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Abstract—This paper introduces a new iterative approach including those based on tisemidefinite relaxatio(SDR) [9],
to solve or to approximate the solutions of the nonconvex [14], the reformulation linearization techniquéRLT) [15],
quadratically constrained quadratic programs (QCQP). First, [16], and thesuccessive convex approximati¢®BCA) [17]-

this constrained problem is transformed to an unconstraine . - .
problem using a specialized penalty-based method. A tightpper- [19]. Recently a variant of SCA known a®asible point

bound for the alternative unconstrained objective is intraduced. PUrsuit-successive convex approximation (FPP-SKas) also
Then an efficient minimization approach to the alternative tncon- been proposed in [20]. To the best of our knowledge, SDR is

strained objective is proposed and further studied. The prposed yet the most prominent and widely used technique employed
approach involves power iterations and minimization of a covex for tackling nonconvex QCQP. Note tha@ in (1) includes

scalar function in each iteration, which are computationaly lcl fwidelv k timizati bl .
fast. The important design problem of multigroup multicast several class of widely known optimization problems inafggd

beamforming is formulated as a nonconvex QCQP and solved binary quadratic programmingdBQP) (whereA; = e;e/,
using the proposed method. x € RY) and unimodular quadratic programmingUQP)
(whereA,; = e;el’, x € CV) [21].

In this paper, we propose a new iterative method to solve
Nonconvex QCQP is an important class of optimizatiofhe nonconvex QCQP problem. We convert the nonconvex

I. INTRODUCTION

problems that can be formulated as, QCQP problem to an unconstrained problem in Section II.
P min. x7Aox The reformulated optimization problem i_s then decqmposed
xECN to subproblems which can be solved either analytically or
s.t. xTAx<¢, Vie[M], (1) using extremely efficient optimization tools, discusse&®et-
tion Ill. In the following, we show that the important signal

where Ay and A; are Hermitian matrices for all € [M],
M denotes the number of quadratic constraints, and R
(Please see the footnote for the notatidnsjerein, we are
interested ina subclass of nonconveQCQP problems with
convexobjective andnonconvexconstraints, A is a positive
definite (PD) matrix andA; are Hermitian matrices with at A, Application to Multigroup Multicast Beamforming
least one negative eigenvalue [1]. This class of nonconvex . . . :
) onsider the generafnultigroup multicast beamforming

QCQP problems captures many problems that are of mteres? . .

: . . . oblem [3] for a downlink channel, with ars-antenna
to the signal processing and communications community SUY . . )

i . . : tfansmitter andK single-antenna users assigneddo< K

as beamforming design [2]-[4], radar optimal code desiga [5multicast roups. We denote the subset of user indices in the
[8], multiple-input multiple-output (MIMO) and multiuser groups.

th n
L . . group bygy, for any k € [G]. Let h; € C"™ denote the
estimation and detection [9], as well as phase retrieva), [162 annel between the transmit antennas and'theser. Also

[11]. The application is also extended to other domains su e . .
as portfolio risk management in financial engineering [12% wi € C'™ denote the beamf(_)rmmg vector corresponding
0, the k" group, & € [G], multicast group of users. The

Nonconvex QCQP is known to be an NP-hard problem, i.e. gtamformed vector " group takes the formwys, with

least as hard as NP-complete problems which are partiWIaﬁF|sk|2] _ 1 wheres, is the symbol to be transmitted. The

S . . [
de_eme(_j by optlmlzat|o_n C(_)mmumty to be difficult [13]. Dueoeamforming vectors are to be designed in order to enhance
to its wide area of application, the nonconvex QCQP proble

. . : L : hF network performance. In particular, the SINR value for
has been studied extensively in the optimization and signal’ capi € G, (and anyk < [G]) is given by [3]
processing literature. The NP-hardness of the problem lwas m y ! b y 9 y Lol

tivated the search for various efficient approaches to sBlve SINR wHR,;wy,

i = )

Ix(k) is the k™ entry of the vectorx, ||x|| is the l>-norm of x, X is (Zje[G]\{k} WJHRZ'WJ-) +o?
the complex conjugate oK, X7 is the transpose oK, and Tr(X) the

trace of X. vec(X) is the vector obtained by column-wise stackingXf \hereR, = E{h-hH} is the covariance matrix of th&h
[|X]| ¢ is the Frobenius norm of a matriX, ® is the Kronecker product and 5 v

9 . .
diag(x) is the diagonal matrix formed by elements xf [M] denotes the Cha_-nnel’ai qenOte§ the variance of the zero-mean additive
set{1,2,---, M}, ande; is the thei!" standard basis vector. white Gaussian noise (AWGN).

processing problem of multigroup multicast beamforming ca
be formulated as a nonconvex QCQP that requires solving
‘P. The proposed formulation serves as a cornerstone to our
numerical example in Section IV.

)



Consequently, the problem of minimizing total transmiBy introducing slack variableét;}, we transform all inequal-
power subject to constraints on user SINR performance in tiy constraints to equality constraints, viz.

network can be formulated as [2], [3], 1
o uAu+tt; = > Vi € [M], (13)
: 2
{vrfil}ri;'zl ; w2 wheret; € R. Therefore,P; can be reformulated as,
s.t. SINR,; >1;,i € [K] 3) Py : m{i?.}
u,p,ti

Note that by a specific reformulation, the SINR metric in (2)

1
H . . _ - ;
can be rewritten as a quadratic criterion. To see this, define .t ut (Ai+tIu= p’ vie[M],  (14)

the stackedbeamforming vectow & CN (with N = n1xQ), [l = 1.
R; andR; as, N _ _
. Any Hermitian matrix can be decomposed as a difference of
w = vec([wy wy -+ W), (4)  two PSD matrices simply by partitioning the matrix into jgart
R, 2 diag (e;) ® R, Vie [K],i€ G; (5) comprising only non-positive and non-negative eigenalue
R, 2 (I — diag (¢;)) ® R, VielKlieg, (6) particular, we consider,
. . ~ ~ . : Ai=AF —A7, Af A7 > ;€ [M]. 15
in which {R,;} and {R;} are PSD matrices. It can be easily ¢ v i ALz 0 Vi M] (15)
verified that We can also decomposggast; =t —t;,Vi € [M] where
HR. . :
wHR;w + 0} ‘ 0o if <0 lts| if ;<0

As a result, the SINR constraint in (3) can be rewritten as, Consequently, the constraint f, can be written as
2

D Hp
W R i TR 2 ®  wf A+ Du=uf (AT +1p+ ) (D)
or equivalently asv"R,w > 1, whereR; is given by, For notational simplicity, we defin€, = A +(1/p+t; )1
5 = o At gt i
R, = (Ri _ %‘Ri) / (vio?). 9) andB; = Al +t71, W.herelboth matilces are PSP. Note that
. . L (17) holds if and only if|BZul|| = ||C?u]. In particular, the
The beamforming design problem for minimizing total tranSgft_hand side of (17) is close to the right-hand side of (17)
1

. . ; 1 . i
mit power with SINR constraint can thus be formulated as, ¢ 2nd only if [BZul| is close to]|C? ul. Therefore, one can
min. |[w|?, s.t. wiR;w>1, Vie[K]. (10) consider the following optimization problem as a penalized
w

. . . reformulation of P,
Note that this formulation may also be used to solve physical

layer multicasting and traditional multiuser transmit imea ) . 1 1 2
forming problems; see [4] and [2] for details. Ps : uﬂ‘{'?'} P UZ; (”Bi ufl = lIC; uH)

Il. PROBLEM REFORMULATION s.t. |Jul?=1, t;€R, Viel[M], (18)

We begin our reformulation by rewriting in an equivalent ;. \vhich n > 0 determines the weight of the penalty-term

form. We can assume, without loss of generality, h1a¢ 0;  54ded to the original objective df,; and whereP; and P»

otherwise” will have a trivial solution ofx = 0 or it will  .incide asy — -oo. Note that optimizingP; with respect
be infeasible. Sincé\, is a PD matrix, using the change ofi, (\, r. t.)u may require rewritingP; as a quartic objective

_1 _1 1
parameters byA; <« (Ao TAA, 2) /ei andx < A§x, in u. To avoid this, we introduce another alternative objective
the nonconvex QCQP of interest may be recast as,

M
1 1
p+nY_ |B?u-Q,CZul’

. mi 2 Py : min.
P min. x| wp Qi 2
s.t. xTAx<;1, Vie|[M], (11) s.t. |Qillr<1, t; €R Vie[M],
with A; being Hermitian matrices. Here<; ” can represent [ul* = 1. (19)
any of “« > 7, “<” or “=" for eachi.

In contrast toPs, the optimization problen®P, w. r. t. u can
be easily cast as a problem of finding the largest eigenvdlue o
a PSD matrix—more on this later. To establish the equivaenc

Now, let us definex = ,/pu, wherep € R* andu € cN
is a unit norm vector. Then, (11) can be written as,

Pi: min. p of P3 and P4, observe that the minimize®; of P, should
wp be a matrix with Frobenius norm less than or equal tinat
s.t. uWAu<; l’ Vi e [M], satisfies the following condition,
p

Jufl? = 1. (12) Q.C7u= (IC7ul/|Bful)Bfu.  (20)



In this case, it will be straightforward to verify that, As mentioned in Section Il, optimdlQ;} should satisfy (24)
with equality. Hence, givem, p and{t;}, we must have

M 1 Lo, M 1 1 2

> B u-QiClul? =) (IIBYull: ~ [Cull2) - (22) Iwil = vl = min fwi— Qi (25)
i=1 i=1 1Q:llF<1
In Section 1ll, we present an analytical approach for thﬁow, the question to be addressed is finding optiff@}}.

derivation of{Qi}. The typical method to findQ; is to solve the optimization
I1l. PROPOSEDOPTIMIZATION FRAMEWORK problem stated in (25). Interestingly, we show that in fdct i

is not necessary to numerically tackle such an optimization

egiroblem to find optimal Q; }. Recall the optimality condition

of Q; in (20), which may be written as,

We now propose an efficient iterative optimization fram
work based on a separate optimization of the objectiv® of
and Ps over its partitions of variables, {Q;}, p, and{t;},
at each iteration where the iterations can be initiated faomy Qiv; = (”Vi”/”WiH)Wi : (26)
arbitrary setting.

A. Optimization w. r. tu Note that (26) can be recast as,

Considerp, {Q;} and{t;} are fixed, then one can optimize Qivi — wi vi]? _ wivi! , 27)
P, w. r. t. u via minimizing the criterion: U wallllvall T walllvall
K 1 1 Thus, the optimal; = Q; of P, is immediately given by
ZHBEu—QinuH2 =u”’Ru (22)

i=1 Q; = (wavi") / (Iwillllvall) - (28)

1 1 1 1
whereR = 31| {(Bi +C;) - (B7QC? +C? Qlef)}- It is straightforward to verify thaQ} of (28) satisfies (25) and
Minimizing u”Ru is equivalent to maximizingi” (~R)u. [ Q7| = 1. Note that givem, p and{¢;}, calculation ofQ;
In general, matrix—R is not PSD. However by diagonalis not demanding from a computational point of view.
loading (DL), one can make it PSD. Let us define diagonally
loaded PD matrixR £ —R + uI with 1 > 0 being larger C. Optimization w. r. tp

[[uf|* = 1, DL will not change the solution of the optimizationp, ' the minimization w. r. tp can be handled by the following
problem since it only adds a constant to the objective foncti optimization problem:

u’Ru = —u”Ru+ i in which p is constant. Consequently,

one can minimize (or decrease monotonically) the criterion ) M 1 2

in (22) by maximizing (or increasing monotonically) the min. p+ ny (ai - HCqu) ; (29)
objective of the following optimization problem: i=1

max. u”Ru . (23) whereq; = ||B§u|\ is given fori € [M]. We recall form (17)
hafl?=1 thatC; = A; + (1/p+t;)Iis a function ofp. Since A
Problem (23) is very well-known in that its solution is giveris a PSD matrix, it may be characterized by its eigen-value
by the unit-norm eigenvector corresponding to the largegecompositiolA;” = V,;A; VE whereV; is a unitary matrix
eigenvalue ofR, which can be found efficiently using theand A; is a diagonal matrix formed from the eigenvalues of

power method iterations [22]. A . Asa result,Ci% can be written as,
B. Tightening the Upper-Bound: Optimization w. r{Q;} i 1 3

Let w; = Bi%u and v; = Ci%u for notational sim- Cl=Vi (AH_ (5 +t;)1) VZH' (30)
glzl%i/'(lgjn’_ hrl’engJQe.nSgi);];etrhrg flzicg)w(i:r? S Lbeemrne];v’rl\',[\tlinps)s_ Since multiplication with a unitary matrix does not change t

vide an upper-bound for this penalty term. ¢x-norm, we have that

1
Lemma 1. For anyw; € CV, v; € CY and Q; € CNV*¥V 1 S TN
with Qi < 1, we havefwil - [vi]| < [[w, - Quvfl. 1WAt GEIT) Ve &)
1
Due to space limitation, the proof of the Lemma 1 is M ) 1 \\° 1 \?
not included in the paper. Considering above lemma, it is Zlai(k)l <)\i(/f) + > +ti) = (bi+ > +ti) ;
k=1

straightforward to verify that
M M wherea;, = VFHu, ); is a vector formed from diagonal
S will = Ival)* <) llwi — Qv (24) elements ofA; (\; = diag(A;)) or equivalently from the
i1 i1 eigenvalues oA, andb; = >n, |a;(k)[2Ai(k). In (32),



we have used the fact that,—, |a;(k)|> = ||la;||> = 1. The IV. A NUMERICAL EXAMPLE

objective function of (29) now can be expanded as In this section, a brief numerical example is provided to
investigate the performance of the proposed method. To this
flp) = (32) end, we consider a multigroup multicast beamforming sdenar
M 9 1 _ 1 _ B with G = 3, nx = 4 and K = 15 single-antenna users.
P ”Z aj +bi + p i — 204 <bi + P ti > We assumey; = 1 for all users. The entries of the channel
=1 vectors h; are drawn from an i. i. d. complex Gaussian

By looking over its second derivative gf(p), one can readily distribution with zero mean, with a variance set1o. The
observe thaf (p) is not convex. Instead, we consider a chandeaussian noise components received at each user antenna are
of parameters by(q) = f(1/q). Let¢* denotes the optimaj assumed to have unit variance, i€ = 1 for all i € [K].

that minimizeg(q). Clearly, one can conclude that = 1/¢* We stop the optimization iterations whenever the objective
will minimize f(p). Therefore, in order to solve (29) it isdecrease becomes bounded Ity > or number of iterations

sufficient to solve goes beyond 000. Figure 1 shows the transition of objective
function of P; (equivalent toP,), with n = 10 in different
mi>1%. g(q) (33) iterations. It also shows the valuesofn different iterations.
q

It can be observed that objective function is monotonically
Now, let us have a deeper look @t7). The second derivative decreasing. The difference betwgeand the objective of;

of g(q) is given by denotes the penalty term @%;. Sincen = 10 the penalty
term might not be exactly zero, therefore resulted SINR for
M ~ . . .
2 Iy -3 users,y;, might be slightly less than targeteg. In this case,
9"(q) = Pl + ”Z DX (bi +q+t7) (34)  one can readily find the feasible beamforming veatory
=1

simply scaling it. The results leading to Figure 1 was olsdin
Sinceq, a4, b; andn have positive values, we can concludé 2.5 seconds on a standard PC, while SDR followed by a
thatg”(q) > 0. This means thag(q) is a convex function and randomization step (with000 realizations) took3.5 seconds.
we can use numerical methods like gradient descent algoritA\lso our approach resulted jgt = 1.22 while SDR achieved

to find the global optimung*. Corresponding optimal solution ppg = 1.37. Note that the lower bound fgs* achieved by
for (29) will be given byp* = 1/¢*. Note that convexity of SDR (corresponding to high-rank solution) was, = 1.16.

g(q) can also be concluded from definition @fq), as asum
of convex functionsver g > 0.

D. Optimization w. r. ti;

Assumingu andp are known, the values dt;} minimizing
Ps and P, can be calculated by using (13), that implies
t; = 1. u?Au. (35)
p
However, it should be noted that at the optimal point, follogv
conditions need to be satisfied for alE [M],

tz 2 O if “ ql 2 — “ S 2

t; =0 if “<;,7=%“=", (36) 0 200 400 600 800 1000
iteration number

t. < O if “ 4 A1) > 2

1 = 3 - -

Transition of the objective functiof?s and the parametep vs.

otherwise it means that constraint in (12) is not satlsf@:{gaﬂon number. The weight of the penalty-tern) (s set to10.

and optimization problen®; is not feasible. When the con-
straints (36) is imposed, theptimal feasiblesolution in each

iteration can be found by, V. CONCLUSION

An iterative approach is proposed to tackle the honconvex

o {ti if (36) is satisfied (37) QCQPs. Each iteration of the proposed method requires solv-
" 10 if (36) is not satisfied ing a set of subproblems, which is accomplished by computa-
tionally efficient steps. The multigroup multicast beamifarg

Let us denote the variables generate at iteratioof the problem is formulated as a nonconvex QCQP and solved using
optimization framework bye” = (u”,p", t7). It can be shown the proposed method. Numerical results showed the proposed
that anylimit point of the sequence” is anstationary point approach is computationally efficient and produces quality
A proof is not provided herein due to lack of space. results.
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