits have been adopted as the Ad-
vanced Encryption Standard (AES). Differential cryptanalysis
[2] analyzes the evolvement of the difference between a pair of
plaintexts in the following round outputs (differentials) in an
iterated block cipher. The basic idea of impossible differential
attack is to look for differentials that hold with probability
0 (or impossible differentials) to eliminate wrong keys and
keep the right key. Related-key attacks [3], concentrate on
the information which can be obtained from two encryptions
using related (but unknown) keys. Related-key impossible dif-
ferential attack [4] combines related-key attack and impossible
differential cryptanalysis to make the attack more efficient.

The first impossible differential attack against AES was
applied to 5 rounds of the AES-128 by Biham and Keller
[5]. In [4], the first related-key impossible differential attack
on 192-bit variants was proposed. Zhang, et. al applied three
new related-key impossible differential attacks on 8-round
AES-192 [6] and AES-256 [7] and concluded AES-256 has
better resistance than AES-192 using the same cryptanalytic
approach [7]. In this paper, we show that 8 round AES-256 can
be attacked more efficient than 8 round AES-192 from overall
complexity. We present 2 related-key impossible differential
attacks on 8-round AES-256 with 2 related keys. Our 8-round
AES-256 attacks leads to the best known attack on 8-round
AES-256 with 2 related keys.

0This work was partially supported by Iran Telecommunications Research
Center and the cryptography chair of the Iranian NSF.

The paper is organized as follows: In Section II we briefly
describe the AES algorithm. A new related-key impossible
differential property of the AES-256 is introduced in Section
III. In Section IV, using 64-bit structures, we propose a related-
key impossible differential attack on the 8-round AES-256. In
Section V we compare the performance of our attacks with
the previous ones.

II. A BRIEF DESCRIPTION OF AES

In AES [1] a 128-bit plaintext is represented by a 4 × 4
matrix of bytes, where each byte represents a value in GF (28).
An AES round is composed of four operations: SubBytes (SB),
ShiftRows (SR), MixColumns (MC) and AddRoundKey (AK).
The MixColumns operation is omitted in the last round and
an initial key addition is performed before the first round for
whitening. We also assume that the MixColumns operation is
omitted in the last round of the reduced-round variants. The
number of rounds is variable depending on the key length, 10
rounds for 128-bit key, 12 for 192-bit key and 14 for 256-bit
key.

A. Notations

In this paper we use the following notations: XI
i denotes

the input block of round i, while XS
i ,XR

i ,XM
i and XO

i de-
notes intermediate values after applying SubBytes, ShiftRows,
MixColumns and AddRoundKey operations of round i, respec-
tively. Obviously, XO

i−1 = XI
i holds for i ≥ 2. We denote the

subkey of the i-th round by ki and the initial whitening subkey
by k0. In some cases, we are interested in interchanging the
order of the MixColumns operation and the Subkey Addition.
As these operations are linear, they can be interchanged, first
XORing the data with an equivalent key and then applying
the MixColumns operation. We denote equivalent subkey for
the modified version by wi, i.e. wi = MC−1(ki), and XW

i

denotes the intermediate value after applying AddRoundKey
with equivalent subkey. Let Xi,col(j) denotes the j-th column
of xi where j ∈ {0, 1, 2, 3}. We also denote the byte in the
m-th row and n-th column of Xi by Xi,m,n where m,n ∈
{0, 1, 2, 3}. Another notation for bytes of xi is an enumeration
{0, 1, 2, ..., 15} where the byte Xi,m,n corresponds to byte
4n+m of Xi.
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III. 5.5-ROUND RELATED-KEY IMPOSSIBLE
DIFFERENTIAL PROPERTY OF AES-256

In this paper, using a property of MixColumns operation, we
propose a new 5.5-round related-key impossible differential
property which our attack is based on. First of all we use
the following definitions: A byte which has different values
(nonzero difference) in a pair is called an active byte while
passive byte is a byte with zero difference in a pair. Now we
state and prove the MixColumns property:

Theorem 3.1: A pair of columns at the input of Mix-
Columns operation which contains two passive bytes cannot
lead to two passive bytes and one or two active bytes within
the output column.

Proof: Suppose that ∆X = (∆X1,∆X2,∆X3,∆X4) is
the difference of input column and ∆Y = (∆Y1,∆Y2,∆Y3,
∆Y4) is the corresponding output difference. Using Mix-
Columns operation we have:

∆Y1 = 02 •∆X1 ⊕ 03 •∆X2 ⊕ 01 •∆X3 ⊕ 01 •∆X4

∆Y2 = 01 •∆X1 ⊕ 02 •∆X2 ⊕ 03 •∆X3 ⊕ 01 •∆X4

∆Y3 = 01 •∆X1 ⊕ 01 •∆X2 ⊕ 02 •∆X3 ⊕ 03 •∆X4

∆Y4 = 03 •∆X1 ⊕ 01 •∆X2 ⊕ 01 •∆X3 ⊕ 02 •∆X4

where ”•” is modular multiplication of Rijndael [1]. Without
loss of generality, suppose X1 and X2 are two passive bytes,
i.e. ∆X1 = ∆X2 = 0, we would have:

∆Y1 = 01 •∆X3 ⊕ 01 •∆X4

∆Y2 = 03 •∆X3 ⊕ 01 •∆X4

∆Y3 = 02 •∆X3 ⊕ 03 •∆X4

∆Y4 = 01 •∆X3 ⊕ 02 •∆X4

So if two bytes of output column, for example Y1 and Y2

have zero difference, i.e. ∆Y1 = ∆Y2 = 0, we will have the
following system of equations:

01 •∆X3 ⊕ 01 •∆X4 = 0

03 •∆X3 ⊕ 01 •∆X4 = 0

It is obvious that the only solution of the above system is
∆X3 = ∆X4 = 0 and consequently ∆Y3 = ∆Y4 = 0, i.e. the
output column cannot have one or two active bytes.

Consider the difference between two related keys as follows:
∆K = K1 ⊕K2 = [(a, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)
, (a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)].

Such a difference results in the round subkey differences as
shown in Table I.

Using the above subkey differences and Theorem 3.1, we
build a 5.5-round related-key impossible differential with
probability equal to 1. The 5.5-round related-key impossible
differential is:

∆XM
1 = ((0, ?, 0, ?), (?, 0, ?, 0), (0, ?, 0, ?), (?, 0, ?, 0)) #

∆XO
6 = ((a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))

where ’a’ is a known nonzero value and ’?’ denotes any value.
Let ∆XM

1 = ((0, ?, 0, ?), (?, 0, ?, 0), (0, ?, 0, ?), (?, 0, ?, 0)).
From Table 1, ∆k1 is zero and it results in

Table I
SUBKEY DIFFERENCES REQUIRED FOR THE 5.5-ROUND IMPOSSIBLE

DIFFERENTIAL

Round (i) ∆ki,col(0) ∆ki,col(1) ∆ki,col(2) ∆ki,col(3)
0 (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
1 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
2 (a, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, 0)
3 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
4 (a, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
5 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
6 (a, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
7 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
8 (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)

∆XI
2 = ∆XO

1 = ∆XM
1 ⊕∆k1 = ((0, ?, 0, ?), (?, 0, ?, 0),

(0, ?, 0, ?), (?, 0, ?, 0)) which leads to ∆XR
2 = ((0, 0, 0, 0),

(?, ?, ?, ?), (0, 0, 0, 0), (?, ?, ?, ?)) and as a result ∆XM
2 =

((0, 0, 0, 0), (?, ?, ?, ?), (0, 0, 0, 0), (?, ?, ?, ?)). After adding
the ∆k2 we have ∆XI

3 = ∆XO
2 = ((a, 0, 0, 0), (?, ?, ?, ?),

(a, 0, 0, 0), (?, ?, ?, ?)) and after SubBytes and ShiftRows, we
get ∆XR

3 = ((N, ?, 0, ?), (?, 0, ?, 0), (N, ?, 0, ?), (?, 0, ?, 0))
where ’N’ denotes nonzero difference (possibly distinct).
The second 3.5-round differential in the reverse
direction is built as follows: The output difference
∆XO

6 = ((a, 0, 0, 0), (0, 0, 0, 0),
(0, 0, 0, 0), (0, 0, 0, 0)) is canceled by the subkey difference
of the sixth round, i.e. ∆XM

6 = ∆k6 ⊕∆XO
6 = 0. The zero

difference ∆XO
6 is preserved through all the operations until

the AddRoundKey operation of the fourth round, because the
subkey difference of the fifth round is zero. Thus we have
∆XM

4 = ∆k4 ⊕∆XO
4 = ((a, 0, 0, 0), (a, 0, 0, 0), (0, 0, 0, 0),

(0, 0, 0, 0)) and consequently from Theorem 3.1 ∆XR
4 =

((N,N,N,N), (N,N,N,N), (0, 0, 0, 0), (0, 0, 0, 0)). When
rolling back the ∆XR

4 through the ShiftRows and SubBytes
operations in the fourth round, we get the ∆XO

3 = ∆XI
4 =

((N, 0, 0, N), (N,N, 0, 0), (0, N,N, 0), (0, 0, N,N)). Finally
after applying the AddRoundKey operation of the third
round which has a zero difference, we can get ∆XM

3 =
((N, 0, 0, N), (N,N, 0, 0), (0, N,N, 0), (0, 0, N,N)). It is
obvious that ∆XM

4 = MC(∆XR
4 ), but according to the

Theorem 3.1, this is impossible, because ∆XR
4 has two

passive bytes ∆XM
4 has two active bytes and two passive

bytes.

IV. RELATED-KEY IMPOSSIBLE DIFFERENTIAL ATTACK
ON 8-ROUND AES-256 USING 64-BIT STRUCTURES

Using the above related-key impossible differential, we can
attack an 8-round variant of AES-256.

A. The Attack Procedure

In order to make the attack faster, we first perform a
precomputation. For all possible pairs of values of xM

1,col(0)

and xM
1,col(3) which have the difference ∆xM

1,col(0) =

(a, ?, ?, 0) and ∆xM
1,col(3) = (?, ?, 0, 0), compute the values of

(0,1,5,6,10,11,12,15) for xI
1. Store the pairs of 8-byte values

in a hash table Hp indexed by the XOR difference in these
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Figure 1. 8-round Impossible Differential Attack

bytes. There are 264 possible values for the XOR difference
in 8 bytes and (216)4 × (28)4 = 296 possible pairs of values
of xM

1,col(0) and xM
1,col(3) with above condition. So Hp have

264 bins and on average there are 296

264 = 232 pairs in each bin.
The algorithm is as follows:

1. Generate two pools S1 and S2 of m plaintexts each, such
that for each plaintext pair P1 ∈ S1 and P2 ∈ S2, P1 ⊕
P2 = ((?, ?, 0, 0), (a, ?, ?, 0), (a, 0, ?, ?), (?, 0, 0, ?)), where ’?’
denotes any byte value. Here we define a structure as a set of
2× 264 plaintexts which are selected from S1 and S2. Such a
structure proposes 264 × 264 = 2128 pairs of plaintexts.

2. Ask for the encryption of the pool S1 under K1, and of
the pool S2 under K2. Denote the ciphertexts of the pool S1

by T1, and the encrypted ciphertexts of the pool S2 by T2.Such
a structure proposes 264 × 264 = 2128 pairs of plaintexts.

3. For all ciphertexts C2 ∈ T2, compute C∗
2 = C2 ⊕

((0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)).
4. Insert all the ciphertexts C1 ∈ T1 and the values

{C∗
2 |C2 ∈ T2} into a hash table indexed by bytes 1, 2, 3, 4,

5, 6, 8, 9, 11, 12, 14 and 15.
5. For each bin of the hash table with more than one

ciphertext, select every pair (C1, C2). Note that every pair
(C1, C∗

2 ) in each bin of this hash table have zero difference
in bytes 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14 and 15, so the pairs
(C1, C2) have zero difference in bytes 1, 2, 3, 5, 6, 9, 11, 14
and 15, and difference ’a’ in bytes 4,8 and 12. After these steps
we expect to have 2n×2128×(2−8)12 = 2n+32 plaintext pairs,
where 2n is the number of structures, whose corresponding
ciphertext pairs are equal in bytes 1, 2, 3, 5, 6, 9, 11, 14 and
15, and difference ’a’ in bytes 4,8 and 12.

6. Guess the 32-bit value at bytes 0, 7, 10 and 13 for
the k8. Decrypt partially these bytes in the last round,
i.e. compute xO

7,Col(0) = SB−1 ◦ SR−1(xO
8 (0, 7, 10, 13) ⊕

k8(0, 7, 10, 13)). Choose pairs whose difference ∆xW
7,col(0) =

MC−1(∆xO
7,col(0)) are nonzero at byte W

7,0,0 and zero at
other three bytes. The probability of such a difference is
(2−8)3 = 2−24.

7. Guess the value of subkey byte w7,0,0 and compute
xO
6,0,0 = SB−1 ◦ SR−1(xW

7,0,0 ⊕ w7,0,0) for all remaining
pairs and choose pairs whose difference ∆xO

6,0,0 are ’a’. The
probability of such a difference is 2−8. Thus, at the end of
this step, we can get 2n×2128× (2−8)−12×2−24×2−8 = 2n

pairs which have zero difference in all bytes except the first
byte which have the difference ’a’.

8. In this step, we eliminate wrong 64-bit values at
(0,1,5,6,10,11,12,15) for the k0 by showing that the impossible
differential property holds, if these keys were used. We use the
hash table Hp which has made in the precomputation stage.
The algorithm of this step is as follows:

• Initialize a list A of the 264 possible values at
(0,1,5,6,10,11,12,15) of k0.

• For each remaining pairs (P1, P2), compute P
′
= P1⊕P2

in the eight bytes (0,1,5,6,10,11,12,15).
• Access the bin P

′
in Hp, and for each pair (x,y) in that

bin, P1 ⊕ x remove from the list A the value, where P1

is restricted to eight bytes.
• If A is not empty, output the values in A.

Note that there are 232 pairs in each bin of Hp on average,
so in the third part of this step, we eliminate about 232 wrong
keys for each plaintext pair (P1, P2). The probability of a
wrong 64-bit value at bytes (0,1,5,6,10,11,12,15) for k0 is
(1 − 2−64), so after analyzing all 2n pairs, we expect only
264 × (1 − 2−64)2

n+32
wrong values of the eight bytes of

k0 remain. For n = 38.5, the expected number is about
264 × (1 − 2−64)2

64×26.5 ≈ 264 × (e−1)2
6.5 ≈ 2−67 and

we can expect that only the right subkey remains. Unless the
initial guess of the 32-bit value of the last round key k8 or
the 8-bit value of the key w7 is correct, it is expected that
we can eliminate the whole 64-bit value of k0 in this step,
i.e. the list A will be empty at the end of this step. Since the
wrong values for k8, w7, k0 occur with the small probability
of (28)4×28×2−67 = 2−27. Hence if the list A is not empty,
we can assume that the guessed 32-bit value for k8 and 8-bit
value for w7 are correct.
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B. The Attack Complexity

The data complexity of the attack is 2×2n+64 = 2103.5 cho-
sen plaintexts. The time complexity of the attack is consisted
of three parts:

Step 6 requires 2 × 232 × 2n+32 × 4
16 = 2n+63 one round

encryptions, because we must guess 232 keys in this step,
compute XW

7,Col(0) for each 2n+32 remained pairs from last
steps.

Step 7 requires 2×28×232×2n+8× 1
16 = 2n+45 one round

encryptions, because for all of guessed 232 keys, we must
guess 28 for k8 and compute XO

6,0,0) for each 2n+8 remained
pairs from last steps.

In step 8, 2n−64 pairs are analyzed. For each pair we
need 232 memory accesses to Hp and 232 memory accesses
to list A on average. This step is repeated 240 times (for
the guess of w7 and k8). Therefore the time complexity is
240 × 2n × (232 + 232) = 2n+73 memory accesses, which are
equivalent to about 2n+67 one round encryption (according
to the implementations of NESSIE primitives [11]). Conse-
quently for n = 38.5 the overall time complexity of the attack
on 8-round AES-256 is about 2101.5+283.5+2105.5

8 ≈ 2102.5. The
precomputation stage requires about 2×296

8 = 294 encryptions
and the required memory is about 2100 bytes. Meanwhile,
264+8+32

23 = 2101 bytes of memory are needed to store the
list of deleted key values k8, w7, k0 for the attack.

To achieving an attack with lower time complexity which
is decreased by the factor 220, at the cost of increasing data
complexity by the factor 215.5 , we can use 32-bit structures
instead of 64-bit structures. Like using 64-bit structures, we
first perform a precomputation. For all possible pairs of values
of xM

1,col(0) which has the difference ∆xM
1,col(0) = (a, ?, ?, 0),

compute the values of (0,5,10,15) for xI
1. Store the pairs of 4-

byte values in a hash table Hp indexed by the XOR difference
in these bytes. There are 232 possible values for the XOR
difference in 4 bytes and (216)2 × (28)2 = 248 possible pairs
of values of xM

1,col(0) with above condition. So Hp have 232

bins and on average there are 248

232 = 216 pairs in each bin.
The rest of the attack procedure is similar to 64-bit structure
attack which we explain in this section.

V. RESULTS AND DISCUSSION

In this paper, we proposed two new related-key impossible
differential attacks on 8-round AES-256. Results in this paper
are summarized in Table 2 and are compared with the previous
attacks on 8-round AES-256. Attack on 8-round AES-256
with 64 bit structure leads to the best known attack on
AES-256 with 2 related keys and both attacks are better
than the previous one from overall complexity. Best related-
key impossible differential attack on 8-round AES-192 in
[6] has time complexity 2136. So we can see that AES-256
does not have better resistance than AES-192 using the same
cryptanalytic approach.

Table II
SUMMARY OF THE ATTACKS TO 8 ROUNDS OF AES-256

Type Data Workload Keys Reference
RK Imp. Diff. 253 2215 2 [7]
RK Imp. Diff. 264 2191 2 [7]
RK Imp. Diff. 288 2167 2 [7]
RK Imp. Diff. 2112 2143 2 [7]
Partial Sums 2128 − 2119 2240 1 [8]

Imp. Diff. 2111.1 2227.8 1 [9]
Imp. Diff. 289.1 2229.7 1 [9]

Meet in the middle 232 2209 1 [10]
RK Imp. Diff. 2103.5 2102.5 2 This paper
RK Imp. Diff. 2119 285 2 This paper

VI. CONCLUSION
In this paper, we have proposed two new related-key impos-

sible differential attacks against 8-round AES-256 using 64-
bit and 32-bit structures. The dominant complexity of these
attacks are lower than the previous related-key impossible
differential attacks. Another important factor which made our
attack more efficient is careful selection of two related keys
difference, such that there is no unknown bytes in the subkey
differences, which results in lower computational complexity.
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Abstract— Motivated by a wide-spread use of convex 
optimization techniques, convexity properties of bit error rate of 
the maximum likelihood detector operating in the AWGN 
channel are studied for arbitrary constellations and bit mappings, 
which may also include coding under maximum-likelihood 
decoding. Under this generic setting, the pairwise probability of 
error and bit error rate are shown to be convex functions of the 
SNR in the high SNR regime with explicitly-determined 
boundary. The bit error rate is also shown to be a convex function 
of the noise power in the low noise/high SNR regime. 

I. INTRODUCTION 
Optimization problems of various kinds simplify 

significantly if the goal and constraint functions involved are 
convex. Indeed, a convex optimization problem has a unique 
global solution, which can be found either analytically or, with 
a reasonable effort, by several efficient numerical methods; its 
numerical complexity grows only moderately with the problem 
dimensionality and required accuracy; convergence rates and 
required step size can be estimated in advance; there are 
powerful analytical tools that can be used to attack a problem 
and that provide insights into such problems even if solutions, 
either analytical or numerical, are not found yet [1][2]. In a 
sense, convex problems are as easy as linear ones. Contrary to 
this, not only generic nonlinear optimization problems do not 
possess these features, they are not solvable numerically, i.e. 
their complexity grows prohibitively fast with problem 
dimensionality and required accuracy [2]. Thus, there is a great 
advantage in formulating or at least in approximating an 
optimization problem as a convex one. 

In the world of digital communications, one of the major 
performance measures is either symbol or bit error rate (SER 
or BER). Consequently, when an optimization of a 
communication system is performed, either SER or BER often 
appears as goal or constraint functions. Examples include 
optimum power/rate allocation in spatial multiplexing systems 
(BLAST) [3], optimum power/time sharing for a transmitter 
and a jammer [4], rate allocation or precoding in multicarrier 
(OFDM) systems [5], optimum equalization [6], optimum 
multiuser detection [7], and joint Tx-Rx beamforming 
(precoding-decoding) in MIMO systems [8]. Symbol and bit 
error rates of the maximum likelihood (ML) detector have 
been extensively studied and a large number of exact or 
approximate analytical results are available for various 
modulation formats, for both non-fading and fading AWGN 
channels [9][10]. On the other hand, convexity properties of 
error rates are not understood so well, especially for 
constellations of complicated geometry, large dimensionality 
or when coding is used. Results in this area are scarce. Many 

known closed-form error rate expressions can be verified by 
differentiation to be convex, but this approach does not lead 
anywhere in general. Convexity properties for binary 
modulations have been studied in-depth in [4], including 
applications to transmitter and jammer optimizations, and were 
later extended to arbitrary multidimensional constellations in 
[11][12] in terms of the SER under maximum-likelihood 
detection. A log-concavity property of the SER as a function of 
the SNR [dB] for the uniform square-grid constellations has 
been established by Conti et al [13]. 

Unfortunately, convexity of SER does not say anything in 
general about convexity of the BER, since the latter depends 
on pairwise probabilities of error (PEP) and not on the SER 
[14]. Since the BER is an important performance indicator and 
thus appears as an objective in many optimization problems, 
we study its convexity in the present paper using a generic 
geometrical framework developed in [11][12]. Our setting is 
generic enough so that the results apply to constellations of 
arbitrary order, shape and dimensionality, which may also 
include coding under maximum likelihood decoding. 

First, we establish convexity properties of the PEP as a 
function of SNR: it is convex at high SNR regime for any 
constellation/coding. Its low-SNR behavior depends on 
constellation dimensionality: it is concave in dimensions 1 and 
2 with an odd number of inflection points at intermediate SNR, 
and it is convex in higher dimensions with an even number of 
inflection points. Based on this, convexity of the BER at high 
SNR is established for arbitrary constellation, bit mapping and 
coding. Thus, this property is a consequence of Gaussian noise 
density and maximum likelihood detection rather than 
particular constellation, bit mapping or coding technique. We 
also show that the BER is a convex function of the noise 
power in the small noise/high SNR mode. 

II. SYSTEM MODEL 
The standard baseband discrete-time system model with an 
AWGN channel, which includes matched filtering and 
sampling, is 
 = +r s !  (1) 
where s  and r  are n-dimensional vectors representing the Tx 
and Rx symbols respectively, { }1 2, ,..., M∈s s s s , a set of M 
constellation points, !  is the additive white Gaussian noise 
(AWGN), 2

0~ ( , )σ! 0 I! , whose probability density function 
(PDF) is 
 ( )

2 2
0/ 2 22

0( ) 2 np e− − σ
ξ = πσ xx  (2) 
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where 2
0σ  is the noise variance per dimension, and n is the 

constellation dimensionality; lower case bold letters denote 
vectors, bold capitals denote matrices, ix  denotes i-th 
component of x , x  denotes L2 norm of x , T=x x x , where 
the superscript T denotes transpose, ix  denotes i-th vector. 
The average (over the constellation points) SNR is defined as 

2
01 /γ = σ , which implies the appropriate normalization, 

21
1 1M

iM i= =! s . 
Consider the maximum likelihood detector, which is 

equivalent to the minimum distance one in the AWGN 
channel, ˆ arg min i i= −ss r s . The probability of symbol error 
eiP  given that i=s s  was transmitted is 

[ ]ˆPr 1ei i i ciP P= ≠ = = −s s s s , where ciP  is the probability of 
correct decision. The SER averaged over all constellation 
points is [ ]1 Pr 1M

e ei i ciP P P
=

= = = −! s s . eiP  can be expressed 
as 
 1 ( )

i
eiP p dξ

Ω
= − " x x  (3) 

where iΩ  is the decision region (Voronoi region), and is  
corresponds to 0=x , i.e. the origin is shifted for convenience 
to the constellation point is . iΩ  can be expressed as a convex 
polyhedron [1],  

 { } ( ) 1,   ,   2
j iTi j ij j
j i

b−
Ω = ≤ = = −

−
s sx Ax b a s ss s  (4) 

where T
ja  denotes j-th row of A , and the inequality in (4) is 

applied component-wise. Clearly, eiP  and ciP  posses the 
opposite convexity properties. 

Another important performance indicator is the pairwise 
probability of error (PEP) i.e. a probability 
{ } ˆPr Pri j j i→ = = =# $% &s s s s s s  to decide in favor of js  given 

that is , i j≠ , was transmitted, which can be expressed as 
 { }Pr ( )

j
i j p dξΩ
→ = "s s x x  (5) 

where jΩ  is the decision region for js  when the reference 
frame is centered at is . The SER can now be expressed as 
 { }Prei i jj iP

≠
= →! s s  (6) 

and the BER can be expressed as a positive linear combination 
of PEPs [14] 

 { } { }
21

BER Pr Prlog
M ij

i i j
i j i

h
M= ≠

= = →!! s s s s  (7) 

where ijh  is the Hamming distance between binary sequences 
representing is  and js . 

Note that the model and error rate expressions we are using 
are generic enough to apply to arbitrary constellations, which 
may also include coding under maximum-likelihood decoding 
(codewords are considered as points of an extended 
constellation). We now proceed to establish convexity 
properties of error rates in this generic setting. 

III. CONVEXITY OF SYMBOL ERROR RATES 
Convexity properties of symbol error rates of the ML detector 

in the SNR and noise power have been established in [11][12] 
for arbitrary constellation/coding (under ML decoding) and are 
summarized below for completeness and comparison purpose. 

Theorem 1 (Theorem 1 and 2 in [11]): The SER eP  is a 
convex function of the SNR γ  for any constellation/coding 
(under ML decoding) if 2n ≤ , 
 2 2 0e ed P d P γ′′γ = >  (8) 
For 2n > , the following convexity properties hold: 
• eiP  is convex in the large SNR mode, 

 ( ) 2
min,2 in n dγ ≥ +  (9) 

where min,id  is the minimum distance from is  to its 
decision region boundary, 

• eiP  is concave in the small SNR mode, 
 ( ) 2max,2 in n dγ ≤ −  (10) 

where max,id  is the maximum distance from is  to its 
decision region boundary, 

• there are an odd number of inflection points, 
0ci eiP Pγ γ= =′′ ′′ , in the intermediate SNR mode, 

 ( ) ( )2 2max, min,2 2i in n d n n d− ≤ γ ≤ +  (11) 
• the SER eP  is convex at high SNR, 

 ( ) 2
min2n n dγ ≥ +  (12) 

where { }min min,min i id d=  is the minimum distance to 
decision region boundary in the constellation. 

 
Theorem 2 (Theorem 4 in [11]): Symbol error rates have 

the following convexity properties in the noise power 
2
0NP = σ , for any constellation/coding, 

• eiP  is concave in the large noise mode, 
 ( ) 12max, 2 2( 2)N iP d n n −

≥ + − +  (13) 
• eiP  is convex in the small noise mode, 

 ( ) 12
min, 2 2( 2)N iP d n n −

≤ + + +  (14) 
• there are an odd number of inflection points for 

intermediate noise power, 
( ) ( )1 12 2max,min, 2 2( 2) 2 2( 2)N iid n n P d n n− −
+ + + ≤ ≤ + − +  (15) 

• the SER eP  is convex in the small noise/high SNR mode, 
 ( ) 12

min 2 2( 2)NP d n n −
≤ + + +  (16) 

While the convexity properties above are important for many 
optimization problems, they do not lend any conclusions about 
convexity of the BER, since the latter is not directly related to 
eP  or eiP  in general. While, in some cases, the BER can be 

expressed as linear combination of eiP , there are positive and 
negative terms so that no conclusion about convexity can be 
made in this case either. On the other hand, the BER can be 
expressed as a positive linear combination of pairwise 
probabilities of error so that the convexity of the latter implies 
the convexity of the former. Thus, we study below the 
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convexity property of the PEP, from which the convexity 
property of the BER will follow. 

IV. CONVEXITY OF PAIRWISE PROBABILITY OF ERROR 
In many cases, it is a pairwise error probability that is a key 
point in the analysis (e.g. for constructing a union bound and 
other performance metrics). Furthermore, it is also a basic 
building block for the BER in (7), so that we establish its 
convexity property first. 

Theorem 3:  
a) The pairwise error probability { }Pr i j→s s  is a convex 

function of the SNR at the high SNR region, 
2
min,( 2 ) / in n dγ ≥ + , for any n; 

b) for 1, 2n = , it is concave at the low SNR region, 
2max,( 2 ) / ( )ij jn n d dγ ≤ + + , where ij i jd = −s s  is the 

distance between is  and js , and there is an odd number of 
inflection points, { }Pr 0i j ′′→ =s s , in the intermediate SNR 
mode, 
 2 2max, min,( 2 ) / ( ) ( 2 ) /ij j in n d d n n d+ + ≤ γ ≤ +  (17) 

c) for 2n > , the PEP is convex at the low SNR region, 
2max,( 2 ) / ( )ij jn n d dγ ≤ − + , and there is an even number of 

inflection points in-between, 
2 2max, min,( 2 ) / ( ) ( 2 ) /ij j in n d d n n d− + ≤ γ ≤ +  

Proof: See Appendix. 
We note that Theorem 3(a) is stronger than Theorem 1 at the 
high SNR region since the latter follows from the former but 
the opposite is not always true (as the other SNR ranges in 
Theorem 3 above indicate). Unlike the SER, the pairwise error 
probability can be concave at low SNR even for 1, 2n = . 

Since Theorem 3 holds for any constellation and bit 
mapping, it follows that the convexity property of the PEP at 
high SNR is a consequence of Gaussian noise density rather 
than particular modulation/coding used, where the latter 
determines only the SNR threshold. 

 

V. CONVEXITY OF THE BER AT HIGH SNR 
We are now in a position to establish the main result of this 

paper. 
Theorem 4: The BER is a convex function of the SNR, for 

any constellation and bit mapping, which may also include 
coding under maximum-likelihood decoding, at the high SNR 
regime, 
 2

min( 2 ) /n n dγ ≥ + , (18) 
where { }min min,min i id d=  is the minimum distance to the 
boundary in the constellation. 

Proof: Using the relationship between the BER and the 
pairwise error probabilities in (7) and observing that a positive 
linear combination of convex functions is convex. Q.E.D. 

We remark that the condition in (18) guarantees the 

convexity of all PEP, BER and SER. In some cases (Gray 
encoding and when nearest neighbor errors dominate), the 
BER is approximated as 2SER/ log M , so that it inherits the 
same convexity properties as in Theorems 1 and 2 above. 

VI. CONVEXITY OF THE PEP AND BER IN NOISE POWER 
In a jammer optimization problem, it is convexity properties in 
noise power that are important [4]. Motivated by this fact, we 
study below convexity of the PEP and BER in the noise power. 

Theorem 5: The PEP { }Pr i j→s s  is a convex function of 
the noise power 2

0NP = σ , for any n, in the small noise/high 
SNR mode, 
 ( ) 12

min, 2 2( 2)N iP d n n −
≤ + + +  (19) 

and in the large noise/low SNR mode, 
 ( ) 12max,( ) 2 2( 2)N ij jP d d n n −

≥ + + − +  (20) 
Proof: See Appendix. 
Based on this Theorem, the following convexity property of 

the BER is established. 
Corollary 5.1: For any constellation and bit mapping, 

which may also include coding under ML decoding, the BER 
is a convex function of the noise power in the small noise/high 
SNR mode: 
 ( ) 12

min 2 2( 2)NP d n n −
≤ + + +  (21) 

where specifics of the constellation/code determine only the 
upper bound in (21). 
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VIII. APPENDIX 
Proof of Theorem 3: The pairwise probability of error 

{ }Prij i jP = →s s  can be presented as 
 ( )

j
ijP p dξΩ
= " x x  (22) 

where jΩ  is the decision region for js  when the reference 
frame is centered at is . Its second derivative in the SNR is 
 

2
2
( )

j
ij

d pP dd
ξ

Ω
′′ =

γ"
x x  (23) 

where the derivative is 

 ( )2/ 22 2/ 2
2
( ) 1 e4 2

nd p fd
ξ −γγ' (= ) *γ π+ ,

xx x  (24) 

and ( ) ( )1 2( ) / /f t t t= − α γ − α γ , 1 2 0n nα = + > , 
2 12n nα = − < α . Consider three different cases. 
(i) If 2 1min, /id ≥ α γ , where min, min ( )j jid b=  is the 

minimum distance from the origin to the boundary of iΩ , then 
2( ) 0f ≥x j∀ ∈Ωx  so that the integral in (23) is clearly 

positive since the integrand is non-negative everywhere in the 
integration region and positive in some parts of it. Fig. 1 
illustrates this case. This is a high SNR mode since 

21 min,/ idγ ≥ α . 
(ii) If 2 1max,( ) /ij jd d+ ≤ α γ  and 1, 2n = , where max, jd  is 

the maximum distance from the center of jΩ  to its boundary, 
then 2( ) 0f ≤x  j∀ ∈Ωx  so that the integral in (23) is clearly 
negative and the result follows. Fig. 2 illustrates this case. This 
is a low-SNR mode since 21 max,/ ( )ij jd dγ ≤ α + . An odd 
number of inflection points in Theorem 3(b) follows from the 
continuity argument ( ijP′′  is a continuous function of the SNR). 

(iii) Part (c) follows from the same argument as in (ii). 
Q.E.D. 

 
Proof of Theorem 5: follows the same geometric technique 

as for Theorem 3. 2nd derivative of the PEP in the noise power 
can be expressed as 
 

2 2
2 2

( )
j

ij

N N

d P d p ddP P
ξ

Ω
= "

x x  (25) 

where 

 

( )
( ) ( ) ( )

2
2 2 22 *

2 4

* 1 2

1 2

( ) 1 1 e4 2
,

2 2( 2),   2 2( 2)

N

n
P

N N N

N N

d p fdP P P
f t t P t P

n n n n

−
ξ ' (

= ) *π+ ,
= −β −β

β = + + + β = + − +

x
x x

 (26) 

 
and 1 2 0β > β > . Since ( )*f t  has the same structure as ( )f t  
in (24), the proof follows the same steps. In particular, if 

2 1min, Nid P≥ β , then 2 2/ 0 jNd p dPξ > ∀ ∈Ωx  so that the 
integral in (25) is clearly positive. The other case is proved in a 
similar way. Q.E.D. 

 
 

min,id

1α
γ

iΩ

1x

2x

+ +

+

+
2( ) 0f >x

 
Fig. 1. Two-dimensional illustration of the problem geometry for 
Case 1. The decision region iΩ  is shaded. 2( )f x  has a sign as 

indicated by “+” and “-“. 
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γ

iΩ

1x

2x

−

−

−
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+

+

+
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max, jd

 
Fig. 2. Two-dimentional illustration of the problem geometry for 

Case 2.  
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Abstract—Communication over Gaussian interference chan-
nels is considered where each transmitter modulates its data in
the form of multiple redundant data streams and each receiver
performs parallel joint detection of the data streams followed by
the individual error control decoding. A sufficient condition for
decoding success in terms of data stream density is given for
general interference channels. It is also demonstrated that the
presented technique allows to achieve or closely approach gen-
eralized degrees of freedom for two-user symmetric interference
channel.

I. INTRODUCTION

Interference networks in general and classic interference
channels in particular have drawn significant attention in
the last decade due to the increasing popularity of wireless
networks where interference resolution has started to play a
major role. The results derived in the 70s and 80s were recently
complemented by a number of new contributions [1], [2], [3],
[4], [5], [6], [7], which stem from several novel approaches,
such as interference alignment and coding utilizing number
theory and additive combinatorics. While two-user interference
and X-channels have been characterized in terms of capacity
and generalized degrees of freedom, results for general K-user
interference networks are still largely unknown.

While in varying channels or multiple input multiple output
channels, interference can be efficiently combated by smart
precoding [6], [7], this is not the case for static channels,
which, besides some recent developments in [9], [10], [3],
mostly remain untouched. It has been observed long ago that
successive interference cancellation is sufficient [8] to achieve
capacity in strong or weak interference regimes. Following this
way of thinking, most of the approaches to communication
over interference channels resort to splitting of the messages
into parts, which are either jointly decoded or decoded succes-
sively by treating weaker messages as noise. For many user
interference channels, this methodology results in the very
complex organization of transmission since multiple message
splittings are required to guarantee a desirable rate constella-
tion at every receiver. In addition to the sophistication of this
type of transmission and reception, the fragile arrangement of
cancellation steps can be destroyed by realistic channel effects.

In this paper, we focus on a different approach based on
transmitting information in the form of concurrent redundant
data streams. A message in this case is composed of a
multitude of individually coded data streams distinguished by
random signature sequences [11], [12]. Parallel interference
cancellation is used for joint detection of the streams at the
receiver and is followed by individual error control decoding.
This method of data modulation has already proven successful

in multiuser coding for communication over multiple access
channels. Particularly, it has been shown that multiple access
channel capacity can be approached within one bit per dimen-
sion for a specific power distribution [11]. Furthermore, often,
the power distribution does not need to be shaped precisely.
Rather, maintaining the average number of data streams per
power level below some critical threshold is sufficient [13].

We propose multiple redundant data stream transmission
over interference channels. Each transmitter selects the number
of data streams and their power levels according to the total
transmit power, possibly taking into account the envisioned
power levels of the interference data streams. Each receiver
performs data stream separation followed by error correction.
We formulate a sufficient condition for the decoding success
in terms of the maximum number of received data streams
per power level observed at each receiver. We apply the
technique to two-user symmetric interference channels and
reproduce the generalized degrees of freedom results [2] for
almost all channel parameters. The important aspect of the
presented method is the parallel joint detection, which is less
sensitive to real world channel effects and has the potential
for implementation friendly architectures.

II. SYSTEM MODEL

A. Signalling Strategy

We start with an overview of the transmission format that
was also described in [11], [12]. Assume that the signals
are encoded using N signalling dimensions, which can, for
example, be time or frequency slots, or both. A message X is
composed of an arbitrary number, say J , of independent data
streams. Each data stream j = 1, 2, . . . , J is individually error
control encoded, binary phase shift keying (BPSK) modulated,
and then modulated using an N -dimensional signature vector
sj , which is power normalized to unity, i.e., ||sj || = 1. The
signature vectors sj are chosen randomly, independently of
each other, so E(sisj)2 = 1/N . Once data bits {u(j)

n }Ln=1

of the stream j are encoded by an error control encoder to
produce {v(j)n }L1

n=1, each of the bits v(j)n is multiplied by an N -
dimensional vector sj and then partitioned into M subsections

v(j)n sj1, v
(j)
n sj2, . . . , v

(j)
n sjM , (1)

where sj = (sj1, sj2, . . . , sjM ). These subsections (1) are
obtained for every bit v(j)n and then permuted over the entire
block of L1M subsections using a permutor πj specific to the
stream j. Finally, each stream is given power Pj , and they are
simultaneously transmitted over the channel. The total power
is, therefore, P =

∑J
j=1 Pj , and the total information rate
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Fig. 1. Receiver architecture, first stage.

is R =
∑J

j=1 Rj , where individual rates Rj ∈ [0, 1] (due to
BPSK modulation per stream). First, we consider transmission
over an additive white Gaussian noise (AWGN) (real-valued)
channel and describe the receiver processing below.

B. Receiver Architecture and Decoding Dynamics

The receiver operates as the two-stage decoder described
in [11]. The first stage is an iterative joint detector that
functions in the following way (see Fig. 1). The received signal
passes through a bank of matched filters (s∗jm) to distinguish
parts of the transmitted message modulated by signature wave-
form subsections sjm. These received subsections are used to
produce soft estimates v̂(j)n of the transmitted bits v(j)n . The
soft bit estimates are then used to approximately reconstruct
the transmitted signals and subtract the effect of interference
(interference cancellation). This process is repeated a number
of times and works similar to belief propagation decoding
of low-density parity-check codes. Finally, the resulting data
streams are passed to the individual error control decoders. The
second stage of the decoding is the error correction performed
for all data streams in parallel.

To study the decoding dynamics, we consider large values
of J and approximate powers Pj , j = 1, 2, . . . , J by a
continuous function P (x), x ∈ [0, J ] where P (x) = Pj ,
for x = j. Without loss of generality, we can assume that
P (x) is a nondecreasing function of x. Normalizing by N we
define T (u) = P (uN), where u ∈ [0, J/N ]. Finally, denoting
β = J/N and assuming a large number of subsections M , we
can obtain the following equation (see [11]) for the residual
noise and interference variance per data bit (here, σ2 is the
AWGN noise variance) at each detection iteration i

σ2
i+1 =

β∫

0

T (u)g

(
T (u)

σ2
i

)
du+ σ2; i = 1, 2, . . . , (2)

g(s) = E
[(
1− tanh

(
s+ ξ

√
s
))2]

, ξ ∼ N (0, 1) . (3)

The signal-to-noise ratio (SNR) of the data stream u after I
iterations equals T (u)/σ2

I . If R(u) is the information rate of
data stream u, then R(u) ≤ CBIAWGN(T (u)/σ2

I ) should be
satisfied for error free decoding of the second stage. Here,

by CBIAWGN(s), we denote the capacity of the binary input
AWGN channel with SNR equal to s.

For power distribution

T (u) = σ2eu2 ln 2+1 , (4)

the total system’s spectral efficiency per dimension Ceff is
within one bit from the AWGN channel capacity (see the proof
in [11])

CAWGN − 1 ≤ Ceff =

∫ β

0
R(u)du , (5)

where R(u), the information rate of stream u, is derived
assuming the use of BPSK capacity achieving error control
codes, i.e., R(u) = CBIAWGN(T (u)/σ2

∞).
Consider now arbitrary positive nondecreasing T (u), let

F (u) = lnT (u), and define function

f(x) =
dF−1 (t)

dt

∣∣∣∣
t=x

for x ∈ [F (0), F (β)]. We can think of f(x) as density of
data streams per power level. If f(x) has support [p0, p1], the
total message power P and the total information rate Ceff (per
dimension) are expressed as

P =

∫ p1

p0

exf(x)dx and Ceff =

∫ p1

p0

f(x)dx .

According to the definitions above, AWGN channel capacity
can be achieved for constant density

f(x) =
1

2 ln 2
, for x ∈ [1 + lnσ2, 2β ln 2 + 1 + lnσ2] ,

(see (4)). In this case, the variance σ2
i converges as i→∞ to

σ2
∞ < 2σ2. We will say that convergence for given f(x) and

σ2 happens if σ2
∞ ≤ 2σ2.

Theorem 1: If f(x) ≤ 1
2 ln 2 for x ≥ 1+lnσ2, and f(x) = 0

for x ∈ [lnσ2, 1 + lnσ2) then convergence is guaranteed.
Proof: See Appendix.

We notice, however, that decoding convergence resulting from
arbitrary f(x) does not always guarantee the achievement of
capacity.

C. Transmission over Interference Channels
Consider now a K-user interference channel with real chan-

nel coefficients hij , i, j ∈ {1, 2, . . . ,K}. Transmitter i needs
to transmit its own message to its intended Receiver i as is
customary. Additive white Gaussian noise with variance σ2 is
added independently at each receiver. Assume that transmitter
i uses density function fi(x) to encode Ji data streams,
i = 1, 2, . . . ,K. The following corollary from Theorem 1 is a
sufficient condition for successful decoding

Corollary 2: If y(x) =
∑K

i=1 fi(x + 2 lnhij) ≤ 1
2 ln 2 for

any x and any j, then convergence is guaranteed, and (per user
per dimension) spectral efficiency of

∑K
i=1

Ji
NK is achieved.

Fig. 2 illustrates the corollary. Four messages with densi-
ties f1(x), f2(x), f3(x) and f4(x) produce density y(x) at a
receiver. The density falls below critical level indicated by the
dashed line. Interfering data streams which fall below the noise
floor are suppressed and slightly increase the noise. Notice that
the condition above is a sufficient condition, since it assumes
the decoding of every data stream which arrives at the receiver
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with power sufficient to stick out from the noise floor. While
it is sometimes an efficient and robust strategy, it is clearly
suboptimal in many cases, since the receiver does not benefit
from decoding interferers individually. Several works have
demonstrated that decoding interference as a whole is a better
strategy. For example, [10] presents a theoretical technique for
the very special case of channel gains where coding employing
number theory is used and the sum of the interferers is
decoded. The interference cancellation is performed in [10]
by decoding least significant and most significant bits of the
signals in turn, i.e., from two directions (up and down).

Here, the possibility of decoding and cancelling from both
sides, i.e., from the strongest power down and from weakest
power up, is not available to us. However, we can show that
the same effect can be accomplished using joint decoding only.

D. Stream Alignment
To decode the sum of two interferers as a whole for some

interval [a, b] of the power density, consider encoding two
data steams (belonging to separate transmitters) with the same
power level x ∈ [a, b], same signatures, and same interleavers.
Two data streams encoded this way “glue” (align) together in
the channel so that instead of BPSK constellations {−1, 1}, 3-
level constellations {−2, 0, 2} arise. Each 3-level constellation
can be decoded as a whole in the first stage of the decoding
process. It does not need to be decoded in the second stage
because it belongs to interference. Assume that f2(x) is the
composite density of BPSK constellations and f3(x) is the
density of the 3-level constellations observed at the receiver.

Theorem 3: If for all x

2 ln 2f2(x) + 2.07f3(x) ≤ 1

the decoding convergence is guaranteed.
Proof: See Appendix.

E. Stream Duplication
At times repeating (duplicating) some data streams at sev-

eral power levels is a good idea. If the data at higher power
level is not decoded, since it was aligned with other streams
to produce 3-level constellations, it can be decoded at lower
power levels. However, if (in the other subchannel) data is
decoded at higher levels, this does not pose additional obstacle
for convergence, since the knowledge from higher power level
decoding propagates to lower power levels and eliminates the
corresponding variance terms.

Theorem 4: If one stream of power P1 is duplicated at
lower power P2, it is equivalent to an increase of the density
at the higher power level by ε = P2/P1.

Proof: The proof is omitted due to space limitations.
Armed with the above theorems, we will now construct
achievability schemes for two-user interference channels.

III. RESULTS FOR TWO-USER SYMMETRIC
INTERFERENCE CHANNEL

Consider a two-user symmetric Gaussian interference chan-
nel with real coefficients, i.e., we assume that h11 = h22 = 1
and h12 = h21 = a, where a is a parameter. Consider a
symmetric rate point, i.e., both users transmit with the same
power P . We will present coding in terms of the density f(x)
utilized by the transmitters. The support of the function f(x)

critical density level

y(x)

f1(x)

f2(x)

f3(x)

f4(x)

x

Fig. 2. An example of stream density which could be observed at a receiver
in 4-user interference channel.

is [δ,∆], which is determined by the total transmit power P .
The smallest power eδ is determined by the noise variance σ2

(δ is roughly equal to ln(σ2) + 1), such that the lowest data
stream gets a rate close to 1. Let us define ā = |2 ln a| and
consider generalized degrees of freedom (GDOF) as defined
in [2]. Consider the interference level

α =
ln INR
ln SNR

=
2 ln a+ lnP − 2 lnσ

lnP − 2 lnσ
.

and our acheivable spectral efficiency relative to capacity of
the AWGN channel with same power (σ2 is kept constant)

d̄(α) = lim
P→∞, ln INR

ln SNR =α

Ceff

CAWGN
.

We will compare d̄(α) to optimal GDOF d(α) derived in [2].

A. Case α ∈ [0, 1/2]

As previously observed, the weak interference case is rel-
atively simple. Let f(x) = 1

2 ln 21[∆−ā,∆](x) where 1[a,b](·)
denotes the indicator function of the interval [a, b]. Each of
the receivers observes a density

y(x) = f(x) + f(x− ā) =
1

2 ln 2
1[∆−2ā,∆](x) ≤

1

2 ln 2

and convergence is guaranteed. The power of one message is
P = e∆ − e∆−ā and the achievable GDOF is

d̄(α) =
ā

∆
= 1− α = d(α) .

B. Case α ∈ [2,∞]

The case of very strong interference is also straightforward
with f(x) = 1

2 ln 21[0,∆](x),

α =
∆+ ā

∆
and d̄(α) =

∆

∆
= 1 = d(α) .

C. Case α ∈ [1/2, 2/3]

In this case, f(x) = 1
2 ln 21[∆−2ā,∆](x)+

1
2 ln 21[δ,ā](x), and

α =
∆− ā

∆
and d̄(α) =

∆− ā

∆
= α = d(α) .

D. Case α ∈ [3/2, 2]

In this case the densities are given by

f(x) =
1

2 ln 2
(1[δ,∆−ā](x) + 1[∆−ā,ā](x)) +

3

8 ln 2
1[ā,∆](x) ,

however, some streams need to be aligned and duplicated.
The situation is graphically depicted in Fig. 3 (with shift

corresponding to Receiver 1). Block A1 is a duplicate of A2,
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and B1 a duplicate of B2, Block C is aligned with B2 and
block F is aligned with A2. Blocks A1, A2, B1, B2, C and
F have density 1/(4 ln 2) and E and D density 1/(8 ln 2).
During the iterative detection process at the Receiver 1 B2 will
be detected first and, therefore, B1 will disappear (Theorem
4). Moreover, A2 will align with F , but its information will
be decoded later when the process comes to A1. Similar
situation happens at Receiver 2. The densities of E and D are
calculated according to Theorem 3 since alignment produces
3-level constellations. The resulting achievable GDOF is

d̄(α) = 0.75α− 0.5 <
α

2
= d(α)

E. Case α ∈ [2/3, 3/2]

Finding optimum stream density is a difficult task in this
case and we use the approaches of Cases α ∈ [1/2, 2/3]
and α ∈ [3/2, 2] to construct achievability schemes. Fig. 4
illustrates the results for d̄(α) for all cases (blue curve) and
compares them to known optimum GDOF (red curve).

A A

B B2
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∆ ā

Fig. 3. Stream densities at Receiver 1 for the case α ∈ [3/2, 2].
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Fig. 4. Optimal GDOF (red curve) vs. GDOF achievable with Multi-stream
signalling (blue curve).

IV. CONCLUSIONS

We discussed an application of multi-stream information
transmission to interference channels. The reception involves
parallel joint detection of the data streams followed by the
individual error control decoding. The performance of the
technique can be analyzed through the density of the data
streams relative to the power at the transmitters and receivers.
Generalized degrees of freedom can be achieved in several
cases for two-user interference channels. It is also demon-
strated that decoding sum of interferers as a whole as well
as successive cancellation type decoding can be accomplished
with parallel joint detection.

REFERENCES

[1] G. Kramer, “Outer Bounds on the Capacity of Gaussian Interference
Channels”, IEEE Transactions on Information Theory, vol. 50, no. 3,
pp. 581 - 586, March 2004.

[2] R. Etkin, D. Tse, and Wang “Gaussian Interference Channel Capacity to
Within One Bit”, IEEE Transactions on Information Theory, vol. 54, no.
12, pp. 5534–5562, December 2008.

[3] R. Etkin and E. Ordentlich “On the Degrees-of-Freedom of the K-User
Gaussian Interference Channel”, available in ArXiv.

[4] M. Maddah-Li, A. Motahari, and A. Khandani, “Communication over
MIMO X channels: Interference Alignment, Decomposition, and Perfor-
mance Analysis,” IEEE Transactions on Information Theory, vol. 54, no.
8, pp. 3457-3470, August 2008.

[5] C. Huang, V. R. Cadambe, S. A. Jafar “Interference Alignment and the
Generalized Degrees of Freedom of the X Channel”, available in ArXiv.

[6] V. R. Cadambe and S. A. Jafar “Interference Alignment and Spatial De-
grees of Freedom for the K User Interference Channel”, arXiv:0707.0323.

[7] V. R. Cadambe, S. A. Jafar, and S. Shamai, “Interference Alignment on
the Deterministic Channel and Application to Fully Connected Gaussian
Interference Networks”, IEEE Transactions on Information Theory, vol.
55, no. 1, pp. 269–274., January 2009.

[8] A. B. Carleial, “A Case Where Interference Does Not Reduce Capacity”,
IEEE Trans. on Inform. Theory, vol. 21, pp. 569–570, Sep. 1975.

[9] A. Host-Madsen and A. Nosratinia, “The multiplexing gain of wireless
networks,” in Proceedings of International Symposium on Information
Theory, Adelaide, July 2005.

[10] S. A. Jafar and S. Vishwanath, “Generalized Degrees of Freedom of the
Symmetric Gaussian K-User Interferenvce Channels,” available in ArXiv.

[11] D. Truhachev, C. Schlegel and L. Krzymien, “A Two-Stage Capacity-
Achieving Demodulation/Decoding Method for Random Matrix Chan-
nels”, IEEE Tran. on Inform. Theory, vol. 55, pp. 136–146, Jan. 2009.

[12] C. Schlegel, “CDMA with Partitioned Spreading”, IEEE Communica-
tions Letters, vol. 11, no. 12, pp. 913–915, December 2007.

[13] D. Truhachev, S. Nagaraj, and C. Schlegel, “Throughput-Reliability
Tradeoffs in Spread Spectrum Multi-Hop Ad Hoc Wireless Networks with
Multi-Packet Detection,” IEEE International Conf. on Communications,
Dresden, Germany, June 2009.

APPENDIX

Since the full proofs cannot be included due to space
limitations, we will only mention the most important steps.

Proof of Theorem 1: The convergence condition [11] is

Φ(v) < 0 for all 2σ2 ≤ v ≤
∫ β

0
T (u)du+ σ2 (6)

where Φ(v) =

∫ β

0

T (u)

v
g

(
T (u)

v

)
du+

σ2

v
− 1 . (7)

For T (u) = σ2eu2 ln 2+1, an even stronger condition

− 1

2 ln 2

∫ 1/v

0
g(x)dx+

σ2

v
< 0 for all v ∈ [2σ2,∞) (8)

is satisfied and implies (6). Now consider arbitrary T (u)
defined by density f(x) satisfying the condition of Theorem 1.
Without loss of generality, assume its support to be [0,β].
By definition, f(x) = 1

F ′(u) where x = F (u). This implies
T (u) = exp(

∫ u
0

1
f(F (t))dt), which we substitute into (7)

together with a variable exchange y = T (u)/v. We obtain

Φ(v) =

∫ T (β)/v

1/v
f(F (u(y)))g (y) dy +

σ2

v
− 1 . (9)

Finally, since f(·) ≤ 1/(2 ln 2), the condition (8) follows.
Proof of Theorem 3:

The convergence condition in this case is

Φ(v) =

∫ T (β)/v

1/v
f2(F (u(y)))g (y) dy+

∫ T (β)/v

1/v
f3(F (u(y)))g3 (y) dy +

σ2

v
− 1 < 0. (10)

where g3(·) is the average squared error for the 3-level
constellation. Since

∫∞
0 g3(x)dx ≈ 2.07, (10) implies the

condition of Theorem 2, which is sufficient for convergence.
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Abstract—An integrated multiflow network model synthesizing
physical layer rate control and link layer access control is
presented, permitting the study of resource allocation in large
networks while allowing multi-terminal cooperation at the phys-
ical layer. We discuss how to incorporate the cooperative unit into
the broader scheduling and routing framework as a “metalink,” a
general notion capable of representing a variety of multiterminal
physical layer topologies. Simulation results show the benefits of
employing cooperative structures where needed.

I. INTRODUCTION

Increasing throughput demands have recently begun forcing
synergies between previously isolated areas of the communica-
tions stack, requiring that advanced physical layer techniques–
such as signal-scale cooperation–be viewed in the context of
link layer radio resource management. However, the com-
plexity associated with the merging of models results in
a system unsuitable for any form of analysis. In the past,
these complexities have been managed in the physical layer
by ignoring all but the smallest of topologies, and in the
network layer by applying an abstract view of information
flows between terminals. These simplifications have enabled a
large body of work to develop in the two communities, though
to date complexity issues have presented a formidable barrier
to the joint study of physical-layer cooperation and link-layer
scheduling and routing, particularly in the context of multiflow
networks.

In this paper, we will formulate an integrated model, within
which we will study the scheduling and routing problem while
permitting information-theoretic rate control on links between
terminals. As we will show, this enables studying cooperative
technology in the broader resource-allocation paradigm of
large networks. We will discuss how this can be accomplished
within our framework, and we will present results showing
how cooperative resource allocation in large networks differs
from the allocation in the context of conventional point-to-
point links.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider an ad-hoc half-duplex TDMA network in
which all terminals share the available bandwidth. Several
source-destination pairs of terminals are chosen, each demand-
ing maximum throughput. All other terminals may participate

in the network, forwarding data in a multihop manner or in a
cooperative mode, to be discussed in more detail below. We
assume that all terminals have a maximum transmission power
PTx, and that there is no average power constraint.

Most network-layer studies consider data to be composed
of packets, which are of a predetermined size. Success of
transmission is then binary: a sufficient signal-to-interference-
and-noise (SINR) ratio or good proximity to the receiver
guarantees that the entire packet is received. In this work,
we suspend that assumption, introducing the rate control
element to our model by describing the size of a packet using
Shannon’s upper-bounding equation [1]

R = log2(1 + SINR) (1)

for point-to-point links. For clarity of exposition but without
loss of generality, we consider timeslots of 1 second and a
bandwith of 1 Hz, allowing us to view Shannon’s rate as the
size in bits of a packet transmitted on a point-to-point link.

III. APPROACH AND EXAMPLE

Here we discuss our approach for allocating resources in
multiflow networks with rate control, and show how this
framework is amenable to the incorporation of cooperative
technologies.

A. NFIC
As presented in [2], [3], we have developed a framework for

performing resource allocation in large networks with multiple
flows in O(N3) time. Due to space considerations, we refer
the reader to our references for the details. Fundamentally,
the approach hinges on a novel data structure called the
Network-Flow Interaction Chart, which specifies the detailed
interactions of data and terminals at all time instances in
the network. The terminals are represented as nodes in the
chart, replicated in the x direction to represent the time-slotted
communication. Edges are drawn between nodes to represent
transmission between two terminals at a specific timeslot.
This data structure is well-suited to dynamic programming
techniques, which enable us to schedule and route data for
maximum throughput on a per-packet basis in polynomial
time. Edges are assigned weights corresponding to the rate
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Fig. 1. An example topology (a) and the NFIC (b). Note that all nodes
interfere with all others, and so the NFIC is fully connected.

achievable between the anchoring terminals at time t, and
these weights are propagated through the chart by the dy-
namic programming algorithms. Edges are then “zeroed out”
after a packet has been allocated to make them unavailable,
thereby enforcing duplexing constraints. Similarly, terminals
not transmitting or receiving an allocated packet have their
edge values scaled down to prevent interference from affecting
the existing packets. A network and corresponding NFIC is
shown in Figure 1.

In order to incorporate cooperative links into the frame-
work, we must represent the notion of data flowing to two
destinations in one timeslot (the cooperative BC phase), and
constructively combining in a subsequent timeslot (the coop-
erative MA phase) [4]. To accomplish this, we propose adding
a new type of node to the NFIC framework, the metanode.

B. Metanodes
Nodes in the NFIC have, until now, represented exactly

one terminal in the network. As a new class of nodes, the
metanodes represent a coordinated combination of terminals,
in this case the cooperative unit of a particular source, relay
and destination. An edge entering a metanode corresponds in
the schedule to data being transmitted from the source terminal
to the intended destination and also the associated relay. An
edge exiting a metanode corresponds in the schedule to the
coordinated transmission of both the relay and source, where
signals constructively combine at the destination. The weight
on both the entering and departing metanode edges is set as the
overall rate the cooperative unit can achieve, which (although
not known explicitly) can be bounded in the time-shared relay
case as [5], [6], [7]

min





log2

(
1 + P (1)

s h(1)
sr

)
+ log2

(
1 + P (2)

s h(2)
sd

)

log2

(
1 + P (1)

s h(1)
sd

)
+ log2

(
1 + P (2)

s h(2)
sd + P (2)

r h(2)
rd

)

(2)
where Ps and Pr are transmission powers at the source
and relay respectively, with channels h between all terminals

S1 D1

R

S2 D2

S1 D1

R

S2 D2

S11 S12 S13

D11 D12 D13

R1 R2 R3

M1 M2 M3

S21 S22 S23

D21 D22 D23

Slot 1 Slot 2

Fig. 2. Top: Network activity in timeslots 1 and 2. Both sources transmit in
the first slot, their intended destinations shown by the broken lines. In timeslot
2, S2 and R transmit together in the MA stage of cooperation. Bottom:
the NFIC corresponding to this network and its activity. Note that how the
metanode M describes the cooperative behavior shown above.

being similarly labeled. We require that cooperation explic-
itly aid the transmission, i.e. that the channel is degraded:
min{|hsr|2, |hrd|2} ≥ |hsd|2. Note that we assume zero
correlation between the relay and source transmissions, and
that the relay channel is in the BC and MA phases for equal
amounts of time.

C. Example: Metanodes in the NFIC

To illuminate the concept of a metanode in the NFIC,
consider the small network of five nodes, shown in the upper
pane of Figure 2. The channels are dominated by pathloss.

Here, two sources S1 and S2 are attempting to communi-
cate with two matching destinations D1 and D2. The NFIC
corresponding to this network is shown in the lower pane of
Figure 2, where we have added the metanode M to capture the
notion of cooperation occurring between S2, R, and D2. In
particular, the edge between S21 and M2 corresponds to the
second source transmitting, but with that transmission being
received by both the relay node and the intended destination.
The edge from M2 to D23 then corresponds to both the relay
and source transmitting in the second timeslot.
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The NFIC routing and corresponding network activity is
shown in Figure 2. Here we preserve clarity by not drawing
all edges in the NFIC, rather including only those which are
relevant as data emanate from the sources. Note that in the
second timeslot, although only one edge in the NFIC is active,
two transmissions are occurring in the network!

In this way, we are able to use the same polynomial-time
routing and scheduling technologies as described in [2], [3] in
networks where cooperation is used.

D. Choice of Metanodes: Memory Complexity
The choice of best relay terminal for a given packet route

is known to be NP-hard in the general fading enviroment
[?], which when considered jointly with the NP-hard routing
and scheduling problem, results a doubly complex selection
problem. In our case, choosing the metanode, the source-relay-
destination triple, can be simplified with the use of geograph-
ical information. The pathloss-dominant fading environment
allows us to consider only nearby terminals as potential relays.
Thus, for each terminal which may act as a source, we may
locally select relays and corresponding destinations. These
form our metanodes, which may be incorporated in the NFIC
resource allocation decisions.

Our algorithms are O(N3) in the number of nodes in the
NFIC, which means that adding metanodes to each terminal
does not increase the order of the complexity. However, it does
increase memory requirements, as new edges and terminals
are introduced to the NFIC with weights which must be
stored. Table I shows memory data for the NFIC with a
varying number of metanodes defined per terminal. Memory
requirements increase considerably over the multi-hop NFIC,
though since all but two edges into and out of metanodes
are zero, the sparsity of the resulting NFIC is considerable.
This means that even for large numbers of defined metanodes,
memory complexity does not overwhelm the algorithm.

TABLE I
PERCENTAGE INCREASE IN MEMORY REQUIREMENTS OVER MULTIHOP

NFIC AND SPARSITY OF NFIC REPRESENTATION

Metanodes per Terminal Raw Storage Increase (%) Sparsity (%)
1 300 75
3 1500 93.75
5 3500 97.22
7 6300 98.44

IV. BROADER NETWORK ALLOCATION

The use of metanodes in the resource allocation algorithm
as illustrated above can be applied to much larger networks,
where the polynomial-time nature of our solutions permits
allocations in networks of near-arbitrary size.

A. Example
We choose to study networks in which pathloss is the

dominant channel effect, but this assumption is not required
for our techniques to apply. We make this choice since it helps

Cooperative links increase capacity
on the longest hops in each route

Fig. 3. Two-flow network in which NFIC resource allocation was used
with metanodes available. In the allocation, metanodes corresponding to
the cooperative terminals shown above were found optimal by the dynamic
programming routines, and in the case of the red flow, use of the cooperative
metanode completely changed the routing decision for the flow.

to illustrate where cooperative gains exist in the network. An
example of resource allocation with cooperation is shown in
Figure 3. Here, two flows compete for network resources, and
both are able to leverage cooperative links. Since the network
is dominated by pathloss, cooperation will assist the overall
throughput of the flows only on the longest hop in the route,
which is the throughput bottleneck.

This is clearly illustrated in the example network, where
the routing decision for the red flow changed as a result
of the cooperative metanode being available in the NFIC.
Had cooperation not been available, the red flow would have
followed the sequence of terminals indicated by the broken
line.

B. Simulation Results
1) Cooperative Benefits in Large Networks: To compare the

benefits of NFIC-Metanode resource allocation to multihop
routing, we simulate networks and allocate resources under
the two different paradigms. We assume a pathloss-dominated
channel environment. We study the mean throughput for a
varying number of flows in the region, where the schedules and
routes have been calculated using NFIC techniques. Shown
in Figure 4 is a comparison of throughputs for two pathloss
environments, free space (α = 2) and urban (α = 4) as a
function of the number of flows demanding resources. The
solid lines are mean flow throughputs when three metanodes
per terminal are included in the NFIC, allowing the algorithm
to exploit cooperative technologies where needed. The broken
line indicates throughputs for multi-hop only allocation.

We observe improvements over multihop in both environ-
ments and for all levels of congestion, though the improve-
ments are most pronounced with low pathloss and few flows,
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Fig. 4. Mean throughput for networks with cooperative links (solid) and
multihop-only routes (broken). Cooperative links, represented by metanodes
in the NFIC, considerably increase throughputs for low-pathloss environments,
especially when only few flows are competing for resources.

where datarates can increase by a factor of 2. Gains diminish
for higher pathloss and as congestion increases, since coop-
erative gains are affected by the overall-higher interference
temperature in the network.

2) Number of Metanodes: As discussed above, the number
of metanodes chosen for the NFIC affects memory complex-
ity, but it also affects the resource allocation selected. If a
relatively small number of metanodes are defined, they may
not be useful in the routes required by the flows. Increasing
the number of metanodes defined per terminal does increase
memory requirements, but also makes cooperative links avail-
able to more parts of the network. It is interesting to study
network performance as a function of how many metanodes
are defined for each terminal in the network.

Figure 5 show this relationship. For each terminal, we define
a number of metanodes using local relays as described above,
and calculate a resource allocation for that topology with
two information flows. We then redefine more metanodes and
recalculate the allocation, plotting the mean throughput for
the flows as a function of number of metanodes we have
defined. This is repeated for a thousand topologies, and av-
erage results are reported. Throughput increases considerably
if more metanodes are defined in the case of low pathloss,
less so if pathloss is high. This is because the throughput
on a route is determined by the “bottleneck link” which,
once aided with cooperation, may remain the cooperative link.
This is the case in high-pathloss environments, where the
cooperative advantage is smaller. Cooperative units are much
more effective in lower-pathloss environments, where all three
channels are stronger.

V. CONCLUSION & FUTURE CHALLENGES

We have presented a model for wireless networks which
captures the salient issues in both physical layer and network
layer resource allocation, namely those of rates, schedules,
and routes. We have shown how this model can be extended
to incorporate cooperative transmissions, and we have used
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Fig. 5. Mean throughput of two flows as a function of the number of metan-
odes defined for each terminal in the network. More metanodes are helpful
in low-pathloss regimes, though they do increase memory requirements.

our polynomial-time NFIC allocation technique to show the
clear benefits of using cooperation where needed.

Open questions remain, especially in the domain of choos-
ing metanodes. Our geographically localized technique em-
ployed here shows benefits, but is heuristic and unoptimized.
To maximize the gains possible with NFIC-metanode resource
allocation, those metanodes must be carefully selected accord-
ing to an optimized technique.
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Abstract— The (non-causal) cognitive interference channel,
studied recently by Liang et. al., is a model for a classical two-
user discrete memoryless interference channel, over which two
transmitters send a pair of independent messages. It is assumed
that the first message is shared by both encoders, whereas the
second message in known only to Encoder 2 – the cognitive
transmitter. Receiver 2 needs to decode both messages, and
Receiver 1 should decode only the first message while Message 2
should be kept as secret as possible from Receiver 1. The level of
secrecy is measured by the equivocation rate. For this model the
capacity-equivocation region has been derived by Liang et. al..

In this work we dispense of the assumption that Message 1 is
shared a-priori by both encoders. Instead, we study the case in
which Encoder 2 cribs causally from Encoder 1. We derive an
achievable rate-equivocation region for this model and establish
the capacity-equivocation region for a degraded interference
channel.
Index Terms—Cognitive interference channel, cribbing en-

coder.

I. INTRODUCTION

In the classical two-user discrete memoryless interference
channel model two encoders transmit a pair of independent
messages to a pair of receivers while the signal intended
for one receiver causes interference at the other receiver.
A cognitive interference channel is an interference channel
where it is further assumed that the first message is shared
by both encoders whereas the second message is known only
to Encoder 2 – the cognitive transmitter. Receiver 2 needs to
decode both messages and Receiver 1 should decode only the
first message while Message 2 should be kept as secret as
possible from Receiver 1. The level of secrecy is measured by
the equivocation rate. For this model the capacity-equivocation
region has been derived by Liang et al in [1].

In this work we dispense of the assumption that Message 1
is shared a-priori by both encoders. Instead, we study the sim-
plest model in which Encoder 2 acquires Message 1 causally;
namely a model in which Encoder 2 “cribs” causally and learns
the sequence of channel inputs emitted by Encoder 1 in all
past transmissions (in the sense of [2, Situation 2]) before
generating its next channel input. The model is depicted in
Figure 1.

The work of S. Tinguely was done while he was visiting Bar-Ilan Univer-
sity.
The work of Y. Steinberg was supported by the Israel Science Foundation
under Grant 280/07.
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g2 !
ˆ̂W1, Ŵ2

Fig. 1. Interference channel with a cribbing encoder.

First we present an inner bound on the rate-equivocation
region for the above model and then we establish the capacity-
equivocation region for a degraded interference channel — a
model in which conditionally on the first channel input the
output at Receiver 1 is degraded w.r.t. the output at Receiver 2.

The paper is organized as follows. In Section II we provide
a formal definition for the interference channel with a cribbing
encoder and one confidential message. In Section III we
present our main results, while Section IV is devoted to the
description of our coding scheme establishing the achievability
part of our main result.

II. CHANNEL MODEL
A discrete memoryless interference channel is a triple

(X1 × X2, p(y, z|x1, x2),Y × Z) where X1 and X2 are finite
sets corresponding to the input alphabets of Encoder 1 and
Encoder 2 respectively, the finite sets Y and Z are the output
alphabets at Receiver 1 and Receiver 2 respectively, while
p(·, ·|x1, x2) is a collection of probability laws on Y × Z
indexed by the input symbols x1 ∈ X1 and x2 ∈ X2. The
channel’s law extends to n-tuples according to the memoryless
law

Pr(yk, zk|xk
1 , x

k
2 , y

k−1, zk−1) = p(yk, zk|x1,k, x2,k) ,

where x1,k, x2,k, yk and zk denote the inputs and outputs of
the channel at time k, and xk

1 ! (x1,1, . . . , x1,k).
Encoder 1 sends a message W1 which is drawn uniformly

over the set {1, . . . , enR1} ! W1 to both receivers. Encoder 2
sends a message W2 which is drawn uniformly over the
set {1, . . . , enR2} ! W2 to Receiver 2 in such a way that
Receiver 1 is unable to decode W2 reliably. Hence the message
W2 is referred to as the confidential message with respect to
Receiver 1. At the same time, given its “partial” knowledge
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about W1, Encoder 2 assists Encoder 1 in conveying the
message W1 to both receivers.

An (enR1 , enR2 , n) code for the interference channel with
a cribbing encoder consists of:

1) Encoder 1 defined by a deterministic mapping

f1 : W1 → Xn
1 (1)

which maps a message w1 ∈W1 to a codeword xn
1 ∈ Xn

1 .
2) Encoder 2 defined by a collection of encoding functions

f2,k : W2 × X k−1
1 → X2 k = 1, 2, . . . , n (2)

which, based on the message w2 ∈W2 and what was learned
from the other encoder by cribbing xk−1

1 ∈ X k−1
1 , map into

the next channel input x2,k ∈ X2.
3) Decoder 1 defined by a mapping

g1 : Yn →W1

which maps a received sequence yn to a message ŵ1 ∈W1.
4) Decoder 2 defined by a mapping

g2 : Zn →W1 ×W2

which maps a received sequence zn to a message pair
( ˆ̂w1, ŵ2) ∈W1 ×W2.

For a given code, the block average probability of error is
defined as

P (n)
e =

1

en(R1+R2)

enR1∑

w1=1

enR2∑

w2=1

P (n)
e (w1, w2)

where

P (n)
e (w1, w2) =

Pr
{
(ŵ1, ˆ̂w1, ŵ2) .= (w1, w1, w2)|(w1, w2) sent

}
.

The secrecy level of W2 at Receiver 1 is measured by
the normalized equivocation R(n)

e = 1
nH(W2|Y n), and a

rate-equivocation tuple (R1, R2, Re) is said to be achievable
if there exists a sequence of (enR1 , enR2 , n) codes with
limn→∞ P (n)

e = 0 and Re ≤ lim infn→∞ R(n)
e .

III. MAIN RESULTS

Our first result for the discrete memoryless interference
channel with a cribbing encoder is an achievability result. By
combining the coding strategies from [1] and [2] we prove the
following.
Proposition 1: Consider the discrete memoryless interfer-

ence channel (X1 × X2, p(y, z|x1, x2),Y × Z) with a cribbing

encoder. Then, the rate region R defined by

R =
⋃

pTUX1X2Y Z




(R1, R2, R21, R22, Re) :
R1 ≥ 0, R2 ≥ 0, R21 ≥ 0, R22 ≥ 0, Re ≥ 0

R2 = R21 +R22

R1 ≤ H(X1|T )
R1 +R21 ≤ I(TUX1;Y )

R21 +R22 ≤ I(UX2;Z|TX1)
R1 +R21 +R22 ≤ I(TUX1X2;Z)

R22 ≤ I(X2;Z|TUX1)
Re ≤ R22

Re ≤ I(X2;Z|TUX1)− I(X2;Y |TUX1)
R21 +Re ≤ I(UX2;Z|TX1)− I(X2;Y |TUX1)

R1 +R21 +Re ≤ I(TUX1X2;Z)− I(X2;Y |TUX1)






,

(3)

is achievable. The union in (3) is taken over all laws on T ∈
T , U ∈ U , X1 ∈ X1, X2 ∈ X2, Y ∈ Y , Z ∈ Z of the form

pTUX1X2Y Z(t, u, x1, x2, y, z)

= pT (t)pU |T (u|t)pX1|T (x1|t)pX2|TU (x2|t, u)p(y, z|x1, x2).

(4)

Applying the Fourier-Motzkin elimination to eliminate R12

and R22, the achievable rate-equivocation region (3) can be
expressed in terms of R1 and R2 as follows:
Proposition 2: The achievable rate-equivocation region R

is identical to the rate region R′ defined by

R′ =
⋃

pTUX1X2Y Z




(R1, R2, Re) :
R1 ≥ 0, R2 ≥ 0, Re ≥ 0

R1 ≤ min{H(X1|T ), I(TUX1;Y )}
R2 ≤ I(UX2;Z|TX1)

R1 +R2 ≤ min{I(TUX1;Z), I(TUX1;Y )}
+I(X2;Z|TUX1)

Re ≤ R2

Re ≤ I(X2;Z|TUX1)− I(X2;Y |TUX1)
R1 +Re ≤ I(TUX1X2;Z)− I(X2;Y |TUX1)






,

(5)

where the union in (5) is taken over all laws of the form (4).
By adding in (5) a bound on R1, the bound on R1 + Re

becomes redundant and can thus be removed. This establishes
the achievability of the region R̂ ⊆ R′ which is defined as
follows.

R̂ =
⋃

pTUX1X2Y Z
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




(R1, R2, Re) :
R1 ≥ 0, R2 ≥ 0, Re ≥ 0

R1 ≤ min{H(X1|T ), I(TUX1;Y ), I(TUX1;Z)}
R2 ≤ I(UX2;Z|TX1)

R1 +R2 ≤ min{I(TUX1;Z), I(TUX1;Y )}
+I(X2;Z|TUX1)

Re ≤ R2

Re ≤ I(X2;Z|TUX1)− I(X2;Y |TUX1)






,

(6)
where the union in (6) is taken over all laws of the form (4).
Definition 1: A discrete memoryless interference channel is

degraded if the channel law decomposes as
pY Z|X1X2

(yk, zk|x1,kx2,k)

= pZ|X1X2
(zk|x1,kx2,k)pY |ZX1

(yk|zkx1,k). (7)

We next consider an interference channel that is degraded
in which case we have the following conclusive result.
Theorem 1: Consider a discrete memoryless interference

channel (X1 × X2, p(y, z|x1, x2),Y × Z) with a cribbing en-
coder that is degraded. The capacity-equivocation rate region
for such a channel is given by

C =
⋃

pTUX1X2Y Z




(R1, R2, Re) :
R1 ≥ 0, R2 ≥ 0, Re ≥ 0

R1 ≤ min{H(X1|T ), I(TUX1;Y ), I(TUX1;Z)}
R2 ≤ I(UX2;Z|TX1)

R1 +R2 ≤ min{I(TUX1;Z), I(TUX1;Y )}
+I(X2;Z|TUX1)
Re ≤ R2

Re ≤ I(X2;Z|TUX1)− I(X2;Y |TUX1)






,

(8)
where the union in (8) is taken over all laws on T ∈ T , U ∈
U , X1 ∈ X1, X2 ∈ X2, Y ∈ Y, Z ∈ Z of the form (4),
and given an auxiliary r.v. T , the cardinality of the auxiliary
random variable U is bounded by ‖U‖ ≤ ‖T ‖·‖X1‖·‖X2‖+4.
Proof: Due to lack of space the converse proof of Theo-

rem 1, which establishes that under the technical assumption
(7), C = R̂ = R′, is omitted. For the direct proof of
Theorem 1, we limit ourselves to the description of the coding
scheme. This is the subject of Section IV.

IV. THE CODING SCHEME
We propose a coding scheme that is based on Block-Markov

superposition encoding and which combines the coding tech-
nique of [1] with the backward decoding idea of [2].

We consider B blocks, each of n symbols. We split the
message (W1,W2) into a sequence of B − 1 sub-messages
(W (b)

1 ,W (b)
2 ), for b = 1, . . . , B − 1, where W (b)

2 consists of
the pair (W (b)

21 ,W (b)
22 ). Here the sequence {W (b)

1 } is an i.i.d.
sequence of uniform random variables over {1, . . . , enR1

} and
independent thereof {W (b)

2 } is an i.i.d. sequence of uniform

random variables over {
1, . . . , enR21

}
×

{
1, . . . , enR22

}. As
B →∞, for fixed n, the rate pair of the message (W1,W2),
(R̃1, R̃2) = (R1(B − 1)/B, (R21 + R22)(B − 1)/B), is
arbitrarily close to (R1, R21 +R22).

We assume a tuple of random variables T ∈ T , U ∈
U , X1 ∈ X1, X2 ∈ X2, Y ∈ Y, Z ∈ Z of joint law (4).
Random coding and partitioning: In each block b, b =

1, 2, . . . , B, we shall use the following code.
• Generate enR1 sequences t = (t1, . . . , tn), each with

probability Pr (t) =
∏n

k=1 pT (tk). Label them t (ω0)
where ω0 ∈

{
1, . . . , enR1

}.
• For each t (ω0) generate enR1 sequences

x1 = (x1,1, x1,2, . . . , x1,n), each with probability
Pr (x1|t (ω0)) =

∏n
k=1 pX1|T (x1,k|tk(ω0)). Label them

x1 (i,ω0) , i ∈
{
1, . . . , enR1

}.
• For each t (ω0) generate enR21 sequences u =

(u1, u2, . . . , un), each with probability Pr (u|t (ω0)) =∏n
k=1 pU |T (uk|tk(ω0)). Label them u (j,ω0) , j ∈{
1, . . . , enR21

}.
• For each (t (ω0) ,u (j,ω0)) generate en(Rα+Rβ)

sequences x2 = (x2,1, x2,2, . . . , x2,n), each
with probability Pr (x2|t (ω0) ,u (j,ω0)) =∏n

k=1 pX2|TU (x2,k|tk(ω0), uk(j,ω0)). Label them
x2 (α,β, j,ω0) ,α ∈

{
1, . . . , enRα

}
,β ∈

{
1, . . . , enRβ

}

with Rβ ! I(X2;Y |TUX1), Rα ! R′
22 − Rβ ≥ 0 and

R′
22 = R22 + ∆ for some ∆ > 0. Consequently, let

RP ! R22 −Rα = Rβ −∆.
• If RP > 0 : Randomly partition the set {

1, . . . , enRβ
}

into enRP cells. Label the cells p ∈
{
1, . . . , enRP

} and
let p(s) = c if s belongs to cell c. In the sequel we shall
refer to this partition as Partition 1.

Encoding : We denote the realizations of the sequences
{W (b)

1 }, {W (b)
21 }, and {W (b)

22 } by {w(b)
1 }, {w(b)

21 }, and {w(b)
22 }.

The code builds upon a Block-Markov structure in which
the message (w(b)

1 , w(b)
21 , w

(b)
22 ) is encoded over the succes-

sive blocks b and (b + 1) such that, ω(b)
0 = w(b−1)

1 , for
b = 1, . . . , B − 1.

The messages {w(b)
1 }, {w(b)

21 }, and {w(b)
22 }, b =

1, 2, . . . , B − 1 are encoded as follows:
In block 1 the encoders send

x(1)
1 = x1(w

(1)
1 , 1)

x(1)
2 = x2(α(w

(1)
22 ),β(w

(1)
22 ), w

(1)
21 , 1).

Here, the encoding α(w22) and β(w22) is defined as follows:
1) RP > 0 : Let w22 = (a, p) where a ∈ {1, . . . , enRα}

and p ∈ {1, . . . , enRP } then α(w22) = a and β(w22) =
s where s is chosen randomly within the cell p in
Partition 1.

2) RP < 0 : Let α(w22) = w22 and β(w22) = s where s
is chosen randomly within the set {1, . . . , enRβ}.

Suppose that, as a result of cribbing from Encoder 1, before
the beginning of block b = 2, 3, . . . , B, Encoder 2 has an
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estimate ˆ̂w(b−1)
1 for w(b−1)

1 . Then, in block b = 2, 3, . . . , B−1,
the encoders send

x(b)
1 = x1(w

(b)
1 , w(b−1)

1 )

x(b)
2 = x2(α(w

(b)
22 ),β(w

(b)
22 ), w

(b)
21 , ˆ̂w

(b−1)
1 ),

and in block B

x(B)
1 = x1(1, w

(B−1)
1 )

x(B)
2 = x2(1, 1, 1, ˆ̂w

(B−1)
1 ).

Decoding at the receivers: After the reception of block-B
both receivers use backward decoding starting from block B
downward to block 1 and decode the messages as follows.

In block B Decoder 1 looks for ŵ(B−1)
1 such that

(
t(ŵ(B−1)

1 ),x1(1, ŵ
(B−1)
1 ),u(1, ŵ(B−1)

1 ),

x2(1, 1, 1, ŵ
(B−1)
1 ),y(B)

)
∈ Aε(T,X1, U,X2, Y ).

Next, assume that, decoding backwards up to (and including)
block b+1, Decoder 1 decoded ŵ(B−1)

1 , ŵ(B−2)
1 , . . . , ŵ(b)

1 . To
decode block b, Decoder 1 looks for ŵ(b−1)

1 such that
(
t(ŵ(b−1)

1 ),x1(ŵ
(b)
1 , ŵ(b−1)

1 ),u(ŵ(b)
21 , ŵ

(b−1)
1 ),y(b)

)

∈ Aε(T,X1, U, Y ),

for some ŵ(b)
21 ∈ W21 — i.e. Decoder 1

looks just for the “cloud center” ω(b)
0 such that

(t(ω(b)
0 ),x1(ŵ

(b)
1 ,ω(b)

0 ),u(·,ω(b)
0 ),y(b)) is jointly typical.

Similarly, in block B Decoder 2 looks for ˆ̂w(B−1)
1 such that

(
t( ˆ̂w(B−1)

1 ),x1(1, ˆ̂w
(B−1)
1 ),u(1, ˆ̂w(B−1)

1 ),

x2(1, 1, 1, ˆ̂w
(B−1)
1 ), z(B)

)
∈ Aε(T,X1, U,X2, Z).

Next, assume that, decoding backwards up to
(and including) block b + 1, Decoder 2 decoded
ˆ̂w(B−1)
1 , (ŵ(B−1)

22 , ŵ(B−1)
21 , ˆ̂w(B−2)

1 ), . . . , (ŵ(b+1)
22 , ŵ(b+1)

21 , ˆ̂w(b)
1 ).

To decode block b, Decoder 2 looks for (ŵ(b)
22 , ŵ

(b)
21 , ˆ̂w

(b−1)
1 )

such that
(
t( ˆ̂w(b−1)

1 ),x1( ˆ̂w
(b)
1 , ˆ̂w(b−1)

1 ),u(ŵ(b)
21 , ˆ̂w

(b−1)
1 ),

x2(α(ŵ
(b)
22 ),β(ŵ

(b)
22 ), ŵ

(b)
21 , ˆ̂w

(b−1)
1 ), z(b)

)

∈ Aε(T,X1, U,X2, Z).

Decoding at Encoder 2: To obtain cooperation, after block
b = 1, 2, . . . , B − 1, Encoder 2 chooses w̃(b)

1 such that
(
t(ω̃(b)

0 ),x1(w̃
(b)
1 , ω̃(b)

0 ),x(b)
1

)
∈ Aε(T,X1, X1),

where ω̃(b)
0 = w̃(b−1)

1 was determined at the end of block b−1
and ω̃(1)

0 = 1.
Optional decoding at Decoder 1: When Decoder 1 is given

the triple ω(b)
0 , w(b)

1 , w(b)
21 and α(w(b)

22 ) it decodes β(w(b)
22 ) by

choosing β̂(w(b)
22 ) such that

(
t(ω(b)

0 ),x1(w
(b)
1 ,ω(b)

0 ),u(w(b)
21 ,ω

(b)
0 ),

x2(α(w
(b)
22 ), β̂(w

(b)
22 ), w

(b)
21 ,ω

(b)
0 ),y(b)

)

∈ Aε(T,X1, U,X2, Y ).

When a decoding step either fails to recover a unique index
(or index triple) which satisfies the decoding rule, or there is
more than one index (or index triple), then an index (or an
index triple) is chosen at random.

The achievability of the rate region (3) can now be estab-
lished by upper bounding the probability of the possible error
events associated with this coding scheme.
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Abstract—The capacity region of the interference channel in
which one transmitter non-causally knows the message of the
other, termed the cognitive interference channel, has remained
open since its inception in 2005. A number of subtly differing
achievable rate regions and outer bounds have been derived,
some of which are tight under specific conditions. In this
work we present a new unified inner bound for the discrete
memoryless cognitive interference channel. We show explicitly
how it encompasses all known discrete memoryless achievable
rate regions as special cases. The presented achievable region
was recently used in deriving the capacity region of the linear
high-SNR deterministic approximation of the Gaussian cognitive
interference channel. The high-SNR deterministic approximation
was then used to obtain the capacity of the Gaussian cognitive
interference channel to within 1.87 bits.

I. INTRODUCTION
The cognitive interference channel (CIFC)1 is an interfer-

ence channel in which one of the transmitters - dubbed the
cognitive transmitter - has non-causal knowledge of the mes-
sage of the other - dubbed the primary - transmitter. The study
of this channel is motivated by cognitive radio technology
which allows wireless devices to sense and adapt to their
RF environment by changing their transmission parameters in
software on the fly. One of the driving applications of cognitive
radio technology is secondary spectrum sharing: currently
licensed spectrum would be shared by primary (legacy) and
secondary (usually cognitive) devices in the hope of improving
spectral efficiency. The extra abilities of cognitive radios may
be modeled information theoretically in a number of ways - see
[6], [11] for surveys - one of which is through the assumption
of non-causal primary message knowledge at the secondary,
or cognitive, transmitter.

The two-dimensional capacity region of the CIFC has
remained open in general since its inception in 2005 [7].
However, capacity is known in a number of channels:
• General deterministic CIFCs. Fully deterministic CIFCs
in the flavor of the deterministic interference channel [1] are
being considered in [24, Ch.3], where new inner and outer
bounds are shown to meet in certain classes of channels. A
special case of the deterministic CIFC is the deterministic

1Other names for this channel include the cognitive radio channel [8],
interference channel with degraded message sets [14], [29], the non-causal
interference channel with one cognitive transmitter [4], the interference
channel with one cooperating transmitter [19] and the interference channel
with unidirectional cooperation [13], [20].

linear high-SNR approximation of the Gaussian CIFC, whose
capacity region, in the spirit of [2], was obtained in [22].
• Semi-deterministic CIFCs. In [4] the capacity region for a
class of channels in which the signal at the cognitive receiver
is a deterministic function of the channel inputs is derived.
• Discrete memoryless CIFCs. First considered in [7], [8],
its capacity region was obtained for very strong interference
in [13] and for weak interference in [29]. Prior to this work
and the recent work of [4], the largest known achievable rate
regions were those of [8], [9], [14], [19]. The recent and
independently derived region of [4] was shown to contain [14],
[19], but was not conclusively shown to encompass [8] or the
larger region of [9].
• Gaussian CIFC. This capacity region under weak in-
terference was obtained in [15], [29], while that for very
strong interference follows from [13]. Capacity for a class of
Gaussion MIMO CIFCs is obtained in [28].
• Z-CIFCs. Inner and outer bounds when the cognitive-
primary link is noiseless are obtained in [3], [18]. The Gaus-
sian causal case is considered in [4], and is related to the
general (non Z) causal CIFC explored in [26].
• CIFCs with secrecy constraints. Capacity of a CIFC in
which the cognitive message is to be kept secret from the
primary and the cognitive wishes to decode both messages is
obtained in [17]. A cognitive multiple-access wiretap channel
is considered in [27].

We focus on the discrete memoryless CIFC (DM-CIFC)
and propose a new achievable rate region and show explicitly
how it encompasses or reduces to all other known achievable
rate regions. The best known outer bounds for the DM-CIFC
are those of [19]. The new unified achievable rate region has
been shown to be useful as: 1) specific choices of random
variables yield the capacity region of the linear high-SNR
approximation of the Gaussian CIFC [22], 2) specific choices
of random variables yield capacity in certain regimes of the
deterministic CIFC [24] and 3) specific choices of Gaussian
random variables have resulted in an achievable rate region
which lies within 1.87 bits, regardless of channel parameters,
of an outer bound [25]. Numerical simulations indicate the
actual gap is smaller.

II. CHANNEL MODEL
The Discrete Memoryless Cognitive InterFerence Channel

(DM-CIFC), as shown in Fig. 1, consists of two transmitter-
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Fig. 1. The Cognitive Interference Channel.

receiver pairs that exchange independent messages over a
common channel. Transmitter i, i ∈ {1, 2}, has discrete input
alphabet Xi and its receiver has discrete output alphabet Yi.
The channel is assumed to be memoryless with transition
probability pY1,Y2|X1,X2

. Encoder i, i ∈ {1, 2}, wishes to
communicate a message Wi uniformly distributed on Mi =
[1 : 2NRi ] to decoder i in N channel uses at rate Ri. Encoder 1
(i.e., the cognitive user) knows its own message W1 and that
of encoder 2 (the primary user), W2. A rate pair (R1, R2) is
achievable if there exist sequences of encoding functions

XN
1 = fN

1 (W1,W2), f1 : M1 ×M2 → XN
1 ,

XN
2 = fN

2 (W2), f2 : M2 → XN
2 ,

with corresponding sequences of decoding functions
Ŵ1 = gN1 (Y N

1 ), g1 : YN
1 →M1,

Ŵ2 = gN2 (Y N
2 ), g2 : YN

2 →M2.

The capacity region is defined as the closure of the region
of achievable (R1, R2) pairs [5]. Standard strong-typicality is
assumed; properties may be found in [16].

III. A NEW UNIFIED ACHIEVABLE RATE REGION
As the DM-CIFC encompasses classical interference,

multiple-access and broadcast channels, we expect to see a
combination of their achievability proving techniques surface
in any unified scheme for the CIFC:
• Rate-splitting. As in [12] for the interference-channel and
[8], [14], [19] for the CIFC, rate-splitting is not necessary in
the weak [29] and strong [13] interference regimes.
• Superposition-coding. Useful in multiple-access and broad-
cast channels [5], the superposition of private messages on top
of common ones [14], [19] is proposed and is known to be
capacity achieving in very strong interference [13].
• Binning. Gel’fand-Pinsker coding [10], often referred to
as binning, allows a transmitter to “cancel” (portions of)
the interference known to it at its intended receiver. Related
binning techniques are used by Marton in deriving the largest
known DM-broadcast channel achievable rate region [21].

We now present a new achievable region for the DM-
CIFC which generalizes all best known achievable rate regions
including [8], [14], [19], [29] as well as [4].
Theorem 1: Region RRTD. A rate pair (R1, R2) such that

R1 = R1c +R1pb, (1)
R2 = R2c +R2pa +R2pb (2)

is achievable for a DM-CIFC if (R′
0, R

′
1, R

′
2, R1c,

R1pb, R2c, R2pa, R2pb) ∈ R8
+ satisfies (3a)–(3j) for some

input distribution pX1,X2,U1c,U2c,U2pa,U1pb,U2pb .

The encoding scheme used in deriving this achievable rate
region is shown in Fig.2. The key aspects of our scheme are
the following, where we drop n for convenience:
• We rate-split the independent messages W1 and W2

uniformly distributed on M1 = [1 : 2nR1 ] and M2 = [1 :
2nR2 ] into the messages Wi, i ∈ {1c, 2c, 1pb, 2pb, 2pa}, all
independent and uniformly distributed on [1 : 2nRi ], each
encoded using the random variable Ui, such that

W1 = (W1c,W1pb), R1 = R1c +R1pb,

W2 = (W2c,W2pb,W2pa), R2 = R2c +R2pa +R2pb.

• Tx2 (primary Tx): We superimpose U2pa, which en-
codes the private (“p” for private, “a” for alone) message
of Tx2 on top of U2c, which encodes the common (“c” for
common) message of Tx2. Tx2 sends X2 over the channel.
• Tx1 (cognitive Tx): The common message of Tx1,

encoded by U1c, is binned against (U2pa, X2) conditioned
on U2c. The private message of Tx2, encoded by U2pb (“b”
for broadcast) and a portion of the private message of Tx1,
encoded as U1pb, are binned against each other and X2

as in Marton’s region [21] conditioned on U1c, U2c, U2pa

and U1c, U2c respectively. Tx1 sends X1 over the channel.
The incorporation of a Marton-like scheme at the cognitive
transmitter was initially motivated by the fact that in certain
regimes, this strategy was shown to be capacity achieving
for the linear high-SNR deterministic CIFC [22]. It is also,
independently, a key feature of the region in [4].

The codebook generation, encoding and decoding as well
as the error event analysis are provided in [24, Ch.2].

IV. COMPARISON WITH EXISTING ACHIEVABLE REGIONS

We now show that the region of Theorem 1 contains all
other known achievable rate regions for the DM-CIFC. We
note that showing inclusion of the rate regions [4, Thm.2] and
[9] is sufficient to demonstrate the largest known DM-CIFC
region, since the region of [4] is shown to contain those of
[19, Th.1] and [14]. However we include the independently
derived inclusions of the regions of [19, Th.1], [14] and [21,
Thm. 2] in our region RRTD for completeness.

A. Maric et al.’s region [19, Th.1]

Note that, given the encoding and decoding scheme of [19,
Th.1], rate splitting of message 2 does not enlarge the region,
and hence X2a = ∅ WLOG. This derivation is included in the
Appendix of the long version of this work, found in [23]. To
prove inclusion of [19, Th.1] in RRTCD consider the following
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R′
0 ≥ I(U1c;U2pa, X2|U2c) (3a)

R′
0 +R′

1 +R′
2 ≥ I(U1c;U2pa, X2|U2c) + I(U1pb;U2pa, U2pb, X2|U2c, U1c)

+I(U2pb;X2|U2c, U2pa, U1c) (3b)
R2c + R1c +R2pa +R2pb +R′

0 +R′
2 ≤ I(Y2;U1c, U2c, U2pa, U2pb) + I(U1c;U2pa|U2c) (3c)

R1c +R2pa +R2pb +R′
0 +R′

2 ≤ I(Y2;U1c, U2pa, U2pb|U2c) + I(U1c;U2pa|U2c) (3d)
R2pa +R2pb +R′

2 ≤ I(Y2;U2pa, U2pb|U2c, U1c) + I(U1c;U2pa|U2c) (3e)
R1c +R2pb +R′

0 +R′
2 ≤ I(Y2;U1c, U2pb|U2c, U2pa) + I(U1c;U2pa|U2c) (3f)

R2pb +R′
2 ≤ I(Y2;U2pb|U2c, U1c, U2pa) + I(U2pa;U1c|U2c) (3g)

R2c +R1c +R1pb +R′
0 +R′

1 ≤ I(Y1;U2c, U1c, U1pb) (3h)
R1c +R1pb +R′

0 +R′
1 ≤ I(Y1;U1c, U1pb|U2c) (3i)

R1pb +R′
1 ≤ I(Y1;U1pb|U2c, U1c) (3j)

pX2|U2c,U2pa

pX1|U2c,U2pa,X2,U1c,U1pb,U2pa

U2c

U1pb, U2pb

U2pa

Fig. 2. The achievable encoding scheme of Thm 1. The ordering from left to right and the distributions demonstrate the codebook generation process.
The dotted lines indicate binning. We see rate splits are used at both users, private messages W1pb,W2pa,W2pb are superimposed on common messages
W1c,W2c. U1pb and U2pb are binned against each other and X2 conditioned on U1c, U2c and U1c, U2c, U2pa respectively

assignment in (3):
U2c = Q R2c = 0

U1c = U1c R1c = R1c R′
0 = I(U1c;U2pa|U2c)

U2pa = X2b R2pa = R2b

U1pb = U1a R1pb = R1a R′
1 = I(U1pb;U2pa|U1c)

U2pb = U2pa R2pb = 0 R′
2 = 0

Moreover let X1 and X2 be deterministic
functions, that is X2 = fX2(U2c, U2pa) and
X1 = fX1(U2c, U2pa, U1c, U1pb, U2pb). With this assignment
note that we may drop (3g) and (3f) since incorrect decoding
of U1c at decoder 2 is not an error.

Also X2 can be dropped from the binning rates since
I(X ;Y |Z) = I(X ;Y, g(Y, Z)|Z).

From this we conclude that the region of [19] ⊆ RRTD .
The weak interference regions of [15], [29] are special cases
of [19, Th.1] by [19, Thm. 3], and are also ⊆ RRTD .

B. Marton’s region [21, Thm. 2]
One key ingredient that was missing in all previous regions,

as also noted in [4] and first addressed in the context of the
CIFC in [3], was the inclusion of a broadcast strategy from the
cognitive Tx to both receivers. To remedy this obvious gap,
we proposed a Marton-like [21] binning of U1pb and U2pb. Our
region may be reduced to Marton’s broadcast channel region,

using the notation of [21, Thm. 2] by the following assignment
of random variables:
U1pb = U R1pb = Rx,
U2pb = V R2pb = Rz ,

R′
1 +R′

2 = I(U1pb;U2pb|U2c)
U2c = U1c = U2pa = W R1c = R2c = R2pa = 0

R′
0 = 0

X2 = fX2(U2c). X1 = fX1(U1pb, U2pb, U2c)

C. Jiang and Xin’s region [14]
We compare RRTD with the region described by (11)-(12),

(17)-(19) of [14]. Note that the indices 1 and 2 are switched.
Our region may be reduced, with some manipulation, to that
of [14] for the following choices of random variables:

U2c = Q R2c = 0

U1c = U R1c = R21 R′
0 = I(U1c;U2pa|U2c)

U2pa = W R2pa = R1

U1pb = V R1pb = R22 R′
1 = I(U1pb;U2pa|U2c, U1c)

U2pb = (U2c, U2pa) R2pb = 0 R′
2 = 0

Note that we may again drop (3g) and (3f) since incorrect
decoding of U1c at decoder 2 is not an error.
D. Devroye et al.’s region [9, Thm. 1]

The comparison of the region of [9, Thm. 1] with that of
[4] and [19] has been unsuccessfully attempted in the past. In
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the Appendix of [23] we show that the region of [9, Thm. 1]
RDMT , is contained in our new region RRTD along the lines:
• We make a correspondence between the random variables
and corresponding rates of RDMT and RRTD .
• We define new regions RDMT ⊆ Rout

DMT and Rin
RTD ⊆

RRTD which are easier to compare: they have identical input
distribution decompositions and similar rate equations.
• For any fixed input distribution, an equation-by-equation
comparison leads to RDMT ⊆ Rout

DMT ⊆ Rin
RTD ⊆ RRTD.

E. Cao and Chen’s region [4, Thm. 2]
The independently derived region in [4, Thm. 2] uses a sim-

ilar encoding structure as that of RRTD with two exceptions:
a) the binning is done sequentially rather than jointly as in
RRTD leading to binning constraints (43)–(45) in [4, Thm.
2] as opposed to (3a)–(3b) in Thm.1. Notable is that both
schemes have adopted a Marton-like binning scheme at the
cognitive transmitter, as first introduced in the context of the
CIFC in [3]. b) While the cognitive messages are rate-split in
identical fashions, the primary message is split into 2 parts in
[4, Thm. 2] (R1 = R11 + R10, note the reversal of indices)
while we explicitly split the primary message into three parts
R2 = R2c + R2pa + R2pb. In the Appendix of [23] we show
that the region of [4, Thm.2], denoted as RCC ⊆ RRTD:
• We first show that we may WLOG set U11 = ∅ in [4, Thm.2],
creating a new region R′

CC .
• We next make a correspondence between our random
variables and those of [4, Thm.2] and obtain identical regions.

V. CONCLUSION
A new achievable rate region for the DM-CIFC has been

derived and shown to encompass all known achievable rate
regions. Of note is the inclusion of a Marton-like broadcasting
scheme at the cognitive transmitter. Specific choices of this
region have been shown to achieve capacity for the linear high-
SNR approximation of the Gaussian CIFC [22], [24], and lead
to capacity achieving points in the deterministic CIFC [24].
This region has furthermore been shown to achieve within
1.87 bits of an outer bound, regardless of channel parameters
in [25]. Numerical evaluation of the region under Gaussian
input distributions for the Gaussian CIFC, and further com-
parisons with the region of [4] are our short-term goals, while
extensions of the CIFC to multiple users will be investigated
in the longer term.

REFERENCES
[1] A. El Gamal and M.H.M. Costa, “The capacity region of a class of

deterministic interference channels,” IEEE Trans. Inf. Theory, vol. 28,
no. 2, pp. 343–346, Mar. 1982.

[2] A. Avestimehr, S. Diggavi, and D. Tse, “A deterministic model for
wireless relay networks an its capacity,” in Information Theory for
Wireless Networks, 2007 IEEE Information Theory Workshop on, July
2007, pp. 1–6.

[3] Y. Cao and B. Chen, “Interference channel with one cognitive transmit-
ter,” in Asilomar Conference on Signals, Systems, and Computers, Oct.
2008.

[4] ——, “Interference Channels with One Cognitive Transmitter,” Arxiv
preprint arXiv:09010.0899v1, 2009.

[5] T. Cover and J. Thomas, Elements of Information Theory. Wiley-
Interscience, 1991.

[6] N. Devroye, P. Mitran, M. Sharif, S. S. Ghassemzadeh, and V. Tarokh,
“Information theoretic analysis of cognitive radio systems,” in Cognitive
Wireless Communication Networks, V. Bhargava and E. Hossain, Eds.
Springer, 2007.

[7] N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive
radio channels,” in 39th Annual Conf. on Information Sciences and
Systems (CISS), Mar. 2005.

[8] ——, “Achievable rates in cognitive radio channels,” IEEE Trans. Inf.
Theory, vol. 52, no. 5, pp. 1813–1827, May 2006.

[9] N. Devroye, “Information theoretic limits of cognition and cooperation
in wireless networks,” Ph.D. dissertation, Harvard University, 2007.

[10] S. Gel’fand and M. Pinsker, “Coding for channel with random parame-
ters,” Problems of control and information theory, 1980.

[11] A. Goldsmith, S. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum
gridlock with cognitive radios: An information theoretic perspective,”
Proc. IEEE, 2009.

[12] T. Han and K. Kobayashi, “A new achievable rate region for the inter-
ference channel,” Information Theory, IEEE Transactions on, vol. 27,
no. 1, pp. 49–60, Jan 1981.

[13] R. D. Y. I. Maric and G. Kramer, “The strong interference channel with
unidirectional cooperation,” The Information Theory and Applications
(ITA) Inaugural Workshop, Feb 2006, uCSD La Jolla, CA,.

[14] J. Jiang and Y. Xin, “On the achievable rate regions for interference
channels with degraded message sets,” Information Theory, IEEE Trans-
actions on, vol. 54, no. 10, pp. 4707–4712, Oct. 2008.

[15] A. Jovicic and P. Viswanath, “Cognitive radio: An information-theoretic
perspective,” Proc. IEEE Int. Symp. Inf. Theory, pp. 2413–2417, July
2006.

[16] G. Kramer, Topics in Multi-User Information Theory, ser. Foundations
and Trends in Communications and Information Theory. Vol. 4: No
45, pp 265-444, 2008.

[17] Y. Liang, A. Somekh-Baruch, H. V. Poor, S. Shamai, and S. Verdú,
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Abstract—1Consider a relay node that needs to operate without
knowledge of the codebooks (i.e., modulation, coding) employed
by the assisted source-destination pairs. This paper studies the
performance of relaying under this condition, termed oblivious
relaying, for the primitive relay channel (PRC) and the primitive
interference relay channel (PIRC). "Primitive" refers to the fact
that the relay-to-destinations links use orthogonal resources with
respect to the other links. Assuming discrete memoryless models,
the capacity of a PRC with oblivious relaying is derived, along
with the capacity region of the PIRC with oblivious relaying and
interference-oblivious decoding (i.e., each decoder is unaware of
the codebook used by the interfering transmitter). In all cases,
capacity is achieved by Compress-and-Forward (CF) with time-
sharing. Performance without time-sharing is discussed as well.
Finally, it is shown that for the general (non-oblivious) Gaussian
PRC, the achievable rate by CF (with Gaussian inputs and test
channels and no time-sharing) is suboptimal by at most half bit
with respect to the cut-set bound.

I. INTRODUCTION

A standard, and often implicit, assumption in network-
information theoretic analyses is that design of encoding/
decoding functions at all nodes is performed jointly in order to
optimize the system performance. This implies, in particular,
that all nodes must be aware at all times of the operations
carried out by any other node. Moreover, in general, addition
of a new node, or even only change of operation at one
node, calls for a re-design of the entire network. While
this may be reasonable in centrally controlled networks such
as conventional2 cellular system, it becomes impractical in
decentralized scenarios. In fact, in the latter cases, nodes
operate without extensive signalling capabilities, so that full
coordination in the choice of encoding/ decoding functions is
typically a prohibitive task.

In this work, we investigate design of basic network build-
ing blocks, under the assumption that information about the
operations carried out at the source encoders (i.e., of the
sources’ codebooks) is not available throughout the network.
We emphasize that this may be due to practical constraints,
as discussed above, or simply to the need for simple network
protocols that do not require continuous reconfiguration (and

2I.e., without advanced capabilities such as relaying or network MIMO.
1The work of O. Simeone was supported by U.S. NSF grant CCF-0905446.

The work of E. Erkip was supported by U.S. NSF grant CCF-0914899.
The work of S. Shamai was supported by the European Commision in the
framework of the FP7 Network of Excellence in Wireless COMmunications,
NEWCOM++ and by the CORNET consortium.
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Fig. 1. A Primitive Inteference Relay Channel (PIRC) with oblivious relaying
and interference-oblivious or interference-aware decoders.

thus extensive signaling). The analysis is based on the frame-
work of oblivious processing first proposed in [1]. We focus
on the "primitive" relay channel (PRC, see review in [3]) and
on an extension of the PRC to a setting with two source-
destination pairs, that we define primitive interference relay
channel (PIRC), see Fig. 1. We establish a number of capacity
results under the assumption of oblivious processing and the
relay and, possibly, at the interfered destinations.

II. SYSTEM MODEL

We study the PRC and PIRC with oblivious processing
as depicted in Fig. 2 and 1, respectively. We use the term
"primitive" as in [3] to mean that the relay is connected to
the destination(s) via finite-capacity orthogonal links. This
corresponds to assuming that the relay transmissions occupy
a different resource with respect to the other links in the
system. As detailed below, oblivious processing, following [1],
refers to coding/ decoding operations designed without the
knowledge of some of the codebooks in the system.

A discrete memoryless PIRC consists of two source-
destination pairs (indexed by subscripts 1 and 2) and is defined
by a tuple (!!!!"! "!#!! #"! ##"$!! $""!#!!#"!##! %!! %")
where %!! %" denote the capacities (bits/ channel use) of
the links from relay to destination 1 and 2, respectively.
Subscript 3 is used for the relay. A special case of the PIRC
is the PRC [3], where there is only one source-destination
pair, i.e., we set !" # #" # !& In this case, we drop
the subscript 1 for simplicity so that the PRC is defined as
(! ! "!#! ##"$"!#!##! %), see Fig. 2. We will also consider
a Gaussian model with power constraints, to be introduced
below.
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Fig. 2. A Primitive Relay Channel (PRC) with oblivious relaying.

A. Oblivious Processing
In the following, we detail on the considered model of

PIRC with oblivious processing. The corresponding model
for the PRC with oblivious processing is a special case that
follows immediately and will not be detailed explicitly. In the
considered model, each source-destination pair agrees on the
codebook to be used for communications (i.e., the destination
knows the codebook used by the corresponding transmitter), as
in regular interference channels. However, we assume that the
information about the codebooks may be lacking at the relay
(oblivious relaying) and possibly at the interfered destination
(oblivious decoding).

To account for oblivious processing, we follow the model
of [1], which we first describe informally in the following. Fix
rates '! [bits/ channel use], ( # $! %! used for transmission
between the (th source-destination nodes& According to [1],
we assume that the currently employed codebook (say by pair
( # $! %) is identified by an index )! " &$! "! """

!"#
', which

ranges over the set &$! "! """!"# ' of all possible codebooks
of rate '! . Therefore, transmitter ( sends a message *! "
&$! %"## ' by transmitting a codeword $"! !)! !*!" dependent
on both message *! and index )! & Knowledge of )! implies
awareness of the codebook used by the (th source-destination
pair2. Moreover, in the absence of knowledge of )! ! it is
assumed that the codeword transmitted by the (th source
completely lacks any structure, and thus its letters "look"
independent identically distributed (i.i.d.) with respect to a
given single-letter distribution "$# !$" over !!! ( # $! %.
Rigorous definitions are given below, highlighting also the role
of time-sharing&

B. Formal Setting
Formal definitions are as follows.
Definition 1: A (+!'!! '"" code for the PIRC with oblivious

processing is given by:
a. Message sets &$! %"## ' and codebook sets &$! "!! """

!"#
',

( # $! %(
b. Encoding functions: For each user (! the encoder is

defined by a pair ("$# ! ,!), where "$# is a single-letter pmf
and ,$!% is a mapping ,! : &$! "!! """

!"#
' % &$! %"## ' & !"

! !
that provides the transmitted codeword $"! # ,!!)! !*!"
given codebook index )! and message *! & The pmf "$#

2This can be seen as a form of randomized encoding.

defines the probability "% !-" of choosing a certain codebook
) " &$! "!! """

!"#
' as

"%# !-" #
!

&!&!'"!"# '

"$!!,!!-!.""! (1)

where "$!!$"" #
!"

((!
"$!$("(

c. Relaying function: The relay, unaware of the codebooks
)! with ( # $! % maps the received sequence #"# " #" into
two indices /! " &$! %")# ' to be sent to destinations ( # $! %
as ,# ) #"# & &$! %")! '% &$! %")" '! so that &/!! /"' # ,#!#"# "&

d. Decoding functions: For interference-aware decoding,
decoding is described by a mapping

0! ) &$! "!!"""
!"!
'% &$! "!""""

!""
'%#"! & &$! %"## '

from the two codebook indices )!! )" and received signal
#"! to the decoded message **! # 0!!-!! -"! #"! "( Instead, for
interference-oblivious decoding we have

0! ) &$! "!!"""
!"#
'%#"! & &$! %"## '!

so that the decoded message **! # 0!!-! ! #"! " depends only
on the received signal and index of the codebook of the
corresponding transmitter alone (not of the interferer).

We say that we have: (i) Oblivious relaying: The relay is
not aware of both indices )! and )"( (ii) Interference-oblivious
decoding: Destination ( only knows index )! and not )(! 1 '#
(.

Definition 2: A rate pair ('!! '") is said to be achievable
if there exists a sequence of codes such that +,&! **!! **"" '#
!*!!*""' & -! where the probability is taken with respect
to a uniform distribution of messages *! and *" and with
respect to independent indices )! and )" whose joint distribu-
tion is given by the product of (1) for ( # $! %. The capacity
region # is the closure of the union of all achievable rates.

Remark 1: The definition of oblivious processing obtained
from (1), which is the same as in [1], rules out general
multiletter input distributions, thus limiting the space of fea-
sible coding schemes, but does not exclude standard "single-
letter" coding schemes such as superposition coding and rate-
splitting strategies. Moreover, the definition does not allow
time-sharing. In fact, in case the transmitters time-share among
different codewords, the condition (1) is not satisfied for a
given time-sharing schedule. The following alternative defini-
tion of oblivious processing instead enables time-sharing.

Definition 3: Oblivious processing (relaying or decoding)
with enabled time-sharing refers to codes defined as in Defini-
tion 1 with the difference that encoders, relay and decoders are
all aware of a time-sharing sequence 2" " ("! defined over a
finite alphabet (. Encoding and decoding functions ),! ! 0!*
defined above are modified to depend on 2"& Moreover,
codebook generation is constrained so that

"%# !- "2"" #
!

&!&!'"!"# '

"$!!*!!,!!-! .""2""! (2)

where "$!!*!!$""2"" #
!"

((!
"$!*!$("2(" for a conditional

pmf "$!*!$("2("! instead of (1).
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Remark 3: Depending on the application, it may be feasible
or not for the relay to acquire the time-sharing sequence 2"
decided by sources and destinations& Notice that acquiring the
time-sharing sequence is in any case much less demanding
that obtaining the full codebook information. If it is possible
to acquire 2", then the definition (2) is appropriate, otherwise
the original definition (1) should be adopted.

As a result of the constraints assumed on the coding
function, we have the following facts.

Lemma 1 [1]: Given an oblivious processing code for the
PIRC, the distribution of a transmitted codeword of source
( is given by "$!

#
!$"" #

!"

((!
"$# !$("& In other words,

in the absence of information regarding the index )! and the
message*! ! a codeword $"! !)! !*!" taken from a (+!'!! '""
codebook is i.i.d. As a consequence, the received signals at
destinations and relay are also i.i.d. vectors.

Lemma 2: Given an oblivious codebook code for the PIRC
with enabled time-sharing, the distribution of a transmitted
codeword of source (! conditioned on the time-sharing se-
quence is given by "$!!*!!$""2"" #

!"

((!
"$!*!$("2("& In

other words, in the absence of information regarding the index
)! and the message *! ! a codeword $"! !)! !*!" taken from
a (+!'!! '"" codebook has independent, but non-indentically
distributed, entries.

Remark 4: While the unconditional pmf "$!
#
!$""! or

"$!!*!!$""2""! factorizes as discussed above, the conditional
pmf "$!

# !% !$
""-"! or "$!!*!'% !$

""2"! -", given the key
)! # - does not. In other words, as shown in [2], given a
specific "good" code, the empirical distribution with respect
to the choice of the message *! can never be i.i.d. (except
for extreme cases such as noiseless channels).

III. PRIMITIVE RELAY CHANNEL WITH OBLIVIOUS
RELAYING

We start by analyzing the PRC with oblivious relaying.
Proposition 1: The capacity of a primitive relay channel

with oblivious relaying and enabled time-sharing is given by

# # ./0 3!4(5 *5#"6" (3a)
s.t. % $ 3!5#( *5#"5 6" (3b)

where maximization is taken with respect to the distribution
"!2""!$"2""!*##"##! 2" and the mutual informations are evalu-
ated with respect to

"!2""!$"2""!*##"##! 2""!#! ##"$"& (4)

If time-sharing is not allowed, (3) is still an upper bound on the
capacity, and the following rate is achievable (i.e., 6 #const)

# # ./0 3!4(5 *5#" (5a)
s.t. % $ 3!5#( *5#"5 " (5b)

Proof : See Appendix A.
Remark 5: Capacity is attained by Compress-and-Forward

(CF) with time sharing. This may not be surprising, given that
the relay is incapable by design of decoding the codeword

transmitted by the source. However, notice that in the setting of
[1] where multiple relays are present but no direct link between
source and destination is in place, optimality of (distributed)
CF strategies remains elusive. This is in accordance with the
current state of the art on the corresponding source coding
problems, where the source (rather than being an encoded
sequence) is a given i.i.d. process to be reconstructed at the
destination. In fact, the source coding counterpart of [1] is the
(discrete memoryless) CEO problem, which is still generally
unsolved [8], while the source coding counterpart of the
PRC is the Wyner-Ziv scenario of source coding with side
information, whose solution is well-known (see, e.g., [4]). For
a discussion on other scenarios where CF was shown to be
optimal, we refer to [6].

Remark 6: In (3), variable 6 allows time sharing. The fact
that the performance of CF can be generally improved by time-
sharing was shown in [5, Theorem 2]. In case, time-sharing is
not allowed, rate (5) is achievable, which is generally smaller
than (3).

A. Gaussian Model

Here we turn to the memoryless Gaussian PRC, that is
defined as

5#( #
%
74( 18#(! 5( # 4( 18(! (6a)

where 8#(! 8( are independent zero-mean unit-power, and
the power constraint is given by $9+

""
((!:&4

"
( ' & ; .

The result of Proposition 1 can be extended using standard
arguments to continuous channels and thus to the Gaussian
channel (6). However, optimization of the input distribution
"!2""!$"2""!*##"##! 2" in (3) remains an open problem. Achiev-
able rates using Gaussian input distribution "!$"2" and quan-
tization test channel "!*##"##! 2" in (3) can be found in [7] and
[5, Theorem 2] without and with time-sharing random variable
6, respectively. However, as discussed in [1], a Gaussian
input distribution is generally not optimal and, as seen in [7],
non-Gaussian test channels may be advantageous, especially
with a non-Gaussian input distribution. Nevertheless, the next
proposition shows that the suboptimality of Gaussian channel
inputs, Gaussian test channel and no time-sharing, is at most
half bit (per (real) channel use), even if one allows non-
oblivious relaying.

Proposition 2: The rate achievable via CF (and hence
oblivious relaying)

')% #
$

%
234"

#
$ 1 ; 1

7;

$ 1 !)+),+
$""$"!%$+)!%

$
(7)

on the Gaussian PRC (6), by employing Gaussian channel
inputs, Gaussian test channel and no time-sharing, is at most
half bit away from the capacity of the PRC with codebook-
aware (and thus also oblivious) relaying.

Proof : The proof is obtained by comparing the achievable
rate (7) (that can be found in, e.g., [7]) with the cut-set bound
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upper bound (which holds even with non-oblivious relaying)

'-. # .56

%
$

%
234" !$ 1 ; " 1 %!

$

%
234" !$ 1 7; 1 ; "

&
&

(8)
See full derivation in Appendix B.

IV. PRIMITIVE INTERFERENCE RELAY CHANNEL WITH
OBLIVIOUS RELAYING

We not turn to the analysis of the PIRC with oblivious
relaying. The following proposition shows that in the presence
of interference-oblivious decoding, it is optimal for the relay
to employ CF and for the destinations to treat the interfering
signal as noise.

Proposition 3: The capacity region of the PIRC with obliv-
ious relaying, interference-oblivious decoding and enabled
time-sharing is given by the set of all non-negative pairs
!'!! '"" that satisfy

'! & 3!4! (5! *5 $!%# "6"! for ( # $! %! (9)

for some distribution "!2"
'"
!(! "!$! "2""!*#

$!%
# "##! 2"

"!#!! #""$!! $"" that satisfy

%! $ 3!5#( *5 $!%# "5!6" for ( # $! %& (10)

If time-sharing is not enabled, the above is an outer bound
to the capacity region and setting 6 #const leads to an
achievable rate region.

Proof : Follows similarly to the proof of Proposition 1.

V. APPENDIX

A. Appendix-A: Proof of Proposition 1

Achievability follows by CF with Wyner-Ziv coding and time-
sharing determined by variable 6 (see, e.g., [3] [7] and [5]). For the
converse, consider the first the variable < transmitted by the relay to
the destination over the finite-capacity link. Denote as 76 the vector
of time-sharing variables 2" in Definition 2

+% $ =!<" $ =!<" 76"

$ 3!<(4"5 "# "5 " 76" $
"(

((!

3!<(5#("5 " 765 ("!# 4("!"

#
"(

((!

=!5#'("5( 76"'=!5#'("*5#(5( 76"

#
"(

((!

3!5#(( *5#("5( 76"!

where in the third line we used the fact that 5 "# ! 5
"!4" have

conditionally independent entries given 76! due to Lemma 2, and
we defined *5#(# &<4

("!5 ("!# 5 ("!5 "()!'& Notice that the fol-
lowing Markov chain !5 (!4("' !5 #(! 76"' *5 #( holds& Now,
introducing a variable 6"! independent of all other variables and
uniformly distributed in &$! +', defining 5## 5 #*! and similarly
for the other variables, and 6 # & 76 6"'! we get the constraint
(3b). Notice that with these definitions we have the Markov chain
(5!4"' !5 #! 6"' *5 #& Turning to the destination, using Fano

inequality =!* "5 "<) 76" & +>" with >"& - for +&( (for
vanishing probability of error), we obtain

+' & 3!* (5 "<) " 76" 1 +>"
# =!5 "<" 76" 1=!) "5 "< 76"

'=!) "* 76"'=!5 "<")* 76" 1 +>"

# 3!)* (5 "<" 76"' 3!) (5 "<" 76" 1 +>"
& 3!4"(5 "<" 76" 1 +>"

#
"(

((!

=!4(" 76"'=!4("5( *5#( 76"

#
"(

((!

3!4((5( *5#(" 76" 1 +>"!

where in the third equality we have used the fact that ) and * are
independent and in the last line we have used Lemma 2.

B. Appendix-B: Proof of Proposition 2

We first rewrite (7) as ')%#!
" 234"

)
""$$!)+ %$!),+)+ %

""$$!)+ %),+

*
!

which can be proved by standard algebraic manipulations. Now,
assume first that $ 1 ; !$ 1 7" & %")!$ 1 ; " so that the upper
bound (8) reads '-.#!

" 234" !$ 1 7; 1 ; " & Under this condi-
tion, the achievable rate ')% satisfies

')% # '-. '
$

%
234"

+
$ 1

7;

%")!$ 1 ; "

,

$ '-. '
$

%
234"

+
$ 1

!%") ' $"!$ 1 ; "
%")!$ 1 ; "

,

$ '-. '
$

%
!

where the second inequality follows from the assumed condition. The
same inequality is proved in a similar way under the complementary
condition $ 1 ; !$ 1 7" $ %")!$ 1 ; "&
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Abstract—This paper examines some of the settings commonly
used to represent fading. We raise the question of whether these
settings remain meaningful in light of the advances that wireless
communication systems have undergone over the last decade. A
number of weaknesses are pointed out, and ideas on possible fixes
are put forth. Some of the identified weaknesses have to do with
models that, over time, have become grossly inadequate; other
weaknesses have to do with changes in the operating conditions
of modern systems, and others with the coarse and asymptotic
nature of some of the most popular performance metrics.

I. MOTIVATION

Fading is an essential attribute of wireless channels and,
as such, the characterization of its impact on fundamental
communication limits has been the object of much scrutiny
[1]. A few canonical settings have become established over
time that offer a compromise between realism and tractability.
These settings have served the information theory and com-
munications research communities extremely well for years.

II. CANONICAL SETTINGS

The marginal modeling is not particularly problematic:
application of the central limit theorem to the sum of a large
number of multipath components yields a Rayleigh distribu-
tion for the fading amplitude, and experimental measurements
have repeatedly confirmed the validity of this distribution. It
is the modeling of the selectivity over each codeword that
presents the most complications, and the two most common
canonical settings idealize it in limiting senses:

• Ergodic setting: the fading varies ergodically over the
span of each codeword. This setting has a well-defined
capacity in the Shannon sense, which entails an expec-
tation over the fading distribution. While analytically
convenient, this setting is frequently dismissed as inade-
quate on the grounds of the latency constraints of many
applications.

• Quasi-static setting: the fading is fixed over each code-
word, and varies only from codeword to codeword. In
Rayleigh fading, the Shannon capacity of this setting
is strictly zero. The relevant metric is then the outage
probability, i.e., the probability that a given transmission
rate is not supported [2]. The quasi-static setting is often
regarded as more relevant than its ergodic counterpart to
modern systems.

III. A CONTEMPORARY PERSPECTIVE

The canonical settings have been in use for years and
are by now deeply ingrained. Wireless systems, however,
have evolved greatly since the time when these settings were
defined. They have made link adaptation a norm, grown wide-
band, adopted packet switching and scheduling, and embraced
ARQ and H-ARQ (hybrid ARQ), among other advances.

A. Link Adaptation
In contrast with older designs, modern wireless systems

exhibit a very high degree of adaptivity. The transmission rate,
in particular, is matched to the fading whenever timely CSI
(channel-state information) can be had at transmitter, i.e., in
slow fading. This fundamentally changes the nature of the
communication problem: outages are essentially eliminated.

B. Hybrid ARQ
Another trait that is central to the adaptive nature of modern

systems is H-ARQ, whereby the codeword length itself is
made adaptive. The combination of link adaptation and H-
ARQ allows for a finely tuned match between the rate and the
channel in slow fading.

C. Wideband Signaling
While older wireless systems were organized into nar-

rowband channels, modern systems are wideband. Signals
occupy many MHz of bandwidth, which has two immediate
consequences. First, it renders frequency selectivity a property
that cannot be ignored by the models. And second, it allows
for long codewords without long latency.

D. Operating Point
Yet another fundamental facet of modern wireless systems

is that the physical layer operates at some fixed packet error
probability, which depends on the specific parameters of each
system but is typically around 1% at H-ARQ termination. The
aim of reliable communication is not given up, but the physical
layer is no longer alone in the task of ensuring it.
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Abstract—We investigate the application of Hopfield neural
networks (HNN) for vector precoding in wireless multiple-input
multiple-output (MIMO) systems. We apply the HNN to vector
precoding with N transmit and K receive antennas, and obtain
simulation results for the average transmit energy optimization
as a function of the system load α = K/N . We compare these
results with lattice search based precoding performances, and
show that the proposed method for nonlinear vector precoding
with complexity O(K3) achieves competitive performances in
the range 0 < α ≤ 0.9 in comparison to lattice search based
precoders. The proposed method is of a polynomial complexity
and therefore, it is an attractive suboptimal approach for vector
precoding.

I. INTRODUCTION
In a broadcast MIMO system a transmitter, typically a

base station, communicates with a number of receivers. We
assume that the receivers cannot cooperate with each other, and
that the channel state information is known at the transmitter
side. In this scenario, our aim is to delegate most of the
signal processing work to the transmitter side. The signal
processing at the transmitter includes precoding techniques [1]
for predistortion of the transmitted symbols. In this way the
transmit energy is reduced and signal detection at the receivers
is simplified.

The capacity region of Gaussian broadcast MIMO channels
[2] can be achieved by dirty paper coding (DPC) [3]. Since
DPC has high complexity demands for implementation, re-
search in the area of precoding techniques has been focused on
different linear and nonlinear sub-optimal methods. In linear
precoding (e.g. [4]) the transmitted symbols are premultiplied
by the pseudo-inverse H†(HH†)

−1 of the channel matrix H
and the receiver applies simple symbol-by-symbol detection.
This method is known as zero-forcing precoding (ZF) (e.g. [5])
and the main advantage of this method is its low complexity.

A drawback occurs when the channel matrix has small
singular values, such that an inversion operation causes severe
transmit power amplification. One method proposed to control
power amplification due to ill-conditioned channel matrices is
channel regularization [6]. However, this approach does not
cancel all the interference at the receiver.

A nonlinear precoding approach employs nonlinear predis-
tortion of the transmitted symbols before the linear operation.
In a nonlinear predistortion step the alphabet of transmitted
symbols is increased to a larger redundant set, such that
the symbols to be sent are subject to optimization. A vector
pertubation method [7], for example, modifies the idea of THP.

The vector-space search for the closest point in the lattice
set that minimizes the energy is performed by an exhaustive
search [7]. Often search is performed by a sphere encoder
(SE), which is known to reduce the complexity, but still
keeping it exponential [8].

Lattice-basis reduction algorithms have been proposed for
further reduction of the SE complexity. Lower complexity can
be achieved by searching for the approximately closest point
in the lattice. There are implementations of vector precoding
algorithms based on lattice-basis reduction [9], for example
the LLL (Lenstra, Lenstra, and Lovasz) algorithm [10], that
provide good performance.

Another approach to nonlinear predistortion is to apply
a convex relaxation of the input symbol alphabet. A novel
vector precoding method that applies a convex relaxed symbol
alphabet instead of a discrete set is presented in [11]. In [12]
it is shown that with a convex precoding approach, spectral
efficiency can be higher then with lattice precoding at low to
moderate signal-to-noise ratios.

The field of artificial neural networks (ANN) has been
an active research area with periods of both dynamic and
stagnation phases, from the early 1940s. Research has resulted
in a great number of publications e.g. [13], and ANNs have
been applied to the realization of, for example: content-
addressable memory, pattern classifiers, pattern recognition,
vector optimization, multiuser detection. ANNs have also been
applied for solving optimization problems in different areas.

In this paper we will apply the Hopfield Neural Network
(HNN) [13] which belongs to the class of recurrent ANNs
as the algorithm for optimization in vector precoding. The
structure of extensive parallelism makes the computational
capabilities of the HNN very powerful and attractive. We
will provide numerical simulation results for loads within
0 < α ≤ 1, for K = 8, K = 16, K = 27 and K = 64, and
compare the results with the performances of the SE lattice
precoding, where the number of redundant representations of
each information bit is L = 2 and the number of receive
antennas are K = 27 and K = 64. We also compare the
HNN precoder performances with the analytical solution for
the SE vector precoding [12] and to the performance of convex
relaxation (CR) [11] of the input symbol alphabet.

Our simulation results show that for loads α ≤ 0.7, the
performance of the HNN vector precoding is very close to the
SE performance. Up to α ≈ 0.9 there is a controlled increase
in the transmit energy of the HNN algorithm compared with

Int. Zurich Seminar on Communications (IZS), March 3-5, 2010

66



the SE vector precoding performances. For loads α ≈ 0.9 and
greater there is a substantial increase in the transmit energy of
the HNN solution. Comparing the HNN performances with the
analytical result for CR we show that up to α ≈ 0.9 the HNN
precoding outperforms CR, which for loads 0.9 ≤ α < 1 the
energies provided by the HNN start to increase considerably.

It is known that the expected complexity of the SE algorithm
is exponential [8]. Therefore, due to the fast computational
capabilities and robustness of the HNN, our approach is an
efficient suboptimal way for vector precoding within a wide
load range at low complexity.

II. SYSTEM MODEL
A narrowband multi-user MIMO system is modeled by

r = Ht+ n (1)
where t= [t1, t2, · · · , tN ]T and r= [r1, r2, · · · , rK ]T denote
the transmit and receive signal vectors, respectively, the K×N
channel matrix H is assumed to have independent and identi-
cally distributed (i.i.d.) Gaussian random variables with zero
mean and unit variance, and n is the white Gaussian noise.
We consider (1) as a MIMO system with a single transmitter
with N antennas, and K receivers, each with a single antenna,
that cannot cooperate with each other.

Now, assume that the number of transmit antennas is greater
or equal to the number of receive antennas (K ≤ N). The
K × 1 data symbol vector is denoted by s, and for binary
phase-shift keying (BPSK), the elements of the vector s =
[s1, s2, · · · , sK ]T belong to the set S = {−1,+1}. Let the
union of the sets B−1 = {−1,+3} and B+1 = {+1,−3} be
the relaxed alphabet. In a nonlinear predistortion step the data
vector s is mapped onto a vector x = [x1, x2, · · · , xK ]T , with
the vector elements chosen to minimize the transmit energy,
where xk ∈ Bsk , for k = 1, 2, · · · ,K. The following linear
predistortion matrix T is assumed to be

T = H+ = H†(HH†)−1 (2)
The optimization problem can now be formulated as fol-

lows:
x∗ = min

x∈Bs1×···×BsK

‖Tx‖2 = min
x∈Bs1×···×BsK

x†(HH†)−1x

(3)
This problem is difficult to solve since it is a nonconvex

optimization problem in a high dimensional space, and we
therefore investigate the application of the HNN for solving
(3).
III. QUADRATIC OPTIMIZATION USING HOPFIELD

NEURAL NETWORKS
Hopfield [13] proposed the application of ANNs for solving

combinatorial optimization problems. A review of the HNN
applications for solving mathematical programming problems
is given in [14]. The optimization using the HNN is performed
by constructing the energy function with the parameters that
depend on a practical optimization problem. Hopfield [13]
showed that the energy function constructed for an observed

problem provides convergence of the system to stable states
if the matrix in the objective function is symmetric, with zero
diagonal elements. The main drawback of the HNN is that
its computational properties do not necessarily provide the
best solution by minimizing the appropriate energy function,
but the optimization can result in a local minimum. Various
modifications of the HNN, for example the combination with
stochastic algorithms [15] have been proposed for avoiding
said local minima.

The HNN works as follows: the sum of an external threshold
value θi and the weighted sum of input states are transformed
by a nonlinear function called an activation function to be-
come the output of the system. The HNN supports different
activation functions, for example: hard limiter (threshold)
transfer function, hyperbolic tangent (tanh), sigmoid and other
functions. A weight matrix W can be used to model various
effects in an observed system, and depends on the particular
problem that is solved by the HNN.

We apply the HNN model with an activation function f(·)
described by

v(l+1)
j = f

(
K∑

i=1

wjiv
(l)
i + θj

)
(4)

where l = 0, 1, 2 · · · , denotes the number of iterations run by
the HNN, i = 1, 2 . . . ,K, j = 1, 2 . . . ,K, the network states
are denoted by vj , respectively, wji are the assigned weights
between neurons j and i, and θj is the external input signal.

The HNN described by (4) minimizes the energy function

E =
1

2

K∑

i=1

K∑

j=1

wijvivj +
K∑

i=1

viθi (5)

This HNN model can also be considered as an iterative
algorithm that performs soft parallel interference cancellation
[16], [17]. In our model the solution of the optimization
problem defined in (3) corresponds to the minimization of the
energy function in (5). The output vector v of the HNN in (4)
corresponds to the vector x in (3), while the coefficients wij

in (4) correspond to the entries of the channel matrix H.
We assume that the start time of the iterations is l = 1, and

that a soft decision v(l)i is calculated in each step. This value
is subtracted from the soft decision from the previous iteration
and the hypothetical interference is cancelled in each iteration.
The iterations can be performed until there is only a minor
change between the soft decisions in successive iterations,
i.e. until maxi|v(l)i − v(l−1)

i | < δ where δ is a sufficiently
small value or the number of iterations exceeds the maximum
number of iterations. In our simulations we have chosen the
criterion that iterations are performed until the number of
iterations exceeds the maximum number of iterations, denoted
by Imax.

It has been shown that the expected complexity [7] of the SE
algorithm depends on the number of dimensions K and the
signal-to-noise ratio (SNR). In [8] the expected complexity
of the SE algorithm, as well as the asymptotic expression
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for the complexity, were derived. The expected complexity is
defined to represent the expected number of steps performed
by the algorithm, and it is a function of the symbols x, and
the realization of the channel matrix H. It has been shown
that the expected complexity of the SE is exponential.

The optimization algorithm utilizing the HNN is shown in
Table I.

TABLE I
HOPFIELD NEURAL NETWORK (HNN) ALGORITHM.

Input: Set H, v = s, l = 1, Imax

Set W = −diag[(HH†)−1] + (HH†)−1

Define: fsj (y) = −sj + 2 tanh (2 (y + sj))

while l ≤ Imax

for 1 ≤ j ≤ K

Calculate
v(l)j = fj

(
−
∑K

i=1
wijv

(l−1)
i

)

end
end

for 1 ≤ j ≤ K

xj = −sj + 2 · sign(vj + sj)

Output: x

For convex precoding, the quadratic programming solver
from the MATLAB optimization toolbox [18] is applied. This
algorithm has computational complexity O(K3.2). Given a
fixed number of iterations, the algorithm in Table I contains
one loop that is executed K times and involves the summation
of K terms. Its complexity is therefore O(K2).

When we compare computational complexities of the HNN
and CR vector precoding methods, we can observe that the
dominant complexity is in the linear operation (2). Numerical
computation of (HH†)−1 has complexity O(K3), and the
additional complexity due to the application of the HNN
is thus negligible in comparison with this pseudo-inverse
operation.

IV. NUMERICAL RESULTS
In the HNN vector precoding algorithm the channel matrix

H has been modeled with i.i.d. Gaussian entries. For each
realization of the channel matrix H, the number of the
iterations was set to be Imax = 40.

We simulated the performance for: K = 8, K = 16,
K = 27 and K = 64. The number of different channel
realizations for each system size was 1000. We plot the
resulting average transmit energy as a function of the ratio
α = K/N of the number of receive antennas K to the number
of transmit antennas N , where 0 < α ≤ 1, as shown in Fig.
1. In the same figure we draw for comparison the following
plots: the analytical solution for the SE lattice set [12] (the
number of the redundant representations of each information
bit is L = 2), simulation results for the SE lattice precoding
(L = 2) with the number of receive antennas K = 27 and
K = 64, and the analytical solution for CR [11].

α

α

Fig. 1. The average transmit energy as a function of the load α = K/N .

The simulation results show that precoding using the HNN
provides performances very close to the SE-based precoding
performances for the load 0 < α ≤ 0.8. For example, for
K = 27 and α = 0.5 the performance of the SE is 4.88 dB
and the HNN performance is 4.99 dB, while for α = 0.8 the
HNN shows performance penalty of less than 1 dB.

Almost similar results were obtained for K = 64; for
α = 0.5 the SE performance enhancement is 0.11 dB, while
for α = 0.8 the energy differs by 1 dB. For loads within
0.8 ≤ α ≤ 0.9 the average transmit energy by the HNN
precoding gradually increases and for α = 0.9, the SE
outperforms the HNN by 1.5 dB and 1.69 dB for K=27
and K = 64, respectively. For loads greater then α ≥ 0.9,
performance of the HNN degrades severely.

In comparison with the analytical results obtained for CR
[12] we notice that up to 0 < α ≤ 0.9 the HNN precoding
outperforms CR for all simulated values of K, except for K =
8, in which case CR is outperformed up to α ≤ 0.8. The
HNN performance enhancement is greatest in the range of
0.5 ≤ α ≤ 0.8 and increases when K gets larger. For example,
for α ≤ 0.7, the HNN outperfoms CR by 1.21 dB.

We have thus demonstrated that the HNN-based precoding
outperforms the CR theoretical results within 0 < α ≤ 0.8,
achieves performances very tight to the SE in the range of
0 < α ≤ 0.7, and has competitive performance in comparison
to the SE for 0 < α ≤ 0.9. It is known that lattice precoding
is a problem that at loads close to 1 exhibits strong replica
symmetry breaking (RSB) [12]. RSB problems are well-known
to not being well-approximated by HNNs unlike to those that
do not exhibit RSB.

V. COMPUTATIONAL COMPLEXITY
The advantages, limits and computational power of neural

networks (for example: [19], [20]) and, in particular, the HNN
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have been studied over years. There are various realizations of
HNN, for example: continuous or discrete time, feedforward
or recurrent model, with discrete or analog activation function,
finite or infinite network size, asynchronous or synchronous
network. The HNN computational complexity has been ana-
lyzed depending on the network model and its applications.
Some of the results on the computational complexity have
been generalized. We will consider a symmetric HNN applied
to the energy minimization problems.

The computational complexity can be considered in terms
of the memory and time resources required for a particular
application. The highest computational cost in terms of the
memory resources is due to the allocation of the memory space
for storing the weight matrix W. The number of the steps
performed by the algorithm before the algorithm converges
is convergence time and its trivial upper bound is 2K . The
HNN convergence time may be exponential in the worst case,
for both sequential and parallel networks. However, it has
been shown that under some mild conditions, the binary HNN
converges in only O(log logK) parallel steps in the average
case. The property allows us to set the maximum number of
iterations to a moderate value in practice

VI. CONCLUSIONS
We have presented a method for vector precoding using a

HNN as algorithm for combinatorial optimization, and shown
that this method can be applied for precoding within a wide
load range. We investigated the performance of this scheme
by extensive simulations, and compared the results with the
simulation results of SE precoding, where the number of
redundant representations of each information bit is L = 2,
with corresponding analytical results for the SE, and with the
analytical result for the convex precoding performance. The
HNN vector precoding method obtains performances close to
the discrete lattice precoding for loads up to α ≤ 0.8, and
for loads 0.8 ≤ α ≤ 0.9 there is a gradual increase in the
transmit energy within 1.7 dB depending on the number of
receiving antennas. When we compare the HNN performances
and the CR analytical result we observe that up to α ≈ 0.8 the
HNN precoding outperforms CR for K = 16, 27 and 64. For
α ≤ 0.7 the HNN outperforms CR for all simulated values of
K. Our simulations showed that this algorithm can be applied
for system loads up to α ≤ 0.9. Therefore, the HNN is an
attractive solution for vector precoding of polynomial com-
plexity, with competitive performance within a wide load range
in comparison with the SE of exponential complexity. Further
modification of the algorithm will be addressed to control the
energy penalty for the load up to α ≤ 1. Furthermore, due
to its low complexity, the HNN precoding solution can serve
as a starting solution for lattice-based searches with SEs. This
allows a greatly improved starting radius for the SE and aid
reduction of the SE’s complexity.

Finally, we would like to outline that the HNN based lattice
precoding, similar to the SE, can be combined with lattice
basis reduction. While lattice basis reduction helps to reduce
the complexity of the SE, we conjecture that it will not reduce

the complexity of the HNN, but improve its performance,
particularly at high loads as it reduces the eigenvalue spread
of the weight matrix W. This will be investigated in future
research.
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Abstract—Multiple-symbol detection (MSD) is a powerful tech-
nique to improve the power efficiency of noncoherent receivers.
In this paper, we derive the MSD metric for impulse-radio ultra-
wideband for the general case of biorthogonal pulse-position
modulation (bPPM) and relate it to its special cases BPSK and
PPM. This unified treatment allows us to conduct a comparison
of MSD of amplitude- and pulse-position-based impulse-radio
signaling schemes in terms of power and spectral efficiency, as
well as in terms of complexity.

I. INTRODUCTION
One of the main advantages of the impulse-radio ultra-

wideband (IR-UWB) technique in low-complexity transmis-
sion systems is its ability to employ noncoherent receivers
even in dense multipath propagation scenarios envisioned in
typical indoor UWB scenarios [1].

The gap between coherent and noncoherent detection in
power efficiency, i.e., in the required signal-to-noise ratio to
guarantee a certain bit error rate (BER), can be closed by
replacing conventional symbol-by-symbol noncoherent detec-
tion with a joint detection of a block of symbols, i.e., per-
forming multiple-symbol detection (MSD). In particular, we
consider MSD for differential transmitted reference (DTR) IR-
UWB [2], a signaling scheme applying differentially encoded
binary phase-shift keying (BPSK). Further considered signal-
ing schemes are orthogonal M -ary pulse-position modulation
(M -PPM) [1] and the combination biorthogonal PPM (M -
bPPM), i.e., the negatives of the orthogonal PPM signals are
included in the signal set, yielding in total 2M signal elements.
Based on generalized-likelihood ratio testing (GLRT), similar
to the approach in [3], we derive the MSD metric of M -bPPM
IR-UWB, and relate it to its special cases M -PPM and BPSK.

In [4] these IR-UWB signaling schemes have been com-
pared for transmission over the AWGN channel, while [5]
restricts to noncoherent detection of M -PPM in multipath
environments. In this paper, we compare the power efficiency
of coherent and MSD-based noncoherent receivers for these
signaling schemes in a typical UWB multipath propagation
scenario. However, only in conjunction with an evaluation
of the receiver complexity and the spectral efficiency of the
signaling schemes, i.e., the supported number of bits per
second per Hertz, we can draw commensurable conclusions
from the numerical results. To this end, we evaluate the IR-
UWB variants in the power-bandwidth plane [6].

This paper is organized as follows. In Section II, we intro-
duce the system model of M -bPPM IR-UWB used throughout
this paper, then derive the MSD metric in Section III, and

This work was supported by Deutsche Forschungsgemeinschaft (DFG)
within the framework UKoLoS under grant FI 982/3-1.

relate it to the special cases of M -PPM and BPSK. Section
IV compares these signaling schemes via numerical results in
terms of power and spectral efficiency, and complexity. We
conclude with a summary in Section V.

II. SYSTEM MODEL
A. Transmit Signal

The transmit signal of biorthogonal M -ary PPM (M -bPPM)
IR-UWB is given as

s(t) =
√
Es/T

+∞∑

i=0

bip
TX(t− ai∆− iT ) (1)

where ai ∈ A = {0, ...,M − 1} are the PPM information
symbols and bi ∈ B = {±1} are the differentially encoded
information symbols di ∈ {±1}, i.e., bi = bi−1di and b0 = 1.
pTX(t) is the transmit pulse of unit energy and duration TpTX

in the order of nanoseconds, ∆ is the PPM interval, Es is
the energy per bPPM symbol, and T = M∆ is the symbol
duration. Neglecting the reference for differential encoding,
b0, and assuming i.i.d. equal probable data symbols, each
symbol conveys log2(M)+ 1 bits, hence the energy per bit is
Eb = Es/(log2(M) + 1). To preclude inter-pulse and inter-
symbol interference even in dense multipath environments
and allow for multiple-access capability of a large number
of simultaneous users, the PPM interval is chosen sufficiently
large, i.e., ∆ = β · TpTX with β ? 1.
B. Spectral Efficiency

Independent of the signaling scheme the transmit signal (1)
utilizes a bandwidth approximately proportional to the inverse
of the transmit pulse duration, i.e., ∼ cp

TpTX
, with a constant cp

depending on the specific pulse shape (cp ≈ π for the Gaussian
monocycle considered later). Hence, the spectral efficiency in
bits per second per Hertz of M -bPPM is

ΓbPPM =
1 + log2(M)

M

1

cpβ

bits/s

Hz
. (2)

C. Receive Signal
Having passed a multipath propagation channel with im-

pulse response hCH(t) and a receive filter hRX(t), the received
signal can be written as

r(t) =
+∞∑

i=0

bip(t− ai∆− iT ) + n(t) (3)

where p(t) =
√
Es/T ·pTX(t)∗hCH(t)∗hRX(t) is the receive

pulse shape, and n(t) = n0(t) ∗ hRX(t) is filtered white
Gaussian noise n0(t) of two-sided power-spectral density
N0/2.
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D. Coherent Detection
For comparison we recall coherent detection of M -bPPM,

assuming ideal knowledge of the receive pulse p(t). For this
case, no MSD is necessary and each symbol may be detected
by first deciding the transmitted PPM interval based on the
magnitude of the crosscorrelation of receive signal and pulse
shape, and then the BPSK symbol according to the sign
transition in the corresponding interval [6].

III. MULTIPLE-SYMBOL DETECTION

At the receiver MSD is performed, i.e., the transmitted
sequences a ∈ AN and b ∈ BN are decided blockwise based
on the receive signal in the interval 0 ≤ t < NT (without
loss of generality we consider the interval starting at t = 0).
The channel is assumed to be constant in this interval, which
in typical indoor UWB communication scenarios is fulfilled
especially for moderate N [7].

A. Decision Metric
Since the additive noise is Gaussian, we base the joint

decision of N information symbols on the log-likelihood
metric with respect to a receive signal hypothesis s̃(t) =∑N−1

i=0 b̃ip̃(t − ãi∆ − iT ) corresponding to the trial symbols
ã = [ã0, ..., ãN−1] ∈ AN , b̃ = [b̃0, ..., b̃N−1] ∈ BN and
a hypothesis p̃(t) for the unknown receive pulse p(t), both
assumed to be of duration TI < ∆. Due to the differential
encoding the reference sign common to all b̃i, i ≥ 1, does not
influence the decision metric and may be set to b̃0 = 1.

Following the GLRT approach [8], in contrast to a
maximum-likelihood criterion, we perform an explicit opti-
mization over the unknown receive pulse shape p(t) [3], i.e.,

[â b̂] = argmax
ã∈AN , b̃∈BN

b̃0=1

max
p̃(t)

∫ NT

0

(
2 · r(t)s̃(t)− s̃2(t)

)
dt

and hence do not draw any assumption on the a-priori prob-
ability density function of the multipath arrival times or path
gains, apart from the assumed pulse duration TI. However,
this GLRT approach leads to the very same decision metric
as the ML-approach in [9], derived based on the assumption
of a Gaussian distribution of the channel coefficients and a
flat power-delay profile of duration TI. Hence, under these
conditions the GLRT estimate is equal to the ML estimate.

Recalling that both p(t) and its hypothesis are assumed of
equal duration TI and b̃2i = 1, with straightforward calcula-
tions, we obtain

[â b̂] = argmax
ã∈AN , b̃∈BN

b̃0=1

max
p̃(t)

∫ TI

0

[
p̃(t)

N−1∑

i=0

b̃ir(t+ ãi∆+ iT )

−N

2
· p̃2(t)

]
dt .

Similar to [3], fixing ã and b̃, we solve the maximization
over p̃(t) analytically using variational calculus (omitted for
brevity), and obtain a MSD metric for M -bPPM solely based

on the receive signal in the observation window 0 ≤ t < NT

[â b̂] = argmax
ã∈AN , b̃∈BN

b̃0=1

∫ TI

0

[
N−1∑

i=0

b̃ir(t+ ãi∆+ iT )

]2

dt .

(4)

The assumed receive pulse duration TI, the integration interval,
should be set on the one hand large enough to capture
sufficient energy of the receive signal, and on the other hand
as small as possible not to accumulate too much noise.

Solving (4) requires finding the maximum of 2N−1MN

combinations of weighted receive signal intervals, hence, only
moderate values of N seem to be applicable. For sufficiently
high sampling frequency, (4) can straightforwardly be formu-
lated to work on the sampled and quantized receive signal,
analog delay lines can hence be avoided [9]. Implicit restric-
tions on the sequences a and b, as, e.g., in DTR signaling,
can be used to reduce the number of candidates, yet, this is
not considered here.

Due to the differential encoding, N = 1 does not lead to
reasonable performance. However, a natural way to overcome
this is to perform symbol-by-symbol energy detection (ED) of
the M -PPM part (N = 1) and differential detection (DD) of
the BPSK part (N = 2).
B. PPM

The special case of MSD of M -PPM IR-UWB results
by setting bi = 1, ∀i (each symbol now conveys log2(M)
bits, hence Eb = Es/ log2(M)), and the corresponding MSD
metric is given as

â = argmax
ã∈AN

∫ TI

0

[
N−1∑

i=0

r(t+ ãi∆+ iT )

]2

dt . (5)

If N = 1, (5) corresponds to ED of M -PPM.
C. BPSK

Similarly, MSD of a solely BPSK modulated signal can be
viewed as a special case of MSD of M -bPPM. Setting M = 1
(A = {0}), each symbol represents a single bit, hence Eb =
Es. Note that bi still are the differentially encoded information
symbols. Using b̃2i = 1, the corresponding MSD metric can
be rearranged [3], yielding the triangular structure

b̂ = argmax
b̃∈BN

b̃0=1

N−1∑

i=1

i−1∑

j=0

b̃ib̃j

∫ TI

0
r(t+ iT )r(t+ jT ) dt . (6)

Hence, for the special case of BPSK signaling the MSD metric
in (4) reduces to an autocorrelation of the receive signal with
delays being multiples of the symbol duration T , followed by
maximization of the decision metric, as shown in [2], [3]. The
latter can be formulated as a tree search problem and is effi-
ciently implemented by the sphere decoder (SD), which avoids
testing all 2N−1 candidate sequences (complexity exponential
in N ), resulting in effectively polynomial search complexity
for a wide range of signal-to-noise ratios. Thus considerably
larger MSD window lengths N compared to a full search as
required for MSD of PPM become amenable [3], [10].

Int. Zurich Seminar on Communications (IZS), March 3-5, 2010

71



4 6 8 10 12 14 16 18 20
10−6

10−5

10−4

10−3

10−2

10−1

coherent detection

ED/DD

N = 1

23N = 4

10 log (Eb/N0) [dB]→

B
E
R
→

2-bPPM

Fig. 1. BER vs. Eb/N0 in dB for MSD of 2-bPPM IR-UWB with
different N in comparison to conventional ED (N = 1), coherent detection,
and ED/DD detection (dashed). Gray lines: analytical/approximate BER.
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Fig. 2. BER vs. Eb/N0 in dB for MSD of 4-bPPM IR-UWB with
different N in comparison to conventional ED (N = 1), coherent detection,
and ED/DD detection (dashed). Gray lines: analytical/approximate BER.

In a similar way, MSD of M -bPPM can be realized with
MN parallel autocorrelation receivers, each tuned to one PPM
sequence followed by a SD to find the corresponding BPSK
part. This puts most of the receiver complexity on detection
of the PPM part, while the BPSK part is decided with little
additional effort.

IV. COMPARISON
We compare MSD of the various signaling schemes via

numerical results in a typical UWB scenario, where we assume
no inter-symbol interference (T chosen sufficiently large),
TpTX = 1ns, and pTX(t) is a Gaussian monocycle with 10 dB
bandwidth of 3.3GHz and 2.25GHz center frequency. The
propagation channel is modeled according to IEEE-CM 2 [7]
with each realization normalized to unit energy. The receive
filter is modeled as an ideal 3GHz bandpass filter around
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Fig. 3. BER vs. Eb/N0 in dB for MSD of BPSK IR-UWB with different
N in comparison to conventional ED (N = 1), DD (N = 2) and coherent
detection. Gray lines: analytical/approximate BER.
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Fig. 4. BER vs. Eb/N0 in dB for MSD of 2-PPM IR-UWB with different
N in comparison to conventional ED (N = 1) and coherent detection. Gray
lines: analytical/approximate BER.

the pulse center frequency and a good compromise for the
integration time is TI = 30ns.

In all figures, gray lines represent approximate BER ex-
pressions of ED/DD, which directly result from a Gaussian
approximation of the decision metric in the spirit of [2], [11],
[12], and the analytical BER for the well known case of
coherent detection [6] (omitted here due to lack of space).

Exemplary, Figure 1 and Figure 2 depict the BER of MSD
of 2 and 4-bPPM IR-UWB, respectively. The dashed line
corresponds to the low-complexity detection (see Section III),
i.e., symbol-by-symbol ED of the PPM part followed by DD
of the BPSK part. Already MSD with N = 2 leads to a
gain of 2 dB in comparison to ED/DD at BER = 10−5. With
increasing N performance is improved further and approaches
that of coherent detection.

Turning to BPSK, MSD using the SD however enables
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Fig. 5. Trade-off power vs. spectral efficiency at BER = 10−4 of IR-UWB
coherent detection and MSD with parameter N as indicated. Solid lines: M -
bPPM, dashed: M -PPM, dash-dotted: BPSK. Colored markers: MSD with an
equal number of candidates. Dotted lines: analytical/approximate BER.

considerably larger N in the order of 30 and results in
performance close to coherent detection (1 dB difference for
N = 30 at BER = 10−5), as depicted in Figure 3. Here
N = 2 corresponds to conventional autocorrelation DD.

Considering 2-PPM, from Figure 4 it can be seen, that again
already the joint decision of two 2-PPM symbols leads to a
gain of more than 2 dB compared to conventional ED. Larger
N bridge the gap to coherent detection of 2-PPM with ideal
knowledge of the receive pulse shape. In comparison to 2-
bPPM, for a fixed N 2-PPM shows a loss of approximately
3 dB, indicating that the PPM part dominates the bPPM
performance.

For the same setting as above, Figure 5 visualizes the trade-
off between power and spectral efficiency (see (2)) of the
studied signaling schemes at BER = 10−4. The lines are
parameterized by the MSD window parameter N (indicated
next to the dots), where the left most dot corresponds to
coherent detection and the right most dot to DD (N = 2)
for BPSK, to the low-complexity detection as described in
Section III (termed ED/DD) for M -bPPM, and to ED (N = 1)
for M -PPM. Dotted lines represent the performance resulting
from analytical/approximate BER expressions. Markers flag an
equal number of candidate sequences required for MSD (in-
dicating the receiver complexity–further complexity reduction
due to the application of the SD for MSD of BPSK may be
possible).

The gain achieved by increasing the MSD window N , nat-
urally accompanied with an increase in receiver complexity, is
similar to all the signaling schemes. However, it is important to
note that signaling schemes making use of the sign information
of the pulse, i.e., BPSK and M -bPPM, lead to a significant
increase both in power and in spectral efficiency in comparison
to the solely pulse-position-based scheme M -PPM.

Fixing the number of candidate sequences in MSD, i.e., the
dimensionality of the search problem (M -bPPM: 2N−1MN ,
BPSK: 2N−1, M -PPM: MN ), from the markers in Figure 5 it
can be seen that under this constraint BPSK and 2-bPPM, both

signaling schemes using the sign of the pulse, achieve very
similar power efficiency, which is substantially higher than that
of 2-PPM. Only higher-order PPM overcomes this drawback,
however, at the cost of considerably reduced spectral effi-
ciency. This extends the well-known fact for coherent detection
[6] and the conclusions of [4] to the case of MSD-based
noncoherent detection of IR-UWB in multipath propagation
scenarios.

Note that the significant complexity reduction achieved with
the application of the SD in MSD of BPSK (and similar in M -
bPPM) is not mirrored in Figure 5. The advantages of BPSK
and M -bPPM in terms of power and spectral efficiency are
accompanied by a reduction in the complexity of noncoher-
ent receivers, which further substantiates to favor sign-based
schemes, i.e., BPSK or M -bPPM, over pulse-position-based
schemes in IR-UWB systems.

V. CONCLUSIONS
In this paper we have compared MSD-based noncoherent

receivers for IR-UWB using BPSK, PPM, and biorthogonal
PPM with respect to performance, complexity, and spectral
efficiency. To this end, we derived the MSD decision metric
of biorthogonal PPM IR-UWB and related it to its special
cases of PPM and BPSK. While the gain achieved with
increasing MSD block length is similar for all IR-UWB
signaling schemes, making use of the sign information, i.e.,
BPSK and biorthogonal PPM, proves preferable to solely PPM
not only in terms of power and spectral efficiency, but also in
terms of complexity.
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Abstract—In many typical mobile communication receivers
the channel is estimated based on pilot symbols to allow for
a coherent detection and decoding in a separate processing
step. Currently much work is spent on receivers which break
up this separation, e.g., by enhancing channel estimation based
on reliability information on the data symbols. In the present
work, we discuss the nature of the possible gain of a joint
processing of data and pilot symbols in comparison to the case of
a separate processing in the context of stationary Rayleigh flat-
fading channels. In addition, we derive a new lower bound on the
achievable rate for joint processing of pilot and data symbols.

I. INTRODUCTION

Virtually all practical mobile communication systems face
the problem that communication takes place over a time
varying fading channel whose realization is unknown to the
receiver. However, for coherent detection and decoding an
estimate of the channel fading process is required. For the
purpose of channel estimation usually pilot symbols, i.e.,
symbols which are known to the receiver, are introduced into
the transmit sequence. In conventional receiver design the
channel is estimated based on these pilot symbols. Then, in a
separate step, coherent detection and decoding is performed.

In recent years, much effort has been spent on the study
of iterative joint channel estimation and decoding schemes,
i.e., schemes, in which the channel estimation is iteratively
enhanced based on reliability information on the data symbols
delivered by the decoder, see, e.g., [1], [2]. In this context, the
channel estimation is not solely based on pilot symbols, but
also on data symbols. This approach is an instance of a joint
processing of data and pilot symbols in contrast to the separate
processing in conventional receivers. To evaluate the payoff for
the increased receiver complexity with joint processing, it is
important to study the possible performance gain that can be
achieved by a joint processing, e.g., in form of an iterative
code-aided channel estimation and decoding based receiver,
in comparison to a separate processing.

Therefore, in the present work we will evaluate the perfor-
mance of a joint processing in comparison to synchronized
detection with a solely pilot based channel estimation based
on the achievable rate. Regarding the channel statistics we
assume a stationary Rayleigh flat-fading channel as it is
usually applied to model the fading in a mobile environment
without a line of sight component. Furthermore, we assume
that the power spectral density (PSD) of the channel fading
process is compactly supported, and that the fading process
is non-regular [3]. Moreover, we assume that the receiver is

aware of the law of the channel, while neither the transmitter
nor the receiver knows the realization of the fading process.

For the case of synchronized detection with a solely pilot
based channel estimation there exist already bounds on the
achievable rate [4]. In contrast, for the case of joint processing
there is not much knowledge on the achievable rate. Very
recently, in [5] the value of joint processing of pilot and data
symbols has been studied in the context of a block-fading
channel. To the best of our knowledge, there are no results con-
cerning the gain of joint processing of pilot and data symbols
for the case of stationary fading channels. Thus, in the present
work, we give a lower bound on the achievable rate with joint
processing of pilot and data symbols. Besides this lower bound
on the achievable rate with a joint processing of pilot and data
symbols, we identify the nature of the possible gain of a joint
processing in comparison to a separate processing.

II. SYSTEM MODEL
We consider a discrete-time zero-mean jointly proper Gaus-

sian flat-fading channel with the input-output relation
y = Xh+ n (1)

with the diagonal matrix X = diag(x). Here the diag(·) oper-
ator generates a diagonal matrix whose diagonal elements are
given by the argument vector. The vector y = [y1, . . . , yN ]T

contains the channel output symbols in temporal order. Anal-
ogously, x, n, and h contain the channel input symbols, the
additive noise samples, and the channel fading weights. All
vectors are of length N .

The samples of the additive noise process are i.i.d. zero-
mean jointly proper Gaussian with variance σ2

n.
The channel fading process is zero-mean jointly proper

Gaussian with the temporal correlation characterized by
rh(l) = E[hk+lh∗

k]. Its variance is given by rh(0) = σ2
h,

and, due to technical reasons, it is assumed to be absolutely
summable, i.e.,∑∞

l=−∞ |rh(l)| <∞. The PSD of the channel
fading process is defined as

Sh(f) =
∞∑

m=−∞
rh(m)e−j2πmf , |f | ≤ 0.5. (2)

We assume that the PSD exists, which for a jointly proper
Gaussian fading process implies ergodicity. Furthermore, we
assume the PSD to be compactly supported within the interval
[−fd, fd] with fd being the maximum Doppler shift and
0 < fd < 0.5. This means that Sh(f) = 0 for f /∈ [−fd, fd].
The assumption of a PSD with limited support is motivated by
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the fact that the velocity of the transmitter, the receiver, and
of objects in the environment is limited. To ensure ergodicity,
we exclude the case fd = 0.

The transmit symbol sequence consists of data symbols with
an average power σ2

x and periodically inserted pilot symbols
with a fixed power σ2

x. Each L-th symbol is a pilot symbol. The
pilot spacing is chosen such that the channel fading process
is sampled at least with Nyquist rate, i.e.,

L < 1/(2fd). (3)
In the following we use the subvectors xD containing all

data symbols of x and xP containing all pilot symbols of x.
Correspondingly, we define hD, hP , yD, yP , nD, and nP .

The processes {xk}, {hk} and {nk} are assumed to be mu-
tually independent. The mean SNR is given by ρ = σ2

xσ2
h/σ2

n.

III. THE NATURE OF THE GAIN BY JOINT PROCESSING OF
DATA AND PILOT SYMBOLS

Before we quantitatively discuss the value of a joint pro-
cessing of data and pilot symbols, we discuss the nature of
the possible gain of such a joint processing in comparison to
a separate processing of data and pilot symbols. The mutual
information between the transmitter and the receiver is given
by I(xD;yD,yP ,xP ). As the pilot symbols are known to the
receiver, the pilot symbol vector xP is found at the RHS of
the semicolon. We separate I(xD;yD,yP ,xP ) as follows
I(xD;yD,yP ,xP )

(a)
= I(xD;yD|yP ,xP ) + I(xD ;yP |xP )

+ I(xD;xP )
(b)
= I(xD;yD|yP ,xP ) (4)

where (a) follows from the chain rule for mutual information
and (b) holds due to the independency of the data and pilot
symbols. The question is, which portion of I(xD;yD|yP ,xP )
can be achieved by synchronized detection with a solely pilot
based channel estimation, i.e., with separate processing.
A. Separate Processing

The receiver has to find the most likely data sequence xD

based on the observation y while knowing the pilots xP , i.e.,
x̂D=arg max

xD∈CD

p(y|x)= arg max
xD∈CD

p(yD|xD,yP ,xP ) (5)
with the set CD containing all possible data sequences xD .
The probability density function (PDF) p(yD|xD,yP ,xP )
is proper Gaussian and, thus, completely described by the
conditional mean and covariance

E [yD|xD,yP ,xP ] = XDE [hD|yP ,xP ] = XDĥpil,D (6)
cov[yD|xD,yP ,xP ] = XDRepil,DXH

D + σ2
nIND (7)

where XD = diag(xD) and IND is an identity matrix of
size ND ×ND with ND being the length of nD. The vector
ĥpil,D is an MMSE channel estimate at the data symbol time
instances based on the pilot symbols, which is denoted by the
index pil. Furthermore, the corresponding channel estimation
error epil,D = hD − ĥD is zero-mean proper Gaussian and
Repil,D = E

[
epil,DeHpil,D|xP

]
is its correlation matrix, which

is independent of yP due to the principle of orthogonality.

Based on (6) and (7) conditioning of yD on xD,yP ,xP is
equivalent to conditioning on xD, ĥpil,D,xP , i.e.,

p(yD|xD,yP ,xP ) = p(yD|xD, ĥpil,D,xP ) (8)
as all information on hD delivered by yP is contained in ĥpil,D
while conditioning on xP . Thus, (5) can be written as
x̂D=argmax

xD∈CD

p(yD|xD,ĥpil,D,xP)=argmax
xD∈CD

p(y|xD ,ĥpil,xP).

(9)
For ease of notation in the following we will use the metric on
the RHS of (9) where ĥpil corresponds to ĥpil,D but also con-
tains channel estimates at the pilot symbol time instances, i.e.,
ĥpil = E [h|yP ,xP ]. Based on ĥpil, (1) can be expressed by

y = X(ĥpil + epil) + n (10)
where epil is the estimation error including the pilot symbol
time instances. As the channel estimation is an interpolation,
the error process is not white but temporally correlated, i.e.,

Repil = E
[
epileHpil|xP

] (11)
is not diagonal, cf. (21). Thus, the PDF in (9) is given by
p(y|xD, ĥpil,xP ) = CN

(
Xĥpil,XRepilX

H + σ2
nIN

)
(12)

where CN (µ,C) denotes a proper Gaussian PDF with mean µ
and covariance C and where IN is the N×N identity matrix.1

Note that corresponding to (8), we can also rewrite (4) as
I(xD;yD|yP ,xP ) = I(xD;yD|ĥpil,xP )

(a)
= I(xD;yD|ĥpil)

and where (a) holds as the pilot symbols are deterministic.
However, typical channel decoders like a Viterbi decoder

are not able to exploit the temporal correlation of the channel
estimation error. Therefore, the decoder performs mismatch
decoding based on the assumption that the estimation error
process is white, i.e., p(y|xD , ĥpil,xP ) is approximated by
p(y|xD, ĥpil,xP ) ≈CN

(
Xĥpil,σ2

epilXXH + σ2
nIN

)
. (13)

As it is assumed that the channel is at least sampled with
Nyquist frequency, see (3), for an infinite block length N →
∞ the channel estimation error variance σ2

epil is independent
of the symbol time instant [4] and is given by

σ2
epil =

∫ 1
2

f=− 1
2

Sepil(f)df =

∫ 1
2

f=− 1
2

Sh(f)
ρ
L

Sh(f)
σ2
h

+ 1
df (14)

where the PSD of the channel estimation error process Sepil(f)
is given in (21). Hence, the variance of the channel estimation
process, i.e., of the entries of ĥpil, is given by σ2

h−σ2
epil , which

follows from the principle of orthogonality.
As the information contained in the temporal correlation of

the channel estimation error is not retrieved by synchronized
detection with a solely pilot based channel estimation, the
mutual information in this case corresponds to the sum of

1Note that for the case of data transmission only (12) becomes p(y|xD) =
CN (0,XRhX

H + σ2
nIN ) as in this case ĥpil = 0 and Repil = Rh.
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the mutual information for each individual data symbol time
instant. As, obviously, by this separate processing information
is discarded, the following inequality holds

lim
N→∞

I(xD;yD|ĥpil)
N

=I ′(xD;yD|ĥpil)≥
L−1
L

I(xDk ;yDk|ĥpil) (15)

where I ′ denotes the mutual information rate and the index
Dk denotes an arbitrarily chosen data symbol.

As the LHS of (15) is the mutual information of the channel
and the RHS of (15) is the mutual information achievable with
synchronized detection with a metric corresponding to (13)
and a solely pilot based channel estimation, i.e., a separate
processing, the difference of both terms upper-bounds the
possible gain due to joint processing of data and pilot symbols.
The additional information that can be gained by a joint
processing in contrast to separate processing is contained in the
temporal correlation of the channel estimation error process.

Regarding synchronized detection in combination with a
solely pilot based channel estimation, i.e., separate processing,
in [4] bounds on the achievable rate, i.e., on the RHS of
(15), are given. In Fig. 1 these bounds are shown for i.i.d.
zero-mean proper Gaussian data-symbols. These bounds show
that the achievable rate with separate processing is decreased
in comparison to perfect channel knowledge in two ways.
First, time instances used for pilot symbols are lost for data
symbols, and secondly, the average SNR is decreased due to
the channel estimation error variance.

IV. JOINT PROCESSING OF DATA AND PILOT SYMBOLS
Now, we give a new lower bound on the achievable rate for

a joint processing of data and pilot symbols. The following
approach can be seen as an extension of the work in [5] for
the case of a block-fading channel to the stationary Rayleigh
flat-fading scenario discussed in the present work. Therefore,
analogous to [5] we decompose and lower-bound the mutual
information between the transmitter and the receiver as follows
I(xD;yD,yP,xP)

(a)
= I(xD;yD,yP,xP,h)−I(xD;h|yD,yP,xP)

= I(xD;yD,h)−h(h|yD,yP ,xP )+h(h|xD,yD,yP ,xP )
(b)
≥ I(xD;yD,h)−h(h|yP ,xP)+h(h|xD,yD,yP ,xP ) (16)

where (a) follows from the chain rule for mutual information
and (b) is due to the fact that conditioning reduces entropy.
The first term on the RHS of (16) is the mutual information
in case of perfect channel knowledge.

Now we deviate from [5] and rewrite the RHS of (16) as
(16)

(a)
= I(xD;yD,h)− h(h|ĥpil,xP ) + h(h|ĥjoint,xD,xP )

(b)
= I(xD;yD,h)− h(epil|xP ) + h(ejoint|xD,xP )
(c)
= I(xD ;yD,h)−logdet

(
πeRepil

)
+logdet

(
πeRejoint

) (17)
where for (a) we have substituted the conditioning on yP

by ĥpil, which is possible as the estimate ĥpil contains the
same information on h as yP while conditioning on xP .
Corresponding to the solely pilot based channel estimate ĥpil,

based on xD, xP , yD, and yP , we can calculate the estimate
ĥjoint, which is based on data and pilot symbols. Like ĥpil this
estimate is a MAP estimate, which, due to the jointly Gaussian
nature of the problem, is an MMSE estimate, i.e.,

ĥjoint = E [h|yD,xD,yP ,xP ] . (18)
Thus, for (a) we have substituted the conditioning on yD and
yP by conditioning on ĥjoint in the third term, as ĥjoint contains
all information on h that is contained in yD and yP while xD

and xP are known. For the second term in equality (b) we have
used (10), the fact that the addition of a constant does not
change differential entropy and that the estimation error epil
is independent of the estimate ĥpil. Analogously, for the third
term we used the separation of h into the estimate ĥjoint and
the corresponding estimation error ejoint which depends on xD

and xP and is independent of ĥjoint. Finally, (c) holds as the
estimation error processes are zero-mean jointly proper Gaus-
sian. The error correlation matrices are given by (11) and by

Rejoint = E
[
ejointeHjoint|xD,xP

]
. (19)

The estimation error ejoint depends on the distribution of
the data symbols xD . It can be shown that the differential
entropy rate h′(ejoint|xD,xP ) = limN→∞

1
N h(ejoint|xD,xP )

is minimized for a given average transmit power σ2
x if the

data symbols have constant modulus (CM). Due to lack of
space the proof given in [6] is not shown here.

Thus, with (16) and (17) a lower bound for the achievable
rate with joint processing of data and pilot symbols is given by
I′(xD;yD,yP ,xP ) = lim

N→∞

1

N
I(xD;yD,yP ,xP )

≥ lim
N→∞

1

N

{
I(xD ;yD,h)−log det

(
Repil

)
+log det

(
Rejoint,CM

)}

(a)
= lim

N→∞

1

N
I(xD ;yD,h)−

∫ 1
2

− 1
2

log

(
Sepil(f)

Sejoint,CM(f)

)
df (20)

with Rejoint,CM corresponding to (19), but under the assumption
of CM data symbols with transmit power σ2

x. Note that the
CM assumption has only been used to lower bound the third
term at the RHS of (17), and not the whole expression at the
RHS of (17). For (a) in (20) we have used Szegö’s theorem on
the asymptotic eigenvalue distribution of Hermitian Toeplitz
matrices [7]. Sepil(f) and Sejoint,CM(f) are the PSDs of the
channel estimation error processes, on the one hand, if the
estimation is solely based on pilot symbols, and on the other
hand, if the estimation is based on data and pilot symbols,
assuming CM data symbols. They are given by [6]

Sepil(f) =
Sh(f)

ρ
L

Sh(f)
σ2
h

+ 1
, Sejoint,CM(f) =

Sh(f)

ρSh(f)
σ2
h

+ 1
. (21)

The first term on the RHS of (20) is the mutual information
rate in case of perfect channel state information, which for an
average power constraint is maximized with i.i.d. zero-mean
proper Gaussian data symbols. Thus, we get the following
lower bound on the achievable rate with joint processing

RL,joint =
L− 1

L
Cperf −

∫ 1
2

− 1
2

log

( ρ
σ2
h
Sh(f) + 1

ρ
Lσ2

h
Sh(f) + 1

)
df (22)
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where Cperf corresponds to the coherent capacity with

Cperf = Eh

[
log

(
1+ρ

|h|2

σ2
h

)]
=

∫ ∞

z=0
log (1+ρz) e−zdz (23)

and the factor (L−1)/L arises as each L-th symbol is a pilot.
A. Lower Bound on the Achievable Rate for a Joint Processing
of Data and Pilot Symbols and a Fixed Pilot Spacing

Equation (22) is a lower bound on the achievable rate with
joint processing of data and pilot symbols, for a given pilot
spacing L and stationary Rayleigh flat-fading.

For the special case of a rectangular PSD2 Sh(f), i.e.,

Sh(f) =

{
σ2
h

2fd
for |f | ≤ fd

0 otherwise (24)

the lower bound in (22) becomes

RL,joint
∣∣
rect.Sh(f)

=
L−1

L

∫ ∞

z=0
log(1+ρz)e−zdz−2fdlog

(
ρ+2fd
ρ
L+2fd

)
.

(25)
B. Lower Bound on the Achievable Rate for a Joint Processing
of Data and Pilot Symbols and an Arbitrary Pilot Spacing

The lower bound in (25) depends on the pilot spacing L
and can be enhanced by calculating the supremum of (25)
with respect to L. In this regard, it has to be considered that
the pilot spacing L is an integer value. Furthermore, we have
to take into account that the derivation of the lower bound in
(25) is based on the assumption that the pilot spacing is chosen
such that the channel fading process is at least sampled with
Nyquist rate, see (3). For larger L the estimation error process
is no longer stationary, which is required for our derivation.3

For these conditions, the lower bound (25) is maximized for
Lopt = /1/(2fd)0 (26)

which can be observed based on differentiation of (25) w.r.t.
L and numerical evaluation. Note that Lopt is not necessarily
the L which maximizes the achievable rate.

V. NUMERICAL EVALUATION
Fig. 1 shows a comparison of the bounds on the achievable

rate for separate and joint processing of data and pilot symbols.
On the one hand, the lower bound on the achievable rate
for joint processing in (25) is compared to bounds on the
achievable rate with separate processing of data and pilot
symbols for a fixed pilot spacing, i.e., [4,(22)] and [4,(23)] for
zero-mean proper Gaussian data symbols. As the upper and
lower bound on the achievable rate with separate processing
are relatively tight, we choose the pilot spacing such that the
lower bound on the achievable rate for separate processing in

2Note that a rectangular PSD Sh(f) corresponds to rh(l) = σ2
hsinc(2fdl)which is not absolutely summable. However, the rectangular PSD can be

arbitrarily closely approximated by a PSD with a raised cosine shape, whose
corresponding correlation function is absolutely summable.

3Periodically inserted pilot symbols do not maximize the achievable rate.
However, we restrict to periodical pilot symbols with a spacing fulfilling (3),
as this enables detection with manageable complexity.
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Fig. 1. Comparison of bounds on the achievable rate with separate processing
to lower bounds on the achievable rate with joint processing of data and pilot
symbols; except of LB joint proc. Lopt, the pilot spacing L is chosen such that
the lower bound for separate processing is maximized; rectangular Sh(f) (24)

[4,(22)] is maximized. Except of very large fd the lower bound
on the achievable rate for joint processing is larger than the
bounds on the achievable rate with separate processing. This
indicates the possible gain while using joint processing of data
and pilot symbols for a given pilot spacing. The observation
that the lower bound for joint processing for very large fd
is smaller than the achievable rate with separate processing
indicates that the lower bound is not tight for these parameters.

On the other hand, also the lower bound on the achievable
rate with joint processing and a pilot spacing that maximizes
this lower bound, i.e., (25) with (26), is shown. Obviously,
this lower bound is larger than or equal to the lower bound
for joint processing while choosing the pilot spacing as it is
optimal for separate processing of data and pilot symbols. This
behavior arises from the effect that for separate processing in
case of small fd a pilot rate is chosen that is higher than
the Nyquist rate of the channel fading process to enhance the
channel estimation quality. In case of a joint processing all
symbols are used for channel estimation anyway. Therefore, a
pilot rate higher than Nyquist rate always leads to an increased
loss in the achievable rate as less symbols can be used for data
transmission.
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Abstract—Outage behavior of non-orthogonal1 selection
decode-and-forward (NSDF) relaying protocol over an asyn-
chronous cooperative network is examined when orthogonal
frequency division multiplexing (OFDM) is used to combat
synchronization error among the transmitting nodes. It is proved
that the asynchronous protocol provides diversity gain greater
than or equal to the one of the corresponding synchronous
counterpart, synchronous NSDF, in the limit of code word length
and throughout the range of multiplexing gain.

I. INTRODUCTION

Cooperative diversity was first proposed as a synchronous
technique [1], [2] to provide spacial diversity with the help of
surrounding terminals; however, because relays are at different
locations (i.e., different propagation delays) and they have their
own local oscillators with no common timing reference, it is
an asynchronous technique in nature.

To combat the synchronization error, two major approaches
have been proposed: delay tolerant space-time schemes (see
[3], [4] and references therein), and OFDM [5]. While it is
usually assumed in the former schemes that asynchronous
delays are integer factor of the symbol interval, OFDM al-
lows the delays to be any real number. In [6], the effect
of the synchronization error on diversity multiplexing gain
tradeoff (DMT) [7] of an orthogonal decode-and-forward (DF)
cooperative network with two relays is examined when the
maximum possible relative delay between the relays is less
than a symbol interval. In [8], authors show that by allowing
the source and the relays to transmit over proper portions of
a cooperative frame, the better diversity gain can be achieved
for each multiplexing gain.

In this paper, we analyze the outage behavior of NSDF
protocol over a general two-hop relay network when OFDM
is used to offset the synchronization error among transmitting
nodes. In contrast to [6], we do not restrict the relative delays
to be less than a symbol interval. In addition, we let the source
and the relays to transmit over non-symmetric portions of
a cooperative frame to maximize the diversity gain at each
multiplexing gain. It is proved that the asynchronous protocol
outperforms the synchronous counterpart in the limit of code
word length and throughout the range of the multiplexing gain.

1A relaying protocol is called orthogonal if the source and relays transmit
in two non-overlapping intervals; otherwise, it is called non-orthogonal.

In the following, the system model and the required back-
ground are presented. DMT analysis of the asynchronous
OFDM NSDF relaying protocol is detailed afterward. The
paper is concluded at the end.

II. PRELIMINARIES
A. Notations, Assumptions, and Definitions

In this work, letters with underline x,X denote vectors, and
boldface uppercase letters X denote matrices. The superscripts
(·)T and (·)† denote the transpose and conjugate transpose
of the corresponding vector or matrix, respectively. In is the
identity matrix of dimension n. diag{·} indicates a diagonal or
a block diagonal matrix of its arguments. The symbol ⊗ indi-
cates the Kronecher product. .

= is used to show the exponential
equality. For example, f(ρ) .

= ρb if limρ→∞
log f(ρ)
log ρ = b. (x)+

is considered as max{0, x}.
We assume half-duplex signal transmission. All channels

are assumed to be quasi-static. They are independent and
identically distributed (i.i.d.) complex Gaussian random vari-
ables with zero mean and unit variance CN (0, 1). Each node
knows channel state information (CSI) of its incoming links.
The destination also knows the asynchronous delays of its
incoming links.

Define {C(ρ)} as a family of variable rate codes each of
them is used at the corresponding signal to noise ratio ρ. This
family of codes is said to achieve the multiplexing gain r and
the diversity gain d(r) if

lim
ρ→∞

R(ρ)

log ρ
= r, lim

ρ→∞

logPe(ρ)

log ρ
= −d(r), (1)

where R(ρ) is the rate and Pe(ρ) is the average error prob-
ability of the code C(ρ). The outage diversity is obtained by
replacing Pe(ρ) with the outage probability PO in the above
formula. It is proved that the outage diversity is a tight upper
bound for the diversity gain of a coding scheme [7].
B. System Model

We consider a network containing one source node, one
destination node, and M relay nodes as shown in Fig. 1. hi

and gi are fading coefficients represent the links from the i-
th transmitting node to the destination and from the source to
the i-th relay, respectively. Communication between the source
and the destination is carried out in two phases. First, the
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Fig. 1. System structure

source broadcasts its message to relays and the destination in
p channel uses. Second, those relays that can fully decode the
source message retransmit it to the destination in q channel
uses. Assuming 4 is the length of a cooperative frame, 4 =
p + q. The cooperation is avoided whenever it is beneficial
to do so. In this case, the source transmits to the destination
without help of the relays. Each node is supported by an i.i.d.
Gaussian random code book which is independent from the
other nodes’ code books. The source’s transmitted signal in
the first phase is given by

x′
0(t) =

p−1∑

i=0

x′
0(i)g0(t− iTs), (2)

where x′
0 = [x′

0(0), x
′
0(1), . . . , x

′
0(p− 1)]T is the transmitted

code word corresponding to the source message, Ts is the
symbol interval, and g0(t) is a unit energy shaping waveform
with non-zero duration Ts over t ∈ [0, Ts]. The received
signals at the destination and the i-th relay are modeled by

yd(t) = h0x
′
0(t) + zd(t), 0 ≤ t ≤ pTs, (3)

yri(t) = gix
′
0(t) + zri(t), 0 ≤ t ≤ pTs, (4)

where zd(t) and zri(t) are additive noises at the destination
and the i-th relay modeled by white Gaussian noises with zero
mean and variances σ2

d and σ2
r , respectively.

Let D be a set containing index of the nodes participating in
the second phase (not in outage). As the relaying protocol is
non-orthogonal, D contains 0, index of the source. Similarly,
the i-th relay, i ∈ D, uses a unit energy shaping waveform
gi(t) with nonzero duration Ts to transmit its code words
of length q in the second phase. This signal is received at
the destination by τi second delay with reference to the first
received signal. τis are finite values less than or equal to τmax

which is the maximum amount of asynchronous delay. Without
loss of generality, we assume that the source signal is the
earliest received signal at the destination, and the delays of
the other received signals are measured with reference to this
signal, i.e., τ0 = 0.

Let xi(t) be the transmitted signal by the i-th node. The
received signal at the destination is modeled by

yd(t) =
∑

i∈D
hixi(t− τi) + zd(t), (5)

yd(t) is processed through parallel matched filters correspond-
ing to the transmitting links. The output of the i-th matched
filter sampled at t = (k + 1)Ts + τi, is given by

ydi(k) =

∫ (k+1)Ts+τi

kTs+τi

yd(t)g
∗
i (t− kTs − τi)dt. (6)

C. Asynchronous OFDM Space-Time Codes
In our work, OFDM is used to combat the synchronization

error. Assume that the i-th node participates in the second
phase, i.e., i ∈ D. Its code word of length n, xi, is first passed
through an inverse discrete Fourier Transform (IDFT) filter,
IDFT{xi} = X i, and then supported by a cyclic prefix (CP)
of length u = 6 τmax

Ts
7, where 6x7 denotes the smallest integer

greater than x, to produce Xcp
i of length q = n + u. The

received signal at the destination is given by

Yd(t) =
∑

i∈D
hi

q−1∑

j=0

Xcp
i (j)gi(t− jTs − τi) + Zd(t), (7)

where Xcp
i (j) is the j-th entry of Xcp

i . For i ≥ j, i, j ∈ D,
define the relative delay τij as

τij ! τi − τj . (8)
As i ≥ j, then τi,j ≥ 0. The fractional delay τ̃ij is defined as

τ̃ij ! τij − aijTs, (9)
where aij = / τij

TS
0 ≥ 0, with /x0 denoting the largest integer

smaller than or equal to x, and 0 ≤ τ̃ij < Ts.
III. ASYNCHRONOUS OFDM NSDF PROTOCOL

A. Signal Model
Let Em, the event of any m relays participates in the second

phase, occurs. E0 corresponds to the case that only the source
node transmits in the second phase. D = {0, 1, 2, . . . ,m} is
the index set pointing out to participating nodes in the second
phase. Without loss of generality, we assume that 0 = τ0 ≤
τ1 ≤ τ2 ≤ . . . ≤ τm. The sampled signal at the output of the
i-th matched filter (i = 0, 1, . . . ,m) is modeled by [9]
Y d,i(k) = hiX

cp
i (k) + Zd,i(k)+

i−1∑

j=0

hj [X
cp
j (k + aij + 1)B∗

ij +Xcp
j (k + aij)C

∗
ij ]+

m∑

j=i+1

hj [X
cp
j (k − aji − 1)Bji +Xcp

j (k − aji)Cji], (10)

where Yd,i(k) is the k-th entry of the output of the i-th
matched filter, and for i ≥ j, Bij =

∫ Ts

0 gi(t+Ts−τ̃ij)g∗j (t)dt,
Cij =

∫ Ts

0 gi(t− τ̃ij)g∗j (t)dt. Define
αij(k) ! [Cij +Bije

−j 2π
n k]ej

2π
n kãij , (11)

where ãij = 0 when τ̃i0 ≥ τ̃j0, and ãij = 1 when τ̃i0 <
τ̃j0. It can be checked that, for j > i,αij(k) = α∗

ji(k), k =
0, 1, . . . , n− 1 and i, j = 0, 1, . . . ,m. Let

Dij = diag{αij(0),αij(1), . . . ,αij(n− 1)}, (12)
Ei = diag{1, e−j 2π

n i, . . . , e−j 2π
n (n−1)i}. (13)
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At the output of each matched filter CP is discarded. The
result is then passed through a Discrete Fourier Transform
(DFT) filter. The outputs can be written in a matrix form as

y = Hx+ z, (14)
where

x =
[
xT
0 xT

1 . . . xT
m

]T

y =

[
yT
d,0

(
E†

1yd,1

)T
. . .

(
E†

1yd,m

)T
]T

,

z =

[
zTd,0

(
E†

1zd,1

)T
. . .

(
E†

1zd,m

)T
]T

,

H = Ξ(In ⊗ Ĥ)U. (15)
U = diag{In,Ea10 , . . . ,Eam0}, Ĥ = diag{h0, h1, . . . , hm},
and

Ξ =





In D10 D20 . . . Dm0

D†
10 In D21 . . . Dm1
... ... ... ...

D†
m0 D†

m1 D†
m2 . . . In




. (16)

Equation (14) represents a simple multiple-input multiple-
output (MIMO) channel model with correlated noise vector
z for the underlying system. The covariance matrix of z is
calculated as [9]

Φ = nσ2
d Ξ. (17)

Clearly, Φ−1 exists if and only if Ξ−1 exists.
Proposition 1: Ξ is semi-positive definite. i.e., detΞ ≥ 0.

The equality holds if and only if ∃ c ∈ C1×m, ∃ k ∈
{0, . . . , n− 1} such that [9].

(
1∑

i=0

g(t+ iT s)e−j 2π
n ki

)
c† = 0, ∀t ∈ [0, Ts], (18)

where g(t) ! [g0(t), g1(t− τ̃10), g2(t− τ̃20), . . . , gm(t− τ̃m0)],
and C is the field of complex numbers.
B. DMT Analysis

The outage probability PO is calculated as follows.

PO =
M∑

m=0

Pr(IEm < R | Em)Pr(Em),

where IEm is the mutual information between the source and
the destination when Em occurs.
Lemma 1: Pr(Em) is given by [9]

Pr(Em)
.
=






ρ−(1− %r
p )(M−m), 0 ≤ r ≤ p

+ ,
0, p

+ < r ≤ 1, 1 ≤ m ≤M
1, p

+ < r ≤ 1, m = 0.
(19)

When Em occurs, the mutual information between the source
and the destination is given by [9]

IEm =
p

4
log(1 + ρ|h0|2) +

1

4
log det

(
I(m+1)n + nEHH†Φ−1

)
, (20)

where the first and the second terms on the right hand side
are the resulted mutual information between the transmitting
nodes and the destination, respectively, in the first and the
second phases. Define A ! I(m+1)n + nEHH†Φ−1. By
substituting (15) and (17) into (20) and considering the fact
that U is a Hermitian matrix, we have

detA = det
(
I(m+1)n + ρΞ(In ⊗ ĤĤ†)

)
. (21)

Ξ can be decomposed as Ξ = VΛV†, where V is a unitary
matrix and Λ is a diagonal matrix containing eigenvalues of
Ξ on its main diagonal. By assuming proper design of the
shaping waveforms, all eigenvalues of Ξ are finite positive
values bounded from zero. Hence, their ρ exponents at high
SNR regime is zero. By replacing all the eigenvalues by the
smallest one, say ξ, the mutual information between the source
and the destination is lower bounded. Since the ρ exponent of
ξ is zero, this bound is tight. We have,

detA .
= det

(
I(m+1)n + ρξ(In ⊗ ĤĤ†)

)

.
=

m∏

i=0

(1 + ρ|hi|2)n.

Define γi ! − log |hi|2
log ρ . For large values of ρ, (1 + ρ|hi|2) A

ρ(1−γi)
+ . After some mathematical manipulation, we obtain

IEm =

[
p+ n

4
(1− γ0)

+ +
n

4

m∑

i=1

(1− γi)
+

]
log ρ. (22)

As can be seen, the resulted mutual information among the
transmitting nodes and the destination behaves similar to the
one of a parallel channel with (m+1) independent links. PO|Em

is obtained as follows [9].
PO|Em

= P (IEm < R)
.
= ρ−dEm(r)

where

dEm(r) = inf
p+n

% (1−γ0)++n
%

∑m

i=1
(1−γi)+<r

m∑

i=0

γi. (23)

By solving the above optimization problem, we have [9]
Lemma 2:

dEm(r) =

{
1 +m− +

nr, 0 ≤ r ≤ mn
+ ,

1 + mn
p+n −

+
p+nr,

mn
+ < r ≤ p+n

+ .

Define κ ! p
n . When m ≥ κ + 1, then mn

+ ≥ p+n
+ . Hence,

dEm(r) = 1 +m− 4

n
r, 0 ≤ r ≤ p+ n

4
.

For the single relay network, theorem 1 concludes the results.
Theorem 1: DMT of the asynchronous OFDM NSDF pro-

tocol over the single relay cooperative network for a fix κ ≥ 1
is as follows [9].

If 1 ≤ κ ≤ κ̂

d(r) =

{
(1− +

pr) + (1− +
p+nr), 0 ≤ r ≤ η1

1− r, η1 ≤ r ≤ 1,

else if κ ≥ κ̂
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d(r) =






2(1− +
2nr), 0 ≤ r ≤ η2

1 + n
p+n −

+
p+nr, η2 ≤ r ≤ η3

(1− +
pr) + (1− +

p+nr), η3 ≤ r ≤ η1
1− r, η1 ≤ r ≤ 1,

where κ̂ = 1+
√
5

2 , η1 = (p+n)p
(2p+n)+−(p+n)p , η2 = n

+ , and η3 =
p2

(p+n)+ . For the case that κ varies to maximize the diversity
gain, for large length code words we have

d(r) =

{
[1− (1 + 1

κ̂)r] + (1− r), 0 ≤ r ≤ 1
κ̂+1

(1−
√
r) + (1− r), 1

κ̂+1 ≤ r ≤ 1.

The optimum κ corresponding to each r is given by

κ =

{
κ̂, 0 ≤ r ≤ 1

κ̂+1√
r

1−
√
r
, 1

κ̂+1 ≤ r ≤ 1.

Fig. 2 depicts the DMT curves of the asynchronous OFDM
NSDF and the corresponding synchronous protocol over a
single relay network when κ varies to maximize the diversity
gain at each multiplexing gain r. As can be seen, the DMT
performance of the asynchronous protocol performs is the
same as that of the synchronous one in low multiplexing gains
and is better than that in high multiplexing gains.

Calculating DMT in a general network with any number of
relays, say M , is straightforward. However, because too many
regions for r and κ should be considered, it is cumbersome.
Alternatively, this procedure is easier if we assume that DMT
of a simpler network containing (M − 1) relays is known.
Let dM (r) be the DMT of an M relay cooperative network
when the cooperation is not avoided throughout the range of
the multiplexing gain. We have,
Theorem 2: DMT of the asynchronous OFDM NSDF re-

laying protocol over a general two-hop cooperative network
with M relays for a fix κ ≥ 1 is as follows [9].

If κ ≤ M +
√
M2 + 4M

2

dM (r) =

{
(1− +

pr) + dM−1(r), 0 ≤ r ≤ p
+

1− +
p+nr,

p
+ ≤ r ≤ p+n

+ ,

else if κ >
M +

√
M2 + 4M

2

dM (r) =






(1− +
pr) + dM−1(r), 0 ≤ r ≤ η1

1 +M − +
nr, η1 ≤ r ≤ η2

1 + Mn
p+n −

+
p+nr, η2 ≤ r ≤ η3

M(1− +
pr) + 1− +

p+nr, η3 ≤ r ≤ η4
1− +

p+nr, η4 ≤ r ≤ η5,

where η1 = (M−1)p2n
+(p2−np−n2) , η2 = Mn

+ , η3 = p2

+(p+n) , η4 = p
+ ,

and η5 = p+n
+ . The resulted DMT is compared to (1 − r)

to determine wether or not avoiding the cooperation. When
κ is allowed to vary to maximize the diversity gain at each
multiplexing gain r, for large length code words we have

d(r) =

{
M [1− (1 + 1

κ̂ )r] + (1− r), 0 ≤ r ≤ 1
1+κ̂

M(1−
√
r) + (1 − r), 1

1+κ̂ ≤ r ≤ 1.
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Fig. 2. DMT of the asynchronous OFDM NSDF and the synchronous NSDF
protocols over a single relay network with optimum values of κ.

where κ̂ = 1+
√
5

2 . The corresponding optimum κ is the same
as that of the single relay network.

For M ≥ 2 the resulted DMT is always better than
that of the corresponding synchronous protocol. DMT of
the asynchronous orthogonal selection DF (OSDF) relaying
protocol is calculated in a similar manner [9].

IV. CONCLUSION
DMT of the asynchronous OFDM NSDF protocol over a

general one-hop cooperative network was examined. It was
shown that asynchronous delays among transmitting nodes
not only decrease the diversity gain, but also increase it
particularly at high multiplexing gains for large length code
words.
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Abstract—We consider the problem of multi-user detection for
randomly spread direct-sequence (DS) coded-division multiple
access (CDMA) over flat fading channels. The analysis focuses
on the case of many users, and large spreading sequences such
that their ratio, defined as the system load, is kept fixed. Single
layer and multi layer coding are analyzed in this setup. The
spectral efficiency, for linear multiuser detectors, is derived
for different decoding strategies. Iterative decoding of multi-
layered transmission with successive interference cancellation
(SIC) is optimized, and the optimal layering power distribution
is obtained. For small system loads, the achievable spectral
efficiency with the broadcast approach and a matched filter
detector exhibits significant gains over single layer coding.

I. INTRODUCTION

Consider the case of many users, and large spreading
sequences, such that the system load β is kept fixed. That
is, K,N → ∞, and β = K/N , where K denotes the
number of users, and N is the spreading sequence length.
The spectral efficiency of direct sequence (DS) CDMA with
random spreading for this regime over fading multiaccess
channels is studied in [1]. In that contribution, ergodic spectral
efficiency is studied, assuming that all users are reliably
decoded regardless of their received powers. The assumption is
that users can adjust their rates according to their experienced
fading level, using, for example, an instantaneous feedback
from the receiver. Unfortunately, such a feedback and ideal
tuning of transmission rates are not always feasible. Thus,
these results can be achieved only on fast fading channels,
where sufficient fading statistics is observed over a single
transmission block. Motivated by practical considerations,
decoding of strongest users on block fading channels is studied
in [2]. In this work, it is assumed that all users transmit at equal
rate and equal power. In this case the receiver can no longer
guarantee reliable decoding of all active users. As a result,
the receiver ranks all active users by their received power and
decodes the transmission of the largest number of users, for
which decoding is successful. The maximal expected sum rate
is referred to as the outage capacity.

In this work, we first derive the spectral efficiency of suc-
cessive interference cancellation (SIC) detectors with iterative
decoding. The main idea here is to keep on trying to decode
users after every SIC stage, as the residual interference is
reduced every iteration, which decreases the effective system
load during decoding. This concept is adopted for multi-
layer multiuser successive decoding, where the optimal power

distribution is derived for maximizing the achievable expected
spectral efficiency.

II. CHANNEL MODEL AND PRELIMINARIES
We describe here the channel model and the basic assump-

tions. Consider the following system model,
y = VHx + n (1)

where x = [x1, ..., xK ] is a vector of length K . An individual
term xk is a sample of a layered coded signal of the kth user,
and {xk} are i.i.d. {xk} ∼ CN (0, P ), where P sets the power
constraint per user. V is an [N×K] signature matrix (i.i.d. with
elements vi,j ∼ CN (0, 1

N ), and n is, without loss of generality,
a normalized AWGN vector n ∼ CN (0, IN ). The channel
matrix H is a diagonal matrix H = diag(h1, h2, ..., hK) of
fading gains, which empirical distribution of {sk} ! {|hk|2}
converges a.s. to a distribution Fs(s) such that EFs [s] = 1.
The channel matrix H remains fixed throughout a transmission
block, which corresponds to a slowly fading channel model.
Note that, since the additive noise is normalized, SNR = P .

The energy per bit to noise spectral density ratio is used
for evaluation of the spectral efficiency and comparison of
different strategies. Its definition is

Eb

No
=

β

Rsum
SNR (2)

where Rsum is the total spectral efficiency, i.e. the sum-rate
in bits per second per Hertz.

It is well known that the spectral efficiency of the opti-
mal multiuser detector is achievable with a minimum mean
square error (MMSE) detector, with successive decoding and
cancellation. It is therefore interesting to study the spectral
efficiency gain with successive decoding and practical linear
detectors such as matched filter or decorrelator.

For a system load β = K
N , the ergodic sum-rate is [1],

C(β, SNR) = lim
K,N→∞

βEs {log(1 + s · η(β)SNR)} (3)
where the expectation is taken w.r.t. the fading gain distribution
Fs(s). The ergodic sum-rate is an upper bound, since its
achievability requires an instantaneous feedback from receiver
to all users. With SIC decoding, after every decoding stage
the subtraction of users decreases the effective system load,
therefore

CSIC = Es




 lim
K,N→∞

K−1∑

j=0

1

N
log

(
1 + sη

(
K − j

N

)
SNR

)


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which converges a.s. to the following integral expression,

CSIC,erg(β, SNR) = Es






β∫

0

dz log (1 + s · η (z)SNR)



 . (4)

Since the MMSE with SIC achieves optimal receiver perfor-
mance, we focus on MF and decorellator detectors for spectral
efficiency analysis. A matched filter detector efficiency is [1]

ηmf (β) =
1

1 + βSNR . (5)

For a decorrelator detector, we use a similar derivation. The
detector efficiency is [1]

ηdec(β) = max(0, 1− β). (6)
III. STRONGEST USERS DETECTION AND SIC

Consider the case that all users transmit the same rate R,
using a single layer code,

R ! log(1 + sthη (β) SNR). (7)
where sth is a rate allocation parameter which governs the
fading gain threshold for reliable decoding. The probability of
outage, in parallel decoding, is Fs(sth). The achievable rate at
the first SIC stage is obtained by decoding in parallel all users
that are not in outage (with single user detectors). Hence,

R0(sth,β) = β(1 − Fs(sth))R (8)
and after cancelling all the reliably decoded users, there is a
fraction βFs(sth) of undecoded users. The mutual interference
reduces after cancellation, and there may exist more users with
fading gains s < sth who can now be decoded. The additional
rate, obtainable at the next stage, is given by

R1(sth,β) = β(Fs(sth)− Fs(s1))R (9)
which expresses the expected sum-rate for parallel decoding
of all users with fading levels s1 ≤ s < sth, where s1 satisfies

s1η (βFs(sth)) = sthη (β) . (10)
This procedure continues similarly to the next stage. We can
express the total achievable rate as follows

Rout = β
∞∑

n=0

(Fs(sn−1)− Fs(sn)) · R = β(1 − Fs(s∞))R (11)

where s0 ! sth, and Fs(s−1) = 1, and

sn = sth
η (β)

η (βFs(sn−1))
, n = 1, 2, ... (12)

It can be shown [3] that there exists a limit 0 ≤ s∞ ≤ sth
for the linear detectors, since Fs(s) is a monotonically non
increasing function, and η(β) is a monotonically decreasing
function. Hence s∞ satisfies the following condition,

s∞η (βFs(s∞)) = sthη (β) . (13)

IV. TWO CODED LAYERS
A higher expected spectral efficiency may be obtained with

coded layering at the transmitter for each user. We begin here
with analysis of two coded layers for a MF detector at the
receiver. Let every user use the following rate allocation

R1 = log

{
1 +

s(1)1 αSNRηmf (β1)

1+s(1)1 αSNRηmf (β1)

}

R2 = log
{
1 + s(1)2 αSNRηmf (β2)

} (14)

where s(1)1 , s(1)2 are the layering fading gain thresholds, and
β1 ! αβ + αβFs(s

(1)
1 ), β2 ! αβFs(s

(1)
2 ) + αβFs(s

(1)
1 )

and αSNR, αSNR result from the power allocated to the
first and second layers, respectively. Note α ! 1 − α, and
α ∈ [0, 1]. The iterative decoding steps are as follows: 1)
Decode, using SIC, the first layer of all decodable users; 2)
Repeat the previous step for the next layer; 3) Repeat 1)-2)
until there are no more decodable users. The reduced system
load after the first iteration is a direct result of (11) and (13)
for a single layer. The iterative SIC decoding converges a.s.
to the following expected spectral efficiency
R2L = β

(
1− Fs

(
s(∞)
1

))
R1 + β

(
1− Fs

(
s(∞)
2

))
R2 (15)

where {s(∞)
i } satisfy the following conditions

s(∞)
1 ηmf

(
αβFs

(
s(∞)
2

)
+ αβFs

(
s(∞)
1

))
= s(1)1 ηmf (β1)

s(∞)
2 ηmf

(
αβFs

(
s(∞)
2

)
+ αβFs

(
s(∞)
1

))
= s(1)2 ηmf (β2)

(16)

A detailed derivation is available at [3]. A similar result is
derived for the case a decorrelator detector is used by the
receiver. The same expression for the average rate as in (15)
can be obtained for a decorrelator, only the rates R1, R2 are
given by

R1 = log

{
1 +

s(∞)
1 αSNRηdec

(
βFs

(
s(∞)
2

))

1+s
(∞)
1 αSNRηdec

(
βFs

(
s
(∞)
2

))
}

R2 = log
{
1 + s(∞)

2 αSNRηdec
(

βFs

(
s(∞)
2

))} (17)

A detailed derivation is available at [3, Proposition 8.1].
The elementary difference between the MF and decorrelator
decoding is that with a MF every decoded layer reduces the
interference, and thus increases the effective system load. With
a decorrelator, the effective system load can be reduced only
after all layers of some user are reliably decoded.

V. THE CONTINUOUS BROADCAST APPROACH
Consider a single-input single-output (SISO) channel,

yi = hxi + ni , (18)
where {yi} are samples of the received symbols, {xi} are the
transmitted complex symbols, satisfying the power constraint
E|x|2 ≤ P . {ni} are the additive noise samples, which are
complex Gaussian i.i.d with zero mean and unit variance
denoted CN (0, 1), and h is the fading coefficient, which
remains fixed during a transmission block, and varies over
time according to a distribution density function fs(h). Note
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that since the additive noise is normalized and E[|h|2] = 1,
SNR = P .

In the continuous broadcast approach [4], every layer is
associated with a channel state s = |h|2. The incremental
differential rate as function of the channel state is

dR(s) = log

(
1 +

sρ(s)ds

1 + sI(s)

)
=

sρ(s)ds

1 + sI(s)
(19)

where ρ(s) is the transmit power density function. Thus ρ(s)ds
is the transmit power of a layer parameterized by s, associated
with fading state s. Information streams intended for receivers
indexed by u > s are undetectable and play a role of
additional interfering noise, denoted by I(s). The interference
for a fading power s is I(s) =

∫∞
s ρ(u)du, which is a

monotonically decreasing function of s. The total transmitted
power is the overall collected power assigned to all layers
I(0) = P . The expected rate is achieved with sufficiently
many transmission blocks, each experiencing an independent
fading realization. Therefore, the expected rate Rbs is

Rbs =

∞∫

0

du fs(u)

u∫

0

dR(s)ds =

∞∫

0

du(1− Fs(u))
uρ(u)

1 + uI(u)

where fs(u) is the pdf of the fading power, and Fs(u)
is the corresponding cdf. Optimization of Rbs for maximal
throughput w.r.t. the power distribution I(s) can be found by
solving the associated constrained Eüler equation [4].
A. Matched Filter Detector

For the multiuser channel model defined in (1), the achiev-
able rates strongly depend on the transmission scheme and
the decoding strategy. The decoding strategy which is adopted
here is the iterative decoding, just like described for two coded
layers. The achievable continuous layering rate is given by

Rsum,bs(I) = β

∞∫

0

ds(1− Fs(s))
sηmf (G)ρ(s)

1 + sηmf (G)I(s)

!
∫ ∞

0
dsJ(s, I, I ′) (20)

where G corresponds to the remaining layers per user, which
induce the mutual interference,

G ! β

SNR

∞∫

0

Fs(s)ρ(s)ds !
∞∫

0

dsZ(s, I, I ′) (21)

where ρ(s) = −I ′(s). The optimization of (20) w.r.t the
residual interference constraint in (21) can be solved by fixing
the interference parameter G to an arbitrary value such that
0 < G ≤ β. For such a G the optimization in (20) is a standard
variational problem with a residual interference constraint on
top of the power constraint I(0) = P . The optimization
problem is therefore,

max
I

∞∫

0
dsJ(s, I, I ′)

s.t. G ≥
∞∫

0
dsZ(s, I, I ′)

(22)

We can write the Lagrangian form

L =

∞∫

0

dsJ(s, I, I ′) + λ



G−
∞∫

0

dsZ(s, I, I ′)



 (23)

The Eüler-Lagrange condition for extremum can be derived,
and the optimal layering power distribution can be expressed
in a closed form, as summarized in the next proposition.
Proposition 5.1: The optimal power distribution, which

maximizes the expected sum-rate of a continuous broadcast
approach (22), with matched-filter multiuser detection and
iterative SIC decoding, is given by

I(s) =






SNR s < s0

−SNR +

√
SNR2 +

4λβ(1 − Fs(s))SNR
ηmf (G)s2F ′

s(s)

2λβ
−

1

sηmf (G)
s0 ≤ s ≤ s1

0 s > s1

with s1 is the smallest fading gain for which I(s1) = 0, and
the left boundary condition on s0 satisfies I(s0) = SNR. The
Lagrangian multiplier λ is obtained by an equality for the
residual interference constraint (21), as specified by

∫ s1

s0

Fs(s)I
′(s)ds = −GSNR

β
(24)

Proof: (sketch) Details are available in [3, Proposition 8.4].
The first step is to explicitly write the extremum condition of
the Lagrangian in (23). The extremum condition is given by
the Eüler-Lagrange equation which is a necessary condition
for a zero variation,

JI −
∂JI′

∂s
− λ

(
ZI −

∂ZI′

∂s

)
= 0 (25)

which can be explicitly formulated
λ

β

SNRF ′
s(s)T

2 + F ′
s(s)sηmfT − (1− Fs(s))ηmf = 0 (26)

where we defined T ! 1 + sηmfI . Solving I from (26)
yields the optimal power allocation. It remains to apply the
subsidiary conditions on the optimal solution, such that the
power constraint and the residual interference constraint (21)
are met with equality.
B. Decorrelator Detector

The decoding algorithm for a decorrelator multiuser detector
is similar. In the continuous setting the detector efficiency is
updated according to the number of users for which ALL
layers are decoded. This is the reason the upper boundary of
the power distribution is actually a subject for optimization.
The solution is obtained by solving the corresponding variable
end point variational optimization problem.

The average achievable rate with a decorrelator detector, in
its general form, is given by

Rbs,decorr = β

s−
b∫

s+a

ds(1− Fs(s))
sρ(s)η (Fs(sb)β)

1 + sI(s)η (Fs(sb)β)

+ (1− Fs(sa))R0(sa) + (1 − Fs(sb))R1(sb) (27)
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where I(s−a ) = SNR, and I(s+a ) is the remaining power
allocation for the continuous and last layers. The rate of the
first and last layers, respectively, is

R0(sa) = β log
(
1 + saη(βFs(sb))(SNR−I(s+a ))

1+saη(βFs(sb))I(s
+
a )

)

R1(sb) = β log
(
1 + sbη (βFs(sb)) I(s

−
b )

) (28)

where I(s+b ) = 0. The optimal power allocation and its
derivation are available in [3, Proposition 8.5]. It is shown
in [3, Proposition 6.1] that equal rates allocation for all users
maximizes the spectral efficiency, for any number of layers.

VI. NUMERICAL RESULTS
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Fig. 1. Expected spectral efficiency for a Rayleigh fading channel, receiver
uses a MF multiuser detector (β = 0.1).
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Fig. 2. Expected spectral efficiency for a Rayleigh fading channel, receiver
uses a decorrelator multiuser detector (β = 0.8).

Figures 1 and 2 demonstrate the expected spectral efficiency
for MF and decorrelator detectors, respectively. Different
transmission and decoding strategies are compared. The single
layer ergodic bound is given in (4). Equal fixed rate with
single iteration refers to the case no SIC is used. The spectral
efficiency for single layer iterative decoding is specified in
(11), and for two layer coding with iterative decoding in (15).
The broadcast approach achievable spectral efficiency, with
iterative decoding, is given in (22) for a MF detector.

VII. CONCLUSION
The spectral efficiency of practical linear multiuser detectors

such as MF and decorrelator employing SIC receivers was de-
rived. Single layer and multi-layer coding per user were stud-
ied. The multi-layer coding expected sum-rate, under iterative
decoding with linear multiuser detectors, is optimized, and the
optimal power distribution is obtained. The achievable spectral
efficiency for a linear MF detector shows significant gains over
the single layer coding approach. The interesting observation
here is that the expected spectral efficiency exceeds the single
layer ergodic sum-capacity. The ergodic bound assumes that
every user transmits at a rate matched to its decoding stage
and channel realization. For a single user setting the ergodic
bound is always an upper bound for the broadcast approach.
However, in our multiuser setting a MF detector is used for
the ergodic bound, and the MF detection is information lossy.
In the broadcast approach the MF detection is performed over
and over for every layer according to the iterative decoding
scheme. Therefore the broadcast approach can provide spectral
efficiencies exceeding those of a single layer coding with
channel side information, when a MF detector is used.

It is worth noting that systems employing decorrelator
detection, can significantly gain from using SIC, at system
loads close to 1. For such system loads, single user detection
is interference limited, and therefore achievable rate can be
infinitesimally small. With layering and iterative SIC, the lay-
ers decoded first must have low rates. Gradually, the effective
system load reduces, and higher expected spectral efficiencies
can be achieved.
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Abstract—We establish a construction of optimal authentica-
tion codes achieving perfect multi-fold secrecy by means of com-
binatorial designs. This continues the author’s work (ISIT 2009,
cf. [1]) and answers an open question posed therein. As an
application, we present the first infinite class of optimal codes
that provide two-fold security against spoofing attacks and at the
same time perfect two-fold secrecy.

I. INTRODUCTION

Authentication and secrecy are two crucial concepts in
cryptography and information security. Although independent
in their nature, various scenarios require that both aspects
hold simultaneously. For information-theoretic or uncondi-
tional security (i.e. robustness against an attacker that has
unlimited computational resources), authentication and secrecy
codes have been investigated for quite some time. The initial
construction of authentication codes goes back to Gilbert,
MacWilliams & Sloane [2]. A more general and systematic
theory of authentication was developed by Simmons (e.g., [3],
[4]). Fundamental work on secrecy codes started with Shan-
non [5].

This paper deals with the construction of optimal authen-
tication codes with perfect multi-fold secrecy. It continues
the author’s recent work [1], which naturally extended results
by Stinson [6] on authentication codes with perfect secrecy.
We will answer an important question left open in [1] that
addresses the construction of authentication codes with perfect
multi-fold secrecy for equiprobable source probability distri-
butions. We establish a construction of optimal authentication
codes which are multi-fold secure against spoofing attacks
and simultaneously provide perfect multi-fold secrecy. This
can be achieved by means of combinatorial designs. As an
application, we present the first infinite class of optimal codes
that achieve two-fold security against spoofing as well as
perfect two-fold secrecy.

The paper is organized as follows: Necessary definitions
and concepts from the theory of authentication and secrecy
codes as well as from combinatorial design theory will be
summarized in Section II. Section III gives relevant combina-
torial constructions of optimal authentication codes which bear
no secrecy assumptions. In Section IV, we review Stinson’s
constructions in [6] and recent results from [1]. Section V is
devoted to our new constructions.

II. PRELIMINARIES

A. Authentication and Secrecy Codes

We rely on the information-theoretical or unconditional se-
crecy model developed by Shannon [5], and by Simmons
(e.g., [3], [4]) including authentication. Our notion complies,
for the most part, with that of [6], [7]. In this model of
authentication and secrecy three participants are involved:
a transmitter, a receiver, and an opponent. The transmitter
wants to communicate information to the receiver via a public
communications channel. The receiver in return would like
to be confident that any received information actually came
from the transmitter and not from some opponent (integrity of
information). The transmitter and the receiver are assumed to
trust each other. Sometimes this is also called an A-code.

In what follows, let S denote a set of k source states (or
plaintexts), M a set of v messages (or ciphertexts), and E
a set of b encoding rules (or keys). Using an encoding rule
e ∈ E , the transmitter encrypts a source state s ∈ S to
obtain the message m = e(s) to be sent over the channel.
The encoding rule is an injective function from S to M, and
is communicated to the receiver via a secure channel prior to
any messages being sent. For a given encoding rule e ∈ E , let
M(e) := {e(s) : s ∈ S} denote the set of valid messages. For
an encoding rule e and a set M∗ ⊆M(e) of distinct messages,
we define fe(M∗) := {s ∈ S : e(s) ∈ M∗}, i.e., the set of
source states that will be encoded under encoding rule e by
a message in M∗. A received message m will be accepted
by the receiver as being authentic if and only if m ∈ M(e).
When this is fulfilled, the receiver decrypts the message m by
applying the decoding rule e−1, where

e−1(m) = s⇔ e(s) = m.

An authentication code can be represented algebraically by a
(b×k)-encoding matrix with the rows indexed by the encoding
rules, the columns indexed by the source states, and the entries
defined by aes := e(s) (1 ≤ e ≤ b, 1 ≤ s ≤ k).

We address the scenario of a spoofing attack of order i
(cf. [7]): Suppose that an opponent observes i ≥ 0 distinct
messages, which are sent through the public channel using the
same encoding rule. The opponent then inserts a new message
m′ (being distinct from the i messages already sent), hoping to
have it accepted by the receiver as authentic. The cases i = 0
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and i = 1 are called impersonation game and substitution
game, respectively. These cases have been studied in detail
in recent years (e.g., [8], [9]), however less is known for the
cases i ≥ 2. In this article, we focus on those cases where
i ≥ 2.

For any i, we assume that there is some probability dis-
tribution on the set of i-subsets of source states, so that any
set of i source states has a non-zero probability of occurring.
For simplification, we ignore the order in which the i source
states occur, and assume that no source state occurs more
than once. Given this probability distribution pS on S , the
receiver and transmitter choose a probability distribution pE
on E (called encoding strategy) with associated independent
random variables S and E, respectively. These distributions
are known to all participants and induce a third distribution,
pM , on M with associated random variable M . The deception
probability Pdi is the probability that the opponent can deceive
the receiver with a spoofing attack of order i. The following
theorem (cf. [7]) provides combinatorial lower bounds.

Theorem 1: [Massey] In an authentication code with k
source states and v messages, the deception probabilities are
bounded below by

Pdi ≥
k − i

v − i
.

An authentication code is called tA-fold secure against
spoofing if Pdi = (k − i)/(v − i) for all 0 ≤ i ≤ tA.

Moreover, we consider the concept of perfect multi-fold
secrecy which has been introduced by Stinson [6] and general-
izes Shannon’s fundamental idea of perfect (one-fold) secrecy
(cf. [5]). We say that an authentication code has perfect tS-
fold secrecy if, for every positive integer t∗ ≤ tS , for every
set M∗ of t∗ messages observed in the channel, and for every
set S∗ of t∗ source states, we have

pS(S
∗|M∗) = pS(S

∗).

That is, the a posteriori probability distribution on the t∗

source states, given that a set of t∗ messages is observed,
is identical to the a priori probability distribution on the t∗

source states.
When clear from the context, we often only write t instead

of tA resp. tS .

B. Combinatorial Designs

We recall the definition of a combinatorial t-design. For
positive integers t ≤ k ≤ v and λ, a t-(v, k,λ) design D
is a pair (X,B), satisfying the following properties:

(i) X is a set of v elements, called points,
(ii) B is a family of k-subsets of X , called blocks,

(iii) every t-subset of X is contained in exactly λ blocks.
We denote points by lower-case and blocks by upper-case
Latin letters. Via convention, let b := |B| denote the number
of blocks. Throughout this article, ‘repeated blocks’ are not
allowed, that is, the same k-subset of points may not occur
twice as a block. If t < k < v holds, then we speak of a
non-trivial t-design. For historical reasons, a t-(v, k,λ) design

with λ = 1 is called a Steiner t-design (sometimes also a
Steiner system). The special case of a Steiner design with
parameters t = 2 and k = 3 is called a Steiner triple system
STS(v) of order v. A Steiner design with parameters t = 3 and
k = 4 is called a Steiner quadruple system SQS(v) of order v.
Specifically, we are interested in Steiner quadruple systems in
this paper. As a simple example, the vector space Zd

2 (d ≥ 3)
with the set B of blocks taken to be the set of all subsets of
four distinct elements of Zd

2 whose vector sum is zero, is a
non-trivial boolean Steiner quadruple system SQS(2d). More
geometrically, these SQS(2d) consist of the points and planes
of the d-dimensional binary affine space AG(d, 2).

Fig. 1. Illustration of the unique SQS(8), with three types of blocks:
faces, opposite edges, and inscribed regular tetrahedra.

For the existence of t-designs, basic necessary conditions
can be obtained via elementary counting arguments (see, for
instance, [10]):

Lemma 1: Let D = (X,B) be a t-(v, k,λ) design, and for
a positive integer s ≤ t, let S ⊆ X with |S| = s. Then the
number of blocks containing each element of S is given by

λs = λ

(v−s
t−s

)
(k−s
t−s

) .

In particular, for t ≥ 2, a t-(v, k,λ) design is also an
s-(v, k,λs) design.

It is customary to set r := λ1 denoting the number of blocks
containing a given point. It follows

Lemma 2: Let D = (X,B) be a t-(v, k,λ) design. Then
the following holds:

(a) bk = vr.

(b)
(
v

t

)
λ = b

(
k

t

)
.

(c) r(k − 1) = λ2(v − 1) for t ≥ 2.
For encyclopedic accounts of key results in design theory,

we refer to [10], [11]. Various connections of designs with
coding and information theory can be found in a recent
survey [12] (with many additional references therein).

III. OPTIMAL AUTHENTICATION CODES

For our further purposes, we summarize the state-of-the-art
for authentication codes which bear no secrecy assumptions.
The following theorem (cf. [7], [13]) gives a combinatorial
lower bound on the number of encoding rules.

Theorem 2: [Massey–Schöbi] If an authentication code is
(t − 1)-fold against spoofing, then the number of encoding
rules is bounded below by

b ≥
(v
t

)
(k
t

) .
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TABLE I
OPTIMAL AUTHENTICATION CODES WITH PERFECT SECRECY:

INFINITE CLASSES

tA tS k v b Ref.

1 1 q + 1 qd+1−1
q−1

v(v−1)
k(k−1) [6]

q prime power d ≥ 2 even

1 1 3 v ≡ 1 (mod 6) v(v−1)
6 [1]

1 1 4 v ≡ 1 (mod 12) v(v−1)
12 [1]

1 1 5 v ≡ 1 (mod 20) v(v−1)
20 [1]

2 1 q + 1 qd + 1 v(v−1)(v−2)
k(k−1)(k−2) [1]

q prime power d ≥ 2 even

2 1 4 v ≡ 2, 10 (mod 24) v(v−1)(v−2)
24 [1]

An authentication code is called optimal if the number of
encoding rules meets the lower bound with equality. When the
source states are known to be independent and equiprobable,
optimal authentication codes which are (t − 1)-fold secure
against spoofing can be constructed via t-designs (cf. [6], [13],
[14]).

Theorem 3: [DeSoete–Schöbi–Stinson] Suppose there is a
t-(v, k,λ) design. Then there is an authentication code for k
equiprobable source states, having v messages and λ ·

(v
t

)
/
(k
t

)

encoding rules, that is (t − 1)-fold secure against spoofing.
Conversely, if there is an authentication code for k equiprob-
able source states, having v messages and

(v
t

)
/
(k
t

)
encoding

rules, that is (t − 1)-fold secure against spoofing, then there
is a Steiner t-(v, k, 1) design.

IV. STINSON’S CONSTRUCTIONS & RECENT RESULTS

Using the notation introduced in Section II-A, we review
in Tables I and II previous constructions from [6], [1] for
equiprobable source probability distributions. This lists all
presently known optimal authentication codes with perfect
secrecy.

V. NEW CONSTRUCTIONS

Starting from the condition of perfect t-fold secrecy, we
obtain via Bayes’ Theorem that

pS(S
∗|M∗) =

pM (M∗|S∗)pS(S∗)

pM (M∗)

=

∑
{e∈E:S∗=fe(M∗)} pE(e)pS(S

∗)
∑

{e∈E:M∗⊆M(e)} pE(e)pS(fe(M
∗))

= pS(S
∗).

It follows
Lemma 3: An authentication code has perfect t-fold secrecy

if and only if, for every positive integer t∗ ≤ t, for every set
M∗ of t∗ messages observed in the channel and for every set
S∗ of t∗ source states, we have

∑

{e∈E:S∗=fe(M∗)}

pE(e) =
∑

{e∈E:M∗⊆M(e)}

pE(e)pS(fe(M
∗)).

Hence, if the encoding rules in a code are used with equal
probability, then for every t∗ ≤ t, a given set of t∗ messages

TABLE II
OPTIMAL AUTHENTICATION CODES WITH PERFECT SECRECY:

FURTHER EXAMPLES

tA tS k v b Ref.

2 1 5 26 260 [1]

5 11 66 [1]
7 23 253 [1]
5 23 1.771 [1]
5 47 35.673 [1]

3 1 5 83 367.524 [1]
5 71 194.327 [1]
5 107 1.032.122 [1]
5 131 2.343.328 [1]
5 167 6.251.311 [1]
5 243 28.344.492 [1]

6 12 132 [1]
4 1 6 84 5.145.336 [1]

6 244 1.152.676.008 [1]

occurs with the same frequency in each t∗ columns of the
encoding matrix.

We can now establish an extension of the main theorem
in [1]. Our construction yields optimal authentication codes
which are multi-fold secure against spoofing and provide
perfect multi-fold secrecy.

Theorem 4: Suppose there is a Steiner t-(v, k, 1) design,
where

( v
t∗

)
divides the number of blocks b for every positive

integer t∗ ≤ t − 1. Then there is an optimal authentication
code for k equiprobable source states, having v messages
and

(v
t

)
/
(k
t

)
encoding rules, that is (t− 1)-fold secure against

spoofing and simultaneously provides perfect (t− 1)-fold se-
crecy.

Proof: Let D = (X,B) be a Steiner t-(v, k, 1) design,
where

( v
t∗

)
divides b for every positive integer t∗ ≤ t− 1. By

Theorem 3, the authentication code has (t− 1)-fold security
against spoofing attacks. Hence, it remains to prove that
the code also achieves perfect (t− 1)-fold secrecy under
the assumption that the encoding rules are used with equal
probability. With respect to Lemma 3, we have to show that,
for every t∗ ≤ t − 1, a given set of t∗ messages occurs
with the same frequency in each t∗ columns of the resulting
encoding matrix. This can be accomplished by ordering, for
each t∗ ≤ t − 1, every block of D in such a way that every
t∗-subset of X occurs in each possible choice in precisely
b/
( v
t∗

)
blocks. Since every t∗-subset of X occurs in exactly

λt∗ =
(v−t∗

t−t∗

)
/
(k−t∗

t−t∗

)
blocks due to Lemma 1, necessarily

( k
t∗

)

must divide λt∗ . By Lemma 2 (b), this is equivalent to saying
that

( v
t∗

)
divides b. To show that the condition is also sufficient,

we consider the bipartite (t∗-subset, block) incidence graph of
D with vertex set

(X
t∗

)
∪ B, where ({xi}t

∗

i=1, B) is an edge
if and only if xi ∈ B (1 ≤ i ≤ t∗) for {xi}t

∗

i=1 ∈
(X
t∗

)
and

B ∈ B. An ordering on each block of D can be obtained via
an edge-coloring of this graph using

( k
t∗

)
colors in such a way

that each vertex B ∈ B is adjacent to one edge of each color,
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and each vertex {xi}t
∗

i=1 ∈
(X
t∗

)
is adjacent to b/

( k
t∗

)
edges of

each color. Specifically, this can be done by first splitting up
each vertex {xi}t

∗

i=1 into b/
( k
t∗

)
copies, each having degree( k

t∗

)
, and then by finding an appropriate edge-coloring of the

resulting
( k
t∗

)
-regular bipartite graph using

( k
t∗

)
colors. The

claim follows now by taking the ordered blocks as encoding
rules, each used with equal probability.

Remark 1: It follows from the proof that we may obtain
optimal authentication codes that provide (t− 1)-fold security
against spoofing and at the same time perfect (t′ − 1)-fold
secrecy for t′ ≤ t, when the assumption of the above theorem
holds with

( v
t∗

)
divides b for every positive integer t∗ ≤ t′−1.

As an application, we give an infinite class of optimal codes
which are two-fold secure against spoofing and achieve perfect
two-fold secrecy. This appears to be the first infinite class of
authentication and secrecy codes with these properties.

Theorem 5: For all positive integers v ≡ 2 (mod 24), there
is an optimal authentication code for k = 4 equiprobable
source states, having v messages, and v(v − 1)(v − 2)/24
encoding rules, that is two-fold secure against spoofing and
provides perfect two-fold secrecy.

Proof: We will make use of Steiner quadruple systems
(cf. Section II-A). Hanani [15] showed that a necessary and
sufficient condition for the existence of a SQS(v) is that v ≡ 2
or 4 (mod 6) (v ≥ 4). Hence, the condition v | b is fulfilled
when v ≡ 2 or 10 (mod 24) and the condition

(v
2

)
| b when

v ≡ 2 (mod 12) in view Lemma 2 (b). Therefore, if we assume
that v ≡ 2 (mod 24), then we can apply Theorem 4 to establish
the claim.

We present the smallest example:
Example 1: An optimal authentication code for k = 4

equiprobable source states, having v = 26 messages, and
b = 650 encoding rules, that is two-fold secure against spoof-
ing and provides perfect two-fold secrecy can be constructed
from a Steiner quadruple system SQS(26). Each encoding rule
is used with probability 1/650.

Remark 2: For v = 26, the first SQS(v) was constructed by
Fitting [16], admitting a v-cycle as an automorphism (cyclic
SQS(v)). We generally remark that the number N(v) of
non-isomorphic SQS(v) is only known for v = 8, 10, 14, 16
with N(8) = N(10) = 1, N(14) = 4, and N(16) =
1,054,163 (cf. [17]). Lenz [18] proved that for the admissi-
ble values of v, the number N(v) grows exponentially, i.e.
lim infv→∞

logN(v)
v3 > 0. For comprehensive survey articles

on Steiner quadruple systems, we refer the reader to [19],
[20]. For classifications of specific classes of highly regular
Steiner quadruple systems and Steiner designs, see, e.g., [21],
[22].
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Abstract—Iterative decoding with message-passing is consid-
ered. The message format is generalized from the classical, single
probability value for each code symbol to a probability distribu-
tion by introducing an additional logarithmic probability mea-
sure. Thereby, the representation of the probability distributions
underlying the constituent code constraints by the messages is
improved in terms of the Kullback-Leibler divergence. Simulation
shows that this improvement can transfer to the error correcting
performance.

I. INTRODUCTION

PEARL’s belief propagation algorithm (BPA) [1], [2] has
attracted major attention in the communication community
when it was applied to parallel concatenated convolutional
codes (PCCCs) by BERROU et al. [3] in the early 90’s.
Using the BCJR algorithm [4] to efficiently compute symbol
probabilities in the trellises of the constituent codes, the
iterative exchange of so-called extrinsic information between
the constituent decoders allows for error correcting perfor-
mance close to the SHANNON limit [5] while maintaining low
computational complexity. The field of application was quickly
extended to other code constructions like serial concatenations
[6] or low-density parity-check codes [7]. The basic principle
of the decoding scheme, however, has remained the same ever
since.

After recalling the abstract class of intersection codes in
Section II, Section III-A emphasizes an observation made
in [8]: The symbol probabilities computed in the constituent
decoders minimize the KULLBACK-LEIBLER divergence be-
tween a) the probability distribution of the code words given
the input beliefs and the code constraint, and b) the uncoded
distribution given the objective variables. By replacing the
latter distribution by a new one with a larger parameter space
in Section III-B, this optimization is improved. Simulation in
Section IV shows that this improvement can also transfer to
the error correcting performance.

II. INTERSECTION CODES

The class of intersection (IS) codes [9] is equivalent to the
class of embedding codes [10] or trellis-constrained codes.
Every code can be expressed as the intersection of two (or
more) super-codes, and hence as an IS code.

Definition 1 (Intersection Code): Let C(1) and C(2) be lin-
ear block codes of length n. An intersection code C(∩) is
defined as the intersection

C(∩) = C(1) ∩ C(2) (1)

of the constituent codes (super codes) C(1) and C(2).

The parity check matrix of an intersection code is obtained
by stacking the h(l) × n parity check matrices H(l), l = 1, 2
of its constituent codes C(l). I.e., for c = [c1 c2 . . . cn] being
a binary vector, Equation (1) is equivalent to

C(∩) =
{
c : H(∩) · cT = 0

}
with H(∩) =

[
H(1)

H(2)

]
,

with
C(∩) ⊆ C(l) ⊆ S, l = 1, 2,

where S denotes the n-dimensional binary space.
Example 1 (Turbo Codes): Let

GCC =
[
I G(p)

]

denote the generator matrix of the two identical systematic
convolutional encoders of a PCCC [3], where I is the identity
matrix and G(p) generates the parity part of the convolu-
tional code words, including termination bits from both the
systematic and the parity output. Let Π denote the Turbo code
permutation matrix. The generator matrix of the PCCC then
is given by

G(∩) =
[
I G(p) ΠG(p)

]
.

For interpretation as constituent codes C(l) of an IS code, the
codes defined by GCC require uncoded extension, i.e.

C(1) =
{[

u uG(p) v
]
: u ∈ Fk

2 ,v ∈ Fk+2κ
2

}

C(2) =
{[

uΠ v uΠG(p)
]
: u ∈ Fk

2 ,v ∈ Fk+2κ
2

}
,

where k is the dimension of the PCCC, κ is the encoder
memory and Fk

2 denotes the binary space of dimension k.
In the following we will implicitly use binary vectors and

code words with bipolar values using the mapping

{0, 1} C→ {+1,−1}.
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III. ITERATIVE DECODING

In general, an iterative decoder is a device consisting of two
(or more) constituent decoders D(l), l = 1, 2 corresponding to
the constituent codes C(l), which output a set of probabilities.
For decoding, the noisy received word r is input to the
first constituent decoder D(1) which computes conditional
probabilities given r and the constraint of C(1). Together with
r these probabilities are input to decoder D(2). D(2) then
computes probabilities under the constraint of C(2) which are
passed back to D(1) and so forth until some stopping criterion
is fulfilled.

We consider transmission over the additive white GAUSSian
noise (AWGN) channel. Code words are transmitted with
equal probability. Let

r =
1

σ2 log(2)
· (c+ η) (2)

be the scaled, noisy version of a code word c ∈ C(∩), where
η is the noise vector, σ2 is the noise variance,

pR|S (r|s) = 1
(√

2πσ
)n · exp

(
−‖(c+ η)− s‖2

2σ2

)
∝ 2rs

T

is the probability of r given s ∈ S, and R and S denote the
corresponding random variables, respectively.

Let C(l), l = 1, 2 denote the random variable for the words
of the codes C(l), respectively, and Si the random variable for
the i-th bit of a binary vector. Denote by

PC(l)|R (s|r) ∝ pR|S (r|s) ·
〈
s ∈ C(l)

〉
, l = 1, 2 (3)

the probability of s given r and the constraint of code C(l),
where∑

s∈S
PC(l)|R (s|r) = 1 and 〈b〉 :=

{
1 if b is true
0 else

denotes the IVERSON bracket. Further, let

PSi|R

(
x|r,C(l)

)
=

∑

s∈S:si=x

PC(l)|R (s|r) , x ∈ {±1}

define the probability for Si = x given r and the constituent
code constraint C(l), and

L(l)
i (r) :=

1

2
· log2

PSi|R
(
+1|r,C(l)

)

PSi|R
(
−1|r,C(l)

) (4)

the corresponding logarithmic likelihood ratio (LLR). The
probabilities PS |R (s|r), PSi|R (x|r,S) and Li(r) without a
code constraint, i.e. s ∈ S, are defined accordingly.

In the following, subscripts may be neglected when clear
from the context.

A. Belief Propagation
In belief propagation (BP), the messages passed between

the decoders are given by a vector of extrinsic LLRs denoted
by

(
d(l) −m(l)

)
. This vector is defined by the decoder input

m(l) = r +
(
d(h) −m(h)

)
and the decoder output LLRs

d(l)i =
1

2
· log2

PSi|R
(
+1|m(l),C(l)

)

PSi|R
(
−1|m(l),C(l)

) , i = 1, . . . , n (5)

Algorithm 1 The Belief Propagation Algorithm
1) initialize

• set l = 1, h = 2
• set m(h) = d(h) = 0

2) iterate
while (stopping criterion not fulfilled)

• D(l) :
(
m(l) = r + d(h) −m(h)

)
C→ d(l), cf. (5)

• swap l↔ h

end
3) output ĉ = sgn

(
d(h)

)

given the constraint of code C(l). This is summarized in
Algorithm 1.

The computation (5) can be motivated as follows. For
simplicity we consider one constituent decoder and disregard
the indices l, h. Let d be a vector of n independent LLRs

di =
1

2
· log2

PSi|R (+1|d,S)
PSi|R (−1|d,S) , i = 1, . . . , n,

where we deliberately choose R as the corresponding ran-
dom variable. Hence d is considered as being obtained from
the same channel as the received word, i.e. pR|S(d|s) ∝
exp2(ds

T ). The following lemma shows that the cross entropy
between PC|R(s|r) and PS|R(s|d) is an objective function
whose minimization with respect to d yields Equation (5).

Lemma 1 (Cross Entropy [8]): Minimizing the cross en-
tropy

HR||R(C|r||S|d) := −
∑

s∈S
PC|R(s|r) · log2 PS|R(s|d) (6)

between the distributions PC|R(s|r) and PS|R(s|d) with
respect to the vector d of LLRs yields the logarithmic symbol
probability ratios

di = arg min
vi∈R

HR||R(C|r||S|v) = 1

2
log2

PSi|R (+1|r,C)

PSi|R (−1|r,C)

where R denotes the set of real numbers.1

The KULLBACK-LEIBLER divergence (KLD) is an infor-
mation theoretic measure for the similarity between two dis-
tributions over the same probability space. It directly relates
to the cross entropy by

DKL (C|r||S|d) := HR||R(C|r||S|d)
+
∑

s∈S
PC|R (s|r) · log2 PC|R (s|r)

and its minimum value is 0 for two identical distributions.
The observation that for belief propagation the computation

within the constituent decoders corresponds to the optimiza-
tion of (6) – or, equivalently, the minimization of the KLD –
is essential for the concept of Dissection Decoding below.

1When extrinsic information from another decoder is available, r is
replaced by the appropriate input m.
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B. Dissection Decoding
In belief propagation the transfer message can be written as

a vector of LLRs. We now increase the transfer complexity
by introducing a new dimension to these messages. This new
dimension is spanned by the discrete random variable U whose
realizations

u(s) := HS|R (s|d) (7)

are given by the conditional word uncertainties

HS|R (s|d) := − log2 (P (s|d)) = − log2

n∏

i=1

2sidi

2di + 2−di

of s, given a dissector d. For now, d is assumed to be constant
and is disregarded in the notation for better readability. The
finite probability space of U is denoted by U. Its size is
determined by d. Rather than a transfer vector of length n,
we employ a matrix m = [m1[u], . . . ,mn[u]] of size |U|×n.
We also introduce a new transfer vector q of length |U|. Let

PS|M ,Q(s|m, q) ∝ q[u(s)] · PS|R(s|m[u(s)]) (8)

= q[u(s)] ·
n∏

i=1

2si·mi[u(s)]

2mi[u(s)] + 2−mi[u(s)]

with ∑

s∈S
PS|M ,Q(s|m, q) = 1

denote the symbol-based probability of s given m and q.
Further define

PSi,C,U |R (x, s, u|r) := PC|R (s|r) ·〈Si = x〉 ·〈H(s|d) = u〉

from which we obtain probabilities such as

PSi,U |R (x, u|r,C) =
∑

s∈S
PSi,C,U |R (x, s, u|r)

by marginalization.
Akin to Lemma 1, the following theorem defines the opti-

mum pair (m, q) for representing the distribution PC |R (s|r)
in terms of the (uncoded) distribution PS|M ,Q(s|m, q).

Theorem 1: Minimizing the cross entropy

HR||M ,Q (C|r||S|m, q) :=
∑

s∈S
PC |R (s|r)·HS |M ,Q (s|m, q)

= −
∑

s∈S
PC |R (s|r) · log2

(
PS |M ,Q (s|m, q)

)
(9)

with respect to m and q yields

q[u] ∝
PU |R(u|r,C )

PU |R(u|m[u],S)
, (10)

and m is given by the implicit solution

PSi|R,U (x|m[u], u,S) = PSi|R,U (x|r, u,C ), i = 1, ..., n.
(11)

We observe that for d = 0, i.e. |U| = 1 it follows from
Theorem 1 that

mi[u] =
1

2
· log2

PSi|R,U (+1|r, u,C )

PSi|R,U (−1|r, u,C )
(12)

are the symbol beliefs given r and the code C, and q[u] is
a constant, i.e. the computation is as for the BPA. Moreover,
due to the larger parameter space of the objective function
(9) for |U| > 1 the cross entropy can only decrease. Closer
investigation shows that in this case (12) is a near optimum
approximation of (11).

We have thus found a (near) optimum pair (m, q) with
respect to the objective function (9) and a given dissector d.

From Theorem 1 it does not directly follow how to apply
the transfer message (m, q) in iterative decoding. We now
reintroduce superscripts to indicate constituent codes or the
decoder where variables originate from. Given a message pair
(m(h), q(h)) from decoder D(h) we first need a new dissector
d(l) from which then a new message (m(l), q(l)) can be
computed in D(l), where l, h = 1, 2, l .= h. Define by

HM ,Q||R (C|m, q||S|d) :=
−

∑

s∈S
PC |M ,Q (s|m, q) · log2

(
PS |R (s|d)

)

the cross entropy between the uncoded distribution of s given
d and the distribution of s ∈ C given the message pair (m, q).
A possible optimization rule for the dissectors d(l) is given in
the following.

Proposal 1: Find the dissectors d(1), d(2) minimizing

(d(1),d(2)) = arg min
(v(1),v(2))

HM ,Q||R(C(1)|m(2), q(2)||S|v(1))

+HM ,Q||R(C(2)|m(1), q(1)||S|v(2)) (13)

with (m(l), q(l)), l = 1, 2 chosen to minimize

HR||M ,Q

(
C(l)|r||S|m(l), q(l)

)

given d(l) according to Theorem 1.

To derive an algorithm from this proposal, compute the
partial derivatives of the entropy terms in (13). We obtain

∂

∂d(l)i

HM ,Q||R(C(l)|m(h), q(h)||S|d(l))

=
∑

s∈S
PC(l)|M ,Q(s|m(h), q(h)) ·

(
tanh2(d

(l)
i )− si

)
, (14)

and the derivative of the second term is approximately zero.
Hence we set (14) equal to zero and obtain

d(l)i =
1

2
· log2

PSi|M ,Q(+1|m(h), q(h),C(l))

PSi|M ,Q(−1|m(h), q(h),C(l))
(15)

which is a calculation rule. Note that, though not explicitly
stated in the formula, the computation (15) requires knowledge
of d(h) as m(h) and q(h) are functions of u.

The results in (12) and (15) motivate the Dissection Decod-
ing Algorithm 2 for the decoding of a noisy IS code word.
In the beginning, nothing is known about either constituent
code and thus d(2) = 0, m(2) = 0 and q(2) = 1 are
initialized as all-zero and all-one, respectively, which directly
results in d(1) = 0 when assuming equiprobable code sym-
bols. ‘Normal’ symbol beliefs m(1)[u] are computed in D(1)

according to (12) and passed to D(2). There the dissector d(2)
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Algorithm 2 Dissection Decoding
1) initialize

• set l = 1, h = 2, d(2) = 0, m(2) = 0, q(2) = 1

2) iterate
while (stopping criterion not fulfilled)

• D(l) :
(m(h), q(h),d(h)) C→ d(l) cf. (15)
d(l) C→ (m(l), q(l)) cf. (10), (12)

• swap l↔ h

end
3) output ĉ = sgn

(
d(h)

)

is computed according to (15). Up to this point the algorithm is
identical to the BPA and all computations can be accomplished
with the BCJR algorithm. But rather than computing extrinsic
symbol beliefs, d(2) is taken to dissect (hence the name) the
code space C(2) and to compute the message pair (m(2), q(2))
according to (10) and (12) with which the iterative procedure
continues in D(1).

IV. IMPLEMENTATION AND SIMULATION

For a dissector d with non-zero real-valued elements di,
the set size or resolution |U| is very large. The result would
be a maximum likelihood (ML) decoder with huge matrices
m and thus impracticable decoding complexity. Therefore we
uniformly quantize the elements of d with a granularity ∆, and
limit their magnitude to |di| ≤ dmax. Thus the set of possible
word uncertainties is reduced to the values

HS|R(s|d) ∈ {umin, umin + 2 ·∆, umin + 4 ·∆, . . . }

where
umin =

n∑

i=1

(
log2(2

di + 2−di)− |di|
)

is the minimum possible word uncertainty given d. We further
limit the resolution |U| by setting

u(s) =

{
HS|R(s|d) : HS|R(s|d) ≤ umax

umax : else

with umax = umin + (|U|− 1) · 2 ·∆.

The computations of the distributions in the matrices m are
accomplished in the constituent code trellises, cf. [11].

For easy comparison with the BPA we consider a Turbo
code according to [3] with dimension k = 20 and terminated
rate R = 1

2 constituent codes with the generator polynomial
G(D) = [1 1+D+D2

1+D2 ]. The choice of the rather small code
dimension is on purpose as the BPA is known to not perform
well for short codes, thus leaving room for improvement,
and to keep the requirements for the resolution |U| small
which grow with the code length. On the latter account,
the dissector d is allowed to take non-zero values only for
the k systematic positions of the code. Figure 1 shows the
simulation results for ∆ = 0.1, dmax = 4, 8 decoding
iterations and |U| = 50, 75, 100. We observe that the error
correcting performance is superior to Turbo decoding with the

Eb/N0[dB]

B
E
R

Belief Propagation

Dissection Decoding, |U| = 50
Dissection Decoding, |U| = 75

Dissection Decoding, |U| = 100
ML decoding

2 2.5 3 3.5 4
10−4

10−3

10−2

Figure 1. Error Correcting Performance for Turbo Code

BPA, and that it increases with |U| towards the maximum-
likelihood (ML) bound. The gain compared to the BPA is up
to 0.3 dB for |U| = 100.

V. DISCUSSION & CONCLUSIONS

The proposed algorithm shows a distinct error correcting
performance gain compared to belief propagation. However,
the requirements for the set size |U| grow approximately
proportional to the dissector length – and thus the code length
– n. Taking into account the computation of two-dimensional
functions over u ∈ U in the trellis of length n, the overall
decoding complexity is O(n3). Ongoing work focuses on
GAUSSian approximation of the distributions over u [11],
leading to O(n) as for the belief propagation algorithm.
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Abstract—This paper1 investigates the error rate of root-LDPC
(RLDPC) codes. These codes were introduced in [1], as a class
of codes achieving full diversity $ over a nonergodic block-
fading transmission channel, and hence with an error probability
decreasing as SNR−" at high signal-to-noise ratios. As for
their structure, root-LDPC codes can be viewed as a special
case of multiedge-type LDPC codes [2]. However, RLDPC code
optimization for nonergodic channels does not follow the same
criteria as those applied for standard ergodic erasure or Gaussian
channels. While previous analyses of RLDPC codes were based
on their asymptotic bit threshold for information variables under
iterative decoding, in this work we investigate asymptotic block
threshold. A stability condition is first derived for a given fading
channel realization. Then, in a similar way as for unstructured
LDPC codes [3], with the help of Bhattacharyya parameter, we
state a sufficient condition for a vanishing block-error probability
with the number of decoding iterations.

I. INTRODUCTION AND MOTIVATION OF OUR WORK

When a block of encoded data is sent, after being split into
7 subblocks, through 7 independent slow-fading channels,
the appropriate channel model is nonergodic. This model may
correspond to a parallel (MIMO systems) or to a sequential
(HARQ protocols) data-transmission scheme.

It turns out that special design criteria are needed for codes
to be used with such a model — in particular, full transmit
diversity is sought, which guarantees that, at large signal-to-
noise ratios (SNR), the error probability of the transmission
scheme scales as 1/SNR0, with 9 the maximum diversity
order achievable. It has been shown in [1] that standard sparse-
graph code ensembles allow one to obtain error probabilities
decreasing only as 1/SNR, and hence they are not full-
diversity ensembles. Even infinite-length random code ensem-
bles cannot achieve full diversity, as shown via a diversity
population evolution technique in [4].

The key idea for codes achieving full diversity is to ensure
that each information node is receiving multiple messages
affected by independent fading coefficients. This idea has been
implemented in RLDPC codes [1] designed for block-fading
channels with 7 = 2 by introducing the concept of root
checknodes. A root checknode protects a message received
from the second subchannel when the variable node is received
from the first subchannel. RLDPC codes are full-diversity
codes (thus, they are also Maximum Distance Separable in the

1This work was supported by the European FP7 ICT-STREP DAVINCI
project under the contract No. INFSO-ICT-216203.

Singleton-bound sense) and can be devised for any diversity
order.

In this paper we focus on rate-1/2, diversity-2 RLDPC
codes, and study their stability under iterative decoding. We
also derive a sufficient condition for vanishing block-error
probability. As expected, since root checknodes occupy a
single edge in each information variable, stability and block-
error performance of RLDPC codes depend on the fraction of
variables with degrees 2 and 3.

II. TRANSMISSION MODEL

Under our assumptions, a block of encoded data (a code-
word) is divided into two equal subblocks, each one being
transmitted over an independent Rayleigh fading channel with
SNR= : and fading coefficients ;1 and ;2. Therefore, the
observation < corresponding to the binary transmitted symbol
= = ±1 received from the >-th channel is < = ;1=+ ?, where
;1 ∈ [0,+∞), and ? ∼ J (0, A2) with A2 = 1/:.

III. RLDPC CODES: DEFINITION AND DENSITY
EVOLUTION

A. Definition
Given an initial (B, C) LDPC ensemble, one defines a (B, C)

RLDPC ensemble with diversity 2 through the multinomials
Broot(D, =) and Croot(D, =), with D ≜ (D1, D2) and = ≜
(=1, =2, =3, =4, =5, =6):

Broot(D, =) ≜ 1

2

∑

1

(
B1

>
D1=1

1 +
(>− 1)B1

>
D1=1

2 + B1D1=1
3

+B1D2=1
4 +

(>− 1)B1

>
D2=1

5 +
B1

>
D2=1

6

)
, (1)

Croot(D, =) ≜ 1

2

∑

1

C1

⎛

⎝=1

∑

2

(
>

E

)
F 2
3 =2

4G1−2
3 =1−2

5

+=6

∑

4

(
>

H

)
F4
3 =4

3G1−4
3 =1−4

2

)
, (2)

where the fractions F3 and G3 will be defined in next subsec-
tion. In words, the structure of the RLDPC ensemble consists
of four types of variable nodes (1>, 1I, 2>, 2I), two sets
of check nodes (1J, 2J), and 6 different edge classes (see
Fig.1a). Permutations of edges within edge classes are chosen
uniformly at random. Variable nodes 1> and 1I correspond to
information and redundancy bits, respectively, in a codeword
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sent through the first fading subchannel. Similarly, variable
nodes 2> and 2I correspond to bits sent through the sec-
ond subchannel. Note that the information variable nodes H>
(H = 1, 2) are connected to check nodes of the same type,
HJ, through exactly one edge; all other edges are connected
to check nodes of the other type. Redundancy variable nodes
are always connected to check nodes of different type. In (1)-
(2), D1 and D2 correspond to two fading subchannels, and
the variables =1, =2, . . . , =6 to the following edge classes:
1> → 1J, 1> → 2J, 1I → 2J, 2I → 1J, 2> → 1J, and 2> → 2J.

We have thus obtained a code ensemble of rate 1/2. As
shown in [1], such a construction guarantees transmit diversity
2, which is the maximum we can obtain with two independent
transmission subchannels.

a) b)

Fig. 1. Structure of a (%, ') RLDPC code ensemble of diversity 2.

B. Density Evolution
RLDPC codes are decoded, as standard LDPC codes, using

an iterative algorithm. An asymptotic analysis of iterative
decoding is provided in [1], [4] and we shall summarize it
here, after giving some notation. We denote the probability
density functions (pdfs) of channel LLR outputs from the two
transmission subchannels by D1(=) and D2(=), respectively.
These are normal pdfs with means 2;2

1/: and 2;2
2/: and

variances 4;2
1/: and 4;2

2/:, respectively. Further, we denote
by ⊗ the operation of convolution of two pdfs. We also define
the following operation:

Definition 1: The R-convolution of two pdfs ;(=) and L(=)
is

;⊙ L(=) = F(;̂(=)⊗ L̂(=)),

where

;̂(=) ≜ 2;(2th−1(=))

1− =2
, L̂(=) =

2L(2th−1(=))

1− =2

and

F(=) = cosh2

(
;̂⊗ L̂(=)

2

)
th−1(;̂⊗ L̂(=)).

Note that the R-convolution of pdfs corresponds to the
following operation over the corresponding random variables
M and N:

2th−1
(
th(M/2) + th(N/2)

)
,

which is exactly the operation performed at the check nodes.
Let us denote the average pdfs for 6 edge sets by

O1(=), F1(=), G1(=), G2(=), F2(=), and O2(=) as shown in

Fig.1b. Then the evolution of the pdfs at the iteration P + 1
can be described by the following recursions:

O5+1
1 (=) = D1(=)⊗ B̊(C̃(O5

2 (=), F3F5
1 (=) + G3G5

1 (=)))

F5+1
1 (=) = D1(=)⊗ B̃(C̃(O5

2 (=), F3F5
1 (=) + G3G5

1 (=)))

⊗C̊(F3F5
2 (=) + G3G5

2 (=))

G5+1
1 (=) = D1(=)⊗ B(C̃(O5

2 (=), F3F5
1 (=) + G3G5

1 (=)))

G5+1
2 (=) = D2(=)⊗ B(C̃(O5

1 (=), F3F5
2 (=) + G3G5

2 (=)))

F5+1
2 (=) = D2(=)⊗ B̃(C̃(O5

1 (=), F3F5
2 (=) + G3G5

2 (=)))

⊗C̊(F3F5
1 (=) + G3G5

1 (=))

O5+1
2 (=) = D2(=)⊗ B̊(C̃(O5

1 (=), F3F5
2 (=) + G3G5

2 (=)))

where we have borrowed from [4] the following notation:

B̃(=) ≜ Q̄6

Q̄6 − 1

∑

1

B1(>− 1)

>
=⊗(1−2); Q̄6 ≜ 1/

∑

1

B1/>;

C̃(=) ≜ Q̄7

Q̄7 − 1

∑

1

C1(>− 1)

>
=⊙(1−2); Q̄7 ≜ 1/

∑

1

C1/>;

F3 ≜
∑

1(>− 1)8&
1∑

1(>− 1)8&
1 + 1

=
Q̄6 − 1

2Q̄6 − 1
; G3 ≜ 1− F3;

B̊(=) ≜ Q̄6

∑

1

B1

>
=⊗(1−1); C̊(=) ≜ Q̄7

∑

1

C1

>
=⊙(1−1).

Also, we define

C̃(O, =) ≜ Q̄7

Q̄7 − 1

∑

1

C1(>− 1)

>
O ⊙ =⊙(1−3).

IV. STABILITY CONDITIONS

We are interested in defining stability conditions for RLDPC
codes. The main difficulty here lies in the fact that not all
messages need be recovered exactly (or, in LDPC jargon, not
all pdfs converge to R∞). It is not hard to prove that only the
pdfs responsible for the convergence of information messages,
i.e., F1 and F2, need to converge for exact recovery of the
information bits (this condition is also sufficient). The main
concept of the proof is that F1 and F2 are strictly “better” than
O1 and O2.

In this section we derive the stability condition for RLDPC
codes based on the recovery of information bits only. Before
starting our derivation, let us first apply the traditional stability
condition [2] to RLDPC codes, assuming that all the code bits
should be recovered. In such case the RLDPC codes are simply
viewed as a multi-edge code ensemble,

A. RLDPCs as Multi-Edge Codes

The stability condition for multi-edge codes consists in
ensuring that the spectral radius of a matrix S is < 1, where
S ≜ N(D)ΛU , with N(D) the vector of Bhattacharyya param-
eters for all transmission channels, the Λ matrix corresponding
to the variable node side of the graph, and U corresponding to
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the check node side. Applying the expressions derived in [2],
we find that

N(D) =
(

N(D1) N(D1) N(D1) N(D2) N(D2) N(D2)
)9

Λ =
(

:̄'82
2

:̄'82

2:̄'−2
B2 B2

:̄'82

2:̄'−2
:̄'82
2

)
⋅ V

U =
(

U2 U1 U2 U3 U4 U3

)9

with

U1 ≜
(
0 0 0 (Q̄7 − 1)G3 (Q̄7 − 1)F3 0

)

U2 ≜
(
0 C̃′(1)F3 C̃′(1)G3 0 0 C̃(1)

)

U3 ≜
(

C̃(1) 0 0 C̃′(1)F3 C̃′(1)G3 0
)

U4 ≜
(
0 (Q̄7 − 1)F3 (Q̄7 − 1)G3 0 0 0

)

Note that two eigenvalues of S are already 0.

B. RLDPCs as Full-Diversity Codes

By looking at RLDPC as at full-diversity codes, we only ask
for the convergence of F1 and F2 to R∞. To derive a stability
condition for this case, assume that, at iteration P− 1,

F5−1
1 = W1R0 + (1− W1)R∞, F5−1

2 = W2R0 + (1− W2)R∞.

and find an approximation of messages F1 and F2 at the next
iteration which is linear in W.

To do this, let us first find a linear approximation of
C(F3F(=) + G3G(=):

'((#(())+ *#*())) = '((#+,0 + (#(1− +),∞ + *#*())) = *())⊙$−1

=
∑

$

'$

⎛

⎝*$−1
# *())⊙$−1 + (- − 1)(#+

$−2∑

%=0

(- − 2

.

)
($−2−%
# *%# ⋅ *())⊙%

⎞

⎠

+ / ⋅ ,∞ = '(*#*())) + +(#0 (*#*())) + / ⋅ ,∞,

where J is a constant, and C(G3G(=)) denotes the first term
in the sum, while 7 (G3G(=)) denotes the second one. Over
the binary erasure channel, C(G3G(=)) and 7 (G3G(=)) can
be computed explicitly, while, in the general case, the two
functions should be computed by running the density evolution
iterations. Also note that one can bound the pdf of G(=) by
the initial pdf corresponding to the channel estimate. If the
transmission channel is bad, the bound will be quite tight.
Next,

'̃(12()), (#(()) + *#*())) =
∑

$

'$*
$−2
# 12())⊙

(
*())⊙$−2)

+
∑

$

'$(- − 2)(#+
$−3∑

%=0

(- − 3

.

)
($−3−%
# *%# ⋅ 12())⊙

(
*())⊙%

)

+ / ⋅ ,∞ = '̃(12()), *#*())) + +(#0 (12()), *#*())) + / ⋅ ,∞.

Further calculations yield

B̃(C̃(O2(=), F3F(=) + G3G(=)) =

= B̃(C̃(O2(=), F3WR0 + F3(1− W)R∞ + G3G(=))

= B̃1+B̃2 (C̃(O2(=), G3G(=)) + WF37 (O2(=), G3G(=)))+J⋅R∞.

Finally, the approximation of F1 linear in W is obtained as

(1 = 31())⊗
(
%̃1 + %̃2'̃(12()), *#*1())) + %̃2+1(#0 (12()), *#*1()))

)

⊗ ('(*#*2())) + +2(#0 (*#*2()))) + /4567 ⋅ ,∞

= 31())⊗
(
[%̃1 + %̃2'(12()), *#*1()))]⊗ '(*#*2()))

+ +2(#[%̃1 + %̃2'̃(12()), *#*1()))]⊗ 0 (*#*2()))

+%̃2+1(#0 (12()), *#*1()))⊗ ('(*#*2())))
)
+ / ⋅ ,∞

= 31())⊗ (80()) + +1(#81()) + +2(#82())) + / ⋅ ,∞

where

X0(=) ≜ [B̃1 + B̃2C̃(O2(=), G3G1(=))]⊗ C(G3G2(=))

X1(=) ≜ B̃27 (O2(=), G3G1(=))⊗ C(G3G2(=))

X2(=) ≜ [B̃1 + B̃2C̃(O2(=), G3G1(=))]⊗ 7 (G3G2(=))

Similarly,

F2 = D2(=)⊗
(

X̃0(=) + W1F3X̃1(=) + W2F3X̃2(=)
)
+ J ⋅ R∞

with

X̃0(=) ≜ [B̃1 + B̃2C̃(O1(=), G3G2(=))]⊗ C(G3G1(=))

X̃1(=) ≜ [B̃1 + B̃2C̃(O1(=), G3G2(=))]⊗ 7 (G3G1(=))

X̃2(=) ≜ B̃27 (O1(=), G3G2(=))⊗ C(G3G1(=))

Therefore, we have the following relation:
(

F5
1

F5
2

)
= Y + F3M

(
W1
W2

)
,

with
Y ≜

(
D1(=)⊗ X0(=)
D2(=)⊗ X̃0(=)

)

and
M ≜

(
D1(=)⊗ X1(=) D1(=)⊗ X2(=)
D2(=)⊗ X̃1(=) D2(=)⊗ X̃2(=)

)

Denote now by O(F) the Bhattacharyya parameter related to
the pdf F ,

N(F) ≜
∫

;
Z−</2F(=)Q=.

N is closely related to the bit error probability U6 corre-
sponding to F(=), and it has been shown in [5] that U6 →
0 ⇔ N(F) → 0. Knowing this, and taking into account the
properties of convolution and of R-convolution, we obtain that

(
N(F5

1 )
N(F5

2 )

)
≤ [X + F3N(M)]

(
W1
W2

)
,

where

X =

(
0 N(D2)

82>(

2 C′(G3)
N(D1)

82>(

2 C′(G3) 0

)
.

Note that we simplified the expressions by bounding 1 −
N(G1) ≤ 1− N(O1) and 1− N(G2) ≤ 1− N(O2), and further
bounding X0(=) and X̃0(=).

Define next 9 ≜ X + F3N(M). Then the following recur-
rence relation can be obtained:

(
N(F5

1 )
N(F5

2 )

)
≤ 9 ⋅

(
N(F5−1

1 )
N(F5−1

2 )

)
,
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and hence, if we perform P iterations of density evolution,
we obtain that

(
N(F5

1 )
N(F5

2 )

)
≤ 95 ⋅

(
N(F0

1 )
N(F0

2 )

)
,

where we assume that the messages O and G for any iteration
are bounded by O0 and G0. We are interested in the case of
N(F∞) decreasing to 0.

Taking all the above into account, we have the following
sufficient stability condition for full-diversity codes:

Theorem 1 (Sufficiency part of the stability condition):
The bit error probability U3 for a full-diversity RLDPC
ensemble converges to 0 if all the absolute values of the
eigenvalues of 9 are < 1.

Notice that the usual stability condition mentioned in Sec-
tion IV-A depends on B2, while the stability condition derived
here depends on both B2 and B3, “hidden” in B̃1 and B̃2.

V. BLOCK-ERROR RATE OF RLDPC CODES

The main result of this paper is the study of the block-error
probability U? of RLDPC codes. Using the sufficient part of
the stability condition derived above, we can link U? to the
bit-error probability U6, and show in which cases U6 → 0
implies U? → 0.

Using a union bound at some iteration P, we obtain

U 5
? ≤ [

4
U @

6(1>) +
[

4
U @

6(2>)

≤ 1

4
(maxS@(1>))6+AU @

6(1>) +
1

4
(maxS@(2>))6+AU @

6(2>),

where [ is the code length, and maxS5(1>) (maxS5(2>))
is the maximum number of variable nodes in a computation
tree of a variable node from the set 1> (2>) in the bipartite
graph, after P iterations. The second inequality follows from
the same reasoning used in [3, Section II], to which we refer
the reader desiring a detailed proof. Now, to ensure that, as
P →∞, U 5

? decreases to 0 while U 5
6 → 0, one has to ensure

that U 5
6 decreases with P faster than the maximum number

of variable nodes in the computation tree.

A. Case of B2 = B3 = 0

Let us consider the simple case of both B2 and B3 being
0. (this is similar to the case of standard LDPC codes with
B2 = 0). Repeating the calculations of [3, Section VI.A], we
obtain

U?(P + H) ≤
1

4
(Q5B<

C Q5B<
7 )6(1+A)(5+4)[N(F5

1 )(3/2)
)

+ N(F5
2 )(3/2)

)

],

which decreases to 0 as H →∞.

B. General case
Given that

N(output) = Π1N(input1)

for variable nodes and

1−N(output) ≥ Π1(1−N(input1))

for check nodes, and since N(O5) and N(G5) for any P, O,
and G are no greater than the corresponding N(D), one can
bound

N(X1) ≤ B̃2G3C′(G3)N(D2)max{N(D1), N(D2)}
N(X2) ≤ (B̃1 + B2C(G3))G3N(D2)

N(X̃1) ≤ (B̃1 + B2C(G3))G3N(D1)

N(X̃2) ≤ B̃2G3C′(G3)N(D1)max{N(D1), N(D2)}

and obtain

N(F5
1 ) ≤ N(D2)(\1N(F5−1

1 ) + \2N(F5−1
2 ))

N(F5
2 ) ≤ N(D1)(\2N(F5−1

1 ) + \1N(F5−1
2 ))

with \1 ≜ F3B̃2C′(G3) and \2 ≜ F3(B̃1 + B̃2C(G3)) +
82>(

2 C′(G3). Thus, with a linear approximation,

N(F5+24
1 ) ≤ N(D2)

24\24
1 N(F5

1 )

+N(D2)
4N(D2)

4\4
1\4

2N(F5
2 )

N(F5+24
2 ) ≤ N(D1)

24\24
1 N(F5

2 )

+N(D2)
4N(D2)

4\4
1\4

2N(F5
1 ).

Consequently, the block error probability

U?(P + H) ≤
1

4
(Q5B<

C Q5B<
7 )6(1+A)(5+4)[N(D2)

24\24
1 N(F5

1 )+

N(D1)
24\24

1 N(F5
2 )+N(D2)

4N(D2)
4\4

1\4
2{N(F5

1 )+N(F5
2 )}],

can be seen to decrease to 0, as H → ∞, if the following
conditions are satisfied:

N(D2)\1 ≤ (Q5B<
C Q5B<

7 )−3,

N(D1)\2 ≤ (Q5B<
C Q5B<

7 )−3.

VI. CONCLUSION

In this paper we have derived the conditions under which
the block-error rate of a RLDPC code ensemble decreases to 0
as the bit-error rate does the same. The interest of our findings
lies in the fact that results existing in the literature deal with
errors related to all the of code bits, while for RLDPC only
errors affecting information bits should be considered.
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Abstract—In this paper, we extend our work on iterative soft-
input soft-output (SISO) decoding of high density parity check
(HDPC) codes. Edge-local complementation (ELC) is a graph
operation which can be used to give structural diversity during
decoding with the sum-product algorithm (SPA). We describe
the specific subgraphs required for ELC to not increase the
weight of the Tanner graph beyond a specified upper bound. We
call this controlled operation weight-bounding ELC (WBELC). A
generalized iterative SISO HDPC decoder based on SPA decoding
is described, which can be configured to employ our SPA-ELC
decoders, or iterative permutation decoding (SPA-PD). The latter
is a state-of-the-art decoding algorithm for HDPC codes, using
permutations from the automorphism group of the code. We
observe performance improvements over SPA-PD when the SISO
HDPC decoder is configured to use SPA-ELC in conjunction with
WBELC.

I. INTRODUCTION

Iterative soft decision decoding algorithms are known to
give results which approach the theoretical limits postulated
by Shannon [1]. Specifically, the use of such algorithms for
the decoding of random, sparse linear codes yields near-
optimum error-rate performance when the blocklength goes
to infinity. The best known instance is low density parity
check codes, decoded with the sum-product algorithm (SPA).
Inspired by these results, the aim of much research has been
to develop practical (non-asymptotic) codes and decoders ex-
hibiting comparable performance. Recently, iterative decoding
techniques have been adapted to classical linear codes, which
have strong structural properties (large minimum distance,
and small description complexity in hardware implementa-
tion), but are non-sparse. One state-of-the-art decoder for
such high density parity check (HDPC) codes [2] is the
iterative permutation decoder (SPA-PD) [3], which performs
very well on Bose-Chaudhuri-Hocquenghem codes, as well
as on quadratic residue codes [4, 5], over the additive white
Gaussian noise (AWGN) channel. Our paper is an extension
of our previous work on iterative, graph-local decoding of
HDPC codes using a graph operation known as edge-local
complementation (ELC) [5, 6]. The contribution of this work
is the description of subgraphs on which ELC will not increase
the number of edges in the graph beyond a desired threshold–
a trait we call weight-bounding ELC (WBELC). We describe
an SPA-WBELC algorithm – an instance of a generalized
soft-input soft-output (SISO) HDPC decoder – which gives
an improvement over our previous algorithm, SPA-ELC [5].

Fig. 1. ELC on edge (u, v) of a bipartite simple graph. Doubly slashed links
mean that the edges connecting the two sets have been complemented; edges
are replaced by non-edges, and vice versa. This graph may be a subgraph of
a larger graph.

We also extend our scope towards less structured HDPC codes
(i.e., smaller automorphism group), for which we also observe
an improvement over SPA-PD. Most significantly, we show a
gain when the size of the automorphism group is one–moving
towards random codes–in which case SPA-PD ‘reduces’ to
SPA.

A binary linear code C of length n and dimension k is
denoted by [n, k, dmin], and C⊥ is its dual. The autom-
porhism group is denoted by Aut(C), and if it consists of
the identity permutation alone, we say that Aut(C) is trivial.
The (n− k)× n parity check matrix and the corresponding
Tanner graph are denoted by H and TG(H), respectively.
All definitions regarding H have obvious equivalents for
TG(H), and vice versa, so we will use these representations
interchangeably. H is said to be systematic if its columns
can be reordered into the form [I P ], where I is the identity
matrix of size n − k. The transpose of H is written HT .
The weight of H , denoted by |H|, is the number of non-zero
entries in H , and the minimum weight of H is lower-bounded
by max(k(dmin(C)− 1) + n− k, (n− k)dmin(C⊥)). Ac-
cordingly, the number of edges of TG(H) is |H|. The local
neighborhood of a node v is the set of nodes adjacent to v, and
is denoted byNv , whileN u

v is shorthand notation forNv\{u}.
|EA,B | denotes the number of edges in the subgraph induced
by the nodes in A∪B. Eu,v is shorthand notation for ENv

u ,Nu
v
,

the local neighborhood of the edge (u, v). ELC requires that
H is systematic, so, as a simplification, we may describe the
subgraphs on which ELC is WBELC using a simple bipartite
graph (undirected, no double edges) G =

(
0 P

PT 0

)
. By taking

the P -part as one of the two partitions, G is equivalent to
TG(H), and straight-forward mappings exist to implement
ELC operations directly on TG(H) [5]. The operation of ELC
on an edge (u, v) is to complement the edges of Eu,v , followed
by swapping the nodes u and v–see Fig. 1. In the following,
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(a) Theorem 4 (b) Theorem 5

Fig. 2. Depth-2 WBELC. The dashed edge in Theorem 5 is a non-edge. The edges between sets in the (bipartite) subgraphs are not shown.

we will use boldface notation for vectors.
The following section describes WBELC. The remainder

of this article details the application of this controlled ELC
operation in a SISO HDPC decoding algorithm, in an exten-
sion of our previous work on the SPA-ELC decoder. Finally,
we present simulations results, and compare the decoding
algorithms.

II. WBELC

The effect of repeated random ELC is that the average
weight of H tends to k(n−k)

2 + (n− k). In this section, we
introduce a restriction on the ELC operation, being that an
ELC on a certain edge in the graph is only allowed if |H|
remains below a given threshold, T . We give a complete
description of the conditions that are necessary and sufficient
in order to achieve this bound, both for a single ELC and for
two consecutive ELCs. Using these conditions, we improve
the perormance of the SISO HDPC decoder.

We begin by formalizing the notion of WBELC. If the
weight change due to the complementation caused by ELC
is bounded, then the weight of the entire graph is bounded,
and we say that the ELC is WBELC.

A. Depth 1

There is a simple condition for one ELC to be WBELC.
Theorem 1: ELC on (u, v) does not increase the weight of

the graph by more than a threshold T iff

|N v
u ||N u

v |− 2|Eu,v| ≤ T.

B. Depth 2

For many graphs, it is simply not possible to bound the
weight increase by any reasonable threshold using only a
single ELC. The notion of WBELC can be extended to the
case of consecutive ELC operations. In this work, we will
completely characterize WBELC to within depth 2, where we
use the compact notation {(u, v), (u′, v′)} for an ordered pair
of edges. Incidentally, the search space can be significantly
reduced from checking all pairs of edges in the graph.

Theorem 2: ELC on {(u, v), (v, v′)}, where v′ ∈ N v
u , gives

the same graph as ELC on (u, v′). Consequently, depth-2
WBELC reduces in this case to depth-1 WBELC.

Note that, due to the swap of ELC on (u, v), (v, v′) and
(u, v′) refer to the same edge–see Fig. 1. From this theorem,
we see that we need only consider pairs of non-adjacent edges,
i.e., at a distance of at least one edge apart. However, it can be

shown that the search space can be further reduced by noting
that the distance can also not be greater than two edges.

Theorem 3: Let T ≥ −1. Any depth-2 WBELC where the
pair of edges are at a distance greater than two edges apart,
will always reduce to either one or two separate instances of
depth-1 WBELC.

One implication of Theorem 3 is that depth-2 WBELC, like
depth-1 WBELC, only acts locally on a graph. For T < −1,
there is an additional case (not discussed in this paper), not
covered by Theorem 3. Thus, the following three theorems
describe all possible depth-2 WBELC cases for T ≥ −1.

Let us first consider the case where the pair of edges are at
a distance of exactly two edges apart, Fig. 2(a). Given an edge
(u, v), let u′′, v′′ /∈ Nu∪Nv be such that G = N v

u ∩N v′′

u′′ .= ∅,
and, similarily, G′ = N u′′

v′′ ∩N u
v .= ∅.

Theorem 4: ELC on {(u, v), (u′′, v′′)} does not increase the
weight of the graph by more than a threshold T iff

|N v
u ||N u

v |+ |N v′′

u′′ ||N u′′

v′′ |− 2|Eu,v| +

4|EG,G′ |− 2|ENv′′
u′′ ,Nu′′

v′′
|− 2|G||G′| ≤ T.

For the next theorem, given an edge (u, v) and two nodes

u′ and v′, we denote by B = Nu,u′

v ∩Nu,u′

v′ , A = Nu,u′

v \B,

C = Nv,v′

v′ \B, E = Nv,v′

u ∩Nv,v′

u′ , D = Nv,v′

u \ E, and

F = Nv,v′

u′ \ E, see Fig. 2(b).
We now consider the case where both u′ and v′ are in the

neighborhood of (u, v).
Theorem 5: ELC on {(u, v), (u′, v′)} does not increase the

weight of the graph by more than a threshold T iff

|F |− |E|− |B|− 2|EA,E∪F |− 2|EB,D∪E |− 2|EC,D∪F | +

|C|+ |A|(|E|+ |F |) + |B|(|D|+ |E|) + |C|(|D|+ |F |) ≤ T.

Note that the edge (u′, v′) is created by the first ELC. Last,
we consider the case where either u′ or v′ belong to N v

u ∪
N u

v , but not both. Without loss of generality, let v′ ∈ N v
u be

connected to u′ /∈ N u
v .

Theorem 6: ELC on {(u, v), (u′, v′)} gives the same graph
as ELC on {(u, v′), (u′, v)}.
Note that {(u, v′), (u′, v)} is covered by Theorem 5.

III. ITERATIVE SISO HDPC DECODING

We have previously described the SPA-ELC decoder, which,
essentially, consists of SPA iterations interspersed with random
ELC operations [5]. Since ELC complements edges, we avoid

Int. Zurich Seminar on Communications (IZS), March 3-5, 2010

99



loss of extrinsic information (on edges) by executing a flooding
scheduling SPA iteration in the order ‘functions, then vari-
ables.’ At this point, all messages, µ, have been accumulated
in variable nodes, making it safe to change the graph. A
generalized SISO HDPC decoder is listed in Algorithm 1,
which can be configured to perform the decoding algorithms
compared in this work–see Section IV.
Both SPA-PD and SPA-ELC suffer a performance loss

if the extrinsic contribution of the soft input vector, L, is
not scaled down (damped) in between iterations. For each
variable node, v, the SPA produces a decision based on
two pieces of information; the extrinsic information pro-
duced by the decoder, and the input to iteration j, Lv

j . L0

is the received noisy channel vector and τ is the maxi-
mum number of decoder iterations. The damping coefficient,
α0 ≤ α ≤ 1, represents the amount of ‘trust’ in the extrinsic
information versus the input after the current iteration [2],
Lv
j+1 := Lv

j + α(Σu∈Nv µv←u
j ), ∀u ∈ Nv . As the decoder

converges, the information produced by the graph is assumed
to become more reliable (hopefully converging towards the
maximum-likelihood codeword), so our trust in the decoder
state may be increased accordingly. This is normally reflected
by incrementing α with iteration number j. A global damping
rule (GD) scales down all variable nodes, and re-initializes all
edges, µv→u

j+1 := Lv
j+1, ∀ v ∈ TG(H). We propose an edge-

local damping rule (LD), which restricts the application of
the damping-and-initialization rule to new edges due to ELC
on (u, v), µv′→u′

j+1 := Lv
j+1, ∀ (u′, v′) ∈ Eu,v . All other edges

retain messages computed in iteration j.
SPA-PD applies a random permutation (PD) Lj := σ(Lj),

σ ∈ Aut(C), before re-initializing TG(H) with global damp-
ing. SPA decoding on a fixed graph suffers a performance
loss when global damping is applied, which suggests that the
benefit of damping is to moderate the effects of modifications
(e.g., permutations, Gaussian elimination, ELC) to TG(H).
Note that damping is disabled by configuring α0 := 1.

A. SPA-WBELC

The SPA-WBELC algorithm uses the theorems in Section II
to determine a random WBELC operation on the current
TG(H), and applies the corresponding one or two ELC
operations, with edge-local damping. LetHj denote the matrix
after j iterations of the SISO HDPC decoder. It is helpful to
reduce the weight of the initial matrix, H0, in a preprocessing
stage, as this has a positive effect on SPA decoding. This
can be done using repeated random WBELC with T = −1,
for non-increasing weight. A simple but effective heuristic,
if the preprocessing gets stuck, is to allow one random
(i.e., unbounded) ELC. Then, for SPA-WBELC decoding, a
threshold T ≥ −1 must be determined, such that WBELC
yields a sufficient number of distinct matrices of weight
|H| ≤ |H0|+ T , to give structural diversity during decoding.

IV. RESULTS

The aim of this paper is to explore the effects of ELC decod-
ing, while maintaining a bound on the weight of TG(H). We

Algorithm 1 SISO-HDPC(p, I1, I2, I3,α0,OP,DR)
1: α = α0

2: for I3 times do
3: Restart decoder from channel vector
4: for I2 times do
5: Stop if syndrome check is satisfied
6: Apply damping rule, DR, with coefficient α
7: Apply at random p operations, OP
8: for I1 times do
9: Apply SPA iteration (‘flooding’ scheduling)

10: end for
11: end for
12: Increment α towards 1
13: end for

will show that the SPA-WBELC decoder outperforms SPA-
PD when Aut(C) is small. For this work, we chose the best
codes we could find at practical blocklengths: two extremal (in
terms of minimum distance) self-dual [36, 18, 8] and [38, 19, 8]
codes from [7], and an extremal double circulant self-dual
[68, 34, 12] code from [8]. We use the notation Cn to refer
to these codes, and we have that |Aut(Cn)| ≈ n, except C38

which has a trivial Aut(C).
The matrices used were optimized on weight, both in non-

systematic form (for SPA and SPA-PD), as well as systematic
form (for SPA-ELC and SPA-WBELC). For C36 and C38, we
were able to compute the entire ELC orbit of the codes, to find
optimal-weight matrices in systematic form to be |H36

0 | = 156
and |H38

0 | = 166. For C68, the orbit is infeasibly large,
yet, using WBELC preprocessing, we were able to find a
systematic matrix of weight |H68

0 | = 488. For non-systematic
form, minimum-weight codewords of C⊥ were combined to
assemble matrices of weight 152, 154, and 492, respectively,
which is very close to the lower bound based on dmin(C⊥).
The simulation results compare the pro-

posed SPA-WBELC(p, I1, I2, I3,α0, T ) = SISO-
HDPC(p, I1, I2, I3,α0,WBELC(T ),LD) decoder against
standard SPA(τ) = SISO-HDPC(0, 1, τ, 1, 1,−,−), where
we ensure that τ = I1I2I3; SPA-PD(I1, I2, I3,α0) =
SISO-HDPC(1, I1, I2, I3,α0,PD,GD); and our previous
ELC decoder, SPA-ELC(p, I1, I2, I3,α0) = SISO-
HDPC(p, I1, I2, I3,α0,ELC,LD). We compare frame-error
rate (FER) when signalling over the AWGN channel, and
measure complexity in SPA messages, 1

F ΣFΣ
J≤τ
j=0 |Hj |,

where J is the number of iterations used for a frame, and
F the total number of frames simulated. For comparisons
between SPA-ELC and SPA-WBELC, we use a comparative
number, p, of ELC operations (one WBELC is one or
two ELC operations). The most significant result is that
SPA-WBELC outperforms SPA-PD in FER on C38 and C36,
even when Aut(C) is non-trivial. For C68, we approach the
performance of SPA-PD quite closely. In addition, we see that
SPA-WBELC will generally result in an improvement over
SPA-ELC. This gain is consistent for all codes attempted,
and is most significant at low signal-to-noise ratio (SNR). At
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high SNR, the performance of SPA-WBELC will, in general,
approach that of SPA-ELC. This is assumed to be linked
to the average number of iterations per frame approaching
zero, such that the number of operations (ELC or WBELC)
also goes down, diminishing the difference between the
respective decoders. The point at which the performance of
SPA-WBELC ‘breaks off’ towards SPA-ELC is influenced
by the choice of T . By increasing T , the break occurs at
higher SNR. Yet, this is obviously at the expense of increased
average weight, such that, for some T sufficiently high,
SPA-WBELC equals SPA-ELC also at low SNR.

For C38, Aut(C) is trivial, such that SPA-PD ‘reduces’ to
SPA. In this extreme setting, ELC-based decoding has its
most interesting gain. The SISO HDPC decoder is sensitive to
choice of parameters, so various configurations (of T , I1, I2,
I3, and p) were systematically attempted in order to arrive at
the presented data.

For complexity, we observe the desired effect of bounding
the weight increase due to ELC. For SPA-ELC, the average
weight of H quickly settles around k(k + 2)/2 (the codes
are self-dual), whereas for SPA-WBELC, the average weight
is |H0| + T . The SPA-WBELC decoder has a uniform im-
provement in complexity over both SPA and SPA-ELC, and
can also be pushed down quite close to SPA-PD. We have
also simulated SPA and SPA-PD on systematic matrices (not
shown), to verify that FER performance is not significantly
sensitive to this.

V. CONCLUSION

We have developed a new algorithm for the decoding of
linear codes on graphs, which is particularly suited for HDPC
codes. The main idea of this work is to use a graph operation,
ELC, in a controlled manner. We described the necessary and
sufficient conditions for this operation to be weight-bounding,
and discuss its application in SPA decoding. The results show
a significant improvement over standard (flooding) SPA, our
previous algorithm SPA-ELC, as well as over SPA-PD in codes
with limited structure.
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(a) C36 = [36, 18, 8], with |Aut(C)| = 32
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(b) C38 = [38, 19, 8], with |Aut(C)| = 1
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(c) C68 = [68, 34, 12], with |Aut(C)| = 68

Fig. 3. Simulations results. Each SNR point is simulated until at least 100
frame-error events were observed (otherwise, error bars indicate significance).
The union bound is calculated based on the full weight enumerator of the code.
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Abstract—We consider an array error model for data in matrix
form, where the corrupted symbols are confined to a number of
lines (rows and columns) of the matrix. Codes in array metric
(maximum term rank metric) are well suited for error correction
in this case. We generalize the array metric to the case when the
reliability of every line of the matrix is available. We propose
a minimum distance decoder for the generalized metric and
estimate the guaranteed error correcting radius for this decoder.

I. INTRODUCTION
Consider transmission of matrices C with elements from

the field q over a channel with array (or crisscross) errors.
This channel corrupt a number of lines (rows and columns)
of the matrix C, i.e., the channel may erase some lines and
replace components of some other lines by arbitrary elements
of q. Array errors can be found in various data storage
applications and in OFDM systems. The array metric, which is
also known as the maximal-term-rank metric, suits well for the
channels with array errors. Array-error-correcting codes, i.e.,
codes having a distance d in the array metric, were proposed
in [1], [2], [3], and in other publications. These codes have
algebraic decoders, which are able to correct up to (d− 1)/2
erroneous lines in the received matrix. More precisely, these
decoders correct ε erroneous lines and θ erased lines as soon
as

λε + θ ≤ d− 1, (1)
where λ = 2 is the tradeoff rate between errors and erasures
for these decoders.
Assume that the decoder has side information about relia-

bilities of lines in the received matrix. Can we correct more
than (d− 1)/λ erroneous lines in this case?
For the case of correction of independent errors (using

codes in Hamming metric) the answer ”yes” was done by
Forney [4]. He introduced generalized Hamming distance,
which is the weighted Hamming distance, where weights are
the reliabilities of the received symbols. Forney also suggested
a decoding algorithm, which uses an algebraic decoder (with
λ = 2) in multi-trial manner to decode the received vector in
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generalized metric. Later, Kovalev [5] suggested an adaptive
form of the Forney algorithm to decrease twice the number of
decoding trials. The Forney-Kovalev decoding algorithm was
refined by Weber and Abdel-Ghaffar in [6] and extended for
λ ≤ 2 in [7].
In this paper we introduce generalized array distance, which

is array-distance weighted by reliabilities. We show that this
generalized array distance suits well to the channel with array
errors and with side reliabilities information. Then we show,
that decoding of codes in the new generalized metric can be
done by a modification [7] of the Forney-Kovalev algorithm.
This allows us to estimate the error correcting radius of the
decoding algorithm for all λs.

II. ARRAY-ERROR MODEL AND ARRAY METRIC
A. Channel
We consider transmission of m × n matrix C over q.

Let us enumerate lines (rows and columns) of C by numbers
1, . . . ,m + n. The received matrix Y is Y = C + E, where
error-matrix E is constructed by the channel as follows. The
channel selects s different lines of E with probability P (s) and
fills these lines randomly by elements of q , independently
and equiprobable. All the rest components of E are zeros. We
assume that P (s) decreases with s.
B. Array metric
The array (or maximal term rank) metric is defined as

follows. Assume that all nonzero elements of the matrix
A ∈ m×n

q are contained in t lines with indexes {i1, . . . , it},
then we call this set a covering of A and denote it by I(A) =
{i1, . . . , it}. The array-weight (or array-norm) w(a)(A) of a
matrix A is defined as follows

w(a)(A) ∆
= min

I(A)
|I(A)|. (2)

In other words, the array-weight of a matrix A is the minimum
number of lines that contain all nonzero elements of A. The
maximum possible array weight of a matrix A is min{m,n}.
The array-distance d(a)(A,B) between matrices A and B

is defined as
d(a)(A,B)

∆
= w(a)(A−B). (3)

The array-norm (2) satisfies the axioms of a norm, and hence
the array distance (3) satisfies the axioms of a distance.
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III. ALGEBRAIC CODES CORRECTING ARRAY-ERRORS
A linear (nm, k, d) code C of rate R = k

mn is a linear
subspace of m×n

q of dimension k, where the array code
distance d(a)(C) = d is the minimum array distance between
two different codewords of C.
From now on let us assume without loss of generality that

m ≥ n. (4)
The code-dimension k satisfies the following Singleton-type
bound [1]

k ≤ m(n− d+ 1). (5)
In [1] the following construction of array-error-correcting

codes was proposed. Assume we have an (n, k, d(H)) block
linear code C(H) over q with distance d(H) in Hamming
metric. A code matrix C = ||ci,j ||, i = 1, . . . ,m, j = 1, . . . , n
of an array-error-correcting code C we design as follows. We
say that the set {c(i+j) mod m+1,j+1 : j = 0, . . . , n − 1}
forms the (i+ 1)st diagonal of the matrix C, i = 0, . . . ,m−
1. By writing m arbitrary words of the code C(H) into m
diagonals of the matrix C we obtain a codeword of the code
C. Notice, that every corrupted line (erased line or line with
errors) in C affects at most one symbol of every diagonal of
C. As a result we obtain an (nm, km, d(H)) code C with array
distance d(H).
Assume we have a decoder of the code C(H) correcting up

to t errors in Hamming metric. Then, by correcting errors in
every diagonal of a received matrix Y , we will correct every
error matrix E of array-weight up to t. Standard algebraic
decoders allow to correct up to (d(H) − 1)/2 errors. If the
order q of the field is large enough, q > (n+1)l then we can
use l-punctured, l = 1, 2, ..., Reed–Solomon codes [8], which
allows to correct up to l

l+1d
(H) errors [9]. More precisely the

decoder corrects ε errors and θ erasures if (1) holds and fails
otherwise. Here, the real number λ = 1 + 1/l, 1 < λ ≤ 2 is
the tradeoff rate between errors and erasures for this decoder.
This is an example of array-error-correcting (mn, k, d) code C
with array-distance d, which reaches the Singleton-type upper
bound (5). If q > (n+ 1)l then there is a decoder Φ for this
code, which corrects ε errors and θ erasures as soon as (1) is
satisfied with λ = 1 + 1/l.
Another class of array-error-correcting codes is based on

codes in rank metric. Rank distance between m× n matrices
A and B is defined as d(r)(A,B) = rank (A − B). Since
rank (A − B) ≤ d(a)(A,B), every code having distance d in
the rank metric has distance at least d in the array metric. There
is a class of (mn, k, d) Gabidulin codes [2], [3], which have
distance d in rank metric satisfying the Singleton-type upper
bound (5) with equality. Hence, every (mn, k, d) Gabidulin
code is simultaneously (mn, k, d) code with array-distance d.
There are known algebraic decoders of Gabidulin codes, which
correct up to (d−1)/2 errors in rank metric, and hence in the
array metric as well. This is another example of array-error-
correcting codes, having the decoderΦ, which corrects ε errors
and θ erasures as soon as (1) is satisfied with λ = 2.

IV. GENERALIZED DISTANCE AND GMD DECODING
A. Generalized weight and distance
Given a vector h = (h1, . . . , hn+m) of line-reliabilities,

where 0 ≤ hi ≤ 1, we define generalized distance as follows.
First we define h-weight of a matrix A ∈ m×n

q as
|A|h = min

I(A)

∑

i∈I(A)

hi. (6)

Theorem 1 The defined h-weight satisfies the axioms of a
seminorm, i.e., for every A,B ∈ m×n

q holds
1) |A|h ≥ 0,
2) |A|h = |−A|h,
3) |A−B|h ≤ |A|h + |B|h.
Proof: The first two properties follow immediately from

definition (6). Let us prove the third one. Indeed, I(A)∪I(B)
covers A−B. Hence
|A−B|h = min

I(A−B)

∑

i∈I(A−B)

hi ≤ min
I(A),I(B)

∑

i∈I(A)∪I(B)

hi

and since hi ≥ 0

≤ min
I(A)

∑

i∈I(A)

hi + min
I(B)

∑

i∈I(B)

hi = |A|h + |B|h.

Notice that the h-weight does not satisfy the axiom of positive
definiteness, i.e. the axiom |A|h = 0 iff A = 0 does not hold.
For example, if h = 0 then |A|h = 0 for every matrix A.
Let us modify the h-wight (6) by multiplying it by 2 and

adding a fixed (for a fixed h) positive number m+n−
∑

hi.
The new h-norm remains to be a seminorm. As a result, we
obtain the following new definition, which corresponds to a
traditional definition of generalized distance.

Definition 1 For a given vector h of reliabilities and for
matrices A,B ∈ m×n

q a seminorm (or h-norm) |A|h is
defined as follows.

|A|h = min
I(A)




∑

i∈I(A)

(1 + hi) +
∑

i/∈I(A)

(1 − hi)



 . (7)

A generalized array semidistance (or h-distance) between
matrices A and B is defined as

dh(A,B) = |A−B|h. (8)
Notice, for h = (1, . . . , 1) the h-distance coincides with

doubled array distance. For a given h the h-distance dh(C) of
a code C is defined as the minimum h-distance between two
different codewords. For a linear code, h-distance of the code
is the minimum h-norm of a nonzero codeword.

Theorem 2 If array distance of the code C is d(a)(C) = d
then the minimum h–distance of C over all h is

min
h

dh(C) = d.
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Proof:
min
h

dh(C) = min
h

min
C:w(a)(C)≥d

|C|h = min
C:w(a)(C)≥d

min
h

|C|h

= min
C:w(a)(C)≥d

w(a)(C) = d.

Theorem 2 explains why we modified the definition of the
h-norm.
B. Generalized minimum distance decoder
Given a received matrix Y and reliability vector h, the goal

of the Generalized Minimum Distance (GMD) decoder is to
find the list L of codewords C which are at the minimum h-
distance dh(Y,C) from the received vector Y , i.e., to decode
the code C in the generalized metric.
The guaranteed error correcting radius ρ of a particular

GMD decoder is the infimum of real numbers ρ̃, for which
there exist two matrices C ∈ C, Y ∈ Fm×n

q and a vector h ∈
[0, 1]n, such that dh(Y,C) = ρ̃, and the GMD decoder fails
to decode Y, h, i.e., it outputs a list, which does not contain
C. In other words, we guarantee correction of every error of
generalized weight less than ρ, where the generalized error-
weight is defined to be |Y −C|h = dh(Y,C). It follows from
Theorem 2 that the error-correcting radius ρ of GMD decoder
can not be greater than d.
C. Generalized distance matches the array-error channel
Let pi, i = 1, . . . ,m+n, be the a posteriori probability that

the ith line was selected by the channel to be erroneous. Then
joint probability that the ith line of length li, li ∈ {m,n}, was
selected by the channel and filled by particular li symbols from

q is p̃i = piq−li . Given the received matrix Y and the vector
of probabilities p = (p1, . . . , pn+m), for every codematrix C
probability of the error matrix E = Y − C can be estimated
neglecting the fact of line-intersection as follows

P (E) ≈
∑

I(E)

∏

i∈I(E)

p̃i
∏

i/∈I(E)

(1− pi)

≈ max
I(E)

∏

i∈I(E)

p̃i
1− pi

m+n∏

i=1

(1− pi). (9)

Denote the second product in (9) by a(p) and

hi = − ln
p̃i

1− pi
. (10)

Using definition (6) we obtain

P (E) ≈ a(p)max
I(E)

exp



−
∑

i∈I(E)

hi





= a(p) exp



−min
I(E)

∑

i∈I(E)

hi





= a(p) exp (−|E|h) . (11)

The maximum likelihood decoding rule becomes

argmax
C∈C

P (Y |C) = argmax
C∈C

P (Y − C) = argmin
C∈C

|Y − C|h.
(12)

Let us make a realistic assumption that pi ≤ (1 + q−li)−1 ∆
=

p(max)i ≈ 1. If the assumption is not satisfied then we can
replace pi > p(max)i by p(max)i . Then from (10) it follows that
hi ≥ 0. Notice that the result of decoding rule (12) will
not change if we mutiply every hi by a positive number.
Denote hmax = max{hi} and divide every hi by hmax then
we have 0 ≤ hi ≤ 1. As a result, up to approximation in
(9), maximum likelihood decoder coincides with generalized
minimum distance decoder according to definition (6) and
hence according to Definition 1 as well, since the result of
decoding rule (12) will not change if we replace definition (6)
by Definition 1.

V. FORNEY-KOVALEV (FK) DECODING
To implement GMD decoding we use the FK algorithm.

Given an array-error-and-erasure decoder Φ of the code C, the
FK list decoding is as follows. For j = 1, . . . , s we make a
trial to decode the received matrix Y in which the τj least
reliable lines are erased. Performing s decoding trials using
decoder Φ we obtain a list L of codewords. If this list is
empty, we declare a decoding failure, otherwise we leave in
the list only codewords C having the minimum dh(C, Y ) and
output the new list. FK decoders may differ by using different
decoders Φ (having different λ) or by different number s of
decoding trials or by different selection of the erasure vector
τ = (τ1, . . . , τs). If the erasure vector is fixed we get the
Forney algorithm. If the erasure vector is selected adaptive
depending on the received vector h of reliabilities, we obtain
the Kovalev algorithm, having better performance. Later we
consider the adaptive approach only.
Let us estimate the guaranteed error correcting radius ρ

of the adaptive FK algorithm. Recall that we consider a FK
decoder based on an array-error-correcting algebraic decoder
Φ which satisfies (1) with tradeoff rate λ. At the input of
the FK decoder we have a received word Y and a vector of
reliabilities h. From now on, assume w.l.o.g. that the lines of
matrices Y and C are ordered according to their reliabilities
as follows

0 ≤ h1 ≤ h2 ≤ · · · ≤ hm+n ≤ 1. (13)

So, we denote by h = (h1, ..., hm+n) the vector of ordered
reliabilities, and byH the set of all possible real-valued vectors
h satisfying (13).

Definition 2 Given the vector h of reliabilities, by δτ (h) we
denote the minimum h-weight of the error in the channel
that causes a failure of the FK decoder with erasing strategy
defined by the vector τ . In other words, δτ (h) is error-
correcting radius for fixed h and τ .
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Lemma 3 Error-correcting radius δτ (h) is as follows

δτ (h) =
m+n∑

j=1

(1− hj) + 2
s∑

i=1

τi+ε(τi)−ε(τi+1)∑

j=τi+1

hj , (14)

where we denote the function

ε(θ) =

⌊
d− θ − 1

λ

⌋
+ 1,

and τs+1 is formally defined such that ε(τs+1) = 0.
Let T be the set of all integer valued vectors τ = (τ1, ..., τs)
such that 0 ≤ τ1 ≤ · · · ≤ τs ≤ d − 1. To specify a particular
FK decoder we are free to select a vector τ . For a given h we
will select τ to maximize the error-correcting radius δτ (h):

τ(h) = argmax
τ∈T

δτ (h). (15)

The algorithm with this τ(h) we will call adaptive algorithm
and denote by A. The error correcting radius ρA(λ) of
algorithm A is

ρA(λ) = inf
h∈H

max
τ∈T

δτ (h). (16)
To find vector τ(h) from (15) one should consider |T |

vectors τ , thus the complexity of this step is O(ds). Remark,
that the decoder should compute τ(h) for every received h,
thus the computation is only feasible for one or two decoding
trials, i.e., for s = 1, 2. This is a big disadvantage of the
adaptive approach using the erasing vector (15).

VI. DECODING ALGORITHM
Fortunately Kovalev suggested a simplification of the adap-

tive decoding algorithm where vector of erasures τ(h) should
be selected from a set of two vectors only! In [7] this
simplified algorithm was extended for all the range of λ and
the final decoder is given by Algorithm 1. To compute τ(h)
Algorithm 1 requires O(d) operations only. Error-correcting
radius ρA(λ) of the initial algorithm A based on τ(h) given
by (15) and radius of the simplified Algorithm 1 coincide!

Theorem 4 ([7]) The error correcting radius of Algorithm 1
is lower bounded by ρ

A
(λ)

ρA(λ) ≥ ρ
A
(λ) = ε(0) + ε(τ1), (17)

where τ1 is a solution of recurrent inequalities
τi ≥ τi−1 + ε(τi−1)− ε(τi+1), i = 1, . . . , 2s− 1, (18)

with boundary conditions
τ0 = 0, τ2s = /d− 1 + λ0 . (19)

The lower bound (17) is nearly tight [7] and can be
approximated as follows.

Corollary 5 For 1 < λ < 2 s-trial decoding radius is

ρ
A
(λ) ≈ d

(
1− (2− λ)(λ − 1)2s

λ(1 − (λ− 1)2s)

)
≈ d

(
1− (λ − 1)2s

)
. (20)

Algorithm 1: Simplified s-trial adaptive decoding
Precomputations: Solve (18), get vectors
τ (a) = (τ0, τ2, ..., τ2(s−1)) and τ (b) = (τ1, τ3, ..., τ2s−1);
Input: received matrix Y and (ordered) vector h;
Select vector τ ′ = argmax

τ∈{τa,τb}
δτ (h);

for each j from 1 to s do
decode Y with erased first τ ′

j positions by the
decoder Φ of the code C, add obtained codeword (if
any) to the list L;

Output:
if the list L is empty then

declare a decoding failure;
else

leave in L only codewords nearest to Y in h-metric,
output L

To reach ρA(2) = d it is sufficient to have s =
1
2

(
log 1

λ−1
d+ 1

)
decoding trials.

Corollary 6 For λ = 2 s-trial decoding radius is

ρA(2) ≥ d+ 1−
⌈
d+ 1

4s

⌉
, (21)

which coincides with Kovalev’s result. To reach ρA(2) = d it
is sufficient to have s =

⌈
d+1
4

⌉ decoding trials.
Notice, to reach ρA(2) = d, the number s of decoding trials

grows linearly with d for the classical case λ = 2 and only
logarithmically for λ < 2. As a result, for λ < 2 the error-
correcting radius of Algorithm 1 quickly approaches d with
increasing number of trials, and 2 or 3 trials are sufficient to
reach ρA(2) = d in many practical cases.
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Abstract—The usual comparison of trellis coded modulation
and bit-interleaved coded modulation, both using convolutional
codes and Viterbi decoding, leads to the well-known result that
for the AWGN channel TCM clearly outperforms BICM. In
fading scenarios BICM shows superior results. Based on recent
results on optimized bit mappings and bit-interleaver designs
for BICM, we demonstrate that the BER of BICM on AWGN
channels can be significantly lowered at no additional cost.
Depending on the signal constellation size and the constraint
length of the convolutional code gains up to 7 dB can be achieved
over BICM with random bit interleavers.

I. INTRODUCTION
The comparison of trellis coded modulation (TCM) [8] and bit-
interleaved coded modulation [11] as for example performed
in [2], leads to the well-known result that on the additive white
Gaussian noise (AWGN) channel TCM outperforms BICM in
terms of capacity and bit error ratio (BER). In fading scenarios,
on the contrary, BICM shows superior results. The provided
numerical results are mostly based on non-iteratively decoded
implementations using convolutional codes and Viterbi de-
coders. This classical variant of BICM recently was identified
as optimum solution for low-delay applications [4]. Here, we
show that in part the performance of conventional BICM on
AWGN channels has been considerably underestimated so far.
For the analysis of BICM an equivalent channel model

initially introduced in the context of multilevel codes [5], [9]
has proven to be helpful. Based on this model we recently
studied bit mappings for BICM transmission [6] and optimized
the design of the bit interleaver [7]. In particular the latter
offers a large potential for optimizations at no additional costs.
In this contribution, our recent insights are combined with

the knowledge that in non-fading scenarios bit interleaving is
not necessarily beneficial, but may be even counter-productive
[9]. We propose some slight modifications for BICM transmis-
sion over AWGN channels which at higher spectral efficiency
significantly lower the resulting BER.

II. GENERAL SYSTEM MODEL
We investigate block-based coded transmission over an
AWGN channel (see Fig. 1). A rate-Rc = k/n convolutional
encoder (ENC) is used to encode a sequence q of Kbs

binary source bits qκ, κ = 1, . . . ,Kbs, originating from a
discrete i.i.d. memoryless source, into a binary sequence c
of Nbs = Kbs/Rc encoded symbols cν , ν = 1, . . . , Nbs. The
symbol rate of the source bits is denoted by 1/Tb, that of the
encoded bits by 1/Tc. The sequence of encoded bits is passed
on to a block bit interleaver Π which permutes the encoded
binary symbols and generates an output stream of RM -
tuples x = [x(1)

δ , x(2)
δ , . . . , x(RM )

δ ] with index δ = 1, . . . ,∆;

∆ = Nbs/RM . These binary RM -tuples x are then bijectively
mapped onto channel symbols a

M : xδ ∈ FRM
2 C→ aδ ∈ A ⊂ C . (1)

Here, A denotes an M -ary signal constellation and M =
2RM = |A| holds. For simplicity, we restrict our consider-
ations to M -ary amplitude-shift keying (ASK) constellations
(A = {±1,±3, . . . ,±(M − 1)}), i.e., we focus on one of the
quadrature components of an M2-QAM constellation. If M
is a Gray mapping the two quadrature components of a QAM
constellation are independent an can be processed successively.
The received and AWGN-corrupted signal reads

yδ = aδ + nδ . (2)
The variance of the channel symbols1 is given as σ2

A = Es/Ts

with the average energy per symbol Es and the channel symbol
rate 1/Ts. The variance of the noise samples per quadrature
component reads σ2

N = N0/(2Ts) with N0 denoting the one-
sided noise power spectral density. We define a signal-to-noise
ratio (SNR) as Es/N0 = σ2

A/(2σ2
N).

At the receiver RM -tuples Λδ of pairs of bit metrics λ(µ)
δ ,

µ = 1, . . . , RM , are determined by the bit-metric calculator L
from the yδ. After deinterleaving the sequence of Nbs pairs
of deinterleaved bit metrics λν is processed by the Viterbi
decoder (DEC) which finally returns a sequence q̂ of Kbs

estimates q̂κ on the initial source symbols qκ.
A. Equivalent Channel Model
Due to the bijection between the RM -tuples x and the channel
symbols2 a, the combination ofM and AWGN channel can be
equivalently represented by a set of RM parallel subchannels
(aka. bit levels) with binary inputs and continuous output,
cf. [9] and Fig. 1. The binary labels x are the discrete channel
input; the received signal y is the continuous output. The µ-th
label bit x(µ) is transmitted via the µ-th bit level.
B. Bit-Level Capacity and Parallel-Decoding Capacity
The bit levels are characterized by the respective bit-level
capacity Cbl . For the µ-th bit level Cbl (µ) is defined as the
mutual information between y and x(µ) [9], i.e.,

Cbl (µ) :
= I(Y ;X(µ)) , (3)

which for AWGN and fading channels can only be evaluated
numerically. Exemplary results for 16-ASK (RM = 4) and 64-
ASK (RM = 6) are depicted in Fig. 3. Obviously, there is a
1Upper case letters denote the respective random variables to scalars.

Vectors and matrices are set in lower resp. upper case boldface letters.
2The discrete time index δ is dropped for convenience.
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Fig. 2. Illustration of exemplary bit mapping for 16-ASK constellation. X realizes a binary-reflected Gray mapping.
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Fig. 3. Exemplary bit-level capacities over 10 log10(Es/N0) for AWGN
channel. Left: RM = 4 curves for 16-ASK. Right: RM = 6 curves for
64-ASK. Respective level indices µ for binary-reflected Gray mapping given
in plots.

strong relation between the Cbl ’s and µ resp.M . Furthermore,
there is also a significant dependency of the average reliability
of the bit metrics λ(µ) on the related Cbl (µ), cf. [7].
The sum over the RM individual bit-level capacities yields

the parallel-decoding capacity (PDC) [9]

Cpd =
RM∑

µ=1

Cbl (µ) . (4)

In contrast to successive or joint decoding, where knowledge
of preceeding or even all bit levels is exploited at the decoder,
parallel decoding neglects any knowledge originating from
other subchannels. The decoding of BICM realizes a parallel-
decoding approach, cf. [2], [9], and thus the PDC usually
is referred to as ’BICM capacity’ in the literature, e.g., [3].
Due to the omitted knowledge, the PDC is lower than the
constellation-constraint capacity. The gap between these two
variables depends on the bit mapping M. In [6] binary-
reflected Gray mappings (BRGM) were shown to minimize
the loss in terms of the PDC for medium to high SNRs and
thus are used in the remainder. In [1] BRGM were proven to
be optimal for uncoded transmission.
C. Bit Mapping
The binary labeling rules M can be described by using
an (RM × M )-matrix X and a function ColNrX{x}. The

columns of X contain the M potential binary RM -tuples,
i.e., X = [x1 . . .xM ]. ColNrX{x} returns the column index
(from 1 to M ) of x in X . We can then write the mapping as

M : x C→ a = 2 · ColNr
X

{x}−M − 1 . (5)
Fig. 2 shows an exemplary matrix for 16-ASK and a BRGM.
Obviously, the Cbl (µ) is entirely determined by the structure

of the µ-th row of X denoted by χ(µ). Respective Cbl ’s for
the exemplary M given in Fig. 2 are depicted in Fig. 3. The
first row of X leads to the left-most curve and so forth.
The matrix X given in Fig. 2 describes only one of many

potentialM’s applicable to 16-ASK. Some of these mappings
perform entirely identical in terms of, e.g., the BER of uncoded
transmission or the PDC. In [1] trivial operations on X were
defined which do not affect the BER of uncoded tranmission
or the PDC. These operations comprise complementations of
rows of X , interchanging rows in X , and reflection of rows
wrt. to the symmetry axes of the signal constellation. Note, in
the BICM scheme the interchanging of rows of X could be
performed implicitly by a respectively designed bit interleaver
Π.
III. THE VITERBI DECODER AND BIT INTERLEAVING

The optimization of BICM for AWGN channels is based on
an analysis of the Viterbi decoder and its interaction with the
bit interleaver Π. Formally, the latter implements a mapping
described as

Π : c C→ [x1 . . .x∆] . (6)
A sequence of Nbs encoded binary symbols c is mapped onto
a sequence of ∆ binary RM -tuples x.
The inverse operation Π−1 at the receiver reads

Π−1 : [Λ1 . . .Λ∆] C→ [λ1 . . .λNbs ] , (7)
i.e., a sequence of ∆ RM -tuples Λδ of pairs of bit metrics is
converted into a sequence of Nbs pairs of bit metrics λν .
The problem finally to be solved by the decoder (DEC) is

ĉ = argmin
c∈C

{
Nbs∑

ν=1

λν,cν

}
. (8)
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The estimated sequence ĉ minimizes the overall path metric.
Here, λν,b denotes the bit metric (Euclidean distance) for the
ν-th encoded bit to be b ∈ {0, 1} and λν = [λν,0,λν,1]T.
The importance of bit interleaving is determined by the

’sliding window’ characteristic of the Viterbi decoder. De-
coding results strongly rely on localized arrangements of bit
metrics within the sequence. In turn, aggregations of unreliable
bit metrics most likely lead to errors; the processing window
covers only a very small fraction of the trellis. Bit interleavers
are mostly designed to compensate for the effects of fading
scenarios and to (randomly) spread initially neighbored bit
metrics—usually affected by similar fading states and thus
equally reliable—over the entire codeword.
In [7] the individual bit levels were identified as an inherent

source of ’fading’. The varying bit-level capacities induce
varying average bit-metric reliabilities. In contrast to the
’real’ fading process, the ’bit-level’ fading is known prior to
transmission. An approach taking advantage of this knowledge
for BICM is, e.g., adaptive bit interleaving [7] which leads to
significant gains compared to conventional designs.
IV. OPTIMIZATION OF BICM FOR AWGN CHANNELS

A. Bit Interleaver
For the optimization of BICM for transmission over AWGN
channels the usually block-based bit interleaver Π is reduced
to simply provide binary RM -tuples to the mapper M; no
’real’ bit interleaving is performed. This approach was already
vaguely discussed in some early publications on coded modu-
lation, e.g., [9]. The optimization is entirely shifted to the bit
mapping M.
B. Bit Mapping
The optimization of the bit mapping is motivated by the bit
interleaver designs presented in [7]. For simplicity, we intro-
duce the idea for rate-1/2 convolutional codes; an extension
to other code rates is straightforward.
Consider the decoding of a rate-1/2 convolutional code as

illustrated by the trellis diagram in Fig. 4. In each trellis seg-
ment two bit metrics λν,b are combined into a segmental path
metric. If RM = 2 (4-ASK) is assumed, bit metrics originating
from the only two existing bit levels are combined in each
segment. The virtual sliding processing window of the decoder
comprises several trellis segments and we can easily see that
a shift of the window does not affect the average reliability of
the bit metrics within its span. Regarding in contrast RM = 4,
i.e., 16-ASK transmission and the mapping M specified by
X given in Fig. 2, distinct variations of the average reliability
of the segmental path metrics, can be observed, cf. Fig. 4.
Segments combining bit metrics of the stronger bit levels
(1st/2nd) are succeeded by segments where the bit metrics
of the weaker bit levels (3rd/4th) are combined. Shifting the

window may affect the average bit-metrics reliability within
its span. For larger signal constellations, e.g., 64-ASK, this
effect is even more pronounced.

natural ordering

optimized ordering

Fig. 4. Illustration of ordering of bit metrics in trellis for rate-1/2 code
(νc = 2) and 16-ASK transmission (RM = 4). Squares represent bit metrics
λν,b. Brightness grows with average bit metric reliability.

To avoid such disadvantageous arrangements of the bit
metrics, we slightly modifyM. Consider again 16-ASK trans-
mission using the matrix X given in Fig. 2. By interchanging
χ2 and χ4 of X we obtain a new matrix X̃ , cf. (9),
and the average reliability of the segmental path metrics in
the trellis is equalized, cf. Fig. 4. In terms of the BER of
uncoded transmission and the PDC this modification is a
trivial operation, i.e., irrelevant. With regard to the BER of
coded transmission, however, X̃ represents a new mapping.
For larger signal constellation sizes M the procedure follows
the same line: weaker levels are combined with stronger ones.

V. NUMERICAL RESULTS
A. Simulation Settings
Numerical results for the BER of coded transmission are
provided for three scenarios: RM = 2, 4, and 6. We used
non-recursive, non-systematic convolutional rate-1/2 encoders
(best known wrt. free distance [10]) with νc = 2, 10, and 13.
∆ = 1000 channel symbols were transmitted per block and
the initial binary data sequences were zero-padded to ensure
terminated trellises. We assessed three different configurations:
(C1) random bit interleaving,
(C2) no interleaving, standard BRGM,
(C3) no interleaving, optimized BRGM acc. to Sec. IV.
The analytically derived BERs of uncoded ASK transmission
with equal spectral efficiencies are given for comparison.
B. Results
On the left of Fig. 5 the results of coded 4-ASK transmission
and the BER of uncoded 2-ASK transmission are shown.
Here, (C2) and (C3) coincide; an optimization is not feasible.

X̃ =





0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0



 (9)
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Fig. 5. Bit error ratio of rate-1/2 coded 4- (left), 16- (center), and 64-ASK (right) transmission over 10 log10(Eb/N0) [dB]. νc = 2 (solid lines), νc = 10
(dashed lines), and νc = 13 (dash-dotted lines). Random bit interleaving (C1) (red), no bit interleaving (C2) (blue), optimized bit mapping (C3) (green). BER
of uncoded 2- (left), 4- (center), and 8-ASK (right) transmission given for comparison (dotted).

Nevertheless, the curves illustrate the advantage of not inter-
leaving on AWGN channels. Especially for νc = 2 a careful
arrangement of the bit metrics is beneficial. At BER = 10−6

a gain of about 1.8 dB is achieved at no additional cost
compared to the standard scheme. Actually, we can even
reduce latency as the block interleaver is removed and such
show to advantage a convenient feature convolutional codes
exhibit over block-based coding like, e.g., LDPC codes [4].
In the center of Fig. 5 the BERs of coded 16-ASK transmis-

sion (RM = 4) and uncoded 4-ASK are given. The plot reveals
a significant advantage of (C2) over (C1). Simply dropping the
bit interleaver leads to a gain of 3.2 dB at BER = 10−6 for
νc = 2. Optimizing the bit mapping (C3)adds another decibel
resulting in 4.2 dB at BER = 10−6. For larger νc the gains
decrease a little, but are still remarkable. For νc = 10 we
obtain 1.4 dB gain of (C2) over (C1) at BER = 10−6. The
optimizedM leads to an additional 0.3 dB. The improvements
for νc = 13 are only slightly smaller.
The results for RM = 6 (64-ASK) are depicted on the

right of Fig. 5. Here, the gaps between (C1), (C2), and (C3)
are tremendous. For νc = 2 the difference between random
bit interleaving and no bit interleaving amounts to more than
3.5 dB at BER = 10−6. Optimizing the bit mapping yields
almost another 3.5 dB adding up to a total of over 7 dB
at BER = 10−6. The weak code with four encoder states
achieves a performance similar to the code with νc = 10 and
random bit interleaving. For νc = 10 the gap between no
bit interleaving and the optimized bit mapping is 1.5 dB at
BER = 10−6; we gain 3 dB over random bit interleaving. For
νc = 13 the optimization yields comparable gains.
C. Discussion
The presented results emphasize the need for a sensible choice
of bit mapping and bit interleaver for BICM transmission over
AWGN channels. The gains due to the suggested modifications
over conventional BICM with convolutional codes are tremen-
dous. This holds in particular for shorter constraint lengths.
Stronger codes better mitigate the ‘fading’ effect of the indi-
vidual bit levels and the gains due to optimized bit mappings
decrease. Nevertheless, the introduced improvements induce

no additional complexity and latency is even reduced.
VI. CONCLUSION

We proposed modifications for BICM transmission over
AWGN channels using convolutional codes and Viterbi de-
coders. Based on a brief analysis of the Viterbi decoder and
some recent results on the design of bit interleavers tailored
to fading channels, we suggested to abandon bit interleaving
on AWGN channels and rearrange the usually employed bit
mapping. Such, we achieve a more equalized average bit
metric reliability within the relevant processing range of the
decoder. The BER of BICM can be significantly lowered at
no additional cost and latency is reduced. Consequently, the
gap of BICM to TCM in non-fading scenarios is not as large
as usually stated in the literature.
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Abstract—We propose X-Codes for a time division duplex
system with nt × nr multiple-input multiple-output (MIMO),
using singular value decomposition (SVD) precoding at the
transmitter. It is known that SVD precoding transforms the
MIMO channel into parallel subchannels, resulting in a diversity
order of only one. To improve the diversity order, X-Codes can
be used prior to SVD precoding to pair the subchannels, i.e.,
each pair of information symbols is encoded by a fixed 2×2 real
rotation matrix. X-Codes can be decoded using nr low complexity
two-dimensional real sphere decoders. Error probability analysis
for X-Codes enables us to choose the optimal pairing and the
optimal rotation angle for each pair. Finally, we show that our
new scheme outperforms other existing precoding schemes.

I. INTRODUCTION

In time division duplex (TDD) MIMO systems, where
channel state information (CSI) is fully available at the trans-
mitter, precoding techniques can provide large performance
improvements and therefore have been extensively studied [1],
[2], [4], [5], [11], [12].

In this paper, we consider singular value decomposition
(SVD) of the channel, i.e., the MIMO channel can be seen as
parallel subchannels [1], [2]. Note that it results in no diversity
gain. To improve it, we propose X-Codes, whose name is
due to the structure of their encoding matrix. Specifically,
the X-Code pairs subchannels with low diversity orders with
those having high diversity orders. The pairing is achieved by
jointly coding the two subchannels with a two-dimensional
real orthogonal matrix (which is effectively parametrized by
a single angle). These angles are chosen a priori and do not
change with each realization of the channel, and therefore we
use the term “Code” instead of “Precoder”. At the receiver, low
complexity sphere decoders (SDs) can be used for maximum
likelihood (ML) decoding.

Another precoding scheme that pairs subchannels to im-
prove diversity has been recently proposed in [10], called E-
dmin, which is only optimized for 4-QAM symbols. Hence
for higher spectral efficiencies, X-Codes have better error
performance. Moreover, X-Codes can be decoded with nr

2-dimensional real SDs, whereas E-dmin requires nr
2 4-

dimensional real SDs.

II. SYSTEM MODEL

We consider a TDD system with nt×nr MIMO (nr ≤ nt),
where the channel state information (CSI) is known perfectly
at both the transmitter and receiver. Let x = (x1, . . . , xnt)

T be

∗Saif K. Mohammed is visiting DEIS, Università della Calabria, Italy.

the vector of symbols transmitted by the nt transmit antennas,
where (·)T denotes transposition, and let H = (hij), i =
1, . . . , nr, j = 1, . . . , nt, be the nr × nt channel coefficient
matrix, with hij as the complex channel gain between the j-
th transmit antenna and the i-th receive antenna. The standard
Rayleigh flat fading model is assumed with hij ∼ Nc(0, 1),
i.e., i.i.d. complex Gaussian random variables with zero mean
and unit variance. The received vector with nr symbols is
given by

y = Hx+ z (1)

where z is a spatially uncorrelated Gaussian noise vector
such that E[zz†] = N0Inr , where † denotes the Hermitian
transpose and E[.] is the expectation operator. Such a system
has a maximum multiplexing gain of nr. Let the number of
information symbols transmitted be ns (ns ≤ nr). Let T be the
nt × ns precoding matrix which is applied to the information
vector u = (u1, . . . , uns)

T to yield the transmitted vector
x = Tu. In general T is derived from the perfect knowledge
of H at the transmitter. The transmission power constraint is
given by E[‖x‖2] = PT where ‖ · ‖ denotes the Euclidean
norm. Finally, we define the signal-to-noise ratio as γ

∆
= PT

N0
.

III. SVD PRECODING AND X-CODES

SVD precoding is based on the singular value decomposi-
tion of the channel matrix H = UΛV (U ∈ Cnr×nr , Λ ∈
Cnr×nr and V ∈ Cnr×nt ), where UU† = Inr , VV† = Inr

and Inr denotes the nr × nr identity matrix. The diagonal
matrix Λ contains the singular values λi (i = 1, . . . nr) of H in
decreasing order (λ1 ≥ λ2 · · · ≥ λnr ≥ 0). Let Ṽ ∈ Cns×nt

be the submatrix with the first ns rows of V. The precoder
uses T = Ṽ† and the received vector is y = HTu + z. Let
Ũ ∈ Cnr×ns be the submatrix with the first ns columns of
U. The receiver then computes

r = Ũ†y = Λ̃u+w (2)

where w ∈ Cns is still a uncorrelated Gaussian noise vector
(E[ww†] = N0Ins ). Λ̃

∆
= diag(λ1,λ2, · · ·λns), and r =

(r1, . . . , rns)
T . The overall error performance is dominated

by the minimum singular value λns . In the special case of
full-rate transmission (ns = nr), the resulting diversity order
is only one. This problem is alleviated by the proposed X-
Codes, where pairs of subchannels are jointly coded.

We consider only the full-rate SVD precoding scheme with
even nr and ns = nr (In general it is possible to have X-
Codes with ns < nr and odd ns). Prior to SVD precoding,
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we now add a linear encoder X ∈ Cnr×nr , which allows us
to pair different subchannels in order to improve the diversity
order of the system. The precoding matrix T ∈ Cnt×nr and
the transmitted vector x are then given by

T = V†X, x = V†Xu (3)

The code matrix X is determined by the list of pairings of the
subchannels and the linear code generating matrix for each
pair. Let the list of pairings be {(ik, jk), k = 1, 2 · · · nr

2 },
where all ik and jk are distinct positive integers between 1
and nr and ik < jk. On the k-th pair of subchannels ik and
jk, the symbols uik and ujk are jointly coded using a 2 × 2
matrix Ak. In order to reduce the ML decoding complexity,
we restrict the entries of Ak to be real valued. In order to avoid
transmitter power enhancement, we impose an orthogonality
constraint on each Ak and parametrize it with a single angle
θk.

Ak =

[
cos(θk) sin(θk)
− sin(θk) cos(θk)

]
k = 1, . . . nr/2 (4)

Each Ak is a 2× 2 submatrix of the code matrix X as shown
below.

Xik,ik = cos(θk) , Xik,jk = sin(θk) (5)
Xjk,ik = − sin(θk) , Xjk,jk = cos(θk)

where Xi,j is the entry of X in the ith row and jth column.
The orthogonality constraint on each Ak therefore implies
that X is also orthogonal. We shall see later, that an optimal
pairing in terms of achieving the best diversity order is one in
which the k-th subchannel is paired with the (nr − k + 1)th
subchannel. The code matrix X for this pairing has a cross-
form structure and thus the name ”X-Codes”. Each symbol in
u takes values from a regular M2-QAM constellation which
consists of the M -PAM constellation S ∆

= {β(2i − (M −
1)) |i = 0, 1, · · · (M − 1)} used in quadrature on the real and
the imaginary components of the channel. β

∆
=

√
3Es

2(M2−1) and
Es = PT

nr
is the average symbol energy for each information

symbol in the vector u. Gray mapping is used to map the bits
separately to the real and imaginary component of the symbols
in u.

IV. DECODING OF X-CODES

Given the received vector y, the receiver computes r =
U†y. Using (1) and (3), we have r = ΛXu+w = Mu+w,
where M

∆
= ΛX is the equivalent channel gain matrix and

w
∆
= U†z is a noise vector with the same statistics as z.
Further let rk

∆
= [rik , rjk ]

T , uk
∆
= [uik , ujk ]

T , wk
∆
=

[wik , wjk ]
T , for k = 1, 2, · · ·nr/2. For each k ∈ {1, 2, · · · nr

2 },
let Mk ∈ R2×2 denote the 2 × 2 submatrix of M consisting
of entries in the ik and jk rows and columns. Using (5) and
the definition of M we have

Mk =

[
λik cos(θk) λik sin(θk)
−λjk sin(θk) λjk cos(θk)

]
(6)

With these new definitions, r can be equivalently written as

rk = Mkuk +wk, k = 1, 2, · · · nr

2
. (7)

Since M has real entries ML decoding for the k-th pair can
be separated into independent ML decoding of the real and
imaginary components of uk.

V. PERFORMANCE EVALUATION AND DESIGN OF X-CODES

In this section, we analyze the word (block) error probability
of X-Codes. Towards this end, we shall find the following
Lemma useful ([13]).

Lemma 1: Given a real scalar channel modeled by y =√
αx + n, where x = ±

√
Es, n ∼ N (0,σ2), and the square

fading coefficient α has E[α] = 1 and a cdf (Cumulative
Density Function) F (α) = Cαk + o(αk), for α → 0+, where
C is a constant and k is a positive integer, then the asymptotic
error probability for γ = Es/σ2 →∞ is given by

P =
C((2k − 1). (2k − 3) · · · 5 . 3 . 1)

2
γ−k + o(γ−k)

#
Let Pk denote the ML word error probability for the k-th

pair of subchannels. The overall word error probability for the
transmitted information symbol vector is given by

P = 1−Π
nr
2

k=1(1− Pk). (8)

It is also clear that the word error probability for the real
and the imaginary components of the k-th pair are the same.
Therefore without loss of generality we can compute the word
error probability only for the real component (denoted by P

′

k)
and then Pk = 1 − (1 − P

′

k)
2. Let us further denote by

P
′

k(U(uk)) the probability of the real part of the ML decoder
decoding not in favor of U(uk) when uk is transmitted on the
k-th pair.

Getting an exact analytic expression is difficult, and there-
fore we try to get tight upper bounds. Towards this end let
{U(uk) → U(vk)} denote the pairwise error event, whose
probability is denoted by P

′

k(U(uk) → U(vk)) (PEP) (U(·)
denotes the real parts of a complex argument). Using the union
bounding technique, P

′

k(U(uk)) is then upper bounded by
the sum of all the possible PEPs. It is clear that this upper
bound on P

′

k(U(uk)) induces an upper bound on P
′

k. The
difference vector zk = U(uk) − U(vk) can be written as√

6Es
(M2−1) (p , q)T , where (p, q) ∈ SM and SM

∆
= {(p, q)|0 ≤

p ≤ (M − 1), 0 ≤ q ≤ (M − 1), (p, q) .= (0, 0)}. Then, the
PEP P

′

k(U(uk)→ U(vk)) is given by

P
′

k(U(uk)→ U(vk)) = E(λik
,λjk

)

[
Q

(√
3γd2k(p, q, θk)

nr(M2 − 1)

)]

(9)
where

d2k(p, q, θk)
∆
= λ2

ik(p cos(θk) + q sin(θk))
2

+λ2
jk(q cos(θk)− p sin(θk))

2
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and Q(x) is the Gaussian tail function. Since λik ≥ λjk ≥ 0,
we have the inequality

λ2
ik(p cos(θk) + q sin(θk))

2 < d2k(p, q, θk) < λ2
ik(p

2 + q2).
(10)

Since Q(x) is a monotonically decreasing function with
increasing argument, the PEP in (9) can be bounded as

P
′

k(U(uk)→ U(vk)) < Eλik

[
Q

(√
3γ d̃k(p, q, θk)λ2

ik

nr(M2 − 1)

)]

(11)
where d̃k(p, q, θk)

∆
= (p2 + q2) cos2(θk − tan−1( qp )). Using

Lemma 1 and the marginal pdf of the s-th eigenvalue λ2
s (for

λ2
s → 0) as given in [9], the bound in (11) can be further

written as

P
′

k(U(uk)→ U(vk)) < bk
(3γd̃k(p, q, θk)

nr(M2 − 1)

)−δk
+ o(γ−δk)

(12)
where δk

∆
= (nt − ik + 1)(nr − ik + 1) and bk

∆
=

C(ik)((2 δk−1) . ··· 5 . 3 . 1)
2 δk

, where C is defined in [9]. Using the
upper bound in (12), the union bound is given by

P
′

k ≤
bk
M2

[ ∑

(p,q)∈SM

(3γd̃k(p, q, θk)

nr(M2 − 1)

)−δk]
+ o(γ−δk) (13)

We further define g(θk,M) as follows,

g(θk,M) = min
(p,q)∈SM

d̃k(p, q, θk) (14)

Using (14) in (13), we can further upper bound P
′

k as follows.

P
′

k ≤
4(M − 1)bk

M

( 3γg(θk,M)

nr(M2 − 1)

)−δk
+ o(γ−δk) (15)

From (15) it is clear that the diversity order achievable by the
k-th pair is at least δk. The diversity order achievable for the
overall system (combined effect of all the pairs) is determined
by the pair with the lowest diversity order. Let δord denote the
overall diversity order. Based on the above discussion δord can
be lower bounded as follows.

δord ≥ min
k

δk. (16)

For a given MIMO configuration (nt, nr), the design
of optimal X-Codes depends upon the optimal pairing of
subchannels and the optimal angle for each pair. From the
lower bound on δord (16) it is clear that the following pairing
of subchannels achieves the best lower bound

ik = k jk = (nr − k + 1), k = 1, 2 · · · nr

2
. (17)

Note that this corresponds to a cross-form generator matrix X.
The lower bound on the overall diversity order is then given
by δord ≥ (nr

2 + 1)(nt − nr
2 + 1). Finding the optimal angle

for the k-th pair is a difficult problem, hence we choose the
angle which maximizes g(θk,M). Maximization of g(θk,M)
can be computed offline as the angles for X-Codes are fixed
a priori.
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Fig. 1. Comparison between various precoders for nr = nt = 2 and target
spectral efficiency = 4,8 bps/Hz.

VI. SIMULATION RESULTS

For all the simulations we assume nr = nt. The subchannel
pairing for the X-Code is given by (17). The angle used
for the subchannels is derived as discussed in section V (by
optimizing upper bounds on the error probability expression).

Comparisons are made with i) the E-dmin (equal dmin
precoder proposed in [10]), ii) the Arithmetic mean BER pre-
coder (ARITH-MBER) proposed in [11], iii) the Equal Energy
linear precoder (EE) based upon optimizing the minimum
eigenvalue for a given transmit power constraint [12]), iv) the
THP precoder based upon the idea of Tomlinson-Harashima
precoding applied in the MIMO context [6]) and v) the channel
inversion (CI) known as Zero Forcing precoder [3].

Among all the considered precoding schemes (except CI),
E-dmin and X-Codes have the best diversity order. Though CI
achieves infinite diversity, it suffers from power enhancement
at the transmitter. We also observed that THP exhibit poor
performance, when compared to the other precoders.

In Fig. 1, we plot the bit error rate (BER) for nr = nt = 2,
and a target spectral efficiency of 4,8 bps/Hz. It is observed
that for a target spectral efficiency of 4 bps/Hz, the best perfor-
mance is achieved by ARITH-MBER and EE using only ns=1
subchannel with 16-QAM modulation. X-Codes with 4-QAM
modulation performs the worst. X-codes perform about 1.2
dB worse (at BER = 10−3) compared to ARITH-MBER and
EE. For a target spectral efficiency of 8 bps/Hz the results are
totally different. X-Codes with 16-QAM modulation performs
the best, and E-dmin performs the worst. Also the performance
of X-codes is better than that of ARITH-MBER/EE by about
0.8 dB (at BER = 10−3).

In Fig. 2, we plot the BER for nr = nt = 4, and a target
spectral efficiency of 8,16 bps/Hz. It is observed that for a
target spectral efficiency of 8 bps/Hz, the best performance is
achieved by E-dmin with 4-QAM modulation. ARITH-MBER
with N=3 subchannels (16-QAM modulation on one channel
and 4-QAM on the other two) has the worst performance. X-
codes perform worse than the E-dmin precoder by about 1 dB
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Fig. 2. Comparison between various precoders for nr = nt = 4 and target
spectral efficiency = 8,16 bps/Hz.

(at BER = 10−3).
For a target spectral efficiency of 16 bps/Hz X-codes with

16-QAM modulation performs the best. E-dmin performs the
worst and is 2 dB away from X-Codes (at BER = 10−3). E-
dmin has poor performance since the precoder proposed in
[10] has been optimized only for 4-QAM modulation, and
therefore it does not perform that well for higher spectral
efficiencies. E-dmin optimization for higher order QAM mod-
ulation is prohibitively too complex. It can be observed from
Figs. 1 and 2 that for higher spectral efficiencies X-Codes
perform the best when compared to other precoders.

VII. COMPLEXITY

All the considered precoders need to compute either SVD,
QR or the pseudo-inverse of H, whose complexity is O(n3

r).
Generally, TDD is employed in a slowly fading channel, and
therefore these computations can be performed at a very low
rate compared to the rate of transmission. We, therefore, do
not account for the complexity of these decompositions in the
discussion below.

The encoding complexity of all the schemes have the same
order. The complexity of the transmit pre-processing filter is
O(nrnt). If the number of operations were to be computed,
CI and X-Codes would have the lowest complexity, since
the linear and the THP precoders need extra pre-processing.
E-dmin and X-Codes need to only compute SVD, which
automatically gives the pre-processing matrices. X-Codes have
lower encoding complexity compared to E-dmin, since the
coding matrices Ak are fixed a priori. CI has an even lower
complexity since there is no spatial coding.

The decoding complexity of all the schemes have a square
dependence on nr. This is due to the post-processing matrix
filter at the receiver. The linear precoders, CI and THP employ
post processing at the receiver, which enables independent ML
decoding for each subchannel. E-dmin and X-Codes on the
other hand use sphere decoding to jointly decode pairs of
subchannels. ML decoding for X-Codes is accomplished by
using nr two-dimensional real sphere decoders.

However E-dmin requires nr
2 4-dimensional real sphere

decoders. The average complexity of sphere decoding is cubic
in the number of dimensions (and is invariant w.r.t modulation
alphabet size M ) [7], and therefore X-Codes have a much
lower decoding complexity when compared to E-dmin.

VIII. CONCLUSION AND FUTURE WORK

The proposed X-Codes are able to achieve full-rate and high
diversity at a low complexity by pairing the subchannels before
SVD precoding. Future work will focus on a generalization
of X-Codes, which jointly codes more than two subchannels.
Additional work will also address the reduction in decoder
complexity and the generation of soft outputs.
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Abstract—Channel coding linear programming decoding (CC-
LPD) and compressed sensing linear programming decoding (CS-
LPD) are two setups that are formally tightly related. Recently,
a connection between CC-LPD and CS-LPD was exhibited that
goes beyond this formal relationship. The main ingredient was a
lemma that allowed one to map vectors in the nullspace of some
zero-one measurement matrix into vectors of the fundamental
cone defined by that matrix.
The aim of the present paper is to extend this connection along

several directions. In particular, the above-mentioned lemma is
extended from real measurement matrices where every entry is
equal to either zero or one to complex measurement matrices
where the absolute value of every entry is a non-negative integer.
Moreover, this lemma and its generalizations are used to translate
performance guarantees from CC-LPD to CS-LPD.
In addition, the present paper extends the formal relationship

between CC-LPD and CS-LPD with the help of graph covers.
First, this graph-cover viewpoint is used to obtain new connec-
tions between, on the one hand, CC-LPD for binary parity-
check matrices, and, on the other hand, CS-LPD for complex
measurement matrices. Secondly, this graph-cover viewpoint is
used to see CS-LPD not only as a well-known relaxation of some
zero-norm minimization problem but (at least in the case of real
measurement matrices with only zeros, ones, and minus ones) also
as a relaxation of a problem we call the zero-infinity operator
minimization problem.

I. INTRODUCTION
This paper is a direct extension of a line of work that

was started in [1] and that connects channel coding linear
programming decoding [2], [3] and compressed sensing linear
programming decoding [4]. Because the motivation and the
aim for the results presented here are very much the same as
they were in [1], we refer to that paper for an introduction.
We remind the reader that CC-MLD, CC-LPD, CS-OPT,
and CS-LPD stand for “channel coding maximum likelihood
decoding,” “channel coding linear programming decoding,”
“compressed sensing (sparsity) optimal decoding,” and “com-
pressed sensing linear programming decoding,” respectively.
Moreover, all vectors are column vectors.
The present paper is structured as follows. Section II

presents three generalizations of [1, Lemma 11], which was
the key result in [1]. First, this lemma is generalized from real
∗ Due to space limitations, some of the proofs and some of the sections have
been omitted. A complete version will be posted on arxiv.
† Supported by NSF Grants DMS-0708033 and TF-0830608.

measurement matrices where every entry is equal to either
zero or one to complex measurement matrices where the
absolute value of every entry is equal to either zero or one.
In that process we also generalize the mapping that is applied
to the vectors in the nullspace of the measurement matrix.
Secondly, this lemma is generalized to hold also for complex
measurement matrices where the absolute value of every entry
is a non-negative integer. Finally, the third generalization of
this lemma extends the types of mappings that can be applied
to the vectors in the nullspace of the measurement matrix. With
this, Section III translates performance guarantees from CC-
LPD to CS-LPD. Afterwards, Section IV tightens the already
close formal relationship between CC-LPD and CS-LPD with
the help of graph covers, a line of results that is continued in
Section V, which presents CS-LPD for certain measurement
matrices not only as the well-known relaxation of some zero-
norm minimization problem but also as the relaxation of some
other minimization problem. Finally, some conclusions are
presented in Section VI.
Besides the notation defined in [1], we will also use the

following conventions and extensions of notions previously
introduced. For any M ∈ Z>0, we let [M ] ! {1, . . . ,M}.
We remind the reader that in [1] we extended the use of the
absolute value operator | · | from scalars to vectors. Namely,
if a = (ai)i is a complex vector then we define |a| to be the
complex vector a′ = (a′i)i of the same length as a with entries
a′i = |ai| for all i. Similarly, in this paper we extend the use
of the absolute value operator | · | from scalars to matrices.
We let | · |∗ be an arbitrary norm for the complex numbers.

As such, | · |∗ satisfies for any a, b, c ∈ C the triangle inequality
|a+ b|∗ $ |a|∗+|b|∗ and the equality |c · a|∗ = |c|·|a|∗. In the
same way the absolute value operator | · | was extended from
scalars to vectors and matrices, we extend the norm operator
| · |∗ from scalars to vectors and matrices.
We let ‖ · ‖∗ be an arbitrary vector norm for complex vectors

that reduces to | · |∗ for vectors of length one. As such, ‖ · ‖∗
satisfies for any c ∈ C and any complex vectors a and b of
equal length the triangle inequality ‖a+ b‖∗ $ ‖a‖∗ + ‖b‖∗
and the equality ‖c · a‖∗ = |c| · ‖a‖∗.
For any complex vector a we define the zero-infinity

operator to be ‖a‖0,∞ ! ‖a‖0 · ‖a‖∞, i.e., the product of
the zero norm ‖a‖0 = #supp(a) of a and of the infinity
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norm ‖a‖∞ = maxi |ai| of a. Note that for any c ∈ C and
any complex vector a it holds that ‖c · a‖0,∞ = |c| · ‖a‖0,∞.
Finally, for any n,M ∈ Z>0 and any length-n vector a

we define the M -fold lifting of a to be the vector a↑M =
(a↑M(i,m))(i,m) ∈ CMn with components given by

a↑M(i,m) ! ai, (i,m) ∈ [n]× [M ].

Moreover, for any vector ã = (ã(i,m))(i,m) of length M · n
over C or F2 we define the projection of ã to the space Cn

to be the vector a ! ϕM (ã) with components given by

ai !
1

M

∑

m∈[M ]

ã(i,m), i ∈ [n].

(In the case where ã is over F2, the summation is over C and
we use the the standard embedding of {0, 1} into C.)

II. BEYOND MEASUREMENT MATRICES
WITH ZEROS AND ONES

The aim of this section is to extend [1, Lemma 11], which
is a reformulation of [5, Lemma 6], to matrices beyond zero-
one measurement matrices. In that vein we will present three
generalizations in Lemmas 2, 5, and 6. For ease of reference,
let us restate [1, Lemma 11].

Lemma 1 ([1, Lemma 11]) Let HCS be a measurement
matrix that contains only zeros and ones. Then

ν ∈ nullspaceR(HCS) ⇒ |ν| ∈ K(HCS).

Because in the proofs of the upcoming lemmas we will
have to show that certain vectors lie in the fundamental cone
K ! K(HCC) [2], [3], [6], [7] of the parity-check matrix
HCC of some binary linear code, for convenience let us list
here a set of inequalities that characterize K. Namely, K is
the set of all vectors ω ∈ Rn that satisfy

ωi % 0 (for all i ∈ I) , (1)
ωi $

∑

i′∈Ij\i

ωi′ (for all j ∈ J , for all i ∈ Ij) . (2)

With this, we are ready to discuss our first generalization
of [1, Lemma 11], which generalizes [1, Lemma 11] from real
measurement matrices where every entry is equal to either zero
or one to complex measurement matrices where the absolute
value of every entry is equal to either zero or one. Note that the
upcoming lemma also generalizes the mapping that is applied
to the vectors in the nullspace of the measurement matrix.

Lemma 2 Let HCS = (hj,i)j∈J ,i∈I be some measurement
matrix over C such that |hj,i| ∈ {0, 1} for all (j, i) ∈ J × I,
and let | · |∗ be an arbitrary norm for complex numbers. Then

ν ∈ nullspaceC(HCS) ⇒ |ν|∗ ∈ K
(
|HCS|

)
.

Remark: Note that supp(ν) = supp(|ν|∗).
Proof: Omitted.

The second generalization of [1, Lemma 11] generalizes
that lemma to hold also for complex measurement matrices
where the absolute value of every entry is an integer. In order
to present this lemma, we need the following definition, which
will be illustrated by Example 4.

Definition 3 Let HCS = (hj,i)j∈J ,i∈I be some measurement
matrix over C such that |hj,i| ∈ Z!0 for all (j, i) ∈ J×I , and
letM ∈ Z>0 be such thatM % max(j,i)∈J×I |hj,i|. We define
anM -fold cover of H̃CS ofHCS as follows: for (j, i) ∈ J×I,
hj,i is replaced by hj,i/|hj,i| times the sum of |hj,i| arbitrary
M ×M permutation matrices with non-overlapping support.

&

Note that the entries of the matrix H̃CS in Definition 3 all
have absolute value equal to either zero or one.

Example 4 Let

HCS !
(

1 0
√
2(1 + i)

−2 i 3

)
.

Clearly

|HCS| !
(
1 0 2
2 1 3

)
,

and so, choosing M = 3,

H̃CS !





0 1 0 0 0 0 1+i√
2

1+i√
2

0

1 0 0 0 0 0 1+i√
2

0 1+i√
2

0 0 1 0 0 0 0 1+i√
2

1+i√
2

0 −1 −1 i 0 0 1 1 1
−1 −1 0 0 i 0 1 1 1
−1 0 −1 0 0 i 1 1 1





.

is a possible matrix obtained by the procedure defined in
Definition 3. &

Lemma 5 Let HCS = (hj,i)j∈J ,i∈I be some measurement
matrix over C such that |hj,i| ∈ Z!0 for all (j, i) ∈ J × I.
With this, letM ∈ Z>0 be such thatM % max(j,i)∈J×I |hj,i|,
and let H̃CS be a matrix obtained by the procedure in
Definition 3. Moreover, let | · |∗ be an arbitrary norm for
complex numbers. Then
ν ∈ nullspaceC(HCS) ⇒ ν↑M ∈ nullspaceC(H̃CS)

⇒
∣∣ν↑M ∣∣

∗ ∈ K
(
|H̃CS|

)
.

Additionally, with respect to the first implication sign we have
the following converse: for any ν̃ ∈ CMn we have
ϕM (ν̃) ∈ nullspaceC(HCS) ⇐ ν̃ ∈ nullspaceC(H̃CS).

Proof: Omitted.

Finally, we present our third generalization of [1,
Lemma 11], which generalizes the mapping that is applied
to the vectors in the nullspace of the measurement matrix.
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Lemma 6 Let HCS = (hj,i)j∈J ,i∈I be some measurement
matrix over C such that |hj,i| ∈ {0, 1} for all (j, i) ∈ J × I.
Moreover, let L ∈ Z>0, and let ‖ · ‖∗ be an arbitrary vector
norm for complex numbers. Then

ν(1), . . . ,ν(L) ∈ nullspaceC(HCS) ⇒ ω ∈ K
(
|HCS|

)
,

where ω ∈ Rn is defined such that for all i ∈ I ,

ωi =
∥∥∥
(

ν(1)
i , . . . , ν(L)

i

)∥∥∥
∗
.

Proof: Omitted.

We conclude this section with two remarks. First, it is clear
that Lemma 6 can be extended in the same way as Lemma 5
extends Lemma 2. Secondly, similarly to the approach in [1]
where [1, Lemma 11] was used to translate “positive results”
about CC-LPD to “positive results” about CS-LPD, the new
Lemmas 2, 5, and 6 can be the basis for translating results
from CC-LPD to CS-LPD.

III. TRANSLATING PERFORMANCE GUARANTEES
In this section we use [1, Lemma 11] to transfer “positive

performance results” for CC-LPD of low-density parity-check
(LDPC) codes to “positive performance results” for CS-LPD
of zero-one measurement matrices. In particular, three positive
threshold results for CC-LPD are used to obtain three results
that are, to the best of our knowledge, novel for compressed
sensing. At the end of the section we will also use Lemma 2
with | · |∗ = | · | to study dense measurement matrices with
entries in {−1, 0,+1}.
We will need the notion of an expander graph.

Definition 7 Let G be a bipartite graph where the nodes in
the two node classes are called left-nodes and right-nodes,
respectively. If S is some subset of left-nodes, we let N (S) be
the subset of right-nodes that are adjacent to S. Then, given
parameters dv ∈ Z>0, γ ∈ (0, 1), δ ∈ (0, 1), we say that G
is a (dv, γ, δ)-expander if all left-nodes of G have degree dv
and if for all left-node subsets S with #S $ γn it holds that
#N (S) % δdv ·#S. &

Expander graphs have been studied extensively in past work
on channel coding and compressed sensing (see, e.g., [8],
[9]). It is well-known that randomly constructed left-regular
bipartite graphs are expanders with high probability (see, e.g.,
[10]).
In the following, similar to the way a Tanner graph is

associated with a parity-check matrix [11], we will associate
a Tanner graph with a measurement matrix. Note that the
variable and constraint nodes of a Tanner graph will be called
left-nodes and right-nodes, respectively.

Corollary 8 Let dv ∈ Z>0, let γ ∈ (0, 1), and let HCS ∈
{0, 1}n′×n be a measurement matrix. Moreover, assume that

the Tanner graph of HCS is a (dv, γ, δ)-expander with suffi-
cient expansion, more precisely, with

δ >
2

3
+

1

3dv

(along with the technical condition δdv ∈ Z>0). Then CS-
LPD based on the measurement matrix HCS can recover all
k-sparse vectors, i.e., all vectors whose support size is at most
k, for

k <
3δ − 2

2δ − 1
· (γn− 1).

Proof: This result is obtained by combining the results
in [1] with [10, Theorem 1].

Interestingly, for δ = 3/4 the recoverable sparsity k matches
exactly the performance of the fast compressed sensing algo-
rithm in [9] and the performance of the simple bit-flipping
channel decoder of Sipser an Spielman [8], but our result holds
for the basis pursuit LP relaxation CS-LPD. Expansion has
been shown to suffice for CS-LPD in [12] but with a different
proof and yielding different constants. For n′/n = 1/2 and
dv = 32, the result of [10] establishes that sparse expander-
based zero-one measurement matrices will recover all k = αn
sparse vectors for α $ 0.000175.
Whereas the above result gave a deterministic guarantee,

the following result is based on a so-called weak bound for
CC-LPD and gives a probabilistic guarantee.

Corollary 9 Let dv ∈ Z>0. Consider a random measurement
matrixHCS ∈ {0, 1}n′×n that is formed by placing dv random
ones in each column, and zeros elsewhere. This measurement
matrix succeeds to recover a randomly supported k = αn
sparse vector with probability 1 − o(1) if α is below some
threshold function αn′(dv, n′/n).

Proof: The result is obtained by combining the results
in [1] with [13, Theorem 1]. The latter paper also contains a
way to compute achievable threshold values αn′(dv, n′/n).

For n′/n = 1/2 and dv = 8, a random measurement matrix
will recover a k = αn sparse vector with random support
with high probability if α $ 0.002. This is, of course, a much
higher threshold compared to the one presented above but
it only holds with high probability over the vector support
(therefore it is a so-called weak bound). To the best of our
knowledge, this is the first weak bound obtained for random
sparse measurement matrices.
The best thresholds known for LP decoding were recently

obtained by Arora, Daskalakis, and Steurer [14] but require
matrices that are both left and right regular and also have
logarithmically growing girth. A random bipartite matrix will
not have this latter property but there are explicit deterministic
constructions that achieve this (for example the construction
presented in Gallager’s thesis [15, Appendix C]). By translat-
ing the results from [14] to the compressed sensing setup we
obtain the following result.
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Corollary 10 Let dv, dc ∈ Z>0. Consider a measurement
matrix HCS ∈ {0, 1}n′×n whose Tanner graph is a (dv, dc)-
regular bipartite graph with Ω(log n) girth. This measurement
matrix succeeds to recover a randomly supported k = αn
sparse vector with probability 1 − o(1) if α is below some
threshold function α′

n′(dv, dc, n′/n).
Proof: The result is obtained by combining the results

in [1] with [14, Theorem 1]. The latter paper also contains a
way to compute achievable threshold values α′

n′(dv, dc, n′/n).

For n′/n = 1/2, an application of the above result to a
(3, 6)-regular Tanner graph with logarithmic girth (obtained
from the Gallager construction) tells us that sparse vectors
with sparsity k = αn are recoverable with high probability
for α $ 0.05. Therefore, measurement matrices based on Gal-
lager’s deterministic construction (of low-density parity-check
matrices) form the best known class of sparse measurement
matrices for the compressed sensing setup considered here.
We conclude this section with some considerations about

dense measurement matrices, highlighting our current under-
standing that the translation of positive performance guar-
antees from CC-LPD to CS-LPD displays the following
behavior: the denser a measurement matrix is the weaker are
the translated performance guarantees.

Remark 11 Consider a randomly generated n′ × n mea-
surement matrix HCS where every entry is generated i.i.d.
according to the distribution






+1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

.

This matrix, after multiplying it by the scalar √3/n, has the
restricted isometry property (RIP). (See [16], which proves
this property based on results in [17], which in turn proves
that this family of matrices has a non-zero threshold.) On
the other hand, one can show that the family of parity-check
matrices where every entry is generated i.i.d. according to the
distribution

{
1 with probability 1/3

0 with probability 2/3

does not have a non-zero threshold under CC-LPD for the
BSC [18]. &

Therefore, we conclude that the connection between CS-
LPD and CC-LPD given by Lemma 2 is not tight for dense
matrices in the sense that the performance of CS-LPD based
on dense measurement matrices can be much better than
predicted by the performance of CC-LPD based on their
parity-check matrix counterpart.

IV. REFORMULATIONS BASED ON GRAPH COVERS
(This section has been omitted.)

V. MINIMIZING THE ZERO-INFINITY OPERATOR
(This section has been omitted.)

VI. CONCLUSIONS AND OUTLOOK
In this paper we have extended the results of [1] along

various directions. In particular, we have translated perfor-
mance guarantees from CC-LPD to performance guarantees
for the recovery of exactly sparse vectors under CS-LPD.
As part of future work we plan to investigate the translation
of performance guarantees from CC-LPD to performance
guarantees for the recovery of approximately sparse vectors
under CS-LPD.
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Abstract—1The uplink of a cellular system where macrocells
are overlaid with femtocells is studied. Each femtocell is served
by a home base station (HBS) that is connected to the macrocell
base station (BS) via a last-mile access link, such as DSL or
cable followed by the Internet. Decoding at the BSs takes place
via either standard single-cell processing or multicell processing
(i.e., network MIMO). Closed and open-access femtocells are con-
sidered. Achievable per-cell sum-rates are derived in this setting
for a linear cellular network. Overall, the analysis lends evidence
to the performance advantages of open-access femtocells and
sheds light on the performance trade-offs between single/multi-
cell processing and different relaying strategies at the femtocells.

I. INTRODUCTION

With the recent advances in coding and multiantenna tech-
nology, interference is becoming the performance-limiting
factor in terms of area and spectral efficiency of cellular
systems. To cope with interference, two diametrically opposite
strategies are currently being investigated. On one end, femto-
cells reduce the size of a cell to contain only the customer’s
premises, thus allowing transmission with smaller powers and
the possibility to reuse the spectrum more aggressively [1]. On
the other end, network MIMO or multicell processing (MCP)
[2][3] creates clusters of macrocells for joint coding/ decoding
in order to better manage inter-cell interference.

A femtocell consists of a short-range low-cost home base
station (HBS), installed within the customer’s premises, that
serves either only indoor users, in case of closed-access
femtocells, or possibly also outdoor users that are within the
HBS coverage range, in case of open-access femtocells. Fem-
tocells in open-access mode provide an asset that the network
designer can exploit to manage the interference created by
outdoor users towards the femtocell and other macrocells.
In this work, we provide an information-theoretic look at
the performance trade-offs between open and closed-access
femtocells, on the one hand, and the deployment of femtocells
and MCP, on the other. Analysis is performed by resorting
to a simple cellular model that extends [2] and by deriving
achievable rates that are then compared via numerical results.

Notation: We define !!!" ! $!% "#$! %&8!"1!" for a
positive definite !' Notation ($"# ) represents the set of
numbers "$" $$$" ##$

… …

l-1 l l+1 l+2
home user

home base 
station

cell number

outdoor user

base station

!

O"

!H

"1

C C C C

!H !H !H!!!

O" O"

"1 "1 "1 "1

Fig. 1. A linear multicell system where each macrocell is overlaid with
a femtocell. Each HBS is connected to the local BS via a last-mile link of
capacity ! (" ! " in the figure).

II. SYSTEM MODEL

Consider a linear cellular system similar to [2], where %
cells are arranged on a line, as for a corridor or a highway,
as shown in Fig. 1. Each cell, served by a base station (BS),
contains a single femtocell, served by a HBS, and presents
the same number of outdoor (i.e., outside the femtocell) and
home (i.e., within the femtocell) users. Assuming that the
channel gains are the same for different home/outdoor users
in the same cell, and focusing the analysis on achievable sum-
rates, we can concentrate without loss of generality on a single
outdoor and home user per cell, as shown in Fig. 1 [5].

Signals generated within each femtocell are received with
relevant power only by the local BS with power gain 7 and
the local HBS with power gain &! , while outdoor users are
received not only by the local BS and HBS (with power gains
'" ! $ and &", respectively), but also by ( adjacent BSs
on either side with symmetric power gains '/" ) ! ($" ().
Given the above, the received signals at a given time instant
for the BS and home BS in the )th cell can be expressed as,
respectively

*/ !
#(

0("#

!
'0+"$&/)0' 1

"
7+!$/ 1#%$/ (1a)

and ,/ !
!
&"+"$/ 1

!
&!+!$/ 1#&$/" (1b)
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Shamai was supported by the European Commision in the framework of the
FP7 Network of Excellence in Wireless COMmunications, NEWCOM++.
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where +"$/ and +!$/ are the signals transmitted by the
outdoor ("O") and home ("H") user in the )th cell, and
(#%$/" #&$/" are independent Gaussian noise processes with
unit-power. Power constraints for outdoor and home users
are defined as -"" -!'" respectively. Moreover, to avoid edge
effects, in (1), we have assumed that inter-cell interference
affects cells in a circulant fashion, so that every cell is impaired
by the same number of interferers (we have defined ()1 .) as
the modulo-% operation and assumed % # %(1 $".

Finally, the HBS is assumed to be connected to the cor-
responding BS via a last-mile connection (such as DSL or
cable) followed by the Internet, whose overall capacity is /
bits/ dim2. This link is wired and orthogonal to the wireless
channels [1]. The scenario at hand can be seen as an extension
of the model in [2] to include femtocells and is related to the
models in [6] and references therein for mesh networks.

We consider two alternatives for decoding at the BSs: (i)
Single-cell Processing (SCP): The BS in each cell decodes
independently; (ii) Multicell Processing (MCP): All BSs in
the system are connected to a central processor (CP) for
joint decoding. The CP collects the signals of all BSs and
jointly decodes all the % outdoor and % home messages
jointly. Furthermore, for both SCP and MCP, we will study
the performance of closed-access (CA) and open-access (OA)
femtocells. CA femtocells treat the signal of the outdoor user
as interference, whereas OA femtocells may serve as relays
towards the BS for the outdoor users. The aim is to identify
pairs of home user and outdoor users rates 0! and 0""
respectively, that are achievable in each cell according to the
usual definitions.

III. SINGLE-CELL PROCESSING (SCP)
In this section, we study achievable rate pairs (0! ,0") with

SCP and OA or CA femtocells.

A. Closed-Access Femtocells
We start with CA femtocells.
Proposition 1 (CA,SCP): Rates satisfying the following

conditions

0! 1 *+,

"
!
#

&!-!
$ 1 &"-"

$
" !

#
7-!

$ 1--"

$
1 /

%

0" 1 !
#

-"
$ 1--"

$

0" 10! 1 !
#
-" 1 7-!
$ 1--"

$
1 /"

are achievable with SCP and CA femtocells, where with - !
%
&#

/(# '/$
Proof (sketch): The HBS decodes the home user’s message

by treating the outdoor user as noise (of power &"-"). Having
decoded, the HBS provides / bits/dim of the decoded message
to the BS. The BS performs joint decoding of home and
outdoor users’ messages by treating inter-cell signals as noise
(of power --""$ In this process, thanks to the / bits received

2We measures the rates in bits per (real) dimension (dim).

from the HBS, the equivalent rate of the home user to be
decoded by the BS is reduced to 0! $/ (see, e.g., [4])$ The
proof is completed using standard arguments.

B. Open-Access Femtocells
Turning to OA femtocells, we consider two classes of

strategies. In the first, the HBS decodes both home and outdoor
users’ messages and then shares the last-mile link capacity
/ for transmission of bits from both messages (Decode-and-
Forward, DF). In the second, the HBS simply compresses and
forwards (CF) the received signal. It is noted that the latter
scheme does not require codebook information at the HBS
and thus reduces the signaling overhead.

1) Decode-and-Forward: Proposition 2 (OA-DF,SCP): The
convex hull of the union of the rates that satisfy

0! 1 *+,

"
! !&!-!" " !

#
7-!

$ 1--"

$
1 2/

%

0" 1 *+,"! !&"-"" " !
#

-"
$ 1--"

$
1 !$$ 2"/#

0" 10! 1 *+,"! !&!-! 1 &"-"" "

!
#
7-! 1 -"
$ 1--"

$
1 /#

for some - % 2 % $ is achievable with SCP and OA femtocells
employing DF relaying.

Proof (sketch): The HBS decodes both home and outdoor
users’ messages and then sends 2/ bits/dim of the decoded
home message and !$$ 2"/ bits/dim of the decoded outdoor
message to the BS. The BS performs joint decoding as
discussed for Proposition 1, but on codebooks of equivalent
rates 0! $ 2/ and 0" $ !$$ 2"/$

2) Compress-and-Forward: Proposition 3 (OA-CF,SCP):
Rates satisfying the following conditions

0! 1 !
#

7-!
$ 1--"

1
&!-!
$ 1 3!

$

0" 1 !
#

-"
$ 1--"

1
&"-"
$ 1 3!

$

0" 10! 1 ! !!"

with

! !

'

!"
(!),("
#)$(!

"
)!(!)

"
,)"(""

$#)$(!%$#)*!%"
)!(!)

"
,)"(""

$#)$(!%$#)*!%

)"("))!(!
#)*!

#

$%

are achievable with SCP and OA femtocells employing CF
relaying, where

3! !

&
$ 1 &"-" 1 &!-! $

$
"
)!(!)

"
,)"("%

!

(!),(")$(!

(

%!+ $ $ $ (2)

Proof (sketch): The HBS compresses the received signal to
a description .,/ of / bits/dim using Wyner-Ziv quantization,
exploiting the fact that the BS has side information */$ The
compression noise (2) is found by imposing 4!,/' .,/&*/" !
/ following standard arguments (see, e.g., [7]). The )th BS
performs joint decoding based on the signals (*/" .,/)$
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IV. MULTICELL PROCESSING (MCP)
In this section, we address achievable rates in the presence

of MCP. We recall that, with MCP, decoding is performed
at a CP connected via ideal links to all BSs. For notational
convenience, we define the channel matrix # between outdoor
users and the % BSs as the % %% circulant matrix whose
first column is given by

(
'
'"
'
'# $ $ $

'
'#$$#"$!#$)#%

'
'#$

'
'#$"# $ $ $

'
'#)$

We also denote the eigenvalues of ##, as 5/ !)
$ 1 %

(#$
/(#

"
'/ /#9

*
!-
# )
)+!

" ) ! (-"% $ $)$

A. Closed Access
Proposition 4 (CA,MCP): Rates satisfying the following

conditions

0! 1 *+,

*
!
#

&!-!
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$
" ! !7-!" 1 /
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0" 1
$

(

#(#(

/("

! !5/-""

0" 10! 1
$

(

#(#(

/("

! !5/-" 1 7-!" 1 /

are achievable with MCP and CA femtocells.
Proof (sketch): The HBS operates as for Proposition 1. The

CP decodes jointly all the home and outdoor users’ messages
based on the signals */" ) ! ($"% ) and the %/ bits/dim
received from the HBSs. The equivalent rate of the home users
to be decoded is 0! $ / due to the bits received from the
HBS, as, e.g., for Proposition 1$

B. Open Access
Turning to OA femtocells, as for SCP, we study both DF

and CF strategies.
1) Decode-and-Forward: Proposition 5 (OA-DF,MCP):

The convex hull of the union of the rates that satisfy

0! 1 *+, "! !&!-!" " ! !7-!" 1 2/#

0" 1 *+,

*
! !&"-"" "
#
#

(#(#
/(" ! !5/-"" 1 !$$ 2"/

+

0" 10! 1 *+,

*
! !&!-! 1 &"-"" "
#
#
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/(" ! !5/-" 1 7-!" 1 /

+

for some - % 2 % $ is achievable with MCP and OA
femtocells employing DF relaying.

Proof (sketch): The HBS operates as for Proposition 2 and
the CP performs joint decoding as for Proposition 4.

2) Compress-and-Forward: Proposition 6 (OA-CF,MCP):
Rates satisfying the following conditions
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are achievable with MCP and OA femtocells employing CF
relaying.

Proof (sketch): The HBS operates as for Proposition 3 and
the CP decodes jointly all messages based on the signals
(*/" .,/), ) ! ($"% )$ It is noted that using 3! in (2) implies
that decompression of .,/ is performed at the )th BS. However,
with MCP, one could potentially improve the performance by
moving decompression from the BSs to the CP, which has
better side information (namely, all */ with ) ! ($"% )"$ We
do not pursue this further here.

V. NUMERICAL RESULTS

In this section, we provide some insight into the perfor-
mance comparison of different scenarios and strategies through
numerical results. Throughout, we set parameters -" ! -! !
0, &! ! %-67 and 7 ! $$-67" which implies that the indoor
channel gain between home user and HBS is 30dB better than
the channel home user-BS [1], % ! 1-" ( ! $$ We focus on
maximum achievable equal rates 0! ! 0" for the different
considered techniques.

We start by concentrating on the performance comparison
between CA and OA femtocells, by varying the outdoor-HBS
power gain &" with fixed '# ! -$0 and / ! $$2. Fig. 2 shows
that CA femtocells, due to the macro-to-femto interference,
are largely outperformed by OA techniques for increasing
&". More specifically, OA-DF becomes advantageous over
CA for sufficiently large &", while OA-CF, for the range
of &" shown in the figure, performs always at least as well
as CA. As for the comparison between OA-CF and OA-DF,
on the one hand, OA-CF has the advantage of enabling joint
decoding at the receiver (BS for SCP or CP for MCP), while
having the drawback of adding extra noise via compression.
On the other hand, OA-DF has the advantage of providing
"clean" information bits to the receiver, at the cost of causing a
potential performance bottleneck at the home BS for decoding.
This trade-off is clear from Fig. 2: Whenever decoding at the
HBS does not set the performance bottleneck (i.e., for &"
large enough), OA-DF outperforms OA-CF, while the opposite
is true when &" is small so that decoding of the outdoor users
at the home BS limits the performance of OA-DF3.

We further discuss the comparison between the performance
of MCP and SCP in Fig. 3 for &" ! $-" and varying inter-
cell interference power gain '#$ It can be seen that as the
inter-cell interference '# increases, the advantages of MCP
become more pronounced for all techniques. It is also noted,
similar to the example above, that CF appears to be performing
better when deployed with MCP than with SCP. This is further
discussed below.

3For #! larger than #" (not shown in the figure given the minor relevance
of this regime), the performance of CF keeps degrading as #! increases due to
the larger quantization noise, down to the performance attainable with ! ! #.
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Fig. 4 shows the maximum equal rate of different techniques
versus the last-mile link capacity / for '# ! -$2 and &" !
$167. It is seen, following the discussion above, that, if / is
small, OA-DF is appropriate since the performance is limited
by decoding at the BS. However, as / increases, the equal rate
achievable by OA-DF saturates to the maximum equal rate
decodable at the HBS (which is the same for both SCP and
MCP), while OA-CF does not suffer from such saturation and
keeps exploiting larger values of / to improve the quality of
the compressed signal provided to the receiver. It is also noted
that with MCP the crossing point between the performance of
OA-DF and OA-CF occurs for smaller values of / than SCP,
due to the greater decoding power at the CP with respect to
the single BS.
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VI. CONCLUDING REMARKS

While network MIMO and femtocells are being mostly
developed and studied in separation, this paper has argued
for a joint analysis, given the interplay between the two
technologies. An important observation is that femtocells,
when allowed to work in an open-access mode, have a
potentially relevant role for interference management, since
they can exploit their dedicated (wired) connection to the BS
to reduce radio interference by serving also outdoor users.
However, the relaying strategy must be carefully designed
according to whether decoding at the BSs implements network
MIMO or not, in order not to create performance bottlenecks.
This increased interference margin may be dually turned into
a corresponding reduction in power emissions, thus moving
towards "greener" wireless communications.
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Abstract—This paper addresses the problem of cooperation in
a multicell environment where base stations wish to jointly serve
multiple users, under a constrained-capacity backhaul. Such a
constraint limits, among other things, data sharing and network
MIMO concepts need to be revised accordingly. More precisely,
we focus on the downlink, and propose to use the backhaul
to transmit several messages to each user: some are common
to several transmitters and joint precoding is possible, others
are private and only local precoding may be done. For the
two-cell setup we derive achievable rate regions, optimizing the
corresponding beamforming design. Numerical results show how
this added flexibility improves performance.

I. INTRODUCTION

A major issue in several types of wireless networks is that
of interference. This problem is especially acute in cellular
networks with full reuse of the spectrum across all base
stations. In traditional designs, each base station obtains from
the backbone the data the signals intended for users in its
coverage area, i.e., if one ignores cases of soft handover, data
for users is not available at multiple base stations. Recent
research rooted in MIMO theory has suggested the benefits
of relaxing this constraint, thereby allowing for data to be
shared at multiple transmitters so that a giant broadcast MIMO
channel results. In such a scenario, multicell processing in the
form of joint precoding is realized: this scheme is referred to
as network MIMO (a.k.a. multicell MIMO).

Full data sharing subsumes very high capacity backhaul
links, which may not be feasible, or even simply desirable,
in certain applications. Some previous authors have tackled
the problem of joint transmission when the backhaul links
between a central unit and the transmitters (the base stations),
or amongst the latter, are finite, in which case the resulting
multicell channel no longer corresponds to a MIMO broadcast
channel, nor does it correspond to the so-called interference
channel. Among others, in [3] and [4], joint encoding for the
downlink of a cellular system is studied under the assumption
that the base stations are connected to a central unit via finite-
capacity links. The authors investigate different transmission
schemes and ways of using the backhaul capacity in the
context of a modified version of Wyner’s channel model.
One of their main conclusions is that ”central encoding with
oblivious cells”, whereby quantized versions of the signals
to be transmitted from each base station, computed at the
central unit, are sent over the backhaul links, is shown to be

a very attractive option for both ease of implementation and
performance, unless high data rate are required. If this is the
case, the base stations need to be involved in the encoding, i.e.
at least part of the backhaul link should be used for sending
the messages themselves not the corresponding codewords.

In [5], an optimization framework, for an adopted backhaul
usage scheme, is proposed for the downlink of a large cellular
system. A so-called joint transmission configuration matrix is
defined: this specifies which antennas in the system serve each
user, along with the number of quantization bits, for each
antenna, associated with that user. Thus the transmit signal
of all users are transmitted centrally and different quantized
versions of each user’s signal are transmitted to the appropriate
base stations: this is similar to the central encoding with
oblivious cells scheme in [4], except that a more realistic
system model is assumed, and the number of quantization bits
per user and per antenna are optimized.

In [6], a more information-theoretic approach is taken
and a two-cell setup is considered in which, in addition to
links between the network and each base station, a finite-
capacity link connects the two multi-antenna base stations: the
authors view the thus formed channel as a superposition of an
interference channel and a broadcast channel. The backhaul is
used to share the data to be jointly transmitted: this could be in
the form of the full messages, or of quantized versions of the
signals to transmit, depending on whether the data is coming
from the network directly or shared over the link between the
base stations.

In this work, we also consider a two-cell setup, but limit
the backhaul to be between the network and each of the base
stations. Some of the questions we try to answer are:

• Given the backhaul constraints, what kind of rates can
we expect to achieve?

• How much of the data needs to be shared to achieve these
rates? I.e. how useful is network MIMO when backhaul
constraints are present?

We thus specify a transmission scheme whereby superpo-
sition coding is used to transmit signals to each user: this
allows us to formulate a continuum between full message
sharing between base stations and the conventional network
with single serving base stations; the data rate is in fact split
between two distinct forms of data to be received by the
users, a private form to be sent by the ’serving’ base alone
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and a common form to be transmitted via multiple bases. We
express the corresponding rate region in terms of the backhaul
constraints and the beamforming vectors used to carry the
different signals, and reduce finding the boundary of said
region to solving a set of convex optimization problems. This
is in contrast to the schemes in [6] where the nonconvexity
of the problem makes it difficult to characterize the optimum
beamforming vectors to use, and the suboptimal scheme of
maximum ratio transmission is resorted to. We also formulate
the problem in a way that both the rates that correspond
to conventional transmission (each base station receives the
signals for one user only) are accounted for in the backhaul.

II. SYSTEM MODEL

The system considered is shown in Figure 1. In this prelim-
inary study, we focus on a two transmitter two receiver setup.
Receivers have a single antenna each, whereas transmitters
have Nt ≥ 1 antennas: hij is the channel between transmitter
j and user i; hi is user i’s whole channel. We assume a
backhaul link of capacity Ci between the central processor
(or backbone network) and transmitter i, for i = 1, 2: it will
be used to transmit the messages for each user. We distinguish
between different types of messages:

• private messages, which are known at, and consequently
only sent from, one of the transmitters, and

• shared or common messages, which are known to both
transmitters and consequently jointly transmitted. Note
that this notion of a common message is different from
that commonly used in the context of interference chan-
nels for example, as they do not correspond to messages
to be decoded by both receivers, but rather to messages
to be sent by both transmitters.

Assumptions We assume each receiver does single user
detection, in the sense that the other user’s signal is treated as
noise. Moreover, we do not rely on dirty paper coding (DPC)
to avoid inter-user interference. Furthermore, full channel state
information (CSI) is available at both transmitters, since we
want to focus on the cost of sharing data.

Notation In what follows, ī = mod (i, 2)+1, i = 1, 2 and
is used to denote the other transmitter/receiver depending on
the context.

A. Backhaul usage

Let ri,p denote the rate of the private message transmitted
from transmitter i to receiver i, and ri,c denote the rate of the
shared message intended for receiver i. Thus, his total rate is

ri = ri,p + ri,c (1)

The backhaul link to transmitter i, i = 1, 2 will be used to
transmit the messages (so no quantization is done here) that
transmitter i is meant to know, i.e. the private message for
receiver i along with both shared messages.
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Fig. 1. Constrained backhaul setup.

B. Background: MAC with Common Message
Given our system assumptions, if transmission to user ī

has already been specified, we are left with a MAC with a
common message between the two transmitters and user i [1].
Denoting by σ2

i the power of the interference, and restricting
the transmitted signals to have rank-1 covariance matrices, the
following rate region is achievable

ri,p ≤ log2

(
1 +

|hiiwi,p|2

σ2
i

)
,

ri = ri,p + ri,c ≤ log2

(
1 +

|hiiwi,p|2 + |hiwi,c|2

σ2
i

)
, (2)

where the covariance matrix of user i’s private message
is Ci,p = wi,pwH

i,p, and that of the common message is
Ci,c = wi,cwH

i,c, and where wi,p and wi,c are such that
the power constraints at the transmitters are met. Note that
Gaussian signaling is optimal for a two-transmitter MAC with
a common message (see [2], where this is shown in the context
of a MAC with cooperating encoders.).

C. Over the air transmission
In light of the previous subsection, the transmitted signal

may be modeled as follows:

x =
[
w1,c w2,c

] [ s1,c
s2,c

]
+

[
w1,p

0

]
s1,p

+

[
0

w2,p

]
s2,p, (3)

where x ∈ C2Nt is the transmitted signal, such that the
first Nt elements are transmitter 1’s transmit signal, the
remaining Nt elements are transmitter 2’s signal. Though not
necessarily optimal, Gaussian signaling is assumed, so that
s1,p, s1,c, s2,p, s2,c are all CN (0, 1). Per base station power
constraints Pi, i = 1, 2 imply that:

‖Diw1,c‖2 + ‖Diw2,c‖2 + ‖wi,p‖2 ≤ Pi, (4)
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where Di is a matrix whose only non-zero elements are
elements (Nt−1)i+1 : iNt along the diagonal and are equal
to 1.

D. Achievable rates
The signal received at receiver i will be given by (see (3)):

yi = hix+ ni =
[
hi1 hi2

]
x+ ni

= hiw1,cs1,c + hiw2,cs2,c + hi1w1,ps1,p

+ hi2w2,ps2,p + ni (5)

Given our single-user detection (SUD) assumption, user i’s
rates will satisfy (2) with σ2

i given by:

σ2
i = σ2 +

∣∣hīiwī,p

∣∣2 +
∣∣hiwī,c

∣∣2 . (6)

III. RATE REGION

An achievable rate region R is the set of (r1, r1,p, r2, r2,p),
as specified above, that satisfy the given backhaul and power
constraints.

One way to obtain the rate region boundary is to solve the
following problem for α ∈ [0, 1], which maximizes the sum
rate, subject to a given split between the two users.

max. r
s.t. r1 ≥ αr

r2 ≥ (1− α)r

r1 + r2 − r2,p ≤ C1, r1 + r2 − r1,p ≤ C2

ri ≤ log2

(
1 +

|hiiwi,p|2 + |hiwi,c|2

σ2 +
∣∣hīiwī,p

∣∣2 +
∣∣hiwī,c

∣∣2

)
, i = 1, 2,

ri,p ≤ log2

(
1 +

|hiiwi,p|2

σ2 +
∣∣hīiwī,p

∣∣2 +
∣∣hiwī,c

∣∣2

)
, i = 1, 2,

‖wi,p‖2 + ‖Diwi,c‖2 + ‖Diwī,c‖2 ≤ Pi, i = 1, 2

(7)

We solve this problem using a bisection method.
1) rmin = 0, rmax = C1 + C2

2) Repeat until rmax − rmin < ε

a) Set r = (rmin + rmax)/2
b) Determine feasibility of r: this is detailed in sub-

section III-A below.
c) If feasible, rmin = r, else rmax = r.

A. Establishing feasibility of a given rate
Assume sum rate r and α to be fixed. Thus, r1 = αr,

r2 = (1 − α)r. Establishing feasibility of a given rate pair
hinges on the following two remarks:

• For ri to be supported, it cannot possibly exceed Ci, and
• Sharing information whenever possible outperforms not

doing so. Thus if a rate pair is not achievable for the
minimum possible private message rates, it is not achiev-
able at all. Given the backhaul constraints, the minimum
possible private message rate ri,p, i = 1, 2 is given by:

(ri,p)min = min(ri,max(0, r1 + r2 − Cī)). (8)

How to establish whether a given rate tuple
(r1, r1,p, r2, r2,p) and determine a beamforming
scheme to achieve it is specified in section III-B below.
If this procedure yields a valid solution for rate tuple(
r1, (r1,p)min , r2, (r2,p)min

)
, then r is feasible 1.

B. Feasibility of (r1, r1,p, r2, r2,p)
Assume r1, r2, r1,p and r2,p are fixed. Solve

min.
2∑

i=1

[
‖wi,c‖2 + ‖wi,p‖2

]

s.t. 2ri − 1 ≤ |hiiwi,p|2 + |hiwi,c|2

σ2 + |hīiwī|
2 +

∣∣hiwī,c

∣∣2
, i = 1, 2,

2ri,p − 1 ≤ |hiiwi,p|2

σ2 + |hīiwī|
2 +

∣∣hiwī,c

∣∣2
, i = 1, 2,

‖Diwi,c‖2 + ‖Diwī,c‖2 + ‖wi,p‖2 ≤ Pi, i = 1, 2.

We can transform the above problem into an equivalent
convex optimization problem.

• If ri,p ≡ 0 or ri ≡ ri,p, we can reduce the problem as
follows:

– If ri,p ≡ 0, the corresponding constraint becomes
redundant, and wi,p = 0.

– If ri ≡ ri,p, then wi,c = 0 at the optimum and we
can remove the constraint corresponding to ri.

In both cases, the remaining constraint can be trans-
formed into a second-order cone program [7], [8], [9].

• Otherwise, the problem is reformulated as follows. Con-
sider the inequalities related to user i’s rates. Imposing
the decoding order to be common message, then private
message , both inequalities must be met with equality at
the optimum. Combining these two equations, we get:

2ri,p − 1

2ri − 2ri,p
|hiwi,c|2 = |hiiwi,p|2 . (9)

Further noting that hiwi,c and hiiwi,p being real does
not restrict the solution, we can transform our original
problem into a convex optimization problem [7], [8], [9]:

min.
2∑

i=1

[
‖wi,c‖2 + ‖wi,p‖2

]

s.t.
√
2ri,p − 1

∥∥[ σ hīiwī,p hiwī,c

]∥∥ ≤ hiiwi,p, i = 1, 2
√

2ri − 2ri,p

2ri,p − 1
hiiwi,p = hiwi,c, i = 1, 2

‖Diwi,c‖2 + ‖Diwī,c‖2 + ‖wi,p‖2 ≤ Pi, i = 1, 2

IV. NUMERICAL RESULTS

Figures 2 and 3 show the rate region for different values
of the backhaul, for two different instances of the channels
with Nt = 1. We let C1 = C2 = C, i.e. similar size backhaul
links between the central processor/network and each of the

1Note that in our simulations, since not sharing messages yields a sim-
pler beamforming scheme, we first check for the feasibility of rate tuple
(r1, r1, r2, r2).
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transmitters. For Nt = 1, the sum rate of the interference
channel (IC) with SUD is known to be maximized by having
the transmitters being either off or transmitting at full power.
For the first channel instance shown, the maximum sum rate
is achieved by transmitter 1 transmitting at full power and
transmitter 2 being off, whereas in the second instance both
transmitters transmit at full power. Moreover, in this second
case, the IC rate region corresponds to a larger portion of the
network MIMO region. When C is low, the same rate region is
achieved in both cases. As it increases, the difference between
the two setups becomes quite significant.

Finally, Figure 4 compares the maximum average sum rates
achieved for α = .5 (r1 = r2) and different channel statistics.
Let hij ∼ CN (0,σ2

ijINt), then the curves marked with x have
σ2
ij = 1, for i, j = 1, 2, whereas those marked with W have

σ2
ii = 1, and σ2

īi = .5, i = 1, 2. Note that for lower σ2
īi, higher

IC rates are achieved but lower network MIMO rates when
the backhaul constraints are ignored. The situation is not as
clear-cut when it is. The figure also shows how much of the
rates achieved correspond to private messages alone.
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Fig. 2. Sample Rate Region, for Nt = 1, SNR = 10dB, and different
backhaul rates C1 = C2 = C. ’x’ denotes the scheme proposed, ’♦’ the IC.

V. CONCLUSION

In this paper, we proposed to use the backhaul capacity to
convey different types of messages: private messages trans-
mitted from the serving base station, and common messages
jointly transmitted from several base stations. A corresponding
achievable rate region was characterized and simulations have
shown that unless both interference and backhaul capacity are
relatively low, the benefit of data sharing is quite significant.
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Abstract—Interference channels are useful analytical models
for distributed wireless communication networks with multiple
simultaneously transmitting users. The degrees-of-freedom opti-
mal transmit strategy for interference channels is interference
alignment, which requires substantial channel state knowledge
throughout the network. As the network grows, the sum capacity,
theoretically, increases linearly. This result, however, neglects
overhead from training and feedback. This paper accounts for
overhead in the MIMO constant-coefficient interference chan-
nel with linear precoding and proposes an orthogonalization
approach to maximizing sum throughput when overhead is
considered. The optimization’s solution, assuming each group
uses interference alignment, is found to require full channel state
information and a brute-force search, so a greedy partitioning
method with reduced CSI requirements is proposed.

I. INTRODUCTION

Interference channels are useful models for networks where
non-causal sharing of data across multiple transmitters, such as
for base station coordination, is infeasible. Such cases include
ad hoc networks and cellular networks with low-bandwidth
backhauls between base stations. Interference channels model
the case of simultaneous point-to-point transmission by two
or more transmitters such that the respective receivers observe
the superposition of all transmissions in the network. The
transmissions observed from transmitters not intentionally
communicating with a given receiver are termed interference.

Recent work on interference channels has shown that,
theoretically, the capacity of such networks increases linearly
with the number of transmit/receive pairs in the network [1],
[2]. In particular, by intelligently precoding the transmitted
symbols, all the interference can be forced into a subspace
of the received space at all receivers simultaneously. This
precoding operation is termed interference alignment (IA).
With two users, previous work has shown a loss in degrees
of freedom when channel coefficients are not known at the
transmitters [3], [4]. There is no prior work analyzing the
interference channel without training for channel estimation at
the receivers. All current methods for maximizing degrees of
freedom for the interference channel require channel training
and estimation at some node even if no feedback mechanism
is employed. The number of total links grows with the square
of the number of users in the network, meaning the overhead
associated with training these links will outpace the capacity
growth with many users. Similarly, the requirement of CSI,

even if only at the receivers, is known to effectively reduce the
degrees of freedom of a point-to-point block fading link [5].
Extending this model to the interference channel, overhead as-
sociated with training is expected to dominate an interference
channel with many users, diminishing the promised capacity
increase.

Prior work has considered the impact of imperfect CSI on
the achievable sum rate of interference alignment [6], and
the number of bits of limited feedback desired for single-
antenna interference alignment [7]. Overhead due to training
was neglected in both cases. Others have considered clustering
a cellular network based on spatial proximity [8], but this
clustering is done a priori and does not explicitly consider
overhead. To our knowledge there is no prior work explicitly
considering training overhead in MIMO interference channels.

This paper presents a model for analyzing overhead in
MIMO interference channels and finds that the achieved sum
rate with overhead of interference alignment will go to zero
with a large number of users. We consider a fully connected
interference channel, where spatial clustering is ineffective
because of the proximity of all users. Thus, we propose to
partition the users into orthogonally transmitting groups. The
groups take turns transmitting, with interference alignment
used as for transmission inside each group. Although such
partitioning still results in an asymptotically zero sum rate,
we show that for moderate number of users, partitioning can
result in multiplicative gains in sum rate over applying IA to
the entire network.

For the model outlined in this paper, the sum-rate-optimal
partitioning is shown to be a highly complex optimization that
requires global CSI and an exhaustive search over all possible
partitioning combinations, calculating the IA precoders for
each combination. We therefore propose a greedy algorithm
that requires only channel quality information (CQI) on the
link for each transmit/receive pair. Based on an approximation
to the achievable sum rate for interference alignment using lin-
ear precoding, the proposed algorithm is shown to efficiently
partition the network into IA groups.

The log refers to log2. Bold uppercase letters, such as A,
denote matrices, bold lowercase letters, such as a, denote
column vectors, and normal letters a denote scalars. The letter
E denotes expectation, C is the complex field, max{a, b}
denotes the maximum of a and b, ‖A‖F is the Frobenius
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Fig. 1. The MIMO interference channel. Each transmitter is paired with a
single receiver. In the model considered in this paper, the channels Hk,' are
block fading with coherence time Tk,'.

norm of matrix A, and |A| is the determinant of square matrix
A. The identity matrix of appropriate dimension is I and
[a]+ = max{a, 0}.

II. SYSTEM MODEL

We consider a distributed synchronized network with 2K
nodes, each with M antennas. K of the nodes have data to
transmit to the other K nodes, with no multiuser or cooperative
transmission. In particular, transmitter k ∈ {1, . . . ,K} has
data destined only for receiver k. We assume a narrowband
block fading model where the channel Hk,+ between transmit-
ter 4 ∈ {1, . . . ,K} and receiver k is independently generated
every T transmission periods ∀k, 4. We assume transmissions
are frame and frequency synchronous. Thus, at any fixed mo-
ment in time, we have a K-user MIMO interference channel
with M antennas at each node, as illustrated in Figure 1.
The assumption that all nodes have identical coherence times
models the case where the nodes are fixed in relation to each
other and a moving environment is causing time selectivity, for
example, with fixed infrastructure near highways. Analysis for
different coherence times for each link is left for future work.

Communication is divided into frames of period T sym-
bols. At the beginning of each frame, the transmitters send
mutually orthogonal training sequences to allow the receivers
to estimate the channels. This training is necessary not only
for coherent detection but also for CSI feedback required to
exploit the full degrees of freedom in the network [3], [4].
Training plus feedback time is L(K,M) < T symbol periods
such that in general we do not make assumptions about how
many links must be estimated or how many symbols are
required for estimation.

The data transmission portion of the frame begins after the
first L(K,M) symbols and ends when the channel changes.
Information theoretic results, which neglect overhead, suggest
that all transmitters should send simultaneously to achieve
the maximum degrees of freedom in the channel and thus

Group 1
Group 2

RX

TXTX TX

TX
TX

TXTXTX

RX
RX

RX
RX

RXRX
RX

Fig. 2. Illustration of a partition of the K-user interference channel into two
K/2-user interference channels transmitting orthogonally to each other.

approach its sum capacity with high transmit power [1],
[2]. In particular, transmitter 4 sends S+ spatial streams to
receiver 4. At symbol period n, the signal observed by receiver
k ∈ {1, . . . ,K} is

yk[n] = Hk,kFksk[n] +
K∑

+=1
+ /=k

Hk,+F+s+[n] + vk[n], (1)

where F+ is the M ×S+ linear precoder used at transmitter 4,
s+ is the S+×1 vector of symbols sent by transmitter 4, and vk

is zero-mean white circularly symmetric zero-mean complex
Gaussian noise with covariance matrix Evkv∗

k = Rk. The sum
rate of the network in bits per transmission for a frame is then

Rsum =

[
T − L(K,M)

T

]+ K∑

k=1

log

∣∣∣∣I+
(
Rk +

K∑

+ /=k

Hk,+F+F
∗
+H

∗
k,+

)−1

Hk,kFkF
∗
kHk,k

∣∣∣∣. (2)

From (2) we observe that the overhead term L(K,M)
effetively decreases the degrees of freedom in this network.
Previous work has shown that at least M symbols are required
for estimation of an M ×M MIMO channel [5]. Although
there are K2 MIMO links, the K receivers can use the training
from a given transmitter without any extra use of resources.
Therefore, L(K,M) ≥ KM . Even assuming feedback re-
quires no overhead, Rsum = 0 for K ≥ T/M . In short,
simultaneous transmissions requiring coherent CSIR, such as
interference alignment, break down with large K.

To regain degrees of freedom for a given number of users,
we propose to partition the users into groups that share the
frame orthogonally in time or frequency. This concept is
illustrated in Figure 2. Note that since the original K users
were modeled as a connected interference channel, where all
receivers observe a signal from all transmitters above the noise
floor, any subset of transmit/receive pairs, in isolation, may
also be modeled as a connected interference channel. If the
users are partitioned into P index sets {Kp}, with |Kp| = Kp

users in the pth group, then the sum rate of the network
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becomes

R̂sum =
P∑

p=1

∑

k∈Kp

T/P − L(Kp,M)

T/P
log

∣∣∣∣I+
(
Rk +

∑

+∈Kp

+/=k

Hk,+F+F
∗
+H

∗
k,+

)−1

Hk,kFkF
∗
kH

∗
k,k

∣∣∣∣ (3)

We then aim to solve the following optimization:

maximize R̂sum

with respect to P ∈ N1,Kp ∈ N1∀p,F+ ∈ CM×S%∀4

subject to
∑P

p=1 Kp = K

‖F+‖ ≤ 1. (4)

The solution to this optimization is computationally complex
and involves not only a brute force search over every possible
grouping, but also the calculation of the desired precoders
for each grouping. Further, such an optimization requires full
CSI at a central controller. In the next section we present a
suboptimal greedy method for performing this grouping with
only channel quality information (CQI).

III. GREEDY PARTITIONING

To develop a greedy algorithm for partitioning the network,
we must first define a selection function that assigns a value of
placing a user in a group. This function would ideally be the
sum rate increase of placing a user in a group. This is difficult
in multiuser networks since the actual sum rate increase will
depend on which future users are assigned to the group—
knowledge that is unavailable in a greedy algorithm. Instead
we resort to an approximation of this sum rate increase.

After partitioning the K-user interference channel into
P orthogonal groups, group p will be a Kp-user interfer-
ence channel that is restricted to utilizing only 1/P of the
spectrum or coherence interval. Thus, interference alignment
is a reasonable choice for precoder design in each group.
Although interference alignment requires extensive CSI and
calculation of precoders to find the exact sum rate, we note that
the precoder solutions are independent from the direct links
{Hk,k}, ∀k. Thus, with interference alignment, the expected
throughput will be approximately the rate obtained from
randomly generating orthogonal precoders Q and combiners Φ
of correct rank drawn uniformly from the Grassmann manifold
in the absence of interferers because of the lack of bias in
direction through the channel realization in the algorithm. We
then approximate the expected rate for user k in group p to
be

Rk,p ≈ EΦ,Q log
∣∣I+Φ∗Hk,kQQ∗H∗

k,kΦ
∣∣ (5)

≈ d̃(Kp,M)

Kp
log

(
1 +

‖Hk,k‖2F
M2

)
. (6)

This approximation is justified via the plot in Figure 3. The
difficulty with (6) is that the group size Kp is, in general,
unknown at the time user k is being assigned. To remedy this,
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Fig. 3. Sum rate versus SNR of the approximation in (6).

1. Find KO according to (8)
2. P = round( K

KO
)

3. Order users such that maxp R1,p > maxp R2,p > . . .
4. Set u = 1
5. Let p = argmaxp R1,p

6. Add u to the set Kp

7. If u < K, increment u and return to 4; else done
TABLE I

GREEDY ALGORITHM BASED ON IA RATE AND GROUP SIZE
APPROXIMATIONS.

we define KO, where

d̃(KO,M, T ) > d̃(KO − 1,M, T ) (7)
d̃(KO,M, T ) > d̃(KO + 1,M, T ). (8)

Here, d̃(K,M, T ) is the degrees of freedom with overhead
and is defined as

d̃(K,M, T ) =
T − L(K,M)

T
d(K,M). (9)

Then we set P = round( K
KO

). Once P is found, we can
assign users to each group by their approximate rate function
Rk,p. The algorithm is summarized in Table I. Note that,
this algorithm is based on a model with linear precoding,
which does not likely result in a linear relationship between
K and d(K,M) [11]. This algorithm can work for non-linear
precoding [2], which may increase the degrees of freedom in a
constant-coefficient interference channel, with an appropriate
approximation of Rk,p. This problem is beyond the scope of
this paper.

IV. SIMULATIONS

This section presents numerical results comparing the
greedy partitioning method of Section III. The simulations
are done using iterative interference alignment with linear
precoding [9], [10] with 100 iterations, although the IA
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Fig. 4. Sum rate versus number of users K for IA applied to the entire
network and the greedy partitioning approach proposed in this paper. In these
simulations, L(K,M) = KM symbols are required for training for the K-
user interference channel, which is the minimum for training K links. The
coherence interval is T = 30 and M = 2 antennas per node.

precoders can be found with any IA solution. The degrees
of freedom using this method has been conjectured to be
d̃(K,M) = 2MK/(K + 1) [11].

The first simulation gives the sum rate versus the number
of users K for greedy partitioning and IA applied to the
entire network with L(K,M) = KM , which is the minimum
amount of overhead required for training [5]. The coherence
interval T = 30, and each node is equipped with M = 2 an-
tennas. The plot is shown in Figure 4. The greedy partitioning
sum rate does not have a monotonic relationship with K since
each group cannot have exactly KO users unless K/KO is an
integer. Nevertheless, the suboptimal partitioning’s sum rate
drastically outperforms applying IA to the entire network.

The second simulation, whose plot is illustrated in Figure 5,
shows the sum rate performance of the greedy partitioning
method and the exhaustive partitioning method for K = 3
users for various T . As with the previous simulation, M = 2
antennas are at each node. With a small coherence interval,
the two perform very similarly as the greedy method parti-
tions the network into 3 groups with one user that transmits
interference-free. With larger T , the exhaustive search outper-
forms the greedy method because it still partitions the network
into three interference-free groups. Partitioning into one group
would result in non-zero interference with only 100 iterations
of the iterative IA design, reducing the achievable sum rate.
With perfect IA precoders and large T , the sum rate of the
partitioning methods approaches the sum rate of IA without
overhead.

V. CONCLUSIONS

We have demonstrated the importance of considering over-
head associated with training and feedback in practical design
for the interference channel. In particular, as the network
grows, the sum rate with overhead of IA goes to zero. To
increase sum rate with a finite number of users, we propose
partitioning the network into orthogonally transmitting groups.
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Fig. 5. Sum rate versus coherence interval T for exhaustive search and greedy
partitioning. For this simulation, the users are kept at K = 3 and there are
M = 2 antennas at each node, thus one stream is sent by each transmitter.
As the coherence interval increases, the overhead percentage decreases and
more time is allotted to transmitting data, thus sum rate increases to the rate
of IA without overhead.

Although the optimum partition requires a complex brute-force
search with global CSI, we propose a greedy algorithm that
requires only direct-link CQI, and much of the gains of an
exhausitve search can be made.
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Abstract—Motivated by the two-user beamforming in multi-
antenna interference channels, we characterize the upper bound-
ary of the achievable single-user gain-region. The eigenvector
corresponding to the maximum eigenvalue of the weighted sum
of Hermitian forms of channel vectors is shown to achieve all
points on the boundary in some given direction. Thereby, we
solve three different beamforming problems, namely the multicast
beamforming problem, the beamforming optimization in MISO
interference channels, and beamforming in MISO systems with
secrecy constraints for arbitrary number of users. We are
confident that the framework can be applied to beamforming
problems in other interference networks as well. Numerical
simulations illustrate the achievable gain-region.

I. INTRODUCTION
Interference channels are one of the basic elements of

complex networks. Future wireless communication systems
will suffer from interference since the number of subscribers
as well as the required data rate increases. Therefore, it is
important to exploit carefully the spatial dimension by using
multiple transmit or receive antennas. In the current work,
we focus on a generic K-user multiple-input single-output
(MISO) interference channel [1]. Information-theoretic studies
of the IFC have a long history [2], [3], [4], [5]. These refer-
ences have provided various achievable rate regions, which are
generally larger in the more recent papers than in the earlier
ones. However, the capacity region of the general IFC remains
an open problem. For certain limiting cases, for example when
the interference is weak or very strong, respectively, the sum
capacity is known [6]. If the interference is weak, it can simply
be treated as additional noise. For very strong interference,
successive interference cancellation (SIC) can be applied at
one or more of the receivers. Multiple antenna interference
channels are studied in [1]. Multiple-input multiple-output
(MIMO) interference channels have also recently been studied
in [7], from the perspective of spatial multiplexing gains. In
[8], the rate region of the single-input single-output (SISO)
IFC was characterized in terms of convexity and concavity.
The linear combination of the egoistic and altruistic beam-

formers is proved to be Pareto optimal in the 2-user MISO
interference channel [9]. In [10], this idea is extended to
the MIMO interference channel. Their proposed egoism and
1Part of this work is funded by the European Union within the SAPHYRE

(Sharing Physical Resources – Mechanisms and Implementations for Wireless
Networks) project (FP7-ICT-248001): http://saphyre.eu. The author would like
to acknowledge the contributions of his colleagues.

altruism balancing beamforming algorithm has connections
with some important works such as rate optimization [11],
[12] and interference alignment [13], [14]. In [15], the term
coordinated beamforming is coined, and the optimal transmit
beamforming and receive combining vectors under a zero
inter-user interference constraint are derived for a two-user
interference system in the context of two-cell coordination.
Using ideas from game theory, the multi-antenna interference
channel is studied in [16], [17], [18].
The contribution and outline of the paper is as follows:
1) In Section II, we define the MISO single-user gain-
region and show that it is convex.

2) Then, the main result is a characterization of the bound-
ary of the single-user gain-region in a given direction e
which follows from the convexity of the gain-region.

3) In Section III, the result is applied in order to completely
characterize the Pareto boundary of
a) the achievable rate region of multi-cast transmis-
sion (e.g., broadcast phase of two-way relaying),

b) the achievable rate region of the MISO interference
channel with K users,

c) and the achievable secrecy and eavesdropping rates
in MISO wiretap channels.

The characterization of the Pareto boundary for the MISO
interference channel with K users improves a former result
in [9]. The characterization of the Pareto boundary of the
achievable secrecy and equivocation rates contains the op-
timum beamforming derived in [19]. The theoretical results
are illustrated by a numerical simulation and the paper is
concluded in Section IV.

II. BOUNDARY OF THE SINGLE-USER GAIN-REGION
A. Preliminaries
Consider a multiple-antenna user k in a K-user interference

network and denote the flat-fading vector channels from user
k to single-antenna receiver 4, 1 ≤ 4 ≤ K as hk,+. Define the
channel gain as a function of the beamforming vector w as
x+(w) =

∥∥∥hH
k,+w

∥∥∥
2
for 1 ≤ 4 ≤ K. Define the achievable

gain-region for user k as

Ωk =
⋃

‖w‖=1

(x1(w), ..., xK(w)) . (1)
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The operational meaning of the gain-region Ωk will be dis-
cussed in Section III. Before we illustrate the region and its
boundary, we note the following important property.
Lemma 1: The gain region Ωk is always convex, i.e., for

x,y ∈ Ωk it follows that x(t) = tx + (1 − t)y ∈ Ωk for
t, 0 ≤ t ≤ 1. &
The proof of this lemma follows from direct computation of
w(t) = twx+(1− t)wy and x(w) where wx achieves x and
wy achieves y. The complete proof can be found in [20].
In Figure 1, an example gain-region is shown for two users

K = 2. The operational meaning of the gain-region and the

Ω

x1(w)

x2(w)
e1

e2

e3

Fig. 1. Example of two-dimensional gain-region and its upper boundaries
in directions e1, e2, e3 are illustrated.

directions e1, e2, e3 in Figure 1 will be discussed in Section
III. The arrows in Figure 1 correspond to interesting directions
e1 = [1, 1], e2 = [1,−2], e3 = [−1, 1].
B. Main result
Following the discussion on the boundary of Ωk, we formal-

ize the upper boundary following the definitions in [21]. There,
this definition was used to derive the solution of a monotonic
optimization problem [22].
Definition 1: A point y ∈ Rn

+ is called upper boundary
point of a convex set C if y ∈ C while the set

Ky = y + Rn
++ = {y′ ∈ Rn

+|y′ > y} ⊂ Rn
+ \ C. (2)

The set of upper boundary points of C is called the upper
boundary of C and it is denoted by ∂+C. &
The straightforward extension to include also the right

boundary of a convex set C is to define the upper boundary
of C in direction e.
Definition 2: A point y ∈ Rn

+ is called upper boundary
point of a convex set C in direction e if y ∈ C while the set
Ky(e) = {y′ ∈ Rn

+|y′+e+ ≥ y+e+ ∀ 1 ≤ 4 ≤ n} ⊂ Rn
+ \ C (3)

where the inequality has at least one strict inequality and
directional vector e ∈ {−1,+1}n. We denote the set of upper
boundary points in direction e as ∂eC. &

For the choice e = 1 the upper boundary in direction e is
the usual upper boundary, i.e., ∂+C = ∂1C.
In the following, we omit the index k when considering only

one user for convenience. For efficient operation the boundary
points of Ω in all directions (except e = −1) are of interest.
Define the set E = {−1, 1}n \ {−1}n. The following result is
the main theorem of the paper. Interestingly, it follows easily
from the convexity of the gain-region.
Theorem 1: All upper boundary points of the convex set Ω

in direction e ∈ E can be achieved by

w(λ) = vmax

(
K∑

+=1

λ+e+hk,+h
H
k,+

)
(4)

with vmax(Z) denoting the eigenvector which belongs to
the maximum eigenvalue of the Hermitian matrix Z, λ =
[λ1, ...,λK−1, λ1, ...,λK−1 with 0 ≤ λ+ ≤ 1, 1 ≤ 4 ≤ K − 1
and λK = 1−

∑K−1
+=1 λ+. &

Proof: We provide the sketch of the proof. The complete
proof can be found in [20]. The boundary points in direction
e of the convex set Ω can be achieved by maximization of the
weighted sum gain, i.e.,

max
w:||w||2=1

K∑

+=1

λ+e+|wHhk,+|2. (5)

The objective function in (5) can be rewritten as

y(w) =
K∑

+=1

λ+e+|wHhk,+|2

= wH





K∑

+=1

λ+e+hk,+h
H
k,+

︸ ︷︷ ︸
Z




w. (6)

Note that the matrix Z in (6) is not necessarily positive
semidefinite because the directional vector e can contain
negative components. However, it is Hermitian and therefore,
the solution to (5) is the eigenvector which corresponds to the
maximum eigenvalue of Z.
The interesting observation from Theorem 1 is that all upper

boundary points of the K-dimensional gain-region can be
achieved by a parameterization using K − 1 real parameters
between zero and one, i.e.,

λ ∈ Λ = {λ ∈ [0, 1]K :
K∑

+=1

λ+ = 1}. (7)

Depending on the application context different directions or
even certain operating points are to be optimized. The gain-
region and its boundary are illustrated in Figure 2.
The four colours in Figure 2 correspond to the four di-

rections e1 = [1, 1, 1], e2 = [1,−1, 1], e3 = [1, 1,−1], and
e4 = [1,−1,−1]. Inside the three nets (constructed by varying
the parameter vector λ on a grid with 100× 100 points) there
is the convex hull of 100.000 gain points achieved by random
generated beamforming vectors. The channels h11,h12,h13

are randomly generated with three transmit antennas.
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parameterization in Theorem 1. The four colors correspond to the four
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III. APPLICATIONS
The result from Theorem 1 can be applied to an interference

network in which (virtual) users are equipped with multiple
antennas. We present three representatives for different ap-
plications. Needless to say that it can be applied to other
scenarios as well.
A. Multicast beamforming
We start with a trivial example and consider the simple

multicast beamforming scenario in which one transmitter
sends common information to K receivers. The motivation for
this illustrative scenario could be the second phase of a two-
way relaying system with decode-and-forward relaying [23].
In the broadcast phase, one transmitter with multiple antennas
transmit the data to the terminals which then subtract the
self-interference (analog network coding). Denote the channels
from the relay to the terminals by h1, ...,hK . In this simple
scenario, the achievable rate of user terminal k is given by

Rk(w) = log

(
1 +

|wHhk|2

σ2

)
. (8)

The multicast beamforming rate region R is defined as
R =

⋃

‖w‖=1

(R1(w), ..., RK(w)). (9)

The next corollary follows from Theorem 1 since the upper
boundary of R corresponds exactly to the upper boundary of
Ω in direction e = 1.
Corollary 1: Any point on the upper boundary of the rate

region R in (9) can be achieved by

w(λ) = vmax

(
K∑

+=1

λ+hk,+h
H
k,+

)
(10)

with λ ∈ Λ in (7). &

B. MISO interference channel with K ≥ 2 users
The MISO interference channel with K users is studied in

[9]. All base stations BSk have N transmit antennas each,
that can be used with full phase coherency. The mobiles
MSk, however, have a single receive antenna each. We shall
assume that transmission consists of scalar coding followed by
beamforming, and that all propagation channels are frequency-
flat. This leads to the following basic model for the matched-
filtered, symbol-sampled complex baseband data received at
MSk:

yk = hT
kkwksk +

K∑

l=1,l /=k

hT
lkwlsl + ek, (11)

where sl, 1 ≤ l ≤ K is the symbol transmitted by BSl, hij is
the (complex-valued) N × 1 channel-vector between BSi and
MSj , and wl is the beamforming vector used by BSl. The
variables ek are noise terms which we model as i.i.d. complex
Gaussian with zero mean and variance σ2.
We assume that each base station can use the transmit power

P , but that power cannot be traded between the base stations.
Without loss of generality, we shall take P = 1. This gives
the power constraints

||wk||2 ≤ 1, 1 ≤ k ≤ K (12)
Throughout, we define the SNR as 1/σ2. The precoding
scheme that we will discuss requires that the transmitters
(BSk) have access to channel state information (CSI) for some
of the links. However, at no point we will require phase
coherency between the base stations. In [9], a characterization
of the beamforming vectors that reach the Pareto boundary of
the achievable rate region with interference treated as additive
Gaussian noise is provided by a complex linear combination.
In what follows we will assume that all receivers treat

co-channel interference as noise, i.e. they make no attempt
to decode and subtract the interference. For a given set of
beamforming vectors {w1, ...,wK}, the following rate is then
achievable for the link BSk →MSk, by using codebooks
approaching Gaussian ones:

Rk(w1, ...,wK) = log2

(
1 +

|wT
k hkk|2∑

l /=k |wT
l hlk|2 + σ2

)
. (13)

We define the achievable rate region to be the set of all rates
that can be achieved using beamforming vectors that satisfy
the power constraint:

R !
⋃

{wk:||wk||2≤1,1≤k≤K}

{R1(w1, ...,wK), ...,

..., RK(w1, ...,wK)} ⊂ RK
+ . (14)

The outer boundary of this region is called the Pareto bound-
ary, because it consists of operating points (R1, ..., RK) for
which it is impossible to improve one of the rates, without
simultaneously decreasing at least one of the other rates. More
precisely we define the Pareto optimality of an operating point
as follows.
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Definition 3: A rate tuple (R1, ..., RK) is Pareto optimal
if there is no other tuple (Q1, ..., QK) with (Q1, ..., QK) ≥
(R1, ..., RK) and (Q1, ..., QK) .= (R1, ..., RK) (the inequality
is component-wise). &
Theorem 2: All points of the Pareto boundary of the achiev-

able rate region of the MISO interference channel can be
reached by beamforming vectors

wk(λk) = vmax

(
K∑

+=1

λk,+e+hk,+h
H
k,+

)
(15)

with λk ∈ Λ defined in (7) and

e+ =

{
+1 4 = k

−1 otherwise .

&
Note that for two users K = 2, the characterization in [9,

Corollary 1] follows as a special case.
The proof of Theorem 2 follows from the observation that

the Pareto boundary of the achievable rate region R in (14)
corresponds for user k with the upper boundary of Ωk in
direction of ek = [−1, ...,−1, 1,−1, ...,−1] with a 1 at the
k-th position. The complete proof is provided in [20].
C. Secrecy capacity in MISO systems
As a brief third example, consider the scenario where the

transmitter called Alice has multiple antennas nT to send
a confidential message to the legitimate receiver called Bob
with a single antenna while the eavesdropper Eve with single
antenna overhears the message. This is the MISO wiretap
channel for which the secrecy capacity for perfect information
at Alice is computed in [19]. Denote the channel from Alice
to Bob by hA and the channel from Alice to Eve by hE . The
secrecy rate achievable with beamforming vector w is given
by

Rs(w) = log

(
1 +

|wHhA|2

σ2

)
− log

(
1 +

|wHhE |2

σ2

)
(16)

By application of Theorem 1, the secrecy rate maximization
is simply obtained as the solution in [19].

IV. CONCLUSIONS
The characterization of the Pareto boundary of the achiev-

able rate regions in interference channels is a necessary
prerequisite in order to develop efficient resource allocation
strategies. Motivated by the simple characterization of the rate
region of the two-user MISO interference channel, this paper
develops a general theory for beamforming in interference
networks. The idea is to study the problem for one terminal
separately based on its gain-region. Since only operating
points on the boundary are of interest, we characterize the
beamforming vectors which achieve boundary points in a given
direction in Theorem 1. Thus it is possible to obtain operating
points which maximize the gain in one direction and minimize
it in another direction. Finally, we apply the characterization
to three representative scenarios: the multicast beamforming,

the MISO interference channel rate region, and the secrecy
capacity in MISO system. Currently, we study the extension
to MIMO interference channels.
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Abstract—Intercell interference is a major limiting factor in
wireless multi-cell networks. Recently, it has been shown that
significant performance gains can be achieved by cooperation be-
tween base stations. Different degrees of cooperation are possible:
From full cooperation, where multiple base stations form a virtual
antenna array, to weak cooperation, where base stations take into
consideration the interference caused to users in neighboring
cells. In this work, weak cooperation in the form of interference
management is investigated. The base stations are equipped with
multiple antennas, while the mobile terminals only have a single
antenna. Due to the spatial degrees of freedom, a base station
can serve multiple users in the same slot. Each base station
performs beamforming, user group selection, and scheduling,
while the terminals treat interference as noise. The corresponding
resource allocation problem is cast as a utility maximization
problem, which includes common performance objectives such
as sum-throughput, max-min fairness, and proportional fairness.
Due to interference, the resulting utility maximization problem
is a nonconvex optimization problem. Still, after a suitable
reformulation, the problem can be solved to global optimality
using the framework of monotonic optimization. In other words,
we provide a framework for computing the jointly optimal
beamforming, user selection, and scheduling strategy for each
base station, under an arbitrary utility objective.

I. INTRODUCTION

The interference management problem in the downlink of a
cellular system is considered. The cellular system consists of
multiple base stations (BS) and a set of mobile stations (MS).
Moreover, the system is partitioned into cells, where each cell
consists of a base station and a subset of the mobile stations.
The base stations are assumed to have multiple antennas. In the
downlink, the base stations transmit independent information
to the mobile stations. In a conventional cellular system, each
base station transmits to the mobile stations within its cell,
without taking into consideration the interference caused in
neighboring cells. As a result, the performance of the cellular
downlink is limited by intercell interference.

Cooperation between base stations can help mitigate inter-
cell interference and thereby improve system performance.
Different degrees of cooperation are possible. Maximal per-
formance is achieved by coordinated transmission [1]. In
coordinated transmission, the base stations are connected by a
high-speed backbone link, enabling them to act as a single
transmitter, meaning that the antennas of all base stations
form a single antenna array, and the signals of all users are
jointly encoded across all base stations [1]. The coordinated
transmission scheme requires that the data signals and channel

state information for all users are available at each base station.
Moreover, in order to enable coherent reception, each mobile
station needs to be synchronized with all base stations.

In this work, a weaker form of cooperation between base
stations is considered. As in a conventional system, base
stations act as separate transmitters, meaning that the data
signals of one user are only available at one of the base
stations. Moreover, each mobile station is only synchronized
with one base station. Interference from signals intended for
other users is treated as noise. Due to the availability of
multiple transmit antennas, base stations can choose transmit
covariance matrices for transmission to their associated mobile
stations. In the following, a choice of transmit covariance
matrices for all base stations is denoted as a transmit strategy.
Evidently, system performance can be improved if the choice
of a transmit strategy is coordinated among base stations,
taking into account intercell interference.

Each choice of a transmit strategy yields a certain system
performance. Different models for the map from transmit
strategy to system performance are possible. In this work,
a generic utility model is used. Utility-based models have
seen wide application in resource allocation for wireless
networks, see, e.g., [2]. By allowing the base stations to switch
between transmit strategies during one transmit interval, a
further improvement of system performance is possible. Such a
switching between strategies can be interpreted as scheduling.

Finding the optimal transmit strategies (with or without
scheduling) in a coordinated manner represents a utility max-
imization problem. The presence of interference generally
results in a nonconvex optimization problem. There exist re-
source allocation problems in the multi-cell downlink that can
be reformulated as convex problems, such as the minimization
of total transmit power under target rate constraints [3]. For
the utility maximization problem considered in this work,
however, it is generally not possible to find a convex refor-
mulation. As a result, standard tools from convex optimization
cannot be applied to find the optimal transmit strategies. Based
on a framework proposed in [4], this work uses methods
from deterministic global optimization to compute the optimal
transmit strategies.

In the case that each base station serves only one mobile
station, our system setup corresponds to a multiple-input,
single-output interference channel (MISO IFC) with single-
user decoding. Recently, a number of works have explored
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the properties of the MISO IFC under single-user decoding
[5], [6], [7]. For the two-user MISO IFC without scheduling,
a method to find the optimal transmit strategies for a given
utility model is proposed in [8].

Notation: Lowercase bold letters and uppercase bold letters
denote vectors and matrices, respectively. The trace of a square
matrix Q is tr(Q). We write Q ! 0 to say that a Hermitian
matrix Q is positive semidefinite. The symbol R+ denotes the
set of nonnegative real numbers. Order relations ≥ and ≤ are
defined component-wise. A subset R of RK

+ is comprehensive
if s ∈ R and 0 ≤ s′ ≤ s implies s′ ∈ R. A function u is
increasing if s′ ≤ s implies u(s′) ≤ u(s), provided both s
and s′ are in the domain of u.

II. SYSTEM MODEL

Downlink transmission in a cellular network is considered.
The network consists of B multi-antenna base stations and
K single-antenna mobile stations. Base station b is equipped
with M transmit antennas and sends independent information
to each of its associated MS, where the set of associated MS
is denoted by Kb ⊂ {1, . . . , K}. Each MS is associated with
one BS, i.e., Kb ∩Kc = ∅ if b (= c and

B⋃

b=1

Kb = {1, . . . , K} .

Let xk denote the signal transmitted to MS k by the associated
BS. The signal transmitted by base station b is the superpo-
sition of the signals transmitted to each of its associated MS.
Accordingly, the received signal at MS k is given by

yk =
K∑

q=1

hH
q,kxq + ηk,

where hH
q,k ∈ C1×N is the channel from the base station

associated with MS q to MS k, and ηk is circularly symmetric
AWGN with zero mean and variance σ2.

Each BS encodes information separately for each of its
associated MS using Gaussian codebooks. Each MS receives
independent information. Accordingly, the signal xk sent
to MS k is independent of the signals to all other MS.
Furthermore, it is assumed that each transmit signal xk is
a circularly symmetric Gaussian random variable with zero
mean and covariance matrix Qk ∈ CM×M . Finally, all MS
treat interference as noise. A transmit strategy Q is a K-tuple
of transmit covariance matrices, one for each MS:

Q = (Q1, . . . ,QK).

For each transmit strategy Q, an achievable rate of MS k is
given by

rk(Q) = log2

(
1 +

hH
k,kQkhk,k

σ2 +
∑

q #=k h
H
q,kQqhq,k

)

The transmitted signal from each BS is subject to a transmit
power constraint,

∑

k∈Kb

tr(Qk) ≤ Pb, b = 1, . . . , B.

Accordingly, the set of feasible transmit strategies is given by

Q =

{
Q : Qk ! 0, ∀k,

∑

k∈Kb

tr(Qk) ≤ Pb, ∀b
}
.

A rate region R is defined as the set of rate tuples achievable
by a feasible choice of Q,

R = {r(Q) : Q ∈ Q} .

The rate region R is compact and comprehensive. In general,
however, the rate region R is not convex. A convex rate region
C is obtained by taking the convex hull of R. Due to the fact
that R is a comprehensive set, each point in C can be written
as the convex combination of at most K points in R: For
each s ∈ C, there exist K transmit strategies Q1, . . . ,QK and
coefficients b1, . . . , bK such that Qk ∈ Q, bk ≥ 0,

∑
bk = 1,

and

s =
K∑

k=1

bkr(Q
k).

Accordingly, the convex hull operation can be interpreted as
scheduling between K transmit strategies, with scheduling
coefficients b1, . . . , bK . Moreover, the convex hull of a com-
prehensive set is comprehensive, hence C is comprehensive.
In the following, let Q′ denote a vector of transmit strategies,
Q′ = (Q1, . . . ,QK), and let b = (b1, . . . , bK).1

III. INTERFERENCE MANAGEMENT

In general, transmission to MS k causes interference at all
MS q with q (= k. On the other hand, reducing the interference
caused at MS q reduces the achievable rate for MS k. The goal
of interference management is to adapt the system parameters
in such a way that overall system performance is maximized.
In this work, it is assumed that overall system performance
is measured by a utility function u that maps a rate vector
s ∈ RK

+ into a scalar utility value u(s). The utility function u
is assumed to be continuous and increasing. Commonly used
utility models are

uWSR(s) = λTs (weighted sum-rate),

uMM(s) = min
k

sk (max-min fairness),

uPF(s) =
∑

k

ln(sk) (proportional fairness).

Without scheduling, interference management corresponds
to determining a feasible transmit strategy Q such that
u(r(Q)) is maximized:

max
Q

u(r(Q)) s.t. Q ∈ Q. (1)

Due to the nonconcavity of the rate map r, problem (1)
is generally a nonconvex optimization problem, regardless
of the properties of u. Moreover, problem (1) offers no

1By adapting the results from [6] and [7], it can be shown that beamforming
is optimal, i.e., it is sufficient to consider covariance matrices of rank 1. Based
on this result, the problem can also be formulated using beamforming vectors
instead of covariance matrices, cf. [7].
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further structure with respect to the parameters Q. Including
scheduling makes the interference management problem even
harder: Instead of finding a single transmit strategy Q, it is
now necessary to find a vector Q′ of K feasible transmit
strategies and a scheduling vector b such that the resulting
rate vector maximizes utility.

Interference management is optimal if the globally optimal
solution is found. However, finding a globally optimal solution
of problem (1) directly by operating in the space of transmit
strategies is practically impossible, due to the fact that problem
(1) is nonconvex and the dimension of the search space is
prohibitively high for global methods.2 With scheduling, the
dimension of the search space is further increased.

The key to finding globally optimal solutions is a rate space
approach [4], which basically corresponds to a change of
the optimization domain. Without scheduling, the rate space
problem is given by

max
s

u(s) s.t. s ∈ R. (2)

Clearly, if s∗ is a global maximizer of (2), then there exists Q∗

such that s∗ = r(Q∗) and Q∗ is a global maximizer of (1).
The rate space approach provides two major advantages: First,
the rate region R is comprehensive, while the utility function
u is increasing. Hence, the rate space problem is a monotonic
optimization problem [9], and can be solved by using a generic
algorithm for monotonic optimization. Second, the dimension
of the search space is reduced to K , the number of MS, and
is independent of M .

The rate space problem for the case that scheduling is
included is obtained by replacing R by C in (2):

max
s

u(s) s.t. s ∈ C. (3)

Due to the fact that C is also comprehensive, the resulting rate
space problem is again a monotonic optimization problem. If
the utility function u is concave, the rate space problem with
rate region C is a convex problem.

IV. SOLVING THE RATE SPACE PROBLEM

A general framework for solving rate space problems in
the form of (2) and (3) is provided in [4]. The framework is
based on the polyblock algorithm [9], a deterministic global
optimization algorithm for solving monotonic optimization
problems. As a global method that uses a black-box model of
objective function and feasible set, the worst case computa-
tional complexity of the polyblock algorithm increases at least
exponentially in K [10]. In practice, it can be observed that
computing the globally optimal solutions is practically feasible
for a small to moderate number of users only (K ≤ 10).
Moreover, the computational complexity of the polyblock
algorithm limits the applicability of the framework to off-
line computation. Nevertheless, by using global methods it
is possible to compute the ultimate performance bounds for a
given system configuration and a corresponding interference

2Clearly, there exist special cases that result in a sufficiently low problem
dimension, such as M = 1 and K small.

management strategy which is guaranteed to be globally op-
timal. The only prerequisite for applying the framework from
[4] is the availability of a membership test for the rate region
R. In [4], the single-cell case is considered. For the multi-cell
case, a membership test can be formulated as follows: A rate
vector s is element of R if and only if there exists Q in Q
such that

sk = rk(Q), ∀k. (4)

Re-arranging (4) yields the condition

hH
k,kQkhk,k − βk

∑

q #=k

hH
q,kQqhq,k = βkσ

2, ∀k,

with βk = 2sk − 1. The following feasibility test is obtained:

find (Q1, . . . ,QK)

s.t. Qk ! 0, ∀k,
∑

k∈Kb

tr(Qk) ≤ P, ∀b,

hH
k,kQkhk,k − βk

∑

q #=k

hH
q,kQqhq,k = βkσ

2, ∀k.

(5)

Problem (5) is a semidefinite program (SDP), i.e., a convex
problem and efficiently solvable.3

V. NUMERICAL RESULTS

In order to illustrate the impact of optimal interference
management, the optimal transmit strategies are computed for
an exemplary channel realization. A system with B = 2
base station and K = 4 mobile stations is considered, with
K1 = {1, 2} and K2 = {3, 4}. Each base station has M = 2
transmit antennas and a transmit power budget of P = 101.5.
The noise variance at each receiver is σ2 = 1. As a reference
strategy, we consider the case where Qk is chosen such that
it perfectly matches its channel and transmit power is divided
equally among all associated MS:

Qk = 0.5P hk,kh
H
k,k/ tr

(
hk,kh

H
k,k

)
, ∀k.

This case is denoted as no coordination, as it considers neither
intra- nor inter-cell interference. Figure 1 shows the path gains
hH
q Qkhq in case of no coordination. The diagonal entries in

Figure 1 correspond to the signal paths to the four MS. It
can be observed that the channels to MS 2 and 4 are best,
while MS 3 has the weakest channel. The off-diagonal entries
in Figure 1 correspond to interference. As an example, the
signal to MS 4 causes significant interference at MS 1.

Figure 2 shows the path gains resulting from a choice of
covariance matrices that maximizes the sum of rates. MS 1
and MS 3 are allocated zero transmit power – it is optimal to
switch them off. Moreover, it can be observed that the signals
to the active MS only cause interference at the inactive MS.

In Figure 3, the transmit strategy is chosen such that the
resulting rate vector is max-min fair in R (i.e., no scheduling).
For max-min fairness, no MS can be switched-off. The result is

3Based on the optimality of beamforming, the feasibility test can also be
formulated as a second order cone program (SOCP), cf. [7].

136

Int. Zurich Seminar on Communications (IZS), March 3-5, 2010



 

 

1 2 3 4

1

2

3

4
20

40

60

80

100

k

q

Fig. 1. Path gains hH
q Qkhq , no coordination.
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Fig. 2. Path gains hH
q Qkhq , sum-rate maximization.

a significant amount of interference, due to insufficient degrees
of freedom. Moreover, comparing Figure 3 to Figure 1 shows
that it is optimal for BS 1 to transmit with a total power less
than P .

Table I shows the optimal rate vectors and corresponding
utility values for different performance objectives. The first
row corresponds to the rate vector resulting from no cooper-
ation. In the second row, the transmit strategy maximizes the
sum of the users’ rates. For sum-rate maximization, scheduling
is not needed. Rows 3 and 4 correspond to a transmit strategy
that is optimal under the max-min and proportional fairness
objective, respectively. For the results in rows 3 and 4,
optimization is over R (no scheduling). Whereas sum-rate
maximization can achieve a significant gain over the no coop-
eration case, the benefit of cooperation is significantly lower in
case of max-min and proportional fairness. This result is due
to the fact that max-min and proportional fairness enforce non-
zero rate for all users. Without scheduling, this implies that all
users have to be active at the same time. However, there are
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Fig. 3. Path gains hH
q Qkhq , max-min fairness.

r1 r2 r3 r4 uSR uMM uPF

NoCo 1.14 2.21 0.85 1.47 5.68 0.85 1.15
SR 0.00 5.96 0.00 6.81 12.77 0.00 -Inf

MM 1.40 1.40 1.40 1.40 5.61 1.40 1.35
PF 1.63 1.81 0.96 1.43 5.83 0.96 1.39

MM-S 2.96 2.96 2.96 2.96 11.84 2.96 4.34
PF-S 2.97 2.98 2.72 3.41 12.08 2.72 4.41

TABLE I

RATES AND UTILITY VALUES FOR DIFFERENT STRATEGIES

k r1 r2 r3 r4 bk
1 0.00 5.96 0.00 6.81 0.43
2 5.95 0.00 5.44 0.00 0.50
3 0.00 5.42 3.75 0.00 0.05
4 0.00 5.58 3.65 0.00 0.02

TABLE II

OPTIMAL SCHEDULE FOR MAX-MIN FAIRNESS

only two spatial degrees of freedom available, hence it is not
possible to properly separate users. Rows 5 and 6 show the
optimal rates for the case that jointly optimal scheduling and
beamforming is performed. The gains of optimal scheduling
are significant – in case of max-min, the minimal rate more
than doubles by including scheduling.

Table II shows the optimal rate vectors and scheduling
coefficients for max-min fairness. It can be observed that it is
optimal to have only two users active at a given time. While
this result can be expected (as M = 2), it is not a priori clear
which two users are grouped together.
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