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Abstract The question of resource allocation arises

whenever demand exceeds supply. The common approach

is to optimize the network efficiency while maintain-

ing some fairness among the users. While resource al-

location policies use various definitions for network ef-

ficiency and fairness, most of them are based on max-

imization of a utility function. The mathematical for-

malism underlying these approaches is the same as the

mathematical formalism used in the Bernoulli model

in finance, where a player is supposed to maximize his

expected utility function. This model is disproved by

Allais’ paradox, which provides examples of rational

behaviors which cannot be described by the maximiza-

tion of any utility function. By transposing this para-

dox to telecommunication networks for the purpose of

resource allocation, we build examples of rational op-
erators whose optimal choice cannot be described by

the maximization of any utility function. By optimiz-

ing a trade-off between network efficiency and fairness,

we propose a model similar to the risk-return trade-off

optimization in finance.
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1 Introduction

The mobile telecommunication sector is presently en-

joying a tremendous growth, and this trend is expected

to continue in the foreseen future. According to an IDATE

report [24], global mobile subscription should grow from

5,328 million in 2010 to 9,684 million in 2020 (+81.8%),

while total worldwide mobile traffic should grow from

3.8 Ebyte in 2010 to 127 Ebyte in 2020 (x33).

This tremendous growth will inevitably cause satu-

ration and congestion problems. In spite of the numer-

ous solutions which are considered in order to meet the

growing demand, there is no doubt that the question of

resource allocation will become a key issue in the next

years, especially in the scope of the introduction of 5G

networks.

The question of resource allocation arises whenever

demand exceeds supply. This issue goes far beyond the

field of telecommunications and is extensively studied in

economics and sociology. In telecommunication network

management, the question arises especially in through-

put allocation and base-station allocation in multi-tier

networks [7], [17].

Some approaches favor the search of balance be-

tween energy consumption and throughput revenue [18],

[5]. In addition, many methods have been proposed in

order to improve energy efficiency [22], [16].

Other approaches introduce a pricing in order to

optimize both energy consumption and throughput rev-

enue [10], [15].

Resource allocation is also mentioned as a technique

for maximization of network lifetime, where network

lifetime is defined as the total amount of time dur-

ing which the network is capable of maintaining its full

functionality and/or of achieving particular objectives

during its operation [30].
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The common feature of all these approaches is that

the question of resource allocation results from the fact

that supply is limited. The objective is to optimize in

some way the network efficiency while maintaining a

certain fairness among the users.

The paper is organized as follows: Section 2 provides

a literature review on fairness and utility function. Ex-

isting work on risk management in finance is presented

in Section 3, and transposed to resource allocation in

telecommunication networks in Section 4. Section 5 in-

troduces the concept of unfairness aversion for the need

of trade-off between fairness and efficiency when the

limiting factor is the total rate. Simulations are pre-

sented in Section 6. Concluding remarks are given in

Section 7.

2 Fairness and utility function

2.1 Fairness

Various approaches have been proposed for fairness in

allocation of a single type of resource. Let x = (x1, ..., xn)

be a resource allocation vector. A variety of metrics,

such as the ratio between the smallest and the largest

allocations (min-max ratio), Jain’s index, or propor-

tional fairness have been proposed:

2.1.1 Min-max ratio

The min-max ratio is the ratio between the lowest al-

location and the highest allocation.

min−max(x1, ...xn) =
mini xi
maxi xi

(1)

2.1.2 Jain’s index

J(x1, x2, ..., xn) =
(
∑n
i=1 xi)

2

n
∑n
i=1 x

2
i

(2)

In the worst case, when all xi but one equal to 0,

J(x1, x2, ..., xn) = 1
n . In the best case, when all xi are

equal, J(x1, x2, ..., xn) = 1.

By noting x̂ and σ̂x
2 the empirical mean and the

empirical squared error of x, respectively, Jain’s index

can be expressed as a function of these two parameters:

J(x1, x2, ..., xn) =
1

1 + σ̂x2

x̂2

(3)

2.1.3 Proportional fairness

Proportional fairness is based upon the assumption that

the users’ utility functions are logarithmic. Resource

allocations x∗i are proportionally fair if they maximize∑n
i=1 log xi.

In weighted proportional fairness, the optimal allo-

cation is obtained by maximizing
∑n
i=1 pi log xi.

The concept of proportional fairness has been gener-

alized in [21], which introduces the definition of (p, α)-

proportional fairness: a feasible resource vector x∗ is

(p, α)-proportionally fair if for any feasible vector x,∑n
i=1 pi

xi−x∗i
x∗i
α ≤ 0.

It is shown in [21] that (p, α)-proportional fair re-

source allocation is equivalent to the maximization of

the function:

fα(x) =

{
lnx, if α = 1
x1−α

1−α , otherwise
(4)

This definition can be slightly modified in order to

have a family of functions continuous in α:

fα(x) =

∫ x

1

dt

tα
=

{
lnx, if α = 1
x1−α−1
1−α , otherwise

(5)

2.1.4 Entropy

Entropy was introduced by Shannon [27] in informa-

tion theory in order to measure the expected value of

the information contained in a message. Assuming that

a random variable can take n distinct values, with prob-

abilities p1, p2,...,pn, Shannon entropy is defined as:

H(p1, ..., pn) = −
n∑
i=1

pi log2 pi (6)

Shannon entropy equals to 0 when one probability

equals to 1 and all other probabilities equal to 0. Shan-

non entropy reaches its maximum value, log2 n when all

probabilities equal to 1
n . More generally, the more ho-

mogeneous the probability distribution is, the greater

Shannon entropy is. For this reason, Shannon entropy

can be used as a fairness measure. By defining:

pi =
xi∑n
j=1 xj

(7)

H(p1, ..., pn) is a fairness measure of the resource

allocation vector x = (x1, ..., xn).
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In order to unify these various theories, [13] and [9]

developed an axiomatic approach which is summarized

below. A fairness measure is a function

f : Rn → R

where x ∈ Rn is an allocation vector representing the

resource allocated to each user, fulfilling the following

axioms:

– Continuity: f is continuous for any n ≥ 1.

– Homogeneity: f(x) = f(t.x),∀t > 0

– Saturation: As the number of users tends to infinity,

fairness value of equal resource allocation becomes

independent of the number of users: limn→∞
1n

1n+1
.

– Partition:

The partition axiom uses the concept of mean func-

tion:

h : R2 → R

is a mean function iff there exist a continuous and

strictly monotonic function g and two positive weights

s1 and s2 fulfilling s1 + s2 = 1 such that: ∀u, v ∈
R, g(h(u, v)) = s1g(u) + s2g(v).

Considering an arbitrary partition of the system

into two subsystems, the partition axiom states that

there exists a mean function

h : R2 → R

such that the fairness ratio of two resource alloca-

tion vectors x = [x1x2] and y = [y1y2] equals the

mean of the fairness ratios of the two suballocations:
f(x)
f(y) = h

(
f(x1)
f(y1) ,

f(x2)
f(y2)

)
.

– Starvation: In a two-user system, an equal alloca-

tion is more fair than starving one user: f([11]) ≥
f([10]).

Starting with these five axioms, [13] generates a

family of fairness measures from a generator function:

fβ(x) = sign(1− β)

 n∑
i=1

(
xi∑n
j=1 xj

)1−β
 1

β

(8)

where sign(.) is the sign function.

Fairness in network resource allocation encounters

the question of fair balance of utility functions, rather

than fair balance of throughputs: fair balance of through-

puts can lead to very unsatisfied users. For example, if

two users have an all-or-nothing utility function for the

total available throughput in the network, the best so-

lution is to choose arbitrarily one of the users and to

attribute him the whole throughput.

2.2 Utility function

On the other hand, maximization of utility function is

also considered. These two approaches are clearly dif-

ferent, since scale-invariant metrics are unaffected by

the total amount of allocated resources, while maxi-

mization of utility functions leads to Pareto optimal

resource allocations.

In [6], users’ satisfaction is defined taking into ac-

count the available resource. As a consequence, a user

receiving a given allocation will have a greater satis-

faction if all or part of the allocation he receives has

been taken at the expense of other users. This defini-

tion leads to a trade-off between fairness and efficiency

which favors compromise from the part of the users.

This is fairly adapted to a resource sharing problem

where users know all the allocations or at least the total

allocation. However, the basic need of a user connect-

ing to a telecommunication network is to transmit his

data, without taking into account other users’ alloca-

tions. Therefore, in our model, the utility function of a

user only depends upon the throughput he receives.

We assume in the following that each user requests

a given throughput R and has a utility function f ful-

filling the following conditions:

– f(0) = 0

– f(R) = 1

– ∀x ≤ 0, f(x) = 0

– ∀x ≥ R, f(x) = 1

– ∀x < R, f(x) < 1

– f is a growing function

It has been shown in [29] that if the utility function

is concave, then the general utility is maximized when
resources are equally allocated. However, we will not

make any assumption on convexity since all kinds of

convexity properties can occur in practice for utility

functions.

We assume that each user’s utility function is known

by the network, with no possibility of cheating.

Since the question is sharing one resource between

several users, we will deal with cardinal utility rather

than ordinal utility. The utility functions are considered

according to their absolute values and treated as addi-

tive and multiplicative. Therefore, unlike most utility

functions in use in economic modeling, the utility func-

tions we consider are affected by composition with a

growing function.

Many well-known resource allocation optimization

policies are particular cases of utility functions. For ex-

ample:

– a constraint requiring the SINR to be greater than

a threshold [14], [12] is equivalent to an all-or-nothing

utility function;
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– optimizing the total throughput [26] is equivalent to

a linear utility function.

– proportional fairness [11], [20] is equivalent to a log-

arithmic utility function.

Taking into account the fact that each player tries

to optimize his utility function, the fairness measure

of a resource allocation vector x = (x1, ..., xn) will be

defined as Jain’s index of utility functions:

F (x1, x2, , xn) = J (f1(x1), f2(x2), ..., fn(xn))

F (x1, x2, , xn) =
(
∑n
i=1 fi(xi))

2

n
∑n
i=1 fi(xi)

2

In the case where there are several classes of users,

Jain’s index may be weighted:

F (x1, x2, , xn) = J (f1(x1), f2(x2), ..., fn(xn))

F (x1, x2, , xn) =
(
∑n
i=1 βifi(xi))

2

n
∑n
i=1(βifi(xi))

2

3 A PARALLEL WITH FINANCE

In the expected utility model, introduced by Daniel

Bernoulli in the 18th century, a rational player behaves

as if he tries to maximize his expected utility function.

That is to say that if a rational player participates to a

lottery A, where the gains are A1,..., An with respective

probabilities p1,...,pn, the player will attribute to this

lottery a cardinal utility:

ϕ(A) =
∑n
k=1 pkf(Ak), where f is some growing

function.

Then, a rational player is able to define his prefer-

ence between two lotteries: if ϕ(A) ≥ ϕ(B), the player

prefers lottery A to lottery B (A � B).

This model was formally developed by John Von

Neumann and Oscar Morgenstern [28], who stated four

axioms which define a rational decision maker:

– Completeness: for every A and B, A � B or B � A.

– Transitivity: for every A, B and C, if A � B and

B � C, then A � C.

– Independence: for any t ∈ [0, 1] and for every A, B

and C, if A � B, then tA+(1−t)C � tB+(1−t)C.

– Continuity: for every A, B and C, if A � B � C,

there exist some t ∈ [0, 1] such that B is equally

good as tA+ (1− t)C.

In 1953, Maurice Allais published simple examples

disproving Bernoulli’s utility function and Von Neu-

mann and Morgenstern’s independence assumption [1].

3.1 Utility function

Allais’ paradox is based on the four lotteries described

in Table 11.

1 French francs were originally used in all the paradoxes

Table 1 Allais paradox

Lottery Chance Winnings
1A 100% 1 M$

10% 5 M$
1B 89% 1 M$

1% 0
11% 1 M$

2A 89% 0
10% 5 M$

2B 90% 0

Allais claims that a rational player can prefer lot-

tery 1A to lottery 1B and lottery 2B to lottery 2A. The

reason is risk aversion: if the risk is low, the player will

prefer the more secure choice. If the risk is high anyway,

the player will try to maximize the risk premium. How-

ever, these preferences contradict the expected utility

model:

If the player prefers Lottery 1A to Lottery 1B, then:

f(1M$) > 10%f(5M$) + 89%f(1M$) + 1%f(0) (9)

Therefore,

11%f(1M$) > 10%f(5M$) + 1%f(0) (10)

But if he prefers Lottery 2B to Lottery 2A, then:

10%f(5M$) + 90%f(0) > 11%f(1M$) + 89%f(0) (11)

So,

11%f(1M$) < 10%f(5M$) + 1%f(0) (12)

Inequalities (10) and (12) clearly contradict each

other.

3.2 Independence assumption

The independence assumption is based on the following

argument: the lottery tA + (1 − t)C (resp. tB + (1 −
t)C) can be performed in two steps: first we draw lots

between lotteries A (resp. B) and C with probabilities

t and (1− t), and then we play the chosen lottery. If the

probability t event occurs, then we play lottery A (resp.

lottery B). If the probability (1− t) event occurs, then

we play lottery C anyway. Since lottery A is assumed

to be preferable to lottery B, the player shall prefer

lottery tA+ (1− t)C to lottery tB + (1− t)C.

However, Allais points out that the choice must be

ex ante and not ex post, and provides an example based

upon the three lotteries described in Table 2.
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Table 2 Independence assumption - Counter-example

Lottery Chance Winnings
A 100% 100 M$

98% 500 M$
B 2% 0
C 100% 0

With t = 1%, the combined lotteries are described

in Table 3.

Table 3 Combined lotteries

Lottery Chance Winnings
1% 100 M$

tA+(1-t)C 99% 0
0.98% 500 M$

tB+(1-t)C 99.02% 0

Rational, but cautious, players may prefer lottery

A to lottery B and lottery tB + (1 − t)C to lottery

tA+ (1− t)C. Once again, as in the first paradox, the

reason is risk aversion.

Allais’ main conclusion is that all the properties of

the probability distribution must be taken into account

for any rational choice involving risk.

3.3 Risk-return trade-off in portfolio management

The portfolio management model was developed by

Harry Markowitz in 1952 [19]. Given a set of individual

assets with their respective expected returns, volatili-

ties and correlations, it can be proved that the set of

feasible portfolios is bounded by a curve, which is called

the minimum-variance frontier ([3], Chapter 7). The up-

per part of the minimum-variance frontier is called the

efficient frontier of risky assets. Any rational investor

shall define his risky portfolio on the efficient frontier

(Fig. 1).

The choice of a risky portfolio on the efficient fron-

tier is a matter of risk aversion. A risk-averse investor

will choose a portfolio close to the global minimum-

variance portfolio, in order to reduce risk. A non-risk-

averse investor will choose a more risky portfolio, offer-

ing a higher expected return.

4 TRANSPOSITION TO RESOURCE

ALLOCATION

Allais’ paradoxes can be transposed to resource alloca-

tion in wireless networks.

4.1 Utility function

Let us consider the four following networks, proposing

various rates for equally-weighted users (see Table 4).

Table 4 Allais paradox - Transposition to resource alloca-
tion

Network Users Rate
1A 100% 1 Mbit/s

10% 5 Mbit/s
1B 89% 1 Mbit/s

1% 0
11% 1 Mbit/s

2A 89% 0
10% 5 Mbit/s

2B 90% 0

While it is generally assumed that Network 1A is

more efficient than Network 1B, it is also assumed that

Network 2B is more efficient than Network 2A. How-

ever, as in the example above, these statements contra-

dict the definition of network efficiency.

4.2 Independence assumption

Let us consider the three following networks, proposing

various rates for equally-weighted users (see Table 5).

Table 5 Independence assumption - Transposition to re-
source allocation

Network Users Rate
A 100% 100 Mbit/s

98% 500 Mbit/s
B 2% 0
C 100% 0

With t = 1%, the resulting networks are described

in Table 6.

Table 6 Combined networks

Network Users Rate
1% 100 Mbit/s

tA+(1-t)C 99% 0
0.98% 500 Mbit/s

tB+(1-t)C 99.02% 0

An operator may prefer Network A to Network B,

and Network tB + (1− t)C to Network tA+ (1− t)C.

In finance, the most widely accepted explanation

for Allais’ paradox is risk aversion: if the risk is low,

the player will prefer the more secure choice. If the risk
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Fig. 1 The efficient frontier of risky assets.

is high anyway, the player will try to maximize the risk

premium.

A similar explanation can be adopted for network

efficiency: in Network 1B, 10% fully satisfied users will

be negatively overwhelmed by 1% of fully unsatisfied

users. Network 1A will be preferred because it does not

let any user fully unsatisfied.

On the other hand, the difference of fully unsatisfied

users between Networks 2A and 2B is not significant

(89% vs 90%). For 1% more unsatisfied users, it seems

worthy to enhance the satisfaction level of other users.

Therefore, as in the example of utility function in

finance, network efficiency shall be considered as a pre-

scriptive theory, rather than a descriptive theory.

A major consequence on this paradox is that re-

source allocation in a network must be made by con-

sidering the network as a whole. Sharing the network

into subnetworks and optimizing resource allocation in

each one of them will lead to suboptimal allocation.

5 FAIRNESS-EFFICIENCY TRADE-OFF

A survey of fair optimization methods and models for

resource allocation in telecommunication networks is

provided in [23]. The concept of trade-off between fair-

ness and utility is mentioned in [8]. A metric to evaluate

the price of fairness in terms of efficiency loss and the

price of efficiency in terms of fairness loss is provided in

[2]. A method of management of the efficiency-fairness

trade-off by controlling the system fairness index is pro-

posed in [25]. An α-fair dynamically adapted schedul-

ing strategy optimizing coverage and capacity in self-

organizing networks is proposed in [4]. In order to intro-

duce our own definition of fairness-efficiency trade-off,

we will first define the concepts of network efficiency

and unfairness aversion.

5.1 Network efficiency

A simple measure for network efficiency can be the to-

tal binary rate of the network. However, we prefer to

relate network efficiency to the user’s utility functions.

The reason is that a network can be inefficient even

though the binary rate may be high. For example, if

two users have an all-or-nothing utility function for the

total available throughput in the network, choosing ar-

bitrarily one of the users and attributing him the whole

throughput is a more efficient solution than sharing the

throughput into two equal parts.

Optimizing the total binary rate is a particular case

of our model, since it is equivalent to rule that the users’

utility functions are linear.

Therefore, we define the network efficiency as the

sum, optionally weighted, of the user’s utility functions:

U(x1, x2, ..., xn) =

n∑
i=1

αifi(xi) (13)

where xi is the rate allocated to user i and fi his

utility function.

5.2 Unfairness aversion

The definition we adopt for unfairness aversion is simi-

lar to that of risk aversion in finance.

Unfairness aversion is the reluctance of a network

to accept a given unfairness level for a given efficiency

level rather than a lower unfairness level for a lower

efficiency level.

The concept of unfairness aversion gives a measure

of the price the network is ready to pay in terms of

efficiency in order to get a better fairness.
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Therefore, the network’s indifference curves are the

set of points in the efficiency-fairness map which are

equally satisfying from the network’s point of view.

Thus, the network’s characteristics can be repre-

sented by a point in a two-axis map. Among all the fea-

sible points, the fairness-efficiency trade-off is the point

located on the highest indifference curve.

If the fairness is defined by Jain’s index, which can

be, as mentioned above, expressed as a function of em-

pirical mean and empirical squared error, then the

fairness-efficiency trade-off is equivalent to the risk-

return trade-off in finance. Though mean and stan-

dard deviation do not provide all the information about

probability distribution, these two parameters may pro-

vide a fairly good approximation in order to describe

the operator’s preferences.

Unfairness aversion can be characterized by an ob-

jective function ϕ (U, J) where the curves ϕ (U, J) = C

are the indifference curves, C denoting a constant.

5.3 Trade-off between fairness and efficiency

The optimal trade-off between fairness and efficiency is

given by the constrained optimization:

maxϕ (U(x1, x2, ..., xn), J(x1, x2, ..., xn)) (14)

subject to
∑n
i=1 xi = X, X being the total allocated

resource.

The approach described above can be illustrated by

the following examples. In these examples, two kinds of

utility functions will be used:

– linear utility function: the user’s satisfaction is pro-

portional to the rate he gets;

– all-or-nothing utility function: the user is satisfied if

and only if he gets the rate he wants.

In practice, linear utility functions can be encoun-

tered for example for data transmission, where the time

transmission will be inversely proportional to the rate,

while all-or-nothing utility functions can be met for

real-time video applications.

6 Simulations

We ran simulations of the approach presented above in

a network involving a large number of users.

6.1 System description

Users arrive into the network according to a Poisson

process. Each user i is characterized by 4 parameters:

– Utility function (linear or all-or-nothing)

– Requested rate: Ri for an all-or-nothing user, R′i for

a linear user. The requested rate follows a lognormal

law

– Volume of data which needs to be transmitted: Qi
for an all-or-nothing user, Q′i for a linear user. The

volume of data follows a lognormal law.

– User class (gold, silver, bronze)

We denote ri (resp. r′i) the rate allocated to all-or-

nothing (resp. linear) user i and qi (resp. q′i) the re-

maining data to be transmitted by all-or-nothing (resp.

linear) user i. At each instant, the number of all-or-

nothing users is n and the number of linear users is m.

The total number of users is N = n+m.

An event is the entry of a newcomer or the exit of

a user when his transmission is achieved.

The system will process the resource allocation which

optimizes the fairness-efficiency trade-off, under the con-

straint that the total rate is Rtotal.

The system will provide statistical outputs regard-

ing the rate of satisfaction according to the type of users

(class, demand or utility function).

– If the utility function of user i is all-or nothing, it is

defined as:

– fi(ri) = 1[Ri,+∞[

– If the utility function of user i is linear, it is defined

as:

– f ′i(r
′
i) = r′i/R

′
i for 0 ≤ xi ≤ R′i

– f ′i(r
′
i) = 1 for r′i ≥ R′i

In order to define the priorities among the user classes,

utility functions are weighted for the calculation of the

network efficiency and Jain’s index.

The network efficiency is:

U(r1, , rn, r
′
1, ...r

′
m) =

∑n
i=1 αifi(ri)+

∑m
i=1 α

′
if
′
i(r
′
i)

where:

– αi = 9 or α′i = 9 if user i is a gold user;

– αi = 3 or α′i = 3 if user i is a silver user;

– αi = 1 or α′i = 1 if user i is a bronze user.

Jain’s index is:

F (r1, , rn, r
′
1, ...r

′
m) = J

(
f1(r1), ..., fn(rn), f

′
1(r
′
1), ..., f

′
m(r′m)

)
F (r1, , rn, r′1, ...r

′
m) =

(
∑n
i=1

βifi(ri)+
∑m
i=1

β′
i
f ′
i
(r′
i
))

2

N(
∑n
i=1

(βifi(ri))2+
∑m
i=1

(β′
i
f ′
i
(r′
i
))2)

,

where:

– βi = 1 or β′i = 1 if user i is a gold user

– βi = 3 or β′i = 3 if user i is a silver user
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– βi = 9 or β′i = 9 if user i is a bronze user

We deal with three kinds of indifference curves:

– φ(U, J) = U(r1, , rn, r
′
1, ...r

′
m);

– φ(U, J) =

U(r1, , rn, r
′
1, ...r

′
m)J

(
f1(r1), ..., fn(rn), f

′
1(r
′
1), ..., f

′
m(r′m)

)η,
where η is a strictly positive number;

– φ(U, J) = J (f1(r1), ..., fn(rn), f ′1(r′1), ..., f ′m(r′m)).

For each event, the system will process the optimal

allocation:

max∑
i ri≤Rtotal

φ(U, J)

6.2 Algorithm

Any all-or-nothing user shall be either fully served or

not served at all. As a result, all-or-nothing users bring

discontinuities in the network efficiency and Jain’s in-

dex, making impossible the use of classical algorithms

for optimization.

Taking into account all the possibilities to serve or

not serve each all-or-nothing user would lead to an ex-

ponentially complex problem.

Therefore, we present hereafter an approximation

which enables to find a sub-optimal solution with a

polynomial complexity. Under reasonable assumptions,

this sub-optimal solution will tend to the optimal solu-

tion when the number of users tends to infinity.

6.2.1 Ordering the all-or-nothing users

The all-or-nothing users will be ordered according to

the αk
Rk

ratio. The purpose of comparing these ratios is

to evaluate the average impact of each unit of rate on

the network efficiency.

After this ordering, we have n ordered all-or-nothing

users and m linear users, with n+m = N .

X1 =


R1

Q1

α1

, X2 =


R2

Q2

α2

, ... , Xn =


Rn

Qn

αn

,

with α1

R1
≥ α2

R2
≥ ... ≥ αn

Rn

Xn+1 =


Rn+1

Qn+1

αn+1

,Xn+2 =


Rn+2

Qn+2

αn+2

, ... ,Xn+m =


Rn+m

Qn+m

αn+m

6.2.2 Basic assumption: priority among all-or-nothing

users

We now assume that if an all-or-nothing user Xk, 1 ≤
k ≤ n is served, then all the all-or-nothing users who

are better rated than him (ie Xi, 1 ≤ i ≤ k) are

also served. This assumption is an approximation. Since

rate demands are not breakable, it may lead to a sub-

optimal solution. The priority that we define among

all-or-nothing users is based on the following consider-

ations:

– Lemma 1 Let Xj and Xk be two all-or-nothing users.

If αj = αk and Rj ≤ Rk, then:

max∑
i ri≤Rtotal
rj=Rj
rk=0

φ(U, J) ≥ max∑
i ri≤Rtotal
rj=0
rk=Rk

φ(U, J)

Proof

max∑
i ri≤Rtotal
rj=Rj
rk=0

φ(U, J) = max∑
i/∈{j,k} ri≤Rtotal−Rj

rj=Rj
rk=0

φ(U, J)

max∑
i ri≤Rtotal
rj=0
rk=Rk

φ(U, J) = max∑
i/∈{j,k} ri≤Rtotal−Rk

rj=0
rk=Rk

φ(U, J)

Since U(r1, ..., rj = Rj , ..., rk = 0, ..., rn, r
′
1, ...r

′
m) =

U(r1, ..., rj = 0, ..., rk = Rk, ..., rn, r
′
1, ...r

′
m) and F (r1, ..., rj =

Rj , ..., rk = 0, ..., rn, r
′
1, ...r

′
m) = F (r1, ..., rj = 0, ..., rk =

Rk, ..., rn, r
′
1, ...r

′
m), the lemma results from the fact

that Rtotal −Rj ≥ Rtotal −Rk.

– Lemma 2 Let Xj1 ,..., Xjq be q all-or-nothing users

with αj1 = ... = αjq = αj and Xk1 ,..., Xkp p all-

or-nothing users with αk1 = ... = αkp = αk. If
αj
αk

= p
q , then U(r1, ..., rj1 = Rj1 , ..., rjq = Rjq , rk1 =

0, ..., , rkp = 0, ..., rn, r
′
1, ...r

′
m) = U(r1, ..., rj1 = 0, ..., rjq =

0, rk1 = Rk1 , ..., , rkp = Rkp , ..., rn, r
′
1, ...r

′
m)

Proof U(r1, ..., rj1 = Rj1 , ..., rjq = Rjq , rk1 = 0, ..., , rkp =

0, ..., rn, r
′
1, ...r

′
m) = qαj+

∑
i=/∈{j1,...jq,k1,...kp} αifi(ri)+∑m

i=1 α
′
if
′
i(r
′
i)

U(r1, ..., rj1 = 0, ..., rjq = 0, rk1 = Rk1 , ..., , rkp =

Rkp , ..., rn, r
′
1, ...r

′
m) = pαk+

∑
i=/∈{j1,...jq,k1,...kp} αifi(ri)+∑m

i=1 α
′
if
′
i(r
′
i)

Since qαj = pαk, the equality is obtained.

Lemma 2 shows that there are two groups of users

which are equivalent with regard to the network effi-

ciency. Of course, these two groups may have a differ-

ent impact on Jain’s index. However, the expression of

Jain’s index shows that if the number of other users is
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much larger than the size of these two groups, serving

either one of these two groups should have little effect

on Jain’s index. This gives legitimacy to ordering the

all-or-nothing users according to the αk
Rk

ratio, since this

ratio represents the gain in network efficiency relative

to the allocated rate.

This approximation enables to reduce the number

of optimizations from 2n to n+ 1.

6.2.3 The algorithm

The simulation algorithm is described in Figure 2.

6.2.4 Simulation parameters

The simulations were run with the following parame-

ters:

– Rtotal = 1, 000 Mbit/s

– Number of events: 4,000.

– Requested rate Ri = R02ui or R′i = R02u
′
i , with

R0 = 100 Mbit/s , and ui and u′i following a stan-

dard normal distribution.

– Volume of data which needs to be transmitted: Qi =

Q02vi or Q′i = Q02v
′
i , with Q0 = 1, 000 Mbit, and

vi and v′i following a standard normal distribution.

– Newcomers arrive according to a Poisson process.

The Poisson parameter λ is calculated in order to

have a stable long-term number of users in the net-

work.

If n users, each one willing to transmit a volume of

data Qi = Q02vi , 1 ≤ i ≤ n are in the network, the

average requested time to exit all of them is:

T =

n∑
i=1

Qi
Rtotal

=
Q0

Rtotal

n∑
i=1

2vi =
Q0

Rtotal

n∑
i=1

evi ln 2

T =
nQ0

Rtotal
exp(ln 22/2) (15)

Therefore, in order that the average number of in-

coming users equals the average number of exiting

users, λ = Rtotal
Q0exp(ln 22/2) ≈ 0.78645.

– All random processes are independent.

Fairness-efficiency trade-off : In order to evaluate the

impact of the fairness-efficiency trade-off on the net-

work performance, we ran the simulations with three

different objective functions:

– φ(U, J) = U ; maximization of network efficiency;

– φ(U, J) = UJ ; trade-off between fairness and effi-

ciency, with η = 1;

– φ(U, J) = J ; maximization of fairness.

It should be noted that the resource which is allo-

cated is not storable. For this reason, the efficiency and

the fairness are measured at any time for the users who

are connected to the network at this time. There is no

fairness between users connected at different times to

the network.

6.2.5 Results

The minimum time a user i stays in the network is Qi
Ri

or
Q′i
R′i

. Therefore, a relevant parameter to evaluate the

network performance, from the point of view of user i,

is xi = Qi
tiRi

or x′i =
Q′i
t′iR
′
i
, where ti (resp. t′i) is the de-

lay between the arrival of the all-or-nothing user (resp.

linear user) i to the network and the end of his trans-

action.

φ(U,J) = U

Figures 3, 4 and 5 provide the cumulative distribu-

tion functions of xi resulting from the simulations for

each category of users. Means and standard deviations

are summarized in Table 7.

For each class of users, cumulative distribution func-

tions, means and standard deviation are similar for all-

or-nothing utility function users and linear utility func-

tion users.

AON Users Mean Standard deviation
AON Gold 0.98 0.14
AON Silver 0.89 0.25
AON Bronze 0.57 0.39
LinearGold 0.97 0.12
Linear Silver 0.87 0.26
Linear Bronze 0.55 0.37

Table 7 Simulations results φ(U, J) = U .

φ(U,J) = UJ

Figures 6, 7 and 8 provide the cumulative distribu-

tion functions of xi resulting from the simulations for

each category of users. Means and standard deviations

are summarized in Table 8.

For each class of users, the number of fully-satisfied

users (xi = 1) is much greater for all-or-nothing utility

function users. The standard deviations and the num-

bers of presumably disappointed customers (low values

of xi) are much greater for all-or-nothing utility func-

tion users.
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Next newcomer at t0 (Poisson process)

n := 0
m := 0
event := 0

If t0 < min
i,j

(
qi
ri
,
q′
j

r′
j

)
, next event: newcomer(utility function, α, R, Q); t := t0

If t0 ≥ min
i,j

(
qi
ri
,
q′
j

r′
j

)
, next event: exit of argmin

i,j

(
qi
ri
,
q′
j

r′
j

)
; t := min

i,j

(
qi
ri
,
q′
j

r′
j

)
qi := qi − tri; q′j := q′j − tr′j ;

Add newcomer R′m+1, Q′m+1

m := m+ 1

Find i;
αi+1

Ri+1
< α
R

≤ αi
Ri

Insert newcomer between i and i+ 1
If α1

R1
< α
R

, newcomer in first position

If α
R
< αn
Rn

, newcomer in last position

n := n+ 1

Remove user i (n := n− 1) or j (m = m− 1)

event := event+ 1
For k = 0 to n, do
If i ≤ k, ri := Ri; else ri := 0
Search: Mk = max∑

j r
′
j
=Rtotal−

∑
i ri

φ(U, J)

M := max
0≤k≤n

Mk

k0 := argmax
0≤k≤n

Mk

If i ≤ k0, ri := Ri; else ri := 0
(r′1, ..., r

′
m) := argmax∑

j r
′
j
=Rtotal−

∑
i ri

φ(U, J)

End

Determination of next event

Newcomer all-or-nothing Newcomer linear Exit

event < 4, 000

event = 4, 000

Fig. 2 Simulation Algorithm.

Users Mean Standard deviation
AON Gold 0.93 0.21
AON Silver 0.78 0.32
AON Bronze 0.39 0.30
Linear Gold 0.94 0.14
Linear Silver 0.76 0.24
Linear Bronze 0.39 0.15

Table 8 Simulations results φ(U, J) = UJ .

φ(U,J) = J

Figures 9, 10 and 11 provide the cumulative distri-

bution functions of xi resulting from the simulations for

each category of users. Means and standard deviations

are summarized in Table 9.

For each class of users, the number of fully-satisfied

users (xi = 1) is much greater for all-or-nothing utility

function users. The standard deviations and the num-

bers of presumably disappointed customers (low values

of xi) are much greater for all-or-nothing utility func-

tion users.

Users Mean Standard deviation
AON Gold 0.67 0.36
AON Silver 0.35 0.32
AON Bronze 0.17 0.14
Linear Gold 0.55 0.28
Linear Silver 0.34 0.15
Linear Bronze 0.15 0.06

Table 9 Simulations results φ(U, J) = J .

As the comparison between Tables 7, 8 and 9 shows,

the performance is strongly degraded when the net-

work maximizes the fairness (φ(U, J) = J). When com-

paring the performances between maximizing the net-

work efficiency (φ(U, J) = U) and maximizing a trade-
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Fig. 3 Gold users. Fig. 4 Silver users. Fig. 5 Bronze users.

Fig. 6 Gold users. Fig. 7 Silver users. Fig. 8 Bronze users.

Fig. 9 Gold users. Fig. 10 Silver users. Fig. 11 Bronze users.

off between fairness and efficiency (φ(U, J) = UJ), it

turns out that the means of xi are always higher for

φ(U, J) = U .

However, as the comparison between the cumulative

distribution functions of xi shows, the number of pre-

sumably disappointed customers (low values of xi) is

also significantly greater.

This example highlights the fact that, by defining its

fairness-efficiency trade-off function and adjusting the

parameter η in the objective function φ(U, J) = UJη,

an operator can define its priorities and find the proper

balance between maximizing the network efficiency and

minimizing the number of disappointed customers.

7 Conclusion

Tools already existing in finance can be successfully

transposed to resource allocation in telecommunication
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networks. Drawing a parallel with the Bernoulli model,

which is disproved by Allais’ paradox, we challenge the

common approach based on utility function maximiza-

tion for resource allocation. By introducing the con-

cepts of network efficiency and unfairness aversion, we

propose a model based on fairness-efficiency trade-off,

similar to the well-known risk-return trade-off in fi-

nance. This approach enables to define an optimal re-

source allocation without conflicting with paradoxes re-

sulting from the maximization of a utility function.
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