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Wx: a neural network-based 
feature selection algorithm for 
transcriptomic data
Sungsoo Park1, Bonggun Shin1,3, Won Sang Shim1, Yoonjung Choi1, Kilsoo Kang1 & 
Keunsoo Kang   2

Next-generation sequencing (NGS), which allows the simultaneous sequencing of billions of DNA 
fragments simultaneously, has revolutionized how we study genomics and molecular biology by 
generating genome-wide molecular maps of molecules of interest. However, the amount of information 
produced by NGS has made it difficult for researchers to choose the optimal set of genes. We have 
sought to resolve this issue by developing a neural network-based feature (gene) selection algorithm 
called Wx. The Wx algorithm ranks genes based on the discriminative index (DI) score that represents 
the classification power for distinguishing given groups. With a gene list ranked by DI score, researchers 
can institutively select the optimal set of genes from the highest-ranking ones. We applied the Wx 
algorithm to a TCGA pan-cancer gene-expression cohort to identify an optimal set of gene-expression 
biomarker candidates that can distinguish cancer samples from normal samples for 12 different types 
of cancer. The 14 gene-expression biomarker candidates identified by Wx were comparable to or 
outperformed previously reported universal gene expression biomarkers, highlighting the usefulness 
of the Wx algorithm for next-generation sequencing data. Thus, we anticipate that the Wx algorithm 
can complement current state-of-the-art analytical applications for the identification of biomarker 
candidates as an alternative method. The stand-alone and web versions of the Wx algorithm are 
available at https://github.com/deargen/DearWXpub and https://wx.deargendev.me/, respectively.

Advances in science and technology often lead to paradigm shifts. In biology and biomedical fields, 
high-throughput screening (HTS) techniques such as microarray and next-generation sequencing (NGS) have 
changed how we identify measurable biological indicators (called biomarkers) for various diseases. For example, 
to identify biomarkers, which is how we to predict the onset or prognosis of various diseases, the conventional 
approach is mostly based on the manual selection of genes or particular loci on the genome with limited infor-
mation from the literature. Then, experimental validation is required to confirm the biomarker selection. In this 
typical process, the initial selection of biomarkers is the most important and critical step.

Several sets of gene expression biomarkers have been developed and used to predict early diagnoses or to 
classify different sub-types of given diseases in clinics; for example, PAM501 has been successfully used to classify 
subtypes of breast cancer2. Recently, the HTS methodology has accelerated the process of identifying biomarkers, 
since this approach is capable of quantifying a whole set of molecules of interest accurately and simultaneously. 
For example, gene expression profiling based on the NGS technique (called RNA-seq) can accurately quantify 
the expression levels of whole genes in a given cell population. With a full list of genes (up to 190,000 transcripts 
in the human genome; https://www.gencodegenes.org/), researchers can narrow down biomarker candidates via 
downstream analyses such as unsupervised clustering3, gene ontology (GO) analysis4, regression analysis5, and/
or differentially expression gene (DEG) analysis6,7. Among these approaches, DEG analysis, which provides a list 
of genes (DEGs) that show significantly altered expressions between two or more groups with a statistical cutoff 
(adjusted p value) of 0.05, is widely used for the identification of biomarker candidates. However, the number 
of DEGs depends on the number of samples and the samples’ characteristics. As the number of samples has 
increased due to the reduced sequencing cost, the number of DEGs has tended to increase to several thousand8. 
Therefore, it is difficult for researchers to choose the optimal combination of genes (biomarker candidates) from 
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the large number of DEGs using current approaches. Recently, several algorithms, which select features from 
high-dimensional NGS data, were reported9,10. Similar to these, we have sought to resolve the feature selection 
issue by developing a novel neural network-based feature (gene) selection algorithm called Wx. The Wx algo-
rithm ranks genes based on their discriminative index (DI) score, which represents the classification power for 
distinguishing given groups. With a gene list ranked by DI score, researchers can institutively select an optimal set 
of genes from the highest-ranking ones. We tested the algorithm’s usefulness by attempting to identify universal 
gene-expression cancer biomarker candidates that could potentially distinguish various types of cancer from 
normal samples in the pan-cancer data set of the cancer genome atlas (TCGA) project. The pan-cancer project 
was established to gain biological insights by defining commonalties and differences across cancer types and 
their organs of origin11. In addition to the pan-cancer RNA-seq data, three different cancer RNA-seq data from 
gene expression omnibus (GEO) were used to evaluate the performance of the identified biomarker candidates. 
Our algorithm successfully identified 14 key genes as a conceptual set of universal biomarkers, accurately dis-
tinguishing 12 types of cancer from normal tissue samples. The 14-gene signature was comparable to or outper-
formed previously reported universal gene expression biomarkers12,13 in terms of classification accuracy. Further 
validation of the identified gene signature with three independent studies confirmed that the 14-gene signature 
identified by the Wx algorithm accurately classified cancer samples from normal samples compared to other 
methods14,15. Accordingly, we expect that the Wx algorithm can complement differentially expressed gene (DEG) 
analysis as an alternative method for the identification of biomarker candidates.

Results
We applied our Wx method, which is based on the Discriminative Index (DI) algorithm (see Methods), into a 
pan-cancer cohort from TCGA RNA-seq data consisting of 12 different types of cancer and normal (control) sam-
ples (Table 1). For this, a special case of the DI-based feature selection algorithm was constructed with only two 
labels (normal and cancer, K = 2). This analysis was intended to identify potential cross-cancer gene signatures 
(biomarkers) similar to a previous study12; we defined the identified biomarkers as universal gene-expression 
cancer biomarkers (UGCBs) for the pan-cancer cohort. Additional independent RNA-seq data from melanoma 
(GSE72056)15, lung adenocarcinoma (GSE40419)16, and head and neck squamous cell carcinoma single cells 
(GSE103322)17 were used to evaluate identified UGCBs. The classification performance of the UGCBs identified 
by each approach was assessed by means of leave-one-out cross validation (LOOCV).

Identification of universal gene-expression cancer biomarkers.  We identified the UGCBs distin-
guishing cancer samples from normal samples by applying the Wx algorithm to a pan-cancer cohort containing 
6,226 total (5,609 tumor and 617 control) samples in 12 different types of cancers (Table 1). The samples in each 
cancer and their corresponding control group were randomly divided into two sets, a training set and validation 
set, which were used for feature selection and validation purposes, respectively. Because the Wx algorithm was 
based on a neural network method that trains the weights of network in the training set, the trained weight was 
highly dependent on the random values assigned to the initial value. Therefore, we avoided this irregularity by 
iterating the Wx algorithm 10,000 times and the highest genes (features) ranked by the average value of the DI 
score were selected as UGCBs. The entire list of genes with the averaged DI scores can be found in Table S1.

Comparison of UGCBs.  We first determined how many genes from the gene list indexed by the DI score 
were required to maximize the average accuracy. For this, each set containing the top genes (1 to 1,000) was 
constructed to evaluate the average accuracy of cancer and normal sample classifications in the training set. 
Approximately the top 100 genes showed the highest average accuracy and no further increase in average accu-
racy was observed when more genes were added (Fig. 1).

Next, we selected the top 14 UGCBs (or top seven UGCBs) to compare the UGCBs reported in previ-
ous studies (Table 2). Interestingly, none of our UGCBs overlapped with those identified by Peng et al.12 or 
Martinez-Ledesma et al.13 (Table 2). Given that there were no common genes between independent studies, 
we wondered which sets of UGCBs would be the best in terms of classification accuracy. For this, the LOOCV 
method, which estimates the generalization performance of a given model trained on n – 1 samples and validates 

Type ID Full name # of cancer samples # of normal samples # of total samples Ratio (cancer/total)

BLCA Bladder urothelial carcinoma 408 19 427 0.95

BRCA Breast invasive carcinoma 1101 113 1214 0.90

COAD Colon adenocarcinoma 286 41 327 0.87

HNSC Head and neck squamous cell carcinoma 522 44 566 0.92

KICH Kidney chromophobe 65 25 90 0.72

KIRC Kidney renal clear cell carcinoma 534 72 606 0.88

KIRP Kidney renal papillary cell carcinoma 291 32 323 0.90

LIHC Liver hepatocellular carcinoma 374 50 424 0.88

LUAD Lung adenocarcinoma 517 59 576 0.89

LUSC Lung squamous cell carcinoma 502 51 553 0.90

PRAD Prostate adenocarcinoma 497 52 549 0.90

THCA Thyroid carcinoma 512 59 571 0.89

Table 1.  The number of cancer and normal samples used in this study.
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this with the remaining sample, was applied to each UGCB set. We first compared our 14 UGCBs (named 
Wx-14-UGCB) with the UGCBs (named Peng-14-UGCB) identified by Peng et al.12 across seven cancer subtypes 
(BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC). The Wx-14-UGCB set, which was identified by a neu-
ral network-based feature selection algorithm Wx, showed higher classification accuracy than Peng-14-UGCB 
for five out of seven different cancer types (Table 3).

The differentially expressed gene (DEG) analysis is typically used as a standard procedure when comparing 
transcriptomes (whole genes) between two (or more) conditions18. Therefore, we compared the Wx-14-UGCB 
with the top 14 DEGs (named DEG-14-UGCB; sorted into ascending order of adjusted p value) identified using 
a popular DEG analysis method called edgeR7. Similar to the above comparison, Wx-14-UGCB showed higher 
classification accuracy than DEG-14-UGCB for 7 different cancer types (Table 3). The area under the curve 
(AUC) values of BRCA, LUAD, and LUSC were 0.9944, 0.9943, and 0.9936, respectively (Fig. 2), showing excel-
lent classification performance of the Wx-14-UGCB set.

We further evaluated the identified UGCB (by the Wx algorithm) by comparing those reported by 
Martinez-Ledesma et al.13 (MartinezL-7-UGCB). Wx-7-UGCB showed higher accuracy than MartinezL-
7-UGCB for five out of six cancer types (Table 3). We repeated the evaluation with a different algorithm called 
support-vector machine (SVM) (Table S2). The result showed that XGBoost achieved higher classification accu-
racy compared to SVM with the same UGCB set. The overall trend of classification accuracy is almost the same in 
XGBoost and SVM. Overall, the Wx-14-UGCB set, which was identified using the neural network-based feature 
selection algorithm Wx, was comparable to or outperformed previously reported universal gene expression bio-
markers in terms of classification accuracy, highlighting the Wx algorithm’s importance.

Putative role of the top 100 UGCBs.  As shown in Fig.  1, approximately the top 100 UGCBs 
(Wx-100-UGCB) reached a plateau with the highest classification accuracy. We wondered how many genes iden-
tified by the Wx algorithm coincided with DEGs identified using edgeR. Intriguingly, less than 35% of genes 
overlapped (Fig. 3). For example, a comparison of the top 500 biomarker candidate genes identified by both algo-
rithms showed that only 45 genes (9.0%) were common. In the case of top 2,000 genes, only 379 genes (19.0%) 
overlapped. Thus, there was substantial discrepancy between the algorithms with same gene expression data. 
Next, we performed gene ontology (GO) and network analysis to investigate the putative function of top 50 
UGCBs using Metascape19. Genes involved in the Fc gamma receptor dependent phagocytosis, antigen processing 
and presentation, and regulation of apoptotic signaling pathway were significantly altered (Fig. S1), suggesting 
that the deregulation of these pathways might be a critical factor in the onset or progression of most cancers. 
Further investigations of these genes are warranted.

Figure 1.  Classification accuracy according to given number of genes. The x-axis indicates the number of 
top genes (sorted in descending order by the DI values) used for the calculation and the y-axis represents the 
average accuracy.

Cancer type Wx (this study) Peng et al. Emmanual et al.

BLCA

EEF1A1, FN1, GAPDH, SFTPC, 
AHNAK, KLK3, UMOD, CTSB, 
COL1A1, GPX3, GNAS, ATP1A1, 
SFTPB, ACTB

KIF4A, NUSAP1, HJURP, 
NEK2, FANCI, DTL, 
UHRF1, FEN1, IQGAP3, 
KIF20A, TRIM59, CENPL, 
C16ORF59, UBE2C

SMAD2, RUNX2, ABTB1, ST5, CEBPB, SETDB1, CEBPG

BRCA JAK2, NFKBIA, TBP, RXRA, VAV1, HES5, NFKBIB

COAD (READ) EEF1A1, FOXG1, GADD45G, MAPK9, MYOC, SMAD2

HNSC DUSP16, KRT8, RAF1, MED1, PPARG, YWHAB, FABP1

LIHC —

LUAD DOK1, FUT4, INSR, ITGB2, SHC1, PTPRC, KHDRBS1

LUSC BRCA1, ETS2, HIF1A, JUN, LMO4, PIAS3, RBBP7

KICH

—

—

KIRC AR, HGS, RUNX1, BCL3, BRCA1, STAT2, ITGA8

KIRP —

PRAD —

THCA —

Table 2.  Gene expression biomarkers identified by different studies.
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Additional validation of the identified UGCBs.  Our comparison revealed that UGCBs identified by the 
Wx algorithm were comparable to or outperformed the UGCBs identified by different methods. We further vali-
dated the performance by evaluating the classification accuracy of Wx-14-UGCB and Peng-14-UGCB with can-
cer and normal RNA-seq data from three independent cancer studies including a melanoma cohort (GSE72056) 
that had not been included in the 12 types of TCGA cancer cohort14,15 (Table 4). We calculated the classification 
accuracy by dividing the samples in a given cohort into the training set (2,888 samples, 64%), validation set (723 
samples, 16%), and test set (902 samples, 20%). Then, the training set was used to train a model using a neural 
network (NN) algorithm and the validation set was used to assess how well the model had been trained. Finally, 
the test set was used to calculate the classification accuracy with the trained model. The comparison revealed 
that Wx-14-UGCB classified malignant and non-malignant melanoma single cells better than Peng-14-UGCB 
(Table 4). With the expression levels of the genes in the Wx-14-UGCB set, 818 out of the 902 test samples were 
correctly classified, whereas 633 out of 902 test samples were correctly classified using the Peng-14-UGCB set. 
For the lung adenocarcinoma data set (GSE40419), Wx-14-UGCB showed 80.00% classification accuracy when 
classifying lung cancer and adjacent normal cells, while Peng-14-UGCB showed 56.87% classification accuracy. 
For the 5,578 head and neck squamous cell carcinoma single cells (2,215 cancer cells and 3,363 non-cancer cells) 

# of UGCBs 14 7

Type Wx Peng’s edgeR Wx Martinez-Ledesma’s

BLCA 95.79 97.20 94.86 95.79 96.26

BRCA 98.19 96.38 91.78 97.20 91.45

COAD 94.51 87.20 98.78 92.68 —

HNSC 97.17 92.23 94.35 95.05 92.57

KICH 95.65 — 100.00 97.83 —

KIRC 99.67 — 99.34 98.68 90.09

KIRP 99.38 — 99.38 100.00 —

LIHC 90.57 94.81 87.74 88.21 —

LUAD 97.92 97.58 98.96 97.92 90.27

LUSC 98.19 96.75 99.28 97.83 94.56

PRAD 93.45 — 92.36 90.55 —

THCA 95.80 — 90.21 95.45

Total 96.72 94.59 94.81 95.74 92.20

Table 3.  Classification accuracy comparison (%).

Figure 2.  Performance of the Wx-14-UGCB on BRCA, LUAD, and LUSC RNA-seq data. AUC values are listed. 
ROC, receiver operating characteristic.
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(GSE103322), Wx-14-UGCB showed 81.10% classification accuracy when classifying cancer and non-cancer 
cells, while Peng-14-UGCB showed 68.28% classification accuracy. In summary, the top 14 genes (Wx-14-UGCB) 
identified by the Wx algorithm could potentially be used as novel gene expression biomarkers for the detection 
of various types of cancers, although its use might be limited by clinical difficulties associated with RNA-based 
applications. Further experimental investigations are required to validate the Wx-14-UGCB.

Discussion
The next-generation sequencing (NGS) technique has opened up a new era in investigating genes and genomes 
by generating genome-wide molecular maps including the genome, transcriptome, and epigenome. Demand 
for NGS in many research fields has been growing rapidly since NGS can be used as a new kind of microscope, 
transforming information of entire molecules into numeric values20. However, this approach has given rise to 
another difficult problem; selecting appropriate genes (or loci) for directing the next step of a given study. For 
example, in the case of the human genome, selecting reasonable genes (features) from a list of expression levels 
over approximately 60,000 genes (or up to 190,000 transcripts) has become a major bottleneck. Many researchers 
have selected genes from a list of differentially expressed genes that is (DEGs) typically identified by a DEG iden-
tification algorithm with an adjusted p value of 0.05 (or less) for multiple tests. However, as the number of samples 
increases, the number of DEGs tends to increase, up to several thousand genes. Therefore, there is a demand for a 
method that automatically recommends the ideal gene set for biomarker candidates.

In this study, we have developed a neural network-based feature selection algorithm called Wx. The Wx algo-
rithm provides a discriminative index (DI) score for each gene. The higher the DI score, the greater its influence 
on the classification of the given two groups of samples. Thus, when selecting genes for biomarkers, researchers 
can select the highest genes sorted (in descending order) by the DI score, and this can guarantee the highest clas-
sification accuracy, as shown in this study.

The 14 gene signatures (Wx-14-UGCB) identified by the Wx algorithm included the housekeeping gene 
GAPDH, which has been used in many studies as a control (or reference) gene (Table 2). Recently, several con-
cerns about using the GAPDH gene as a housekeeping gene has been reported21–25. Our result also indicated that 
the GAPDH gene was one of the highest DI-score genes, and this gene should therefore be used with caution as a 
control gene in gene expression experiments such as qRT-PCR. Interestingly, another well-known housekeeping 
gene ACTB was ranked 14 out of 20,501 genes (Table S1), suggesting that both GAPDH and ACTB genes might 
be unsuitable housekeeping genes for gene expression experiments, particularly in cancer studies. The expression 
levels of the GAPDH and ACTB genes and the genes in the Wx-14-UGCB set in various cancer types also con-
firmed the variable expression levels of those genes between cancer and normal samples (http://firebrowse.org). 
Further investigations of the remaining genes such as FN1, EEF1A1, COL1A1, SFTPB, SFTPC, and ATP1A1 will 
shed light on the identification of novel biomarker genes for a pan-cancer cohort.

One of the disadvantages of artificial neural network-based approaches when applied to biomedical data is 
that a large number of samples are needed to achieve good classification or regression performance. We observed 
relatively lower classification accuracy (Table S3) when the Wx algorithm was applied to a non-cancer transcrip-
tomic data set (GSE105127), which contains normalized expression levels of 65,671 transcripts performed in 
the pericentral (n = 19), intermediate (n = 19), and periportal (n = 19) regions of the human liver isolated by 

Figure 3.  Comparison of genes identified by Wx and edgeR. The x-axis indicates the number of top genes used 
for the comparison and the y-axis represents the percentage of overlap between the gene sets.

GSE id Cancer type Wx-14-UGCB Peng-14-UGCB

GSE72056 Melanoma 90.71 70.22

GSE40419 Lung adenocarcinoma 80.00 56.87

GSE103322 Head and neck squamous cell carcinoma (primary tumors and 
lymph node metastases; single-cell transcriptomes 81.10 68.28

Table 4.  The classification accuracy of the UGCBs identified by different methods.

https://doi.org/10.1038/s41598-019-47016-8
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laser-captured microdissection26. In addition, selected features from the same data set vary depending on algo-
rithms. In our comparison, there were no overlaps between the top 14 genes identified by Wx or Peng’s (Table S2). 
This kind of inconsistency is caused mainly by the algorithmic difference, as reported in several differentially 
expressed gene analysis studies18,27,28. Thus, it is difficult to establish which algorithm is better by comparison 
without experimental verification. Therefore, the usefulness of the 14 genes (Wx-14-UGCB) for cancer biomark-
ers should be validated with extensive experimental evidence in the near future.

In summary, the Wx algorithm developed in this study estimates the classification power of genes in a given 
gene expression data set using the discriminative index (DI) score algorithm. Researchers can intuitively select 
gene-expression biomarker candidates from the DI scored gene list. Further experimental validation will be nec-
essary to prove the Wx algorithm’s usefulness.

Methods
Gene expression data sets used in this study.  Gene expression data (mRNASeq) of 12 different can-
cer types from the cancer genome atlas (TCGA) were obtained using TCGA-Assembler 229. Data generated by 
Illumina HiSeq instrument (labeled as illuminahiseq_rnaseqv2-RSEM_genes_normalized) were used in this 
study. Each sample contains normalized expression levels of 20,502 genes (features). A description of the TCGA 
data can be found in Table 1. The following independent RNA-seq data were used for validation; GSE4041916 con-
sists of normalized expression levels of 36,741 genes performed in 164 samples (87 lung cancer and 77 adjacent 
normal tissues) and GSE105127 includes normalized expression levels of 65,671 transcripts performed in the 
pericentral (n = 19), intermediate (n = 19), and periportal (n = 19) regions of human liver isolated by laser-cap-
tured microdissection26. These data sets were processed using Octopus-toolkit30. GSE7205615 contains normalized 
expression levels of 23,686 genes performed in 1,257 malignant and 3,256 benign samples. GSE103322 contains 
normalized expression levels of 23,686 genes, performed in 5,578 head and neck squamous cell carcinoma single 
cells (2,215 cancer cells and 3,363 non-cancer cells)17. Gene expression tables for these data sets were downloaded 
from the gene expression omnibus website (https://www.ncbi.nlm.nih.gov/geo/).

Training and validation data sets.  The gene expression data of 12 different cancer types includes 6,226 
samples in total (5,609 cancer and 617 normal samples). The number of cancer and normal samples differs for 
each type of data, as shown in Table 1. In general, the number of cancer samples was much larger than the normal 
samples. Therefore, if we randomly divide samples into two groups (training and validation sets) without con-
sidering the ratio of cancer and normal samples, both groups will contain different ratios of cancer and normal 
samples. This could be problematic when training a model using a neural network. We avoided this imbalance by 
randomly dividing samples in each cancer set in half while maintaining the ratio of cancer and normal samples. 
One set was used for feature selection and the other was used for validation.

Model definition.  The proposed feature selection method was based on softmax regression31, which utilizes 
a simple one-layer neural network regression model in which the dependent variable is categorical. This model 
was applied to the feature selection set Xf and the validation set Xv; the details of each process are described below.

Figure 4.  Discriminative index (DI) vector construction for K = 3, where θk represents the parameter related to 
the k-th softmax output value, X̂

k
 is the averaged vector from all data samples with label k, and WXk the result 

of a multiplication between θk and X̂
k
.

https://doi.org/10.1038/s41598-019-47016-8
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Let X be N number of gene expressions for tumor or normal samples, then it can be formally expressed as 
X = {X1, X2, …, XN}. Each Xi has J number of features ( ∈ RXi

J), each of which conveys information regarding the 
total expression amount of the corresponding gene. The output value ∈ RY K is a one hot vector that consists of 
K numbers depending on how many classes it represents. In formal notation, the vector Y can be expressed as 
Y = [y1, y2, …, yK]. For example, if the problem is to classify tumor samples out of normal samples, the i-th input 
data with gene expression becomes Xi = [xi1, xi2, …, xi,J], and the output becomes yi. If the i-th data is from a nor-
mal sample, then yi = [1, 0], otherwise yi = [0, 1].

Softmax regression includes model parameters Θ = [θ1, θ2, …, θK] that are learned from the training data. 
With these parameters, the output Yi can be expressed as Eq. 1 along with input Xi.
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Once the parameters have been learned, the most informative genes for cancer sample classification can be 
chosen using the Discriminative Index algorithm (Algorithm 1). This is described in more detail in Section 2.4.

Neural network-based feature selection algorithm: Wx.  The softmax regression parameters, Θ are 
trained using the subset of the whole dataset for feature selection, Xf and Yf (for simplicity, we refer to these 
without their superscripts in this subsection). These parameters and the subset of the dataset serve as the input of 
the feature selection algorithm, which is based on the Discriminative Index (DI). This algorithm (Algorithm 1) 
returns c number of important features (genes) that is sufficient to successfully perform a given task:

•	 Classify X into K classes according to their corresponding Y, which is denoted as …X X X, , , K1 2  (Fig. 4).
•	 For each Xk, take the average for all instances to form an average vector, ∈ˆ RX

k J

•	 Calculate the inner product between the parameter related to the k-th softmax output value,  θk and the aver-
age vector, X̂

k
, which is assigned to ˆWX

k
.

•	 Calculate the DI for feature (gene) j. This step considers all possible combination pairs of K classes; an exam-
ple with K = 3 is illustrated in Fig. 4. The DI calculation of index j can be done with 3C2 = 3 number of absolute 
value additions between different pairs.

Algorithm 1.  Get top c genes using DI.

https://doi.org/10.1038/s41598-019-47016-8
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•	 After the iteration (lines 6–11 in Algorithm 1), the resulting DI is a vector of size J. Each element in this vector 
is sorted to form the sorted index DIsort.

•	 The top c features (genes) are selected based on top c indices in DIsort.

The Wx algorithm is a fast algorithm that ranks about 20000 features in 15 seconds with a typical computer in 
case of 5000 samples (Table S4). The stand-alone and web versions of the Wx algorithm are available at https://
github.com/deargen/DearWXpub and https://wx.deargendev.me/, respectively.

Evaluation of the classification performance of the selected genes.  The classification performance 
of the selected features (genes) was evaluated with a validation dataset using a scalable end-to-end tree boosting 
system called XGBoost32; the validation set was a subset of the entire dataset. When training the classifier with 
this subset, only selected features (genes) were fed into the classifier as an input. In formal notation, these new 
inputs can be represented as ∈ ×RX v N creduced .

Leave-one-out cross validation.  Leave-one-out cross validation (LOOCV) was used to assess whether a 
given set of UCBs could be used to distinguish between normal and cancer samples.

Gene ontology and network analysis.  Metascape19 was used to infer key functions of top 50 genes 
ranked by the DI score. MCODE algorithm33 was then applied to identify key networks.
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