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Abstract—This paper introduces a new iterative approach
to solve or to approximate the solutions of the nonconvex
quadratically constrained quadratic programs (QCQP). First,
this constrained problem is transformed to an unconstrained
problem using a specialized penalty-based method. A tight upper-
bound for the alternative unconstrained objective is introduced.
Then an efficient minimization approach to the alternative uncon-
strained objective is proposed and further studied. The proposed
approach involves power iterations and minimization of a convex
scalar function in each iteration, which are computationally
fast. The important design problem of multigroup multicast
beamforming is formulated as a nonconvex QCQP and solved
using the proposed method.

I. I NTRODUCTION

Nonconvex QCQP is an important class of optimization
problems that can be formulated as,

P : min.
x∈CN

xHA0x

s. t. xHAix ≤ ci, ∀i ∈ [M ], (1)

whereA0 and Ai are Hermitian matrices for alli ∈ [M ],
M denotes the number of quadratic constraints, andci ∈ R

(Please see the footnote for the notations)1. Herein, we are
interested ina subclass of nonconvexQCQP problems with
convexobjective andnonconvexconstraints,A0 is a positive
definite (PD) matrix andAi are Hermitian matrices with at
least one negative eigenvalue [1]. This class of nonconvex
QCQP problems captures many problems that are of interest
to the signal processing and communications community such
as beamforming design [2]–[4], radar optimal code design [5]–
[8], multiple-input multiple-output (MIMO) and multiuser
estimation and detection [9], as well as phase retrieval [10],
[11]. The application is also extended to other domains such
as portfolio risk management in financial engineering [12].
Nonconvex QCQP is known to be an NP-hard problem, i.e. at
least as hard as NP-complete problems which are particularly
deemed by optimization community to be difficult [13]. Due
to its wide area of application, the nonconvex QCQP problem
has been studied extensively in the optimization and signal
processing literature. The NP-hardness of the problem has mo-
tivated the search for various efficient approaches to solveP

1x(k) is the kth entry of the vectorx, ‖x‖ is the l2-norm of x, XH is
the complex conjugate ofX, XT is the transpose ofX, and Tr(X) the
trace ofX. vec(X) is the vector obtained by column-wise stacking ofX.
‖X‖F is the Frobenius norm of a matrixX, ⊗ is the Kronecker product and
diag(x) is the diagonal matrix formed by elements ofx. [M] denotes the
set{1, 2, · · · ,M}, andei is the theith standard basis vector.

including those based on thesemidefinite relaxation(SDR) [9],
[14], the reformulation linearization technique(RLT) [15],
[16], and thesuccessive convex approximation(SCA) [17]–
[19]. Recently a variant of SCA known asfeasible point
pursuit-successive convex approximation (FPP-SCA)has also
been proposed in [20]. To the best of our knowledge, SDR is
yet the most prominent and widely used technique employed
for tackling nonconvex QCQP. Note thatP in (1) includes
several class of widely known optimization problems including
binary quadratic programming(BQP) (whereAi = eie

T
i ,

x ∈ RN ) and unimodular quadratic programming(UQP)
(whereAi = eie

T
i , x ∈ CN ) [21].

In this paper, we propose a new iterative method to solve
the nonconvex QCQP problem. We convert the nonconvex
QCQP problem to an unconstrained problem in Section II.
The reformulated optimization problem is then decomposed
to subproblems which can be solved either analytically or
using extremely efficient optimization tools, discussed inSec-
tion III. In the following, we show that the important signal
processing problem of multigroup multicast beamforming can
be formulated as a nonconvex QCQP that requires solving
P . The proposed formulation serves as a cornerstone to our
numerical example in Section IV.

A. Application to Multigroup Multicast Beamforming

Consider the generalmultigroup multicast beamforming
problem [3] for a downlink channel, with anTx-antenna
transmitter andK single-antenna users assigned toG ≤ K
multicast groups. We denote the subset of user indices in the
kth group byGk for any k ∈ [G]. Let hi ∈ CnTx denote the
channel between the transmit antennas and theith user. Also
let wk ∈ CnTx denote the beamforming vector corresponding
to the kth group, k ∈ [G], multicast group of users. The
beamformed vector tokth group takes the formwksk with
E[|sk|2] = 1 wheresk is the symbol to be transmitted. The
beamforming vectors are to be designed in order to enhance
the network performance. In particular, the SINR value for
any useri ∈ Gk (and anyk ∈ [G]) is given by [3],

SINRi =
wH

k Riwk(∑
j∈[G]\{k} w

H
j Riwj

)
+ σ2

i

, (2)

whereRi = E{hih
H
i } is the covariance matrix of theith

channel,σ2
i denotes the variance of the zero-mean additive

white Gaussian noise (AWGN).



Consequently, the problem of minimizing total transmit
power subject to constraints on user SINR performance in the
network can be formulated as [2], [3],

min .
{wk}G

k=1

G∑

k=1

‖wk‖22

s. t. SINRi ≥ γi , i ∈ [K] (3)

Note that by a specific reformulation, the SINR metric in (2)
can be rewritten as a quadratic criterion. To see this, define
the stackedbeamforming vectorw ∈ C

N (with N = nTxG),
R̂i andR̃i as,

w , vec([w1 w2 · · · wG]), (4)

R̂i , diag (ej)⊗Ri, ∀ i ∈ [K], i ∈ Gj (5)

R̃i , (IG − diag (ej))⊗Ri, ∀ i ∈ [K], i ∈ Gj (6)

in which {R̂i} and {R̃i} are PSD matrices. It can be easily
verified that

SINRi =
wHR̂iw

wHR̃iw + σ2
i

, ∀ i ∈ [K]. (7)

As a result, the SINR constraint in (3) can be rewritten as,

wHR̂iw− γiw
HR̃iw ≥ γiσ

2
i , (8)

or equivalently aswHRiw ≥ 1, whereRi is given by,

Ri =
(
R̂i − γiR̃i

)/ (
γiσ

2
i

)
. (9)

The beamforming design problem for minimizing total trans-
mit power with SINR constraint can thus be formulated as,

min .
w

‖w‖2 , s. t. wHRiw ≥ 1, ∀i ∈ [K]. (10)

Note that this formulation may also be used to solve physical-
layer multicasting and traditional multiuser transmit beam-
forming problems; see [4] and [2] for details.

II. PROBLEM REFORMULATION

We begin our reformulation by rewritingP in an equivalent
form. We can assume, without loss of generality, thatci 6= 0;
otherwiseP will have a trivial solution ofx = 0 or it will
be infeasible. SinceA0 is a PD matrix, using the change of

parameters byAi ←
(
A

− 1

2

0 AiA
− 1

2

0

)
/ci andx ← A

1

2

0 x,
the nonconvex QCQP of interest may be recast as,

P1 : min.
x∈CN

‖x‖2

s. t. xHAix⊳i 1, ∀i ∈ [M ], (11)

with Ai being Hermitian matrices. Here“⊳i ” can represent
any of “ ≥ ”, “ ≤ ” or “ = ” for eachi.

Now, let us definex =
√
pu, wherep ∈ R+ andu ∈ CN

is a unit norm vector. Then, (11) can be written as,

P1 : min.
u,p

p

s. t. uHAiu⊳i

1

p
, ∀i ∈ [M ],

‖u‖2 = 1. (12)

By introducing slack variables{ti}, we transform all inequal-
ity constraints to equality constraints, viz.

uHAiu+ ti =
1

p
, ∀i ∈ [M ], (13)

whereti ∈ R. Therefore,P1 can be reformulated as,

P2 : min.
u,p,{ti}

p

s. t. uH (Ai + tiI)u =
1

p
, ∀i ∈ [M ], (14)

‖u‖2 = 1.

Any Hermitian matrix can be decomposed as a difference of
two PSD matrices simply by partitioning the matrix into parts
comprising only non-positive and non-negative eigenvalues. In
particular, we consider,

Ai = A+
i −A−

i , A+
i , A

−
i � 0, ∀i ∈ [M ]. (15)

We can also decomposeti as ti = t+i − t−i , ∀i ∈ [M ] where

t+i =

{
ti if ti > 0

0 if ti ≤ 0
, t−i =

{
0 if ti > 0

|ti| if ti ≤ 0
. (16)

Consequently, the constraint inP2 can be written as,

uH
(
A+

i + t+i I
)
u = uH

(
A−

i + (1/p+ t−i )I
)
u (17)

For notational simplicity, we defineCi = A−
i +(1/p+ t−i )I

andBi = A+
i +t+i I, where both matrices are PSD. Note that

(17) holds if and only if‖B
1

2

i u‖ = ‖C
1

2

i u‖. In particular, the
left-hand side of (17) is close to the right-hand side of (17)
if and only if ‖B

1

2

i u‖ is close to‖C
1

2

i u‖. Therefore, one can
consider the following optimization problem as a penalized
reformulation ofP2

P3 : min.
u,p,{ti}

p+ η
M∑

i=1

(
‖B

1

2

i u‖ − ‖C
1

2

i u‖
)2

s. t. ‖u‖2 = 1, ti ∈ R, ∀i ∈ [M ], (18)

in which η > 0 determines the weight of the penalty-term
added to the original objective ofP2; and whereP3 andP2

coincide asη → +∞. Note that optimizingP3 with respect
to (w. r. t.) u may require rewritingP3 as a quartic objective
in u. To avoid this, we introduce another alternative objective:

P4 : min.
u,p,{ti},{Qi}

p+ η
M∑

i=1

‖B
1

2

i u−QiC
1

2

i u‖2

s. t. ‖Qi‖F ≤ 1, ti ∈ R ∀i ∈ [M ],

‖u‖2 = 1. (19)

In contrast toP3, the optimization problemP4 w. r. t. u can
be easily cast as a problem of finding the largest eigenvalue of
a PSD matrix—more on this later. To establish the equivalence
of P3 andP4, observe that the minimizerQi of P4 should
be a matrix with Frobenius norm less than or equal to1 that
satisfies the following condition,

QiC
1

2

i u =
(
‖C

1

2

i u‖
/
‖B

1

2

i u‖
)
B

1

2

i u. (20)



In this case, it will be straightforward to verify that,

M∑

i=1

‖B
1

2

i u−QiC
1

2

i u‖2 =

M∑

i=1

(
‖B

1

2

i u‖2 − ‖C
1

2

i u‖2
)2
. (21)

In Section III, we present an analytical approach for the
derivation of{Qi}.

III. PROPOSEDOPTIMIZATION FRAMEWORK

We now propose an efficient iterative optimization frame-
work based on a separate optimization of the objective ofP4

andP3 over its partitions of variablesu, {Qi}, p, and{ti},
at each iteration where the iterations can be initiated fromany
arbitrary setting.

A. Optimization w. r. t.u

Considerp, {Qi} and{ti} are fixed, then one can optimize
P4 w. r. t. u via minimizing the criterion:

K∑

i=1

‖B
1

2

i u−QiC
1

2

i u‖2 = uHRu (22)

whereR =
∑K

i=1

{
(Bi +Ci)− (B

1

2

i QiC
1

2

i +C
1

2

i Q
H
i B

1

2

i )
}

.

Minimizing uHRu is equivalent to maximizinguH(−R)u.
In general, matrix−R is not PSD. However by diagonal
loading (DL), one can make it PSD. Let us define diagonally
loaded PD matrixR̂ , −R + µI with µ > 0 being larger
than the minimum eigenvalue of−R. Due to the fact that
‖u‖2 = 1, DL will not change the solution of the optimization
problem since it only adds a constant to the objective function:
uHR̂u = −uHRu+µ in which µ is constant. Consequently,
one can minimize (or decrease monotonically) the criterion
in (22) by maximizing (or increasing monotonically) the
objective of the following optimization problem:

max.
‖u‖2=1

uHR̂u . (23)

Problem (23) is very well-known in that its solution is given
by the unit-norm eigenvector corresponding to the largest
eigenvalue ofR̂, which can be found efficiently using the
power method iterations [22].

B. Tightening the Upper-Bound: Optimization w. r. t.{Qi}
Let wi = B

1

2

i u and vi = C
1

2

i u for notational sim-
plicity. Then, the penalty term inP3 can be rewritten as∑M

i=1 (‖wi‖ − ‖vi‖)2. Using the following Lemma, we pro-
vide an upper-bound for this penalty term.

Lemma 1. For any wi ∈ CN , vi ∈ CN and Qi ∈ CN×N

with ‖Qi‖F ≤ 1, we have‖wi‖ − ‖vi‖ ≤ ‖wi −Qivi‖.
Due to space limitation, the proof of the Lemma 1 is

not included in the paper. Considering above lemma, it is
straightforward to verify that

M∑

i=1

(‖wi‖ − ‖vi‖)2 ≤
M∑

i=1

‖wi −Qivi‖2. (24)

As mentioned in Section II, optimal{Qi} should satisfy (24)
with equality. Hence, givenu, p and{ti}, we must have

‖wi‖ − ‖vi‖ = min
‖Qi‖F≤1

‖wi −Qivi‖ (25)

Now, the question to be addressed is finding optimal{Qi}.
The typical method to findQi is to solve the optimization
problem stated in (25). Interestingly, we show that in fact it
is not necessary to numerically tackle such an optimization
problem to find optimal{Qi}. Recall the optimality condition
of Qi in (20), which may be written as,

Qivi =
(
‖vi‖/‖wi‖

)
wi . (26)

Note that (26) can be recast as,

Qivi =
wi‖vi‖2
‖wi‖‖vi‖

=
wiv

H
i

‖wi‖‖vi‖
vi . (27)

Thus, the optimalQi = Q⋆
i of P4 is immediately given by

Q⋆
i =

(
wiv

H
i

)
/ (‖wi‖‖vi‖) . (28)

It is straightforward to verify thatQ⋆
i of (28) satisfies (25) and

‖Q⋆
i ‖F = 1. Note that givenu, p and{ti}, calculation ofQ⋆

i

is not demanding from a computational point of view.

C. Optimization w. r. t.p

Now, assume thatu, {Qi} and{ti} are given. Considering
P3, the minimization w. r. t.p can be handled by the following
optimization problem:

min.
p

p+ η

M∑

i=1

(
αi − ‖C

1

2

i u‖
)2

, (29)

whereαi = ‖B
1

2

i u‖ is given fori ∈ [M ]. We recall form (17)
thatCi = A−

i + (1/p+ t−i )I is a function ofp. SinceA−
i

is a PSD matrix, it may be characterized by its eigen-value
decompositionA−

i = ViΛiV
H
i whereVi is a unitary matrix

andΛi is a diagonal matrix formed from the eigenvalues of
A−

i . As a result,C
1

2

i can be written as,

C
1

2

i = Vi

(
Λi + (

1

p
+ t−i )I

) 1

2

VH
i . (30)

Since multiplication with a unitary matrix does not change the
ℓ2-norm, we have that

‖C
1

2

i u‖ =
∥∥∥∥
(
Λi + (

1

p
+ t−i )I

) 1

2

VH
i u

∥∥∥∥ (31)

=

(
M∑

k=1

|ai(k)|2
(
λλλi(k) +

1

p
+ t−i

)) 1

2

=

(
bi +

1

p
+ t−i

) 1

2

,

where ai = VH
i u, λλλi is a vector formed from diagonal

elements ofΛi (λλλi = diag(Λi)) or equivalently from the
eigenvalues ofA−

i , andbi =
∑M

k=1 |ai(k)|2λλλi(k). In (32),



we have used the fact that
∑M

k=1 |ai(k)|2 = ‖ai‖2 = 1. The
objective function of (29) now can be expanded as

f(p) = (32)

p+ η
M∑

i=1

(
α2
i + bi +

1

p
+ t−i − 2αi

(
bi +

1

p
+ t−i

) 1

2

)
.

By looking over its second derivative off(p), one can readily
observe thatf(p) is not convex. Instead, we consider a change
of parameters byg(q) = f(1/q). Let q⋆ denotes the optimalq
that minimizeg(q). Clearly, one can conclude thatp⋆ = 1/q⋆

will minimize f(p). Therefore, in order to solve (29) it is
sufficient to solve

min .
q>0

g(q) (33)

Now, let us have a deeper look atg(q). The second derivative
of g(q) is given by

g′′(q) =
2

q3
+ η

M∑

i=1

αi

2

(
bi + q + t−i

)− 3

2 . (34)

Sinceq, αi, bi and η have positive values, we can conclude
thatg′′(q) > 0. This means thatg(q) is a convex function and
we can use numerical methods like gradient descent algorithm
to find the global optimumq⋆. Corresponding optimal solution
for (29) will be given byp⋆ = 1/q⋆. Note that convexity of
g(q) can also be concluded from definition ofg(q), as asum
of convex functionsover q > 0.

D. Optimization w. r. t.ti

Assumingu andp are known, the values of{ti}minimizing
P3 andP4 can be calculated by using (13), that implies

ti =
1

p
− uHAiu . (35)

However, it should be noted that at the optimal point, following
conditions need to be satisfied for alli ∈ [M ],





ti ≥ 0 if “⊳i ” = “ ≤ ”

ti = 0 if “⊳i ” = “ = ”

ti ≤ 0 if “⊳i ” = “ ≥ ”

, (36)

otherwise it means that constraint in (12) is not satisfied
and optimization problemP1 is not feasible. When the con-
straints (36) is imposed, theoptimal feasiblesolution in each
iteration can be found by,

ti =

{
ti if (36) is satisfied

0 if (36) is not satisfied
(37)

Let us denote the variables generate at iterationr of the
optimization framework byxr = (ur, pr, tri ). It can be shown
that anylimit point of the sequencexr is anstationary point.
A proof is not provided herein due to lack of space.

IV. A N UMERICAL EXAMPLE

In this section, a brief numerical example is provided to
investigate the performance of the proposed method. To this
end, we consider a multigroup multicast beamforming scenario
with G = 3, nTx = 4 and K = 15 single-antenna users.
We assumeγi = 1 for all users. The entries of the channel
vectors hi are drawn from an i. i. d. complex Gaussian
distribution with zero mean, with a variance set to10. The
Gaussian noise components received at each user antenna are
assumed to have unit variance, i.e.σ2

i = 1 for all i ∈ [K].
We stop the optimization iterations whenever the objective
decrease becomes bounded by10−5 or number of iterations
goes beyond1000. Figure 1 shows the transition of objective
function of P3 (equivalent toP4), with η = 10 in different
iterations. It also shows the values ofp in different iterations.
It can be observed that objective function is monotonically
decreasing. The difference betweenp and the objective ofP3

denotes the penalty term ofP3. Since η = 10 the penalty
term might not be exactly zero, therefore resulted SINR for
users,̂γi, might be slightly less than targetedγi. In this case,
one can readily find the feasible beamforming vectorw by
simply scaling it. The results leading to Figure 1 was obtained
in 2.5 seconds on a standard PC, while SDR followed by a
randomization step (with1000 realizations) took3.5 seconds.
Also our approach resulted inp⋆ = 1.22 while SDR achieved
p⋆SDR = 1.37. Note that the lower bound forp⋆ achieved by
SDR (corresponding to high-rank solution) wasp⋆LB = 1.16.
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Fig. 1. Transition of the objective functionP3 and the parameterp vs.
iteration number. The weight of the penalty-term (η) is set to10.

V. CONCLUSION

An iterative approach is proposed to tackle the nonconvex
QCQPs. Each iteration of the proposed method requires solv-
ing a set of subproblems, which is accomplished by computa-
tionally efficient steps. The multigroup multicast beamforming
problem is formulated as a nonconvex QCQP and solved using
the proposed method. Numerical results showed the proposed
approach is computationally efficient and produces quality
results.
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