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1. INTRODUCTION

Intelligent systems have been successfully applied for the solution
of a variety of difficult practical problems, such as medical diagno-
sis [1-6], intrusion detection [7], network traffic anomalies detec-
tion [8], multisensor battlefield reconnaissance simulation [9], local
semantic indexing for resource discovery on overlay networks [10],
distributed reasoning for context-aware service [11] and real-time
water demand management [12]. Given a problem, its solving dif-
ficulty can be considered from different viewpoints, for example,
from the human and the computational viewpoint. In this paper,
we focus on difficult problems from the computational viewpoint,
such as NP-hard problems.

Many intelligent systems are agent-based (ABSs) [13-20], consist-
ing of intelligent agents (IAs) and intelligent cooperative multiagent
systems (intelligent CMASs). There is no unanimous definition of
intelligent agent-based systems (IABSs) [13,14,21-23]. Frequently,
the characterization of a system as intelligent is based on its abil-
ity to learn autonomously a specific task. Learning can result in the
modification of existing knowledge, or even in the construction or
discovery of new knowledge.

The appreciation/definition of intelligence of a system is usu-
ally based on bio-inspired considerations [13-15,24-26] including
autonomous learning, self-adaptation, and evolution. A variety of
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machine-learning approaches for solving practical problems have
been proposed [27-38] varying from simple to complex techniques.
Rote learning is an example of simple learning. For humans, rote
learning consists in memorization based on repetition, while many
early expert systems can be considered as rote learners since knowl-
edge is retained in the form transmitted by a human supervisor
without any modification. For example, MYCIN [39] could be con-
sidered as such a system capable of solving problems similarly
with the human specialists in the context of decision support sys-
tem for infectious disease management. More complex learning
examples may include reasoning approaches, such as induction and
abduction.

Must be mentioned that if a system learns, it does not neces-
sarily mean that it has become more intelligent, in the sense
that it has a measurable increase in the intelligence level. Learn-
ing in some cases could result even in a decrease of intelli-
gence, for example, a system could learn misleading data or
overfit on the training data thus losing its ability to generalize.
Furthermore, we consider that the intelligence measure modifi-
cation (increment or decrement in some cases), does not directly
relate to the learning complexity. Even a very simple form of
autonomous learning, such as rote learning, can result in a signifi-
cant increase (e.g., of the performance) and sometimes even of the
intelligence [40].

The main contribution of this paper is the introduction of a novel
universal mathematically grounded metric, called II-Learn (metric
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for measuring the Intelligence Increase of artificial Learning systems),
that is able to quantify the Central Intelligence Tendency (CIT) and
provide additional characterization of a system’s intelligence. The
calculation of II-Learn metric considers the CIT of the intelligent
system before and after the learning process and makes an accurate
comparison by verifying if the two measured central intelligence
tendencies are different from the statistical viewpoint, taking into
consideration the variability in the practical problem-solving intel-
ligence. The proposed approach provides both enhanced robust-
ness, accuracy and universality over most current approaches.

In a previous study the universal and robust MetrIntComp met-
ric [41] for the measurement of system’s intelligence was pro-
posed. Since both metrics II-Learn and MetrIntComp quantify the
problem-solving intelligence of systems, they can be considered
comparable. The main advantage of II-Learn over the MetrIntComp
consists in its higher accuracy. II-Learn conserve the robustness
property of the MetrIntComp metric by making some kind of exper-
imental problem-solving intelligence evaluation data transforma-
tion. II-Learn consider the presence of possible extremes (measured
problem-solving intelligence values that are very different from the
other measured problem-solving intelligence values) and it applies
a methodology to remove them.

Furthermore, we introduce definitions for a variety of concepts,
which include the “Evolutionary Step” in the life cycle of an intelli-
gent learning system, the “Involutionary Step” in the life cycle of an
intelligent learning system, and respective system definitions that
include the “Intelligent Evolving Learning System” and the “Intel-
ligent Involving Learning System.” II-Learn metric enables the ver-
ification if a studied system attained an evolution in intelligence
by learning, in the sense of intelligence increase (such systems are
referred as Evolving Intelligent Learning Systems) or intelligence
decrease, called involution in intelligence (such systems are referred
as Involving Intelligent Learning Systems). In nature the most fre-
quent situation of what we call “involution” is when a species move
into another environment or during a longer time evolution stops
using some senses/structures for surviving; however, these senses/
structures may decrease or even disappear. For example, we men-
tion the wings of ostriches as they are remnants of their flying
ancestors’ wings. II-Learn enables accurate measurements, even in
the case of a small modification of a system’s intelligence, and it
takes into consideration the variability in the problem-solving intel-
ligence level. Thus it can be used in the context of a cooperative mul-
tiagent system that could manifest different levels of intelligence for
different problems undertaken for solving.

To demonstrate the effectiveness of II-Learn we performed an
experimental case study, using a cooperative multiagent system
specialized in solving the Travelling Salesman Problem (TSP)
[42,43] that is a well-known NP-hard problem. We investigate
whether a simple rote learning of a system that exhibits a behav-
ioral adaptation by learning results in an intelligence increase, and
in the affirmative case if an evolutionary step in the intelligence is
performed.

The rest of this paper is organized in 6 sections. Section 2 discusses
the motivation of this work with respect to open issues identified in
literature; presents the state-of-the-art metrics/methods proposed
for measuring machine intelligence. In Section 3 the proposed
II-Learn metric is presented. Section 4 presents an experimental
study that demonstrates and validates II-Learn metric. Section 5

provides a discussion about the proposed metric, and finally,
Section 6 summarizes the main conclusions of the presented
research.

2. STATE-OF-THE-ART AND MOTIVATION

ABSs frequently enable intelligent solving of a large diversity of real-
life difficult problems, like, optimization of coordination of human
groups online [44], and collaborative multisensor agents for mul-
titarget tracking and surveillance [45]. Although several studies
address intelligent problem-solving using ABSs, the evidence pro-
vided for their intelligence is usually intuitive, and there are several
still open issues with respect to measures used for the assessment of
their learning ability.

2.1. Evidence of System Intelligence

In the case of cooperative multiagent systems generally, both learn-
ing and intelligence measurement could be even more complex than
in the case of non-cooperative intelligent systems. Usually, coopera-
tive multiagent systems are presented to be intelligent, based on the
consideration that the cooperation between individual (even very
simple) agents results in the emergence of intelligence at the level of
the whole system [46,47]. This is the definition of intelligence that
we adopt in our research. Such a simple consideration is just intu-
itive without offering evidence of intelligence, in terms of a measure
that quantifies the level of intelligence.

For example, Yang et al. [48] presented an intelligent mobile mul-
tiagent system composed of simple reactive agents endowed with
knowledge retained as a set of rules describing network administra-
tion tasks. This cooperative multiagent system could be considered
as intelligent based on the intuitive motivation that it mimics the
behavior of a human network administrator, who acts in an intel-
ligent way as a human specialist. However, that study neither pro-
vided a quantitative measure to the intelligence of the cooperative
multiagent system, nor an effective numerical comparison of a sys-
tem’s intelligence with the intelligence of another system.

Machine learning frequently is presented as a successful approach
for different problems solving even in very recent studies and
researches [49-51]. This proves that computing systems, includ-
ing ABSs could use such learning techniques in order to solve effi-
ciently problems. In the mentioned works and many others, the
way how the learning leads to effective improvements is not effec-
tively proved or even studied. Paper [49] presents a survey on super-
vised machine-learning techniques that lead to efficient automatic
text classification. In [50] a smart adaptive run parameterization
enhancement of user manual selection of running parameters in
fluid dynamic simulations using machine-learning techniques is
proposed. Paper [51] proposes a machine-learning approach to
identify multimodal MRI patterns predictive of isocitrate dehydro-
genase and 1p/19q status in diffuse low- and high-grade gliomas.

There are very few studies and researches that formulate the perti-
nent and important research question, if the learning does not have
any kind of effect, or even worst it could lead as result decreases
or errors. In the research [52] it is studied the problem of inclu-
sion of machine-learning components (MLCs) in cyber-physical
systems (CPSs). In case of such a CPS, the researchers state that the
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operation correctness could depends even in a high degree on
the incorporated MLC(s). In this context, it was formulated the
research question: “Can the output from learning components lead
to a failure of the entire CPS?” As a practical application, the
problem of falsifying signal temporal logic specifications for CPS
endowed with MLC(s) is addressed. According to this requirement,
it is proposed a compositional falsification framework. The effec-
tiveness of the technique that is proposed is proved on an automatic
emergency braking system that is endowed with a perception anal-
ysis based on deep neural networks component.

Another study [53] investigated the subject of inconsistent data, that
appear as outliers, which can be learned by a diagnosis system if is
not identified and deleted. Such data could have a negative effect to
accuracy and performance of the diagnosis system. For outlier data
identification a k-Nearest Neighbor (k-NN) method was applied.

Knowing the fact that the learning process does not have an effect or
it could lead to a decrease or apparition of errors, it may be helpful to
take a different solution in order to avoid such effects, like analyzing
the result of this learning process, if there is a chance to lead to a
malfunction for example.

2.2. Learning Ability Assessment

An important aspect in the study of learning systems is the assess-
ment of their ability to learn. In this paper, we investigate an
approach to measure if learning can lead to a measurable increase
in the intelligence level. It should be noted that if a system learns,
it does not necessarily mean that it has become more intelligent,
in the sense that it has a measurable increase in the intelligence
level. Learning in some cases could result even in a decrease of
intelligence, for example, a system could learn misleading data or
overfit on the training data thus losing its ability to generalize.
Furthermore, we consider that the intelligence measure modifica-
tion (increment or decrement in some cases), does not directly
relate to the learning complexity. Even a very simple form of
autonomous learning, such as rote learning, can result in a signifi-
cant increase (e.g., of the performance), and sometimes even of the
intelligence [40].

We consider intelligence level measuring of a CMAS based on
difficult problem-solving ability. An intelligence increase can be
quantified by a measurable increase of the problem-solving ability/
intelligence, whereas an intelligence decrease can be quanti-
fied by a measurable decrease of the problem-solving ability/
intelligence. In order to further explain the notion of difficulty and
intelligence increase or decrease in problem-solving, as an example,
let us consider a simplified scenario of an intelligent medical diag-
nosis system that is able to learn. The intelligent system is special-
ized in the solving of a very difficult diagnosis problem, for example,
an illness for which the establishment of an effective treatment is
very difficult. In this context, the variability of intelligence can be
associated with the selection of a specific treatment that could be
more or less effective. An intelligence increase can be associated
with the elaboration of more effective treatments, whereas an intel-
ligence decrease can be associated with the elaboration of less effec-
tive treatments.

A problem with a specific type could be solved by a variety of
CMASs with different architectures. Even if we consider a partic-
ular domain of knowledge there are a lot of solvable problems by
computing systems with a wide diversity of types and complexity.

This motivates the necessity to design universal metrics for measur-
ing machine intelligence. However to date, as it is also pinpointed
in the review study presented in the next sections, current metrics
have limitations in their universality.

2.3. Metrics for Measuring Machine
Intelligence

In 1950, Alan Turing [54], considered a computing system as intel-
ligent, if a human assessor could not decide the nature of the sys-
tem (being human or otherwise) based on questions asked from a
hidden room. We consider that the biological and Artificial Intel-
ligence (AI) are different in nature; therefore, they should not be
compared directly. Although Turing’s test was an early theoretical
proposal in AI; we consider it as a good starting point for the design
of metrics/methods enabling the comparison of intelligence of two
systems by the same type (biological or artificial). Some milestones
of Al could be clearly set this way, for example, using metrics to
assess intelligence in competitions between systems and humans,
such as the well-known competition between the chess machine
named Deep Blue and the chess master Garry Kasparov [55], and
between the IBM Watson computing system and human experts
in the game named Jeopardy [56]. Schreiner [57] accentuated the
necessity of creating metrics for measuring the systems’ intelligence
in a study performed for the US National Institute of Standards and
Technology and proposed relevant measurement and comparison
approaches.

Legg and Hutter [58] studied a number of well-known definitions
of human intelligence and extracted their essential features. These
were then mathematically formalized in order to produce a gen-
eral measure of machine intelligence. The authors showed that this
formally defined measure is related to the theory called universal
optimal learning agents. Hibbard [59] proposed a novel metric for
measuring an agents’ intelligence, which is based on the theory/
principle of the hierarchy of sets of increasingly difficult envi-
ronments. Hibbard considers an agent’s intelligence measurement
according to the ordinal of the most difficult set of environments
that may occur. The metric proposed in that work includes the
number of time steps required for an agent to pass the test.

Hernandez-Orallo and Dowe [60] proposed the idea of universal
anytime intelligence test. They considered that such a test should be
universal in the sense that could be able to measure intelligence, in
a wide variety of situations that include even very low or very high
intelligence. Their proposal was based on the so-called C-tests and
compression-enhanced Turing tests that were designed in the late
1990s. In that study, a synthesis of different state-of-the-art tests was
performed, highlighting their limitations.

Sometimes the agents’ intelligence is considered based on the com-
plexity of the problems that they are able to solve. Anthon and
Jannett [61] investigated the intelligence measuring appropriate-
ness of the agent-based systems based on the ability to compare
different alternatives considering their complexity. In their experi-
mental setup, a distributed sensor network system was considered.
This approach was tested by comparing an intelligence measure in
different agent-based scenarios.

Winklerova [62] assessed the collective intelligence of a particle
swarm optimization system according to a novel Maturity Model.
The proposed approach was based on the Maturity Model of
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Command and Control operational space and the model of Collab-
orating Software. The main aim of that study was to obtain a more
thorough explanation of how the intelligent behavior of the particle
swarm emerges.

Franklin and Abrao [63] proposed an introductory methodology
for the agent’s intelligence testing. This methodology is based on
the calculation of a proposed general intelligence factor and the
theory of multiple human intelligences [64]. A set of tests assessed
the multiple intelligences of the agents, by analyzing their problem-
solving behavior in different situations. The proposed approach
was intended for both qualitative and quantitative evaluations of
intelligence.

In [65] we proposed an innovative metric called MetrIntPair (Met-
ric for Pairwise Intelligence Comparison of Agent-Based Systems)
for comparison of two cooperative multiagent systems problem-
solving intelligence. MetrIntPair is able to make an accurate
comparison by taking into consideration the variability in the
problem-solving intelligence of systems. Two intelligent systems
with the same intelligence can be included in the same class of intel-
ligence. The design of metrics that are able to make differentiation
of systems in problem-solving with respect to their intelligence is a
very important subject since they can be used to select the system
that is able to solve a particular problem in the most intelligent way.

In [66] we proposed a metric called MetrIntMeas (Metric for the
Intelligence Measuring) for measurement of the intelligence of a
swarm system for difficult problem-solving. MetrIntMeas is an
accurate and robust metric enabling at an application the classifica-
tion based on the intelligence of a studied swam system. It is able to
verify if a studied swarm system belongs to the same class with the
systems which have a specific reference intelligence value. In that
paper, the intelligent evolving systems were defined stating that the
evolution in the intelligence of a swarm system should be measured
by using the MetrIntMeas metric.

In [67] we highlighted the fact that the identification of intelli-
gent systems (not particularly intelligent learning systems) with
extremely-low or extremely-high, outlier, intelligence is an impor-
tant subject, and we proposed a method called OutIntSys for the
detection of systems with high and low outlier machine intelligence
from a set of studied intelligent systems. We consider that the treat-
ing of outliers is a very important subject even in the case of metrics
for measuring the intelligence of learning systems. Outlier values
could have a negative influence on the accuracy of the intelligence
measurements.

In our previous studies [65,66] we highlighted the fact that a metric
for intelligence measurement needs to treat the aspect of variability
in intelligence. The metrics presented in [65,66] are illustrative to
the situation where the treatment of the variability by a metric can
result in advantages to the accuracy and robustness in intelligence
level comparison and classification of the systems based on their
intelligence. A disadvantage of many previously proposed intelli-
gence metrics in the literature consists of limited universality. Uni-
versality provides advantages including independence of the metric
from the measured agent/cooperative multiagent system architec-
ture, the environment in which the system operates, and other influ-
encing factors. Metrics proposed in the literature are designed based
on different kind of considerations/principles; therefore, most of
them cannot be effectively compared with each other.

The literature review performed in this section reveals that there
is no unanimous viewpoint related to what a metric for measuring
the intelligence should measure. There is no accepted standardiza-
tion related to intelligence measurement. Most intelligent systems
are able to learn. The design of effective metrics for artificial learn-
ing systems is necessary. We consider that a metric for measuring
machine intelligence must conserve the very important properties
by universality, accuracy and robustness. In the case of an intelli-
gent learning system under investigation, such a metric should be
useful at least in the following processing/analysis tasks: 1) to mea-
sure the intelligence of the system before a learning process; 2) to
measure the intelligence of the system after a learning process; 3) to
verify if the learning process results in any modification in intelli-
gence level; 4) to be able to verify accurately even small changes in
intelligence.

We would like to outline that a measurable improvement by learn-
ing does not necessary means an increase in the intelligence. There
are very few studies focusing on the effect of modification of the
intelligence as a consequence of learning [68,69]. There are no stud-
ies explicitly focusing on the design of metrics able to verify accu-
rately (taking into consideration the variability in the intelligence)
that even small changes, as result of learning, can have as an effect
an evolutionary or involutionary step in intelligence.

3. THE PROPOSED II-LEARN METRIC

In order to cope with the afore-mentioned open issues, we propose
II-Learn metric, which can be used to provide quantifiable evidence
of intelligence, suitable for assessing the intelligence increase of a
cooperative multiagent system by learning, while conserving uni-
versality and providing enhanced accuracy and robustness. In the
following we describe this metric after the introduction of the expla-
nation of the principle and the formalism on which it is based on.

3.1. Principle

There are many studies and researches [46-48] that define CMASs
composed of extremely simple agents as intelligent based on the
efficient, flexible and robust cooperative problem-solving. It is con-
sidered the intelligence as emergent at the system’s level. Frequently
the autonomous learning capacity is associated with the intelligence
of a system. In our approach we are focused on CMASs where intel-
ligence emerges at the system’s level, that are able to learn. The ratio-
nale of the metric that we propose is to measure if by learning a
studied CMAS evolved in intelligence. In our approach, the intel-
ligence of such a considered CMAS must allow the solving of very
difficult problems. We consider the principle of cooperative multi-
agent system’s intelligence level measuring based on the advanced
ability to solve difficult problems. The difficult problem-solving
ability is considered as the intelligence level measure.

3.2. Formalism

In our approach, it is considered the measuring of a specific type of
intelligence considered by interest to a human evaluator (HE) who
is a specialist in machine intelligence science.

Different studies discuss human specialist who acts as evaluators.
Paper [70] presents a methodology for analysis of different kind
of human errors. The US Patent [71] proposes a general approach
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to some methods for presentation and evaluation of constructed
responses assessed by the HEs. In [72] is investigated the HE in
image enhancement tasks with the purpose to make visual improve-
ments of images. Paper [73] study the perceived value of two
designed sentiment analysis tools for understanding the Finnish
language, in contrast to HEs. In [74] the principal role of HEs is
analyzed in the applied automatic semantic technologies.

In our approach HE is responsible to measure if a CMAS sys-
tem’s intelligence level increased as a result of learning by using the
II-Learn metric. A problem-solving intelligence evaluation result by
the considered type is expressed as a so-called intelligence indicator
value. An intelligence indicator value is based on a specific calculus
performed on an experimental problem-solving intelligence evalu-
ation. In order to illustrate the previously introduced notions, we
provide the following a scenario.

Let us consider an intelligent CMAS denoted CoopRob composed
of robotic agents able to pilot cooperative transport cars. The agents
must cooperatively perform different missions established by a
human specialist(s) denoted HE. The first type of mission consists
of the transportation of a set of objects to established destinations.
The task of distribution of a larger set of objects to different des-
tinations is undertaken for solving by the transport cars. A type
of problems to cope with this situation can be the TSP. The lat-
ter type of problems consists in the collection of a set of objects
from distributed sources that are established or they should be
found/discovered. Based on the efficient cooperative solving of dif-
ficult problems the intelligence can be considered at the cooperative
system’s level. The intelligence of such a system cannot be unani-
mously defined. The human specialist(s) who would like to measure
the intelligence of CoopRob must define what type of intelligence
he/she would like to measure. The intelligence can be considered
based on different particular or general considerations/principles
(or their combination), such as advanced ability to collect objects or
advanced ability to distribute objects. HE should establish the cor-
responding calculus of problem-solving intelligence indicator value
that corresponds to the type of intelligence by interest.

Our approach includes a calculus of the so-called CIT before the
learning process and after the learning process. The CITs of a learn-
ing system before and after learning are not absolute measure; they
are based on the calculated intelligence indicator values obtained
as the result of the problem-solving intelligence evaluations. Along
with the CITs some other calculated indicators, which character-
ize the intelligence level are computed. For example, we men-
tion the indicator that measures the homogeneity-heterogeneity of
problem-solving intelligence level. We consider that similarly with
the humans, the systems can have a variability of intelligence in
problem-solving.

3.3. The ll-Learn Metric Description

Evolving systems presented in the literature often evolve gradu-
ally based on methods such as autonomous learning, inheritance,
self-adaptation, or changing of the structure [75-77]. We consider
that an important aspect, which to our knowledge is still untreated,
is the study of evolution in intelligence during a system’s learning
process. Based on this consideration, in the following, we define
the notions: “Evolutionary Step,” “Involutionary Step,” “Intelligent
Evolving Learning System” and “Intelligent Involving Learning
System.”

Definition 1. Evolutionary step made by an intelligent learning
system. We call evolutionary step made by an intelligent learning sys-
tem, a measurable increase in intelligence by using the I1I-Learn met-
ric as a result of a learning process.

Definition 2. Involutionary step made by an intelligent learning
system. We call involutionary step made by an intelligent system, a
measurable decrease in intelligence by using the II-Learn metric as a
result of a learning process.

Definition 3. Intelligent Evolving Learning System. We define an
Intelligent Evolving Learning System, as a learning system able to
make at least one evolutionary step in intelligence, measurable by the
II-Learn metric. An intelligent evolving learning system could make
more evolutionary steps during its life cycle. Each step should be mea-
surable by using the 1I-Learn metric.

Definition 4. Intelligent Involving Learning System. We define an
Intelligent Involving Learning System, as a learning system that makes
at least one involutionary step in intelligence, measurable by the
II-Learn metric.

Let us consider a cooperative multiagent system denoted as ILS®!,
ILSBY = {ILS;,ILS,, .....,ILS,}, that is able to learn. The members
of this set, ILS, ILS,, ... .., ILS, represent different agents, where,
n = |ILSP!| is the cardinality (the number of member agents)
of ILSPL. We denote with ILSAL the cooperative multiagent sys-
tem that results after learning. ILS® may have any architecture,
and it may learn autonomously by using any learning technique.
The learning in ILS®' may result in agent-level (new acquired
data/information/knowledge etc.) or system-level (duplication of
efficient agents, modification of the structure of the system etc.)
modifications.

Let us denote as IntA = {IntA,,IntA,,...,IntA,} the mea-
sured problem-solving intelligence indicators obtained during the
intelligence evaluation of ILS®L in solving a set of test prob-
lems ProblA. In this notation, r = |IntA| represents the sam-
ple size of the measured intelligence indicators in IntA. Let
IntB = {IntBq,IntB,,...,IntB;} denote the measured problem-
solving intelligence indicators obtained during the intelligence eval-
uation of ILSAL in solving a set of test problems ProbiB. k = |IntB|
represents the sample size of the measured intelligence indicators
in IntB.

The establishment of the numbers of problems of the sets ProblA
and ProblB is based on a mathematically grounded calculus. HE is
responsible for the effective choosing of the problems of the sets
ProblA and ProblB. This must be made by taking into consideration
the type of intelligence that is intended to be measured, which cor-
responds to a certain type of problem-solving by a specific dimen-
sionality/complexity.

The following Normality Verification and Extraction (VerExtr)
algorithm describes the intelligence characterization made before
(ILSPY) and after (ILSAY) a learning process.

The notation “@” used in the algorithm indicates a set of process-
ing and/or analyses that are executed. For example “@Verify the
IntA and IntB data normality;” indicates the performing of a statis-
tical analysis of the data normality. The intelligence comparison of
ILSBL and ILSAL is based on the specific mathematical calculus of
II-Learn algorithm, which invokes the VerExtr. II-Learn algorithm
is not restrictive to the equality of the number of problem-solving
intelligence evaluations (|IntB| and |IntA|) for ILSEL and ILSAL,
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VerExtr:
Normality Verification and Extraction Algorithm
Input: IntA = {IntAq, IntA,, ..., IntA,};
IntB = {IntBq, IntB,, ..., IntB,};
Output: (CentrInd,, LCIm,, HCImy, SDy, CV,);
(CentrIndy, LCImyg, HCImg, SDg, CV3);
Begin
@Set aN the normality test significance level;
GotoLabel;
@Verify the IntA and IntB data normality;
If (IntA and IntB) are normally distributed) then
Norm: = "YES”;
Else

@Opting for a transformation or elimination
of outlier values. Update of IntA and IntB.

Goto GotoLabel;
EndIF

@Calculate the principal indicators of the Central Intelligence
Tendency: Centrind, and Centrlndy.

@Set the CL value;

@Calculate the additional indicators.

LCImy, HCImy, SD,, CV 53 LCImy, HCImg, SDg, CVy;
EndNormalityVerificationExtraction

In the case of ILS®L and ILSA' the VerExtr algorithm calculates
the principal CIT indicators denoted as Centrlnd, and CentrIndy.
Additionally, there are calculated some other additional indicators
that characterize the intelligence. Centrlnd is calculated as the mean
of the intelligence indicator data that result from the experimen-
tal intelligence evaluations. The Standard Deviation (SD) [78] of
the intelligence indicators, denoted as SD, and SDy, are calculated
to quantify the amount of variation of the respective samples. The
Coefficient of Variation (CV) calculated as CV = 100 X (SD/Mean),
is considered also as such a quantifier, normalized by the mean of
the total number of samples. In VerExtr algorithm, CV , indicates
the CV of the IntA data, CVy indicates the CV of the IntB data. We
consider necessary the establishment of the confidence interval of
the mean at a specific Confidence Level (CL). In most cases, a CL
of 95% can be considered as appropriate. As examples of other val-
ues of CL that can be chosen we mention 90% and 99%. For the
ILSP, LCIm, and HCIm,, represent the low and high bounds of the
confidence interval of the mean. For the ILSAY, LCImy and HCImy
represent the low and high bounds of the confidence interval of the
mean.

The One-Sample Kolmogorov-Smirnov test (K-S test) [79], Lilliefors
test [80,81] and Shapiro-Wilk test [82,83] are among the most
frequently applied goodness-of-fit tests used for data normal-
ity verification. For the normality testing, if IntA and IntB are
normally distributed, we suggest the application of the One-
Sample Kolmogorov-Smirnov, at significance level aN = 0.05. As

examples of other significance levels that can be chosen we mention
0.01 and 0.1. If considered necessary, as an alternative, a power-
ful verification of the normality assumptions we suggest the appli-
cation of the Shapiro-Wilk test also. Some studies [82,83] prove
that the Shapiro- Wilk test has the best statistical power, considering
the most frequently used tests for the verification of the normality:
One-Sample Kolmogorov-Smirnov, Lilliefors, Shapiro-Wilk and
Anderson-Darling, for a specific significance level.

The Quantile-Quantile plot (Q-Q plot) is a scatterplot appropriate
for the normality visual appreciation. A Q-Q plot is created by plot-
ting two sets of quantiles against one another. If both sets of quan-
tiles came from the same distribution, the points form a line that is
roughly straight. The joint use of Q-Q plot with the Shapiro-Wilk
test is suggested for checking the normality.

II-Learn metric verifies whether the intelligence of ILS®: has
changed (increased or decreased) as a result of learning or remained
the same. In the framework of Verify Evolution in Intelligence by
Learning algorithm is verified if both data sets IntA and IntB pass
the normality assumption (approximately normal distribution, in
case of real-life data is not expectable perfect normality). If the sam-
ple intelligence data is not normally distributed, a solution to obtain
normally distributed data consists in the application of a transfor-
mation that should corresponds to the type of data distribution. The
transformation should be applied to both ILSPL and ILSAL. This is
required for the proposed metric to provide a trustworthy result.
Some of the most common normalizing transformations are indi-
cated in Table 1 [84].

We consider as an outlier intelligence indicator value, an extremely
high or extremely low intelligence value, i.e., a value that is statis-
tically different from those other intelligence indicator values. A
further from the rest intelligence indicator value is not an outlier
but it is statistically further from the rest. An intelligence indicator
dataset could contain no outlier (same for the further from the rest
values) values, or in alternative cases, it may contain one or more
outlier intelligence values (same for the further from the rest val-
ues). The number of outlier values (same for the further from the
rest values) usually cannot be established in advance. If an intel-
ligence indicator dataset does not pass the normality assumption,
then an alternative option to the transformation consists in the
removal of the outliers, and/or the further from the rest intelligence
indicator values. If it is requested or expected that the intelligence
indicator data can be reasonably approximated by a normal distri-
bution (e.g., in case there exist a problem specific knowledge, that
in some similar cases, the obtained data is normally distributed),
then we suggest the Grubbs test [85,86] for the identification of out-
lier values. An approach to formulate the fact that is expectable data
normality can be concluded by visual analyzing of Q-Q plot. We
suggests the application of the Grubbs test with the significance
level «G = 0.05 in most of the cases. As examples of other signif-
icance level values that can be chosen we mention 0.01, 0.1. The
Grubbs test can be applied recursively more times until no outliers

Table 1 Normalizing transformations.

Type of Distribution Normalizing Transformation
IND is Lognormal Log(IND)

IND is Binomial Arcsine(SquareRoot(IND))
IND is Poisson SquareRoot(IND)
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(or suspicious values) can be detected. At each application, it is able
to identify at most an outlier/suspicious value if there exists such a
value.

We call Null Hypothesis and denote it as HO,;, the statement that the
CentrInd, of ILSPL is equal from the statistical point of view with
the CentrIndy of ILSAL. We call Alternative Hypothesis and denote
it with H1,; the hypothesis that the CentrInd, of ILSPL is different
from a statistical point of view from CentrIndy of ILSAL. The test-
ing of HO; and H1,; is realized with the significance level denoted
aMet. aMet represents the probability of rejecting the Null Hypoth-
esis when it is true. aMet is a parameter of the algorithm. The most
frequently used values are 0.05, 0.01 and 0.1. We suggest a value of
0.05 for the aeMet. This value indicates the probability of apparition
of a type I error. A type I error is the incorrect rejection of a true
null hypothesis. Many studies [87] related to statistics prove that in
most of the cases the significance level by 0.05 is the most appropri-
ate to be selected. Our decision is based also on the relation between
the type I and type II errors. A type II error is incorrectly retaining
a false null hypothesis. Decreasing the type I error rate from 0.05,
have as result the increase of the type II error rate probability of
apparition.

II-Learn - Algorithm

Verify Evolution in Intelligence by Learning

Input: [ntA = {IntA;, IntA,, ..., IntA,};

IntB = {IntBq, IntB,, ..., IntB\};

Output: IntelligenceComparisonDecision;

Step 1. Preprocessing and analyzing.

@Apply VerExtr algorithm;

@Set aMet; //Significance level of hypothesis testing.

Step 2. Verify if IntA and IntB have equal SD.

@Set oo F; //Significance level of the F-test.

@Verifies the standard deviations equality using F-fest;

If (SD, = SDg from the statistical point of view) then
SDInd: = ”YES”;
Else SDInd: = "NO”;

EndIF

Step 3. Verification. of making an evolutionary step.

@Formulate HO; (the Null Hypothesis) and HI; (the Alternative
Hypothesis);

If (SDInd = ”YES”) then
@Apply the Unpaired Two-Sample T-test;
@Calculates Pval (the P-value of the test);
Else
@Apply the Welch corrected Unpaired Two-Sample
T-test; Calculates Pval (the P-value of the test);
EndIF

Step 4. Interpretation of the evaluation results.
If (Pval > aMet) then
@Accept HO,;. “ILSPL intelligence has not changed.”
else
@Accept HI;. “ILSPL intelligence has not changed.”
If (CentrInd > CentrIndy) then
“ILSBL intelligence increased; ILSB evolved”
Else
“ILSPL intelligence decreased; ILS®E
involved”.
EndIf
EndIF
EndII-Learn

In the algorithm Verify Evolution in Intelligence by Learning, for
the HO,; testing, we considered the application of the Two-Sample
Unpaired T-test [88-90] as most appropriate in the case of equal-
ity from the statistical point of view between the standard devia-
tions SD, and SDg. In addition, the Welch Corrected Two-Sample
Unpaired T-test (Welch test) [90-92] was considered, in the case
the standard deviations SD, and SDy are not equal from the sta-
tistical point of view. We propose the use of two-tailed tests in
both cases (Two-Sample Unpaired T-test and Welch Corrected Two-
Sample Unpaired T-test). For the verification of the equality of
SDs, we choose the F-test [93], applied at the significance level
aF = 0.05.

3.3.1. Definition of the ll-learn metric

We define II-Learn metric as being able to measure the statistically
significant increase or decrease in the intelligence level of a studied
ICMAS as result of a learning process, which leads to evolution or
involution in intelligence. The processing and analyses performed in
the frame of the metric are described by the Verify Evolution in Intel-
ligence by Learning algorithm.

If HO,; is verified then it can be concluded that ILS®" intelligence
has not changed from the statistical point of view by learning. The
numerical difference is the result of the variability. It should be
noted that by repeating the experimental conditions slightly dif-
ferent experimental results will be obtained (heuristic problem-
solving behavior) but the formulated conclusion will be the same.

If HI; is accepted, and CentrInd, > Centrlndg then it can be
derived that ILS® intelligence has increased, and that ILS® has
evolved in intelligence by making an evolutionary step. If HI; is
accepted, and Centrind, < CentrIndy then it can be derived that
ILS®" intelligence has decreased, and that ILSP: has involved in
intelligence.

For the establishment of the sample sizes (|IntA| and |IntB|) is
performed an a priori calculus [94,95]. The notion a priori
is used with the significance that the precise necessary sample
size is established at the beginning of the experimental problem-
solving intelligence evaluation. It is not based on the methodology
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of verification after finishing the experimental evaluations what the
influence of the chosen sample size has to the formulated conclu-
sions. The calculation [94,95] of the |IntA| and |IntB| is based on:
aMet, PowerMet (PowerMet = 1-3Met), number of tails (we con-
sidered the application in most of the cases the test with two tails),
allocation ratio (allocation ratio = |IntA|/ |IntB|; for example, allo-
cation ratio = 1 indicates that the sample sizes |IntA| and |IntB| are
equal) and the Effect size d (Cohen’s d) [96]. As previously men-
tioned, aMet denotes the probability of a type I error. SMet denotes
the probability to make a type II error. Can be formulated that a
type I error is detecting an effect that is not present, while a type
IT error is failing to detect an effect that is present. An effect size
is a quantitative measure of the strength of a phenomenon. The
importance of calculation of the effect size is discussed in the papers
[96,97]. The Effect size d (Cohen’s d) [96] is given by the formula
d = (CentrInd, - CentrIndy) /S. Where: Centrind, and CentrIndy
denote the means of the two samples; S denotes the SD of either
group. d = 0.2 indicates a small effect size; d = 0.5 indicates a
medium effect size; d = 0.8 indicates a large effect size; d = 1.3
indicates a very large effect size.

3.4. Components of the Intelligence
Measure

In our research, we considered the cooperative multiagent systems
intelligence measured at the level of the whole system. The pro-
posed II-Learn metric is appropriate for systems, where the collec-
tive intelligence indicator can be expressed as a single evaluated
measure. If necessary, for different types of systems, based on their
specificity, it can be calculated as a weighted sum of some other
intelligence components that characterize different aspects of the
considered systemss intelligence. Eq. (1) presents the general case
when an intelligence indicator IntInd, is calculated as the weighted
sum of q types of intelligence components measure at a problem-
solving, where: 1,2,...q represent the identifiers of the intelligence
components, mas;, mas,,..., masy represent the considered intelli-
gence components of measure, and wgh;, wgh,,..,wgh, represent
their weights.

IntInd = wghy X mas; + ... + wghy X masg; (1)
wghy + ... + wghg =1

The weights indicate the importance in the calculus of the problem-
solving intelligence. For example, wgh; = wgh, means that mas; and
masy, the measures of components i and k, have the same weight in
the calculus of the intelligence; if wgh; < wghy, means that mas; is
less important (has a lower weight) than mas in the calculus of the
intelligence.

4. MEASURING THE INTELLIGENCE
INCREASE OF A LEARNING
COOPERATIVE MULTIAGENT SYSTEM
USING II-LEARN. AN EXPERIMENTAL
CASE STUDY

There are many studies related to the intelligence of biological
swarms/colonies, like the ant colonies, composed of simple

living creatures, which at the swarm level have an amazing
surviving capacity that could be associated with some kind of
intelligence [98].

Marco Dorigo in his Ph.D. thesis [99,100] proposed for the first time
a generic problem-solving methodology based on simple comput-
ing agents (artificial ants) that mimic the behavior of a natural ant
colony in search for food. Similarly to the biological ants, the arti-
ficial ants (agents) wander randomly, and upon finding a solution
of the problem (in case of biological ants finding foods) they return
to their home (colony in case of biological ants) while laying down
signs understandable to other agents called pheromone. The name
pheromone is established based on the analogy with biological ants.
In the case of biological ants, the pheromone trails represent semio-
chemicals secreted by the body of the ants. In case of the artificial
agents, this is a numerical value that represents intensity. If a nat-
ural ant finds a path with a high pheromone amount, it will likely
follow that trail, returning and reinforcing it if eventually find food.
This is a specific communication and collaboration of the biologi-
cal ants as a result of a long-term evolution. Such communication
in case of artificial ants allows an efficient, robust (if some agents
fail to operate during a problem-solving, the problem-solving can
continue even this case) and scalable (the number of operating ants
could be increased even during a problem-solving) cooperation.
Over time, the pheromone trail starts to evaporate (its intensity
decreases), thus reducing its attractiveness to the ants. The more
time it takes for an ant to travel down the path and back again, more
time the pheromones have to evaporate. A short path gets marched
more frequently, and thus the pheromone density becomes higher
on shorter paths than longer ones.

Ant Colony Optimization algorithms (ACOs) have been seen as
a suitable model for distributed reinforcement learning [101,102].
Many ACO implementations belong to the Ant-Q family [103].

Ant algorithms have many applications, like the emergency
management using geographic information systems [42]. One
of the most important applications includes transportation
[42,43,104,105], with the Vehicle Routing Problem (VRP) repre-
senting an important generalization of the TSP [106]. VRP is an
NP-hard problem as TSP. It searches for the optimal set of routes
for a fleet of vehicles to traverse in order to make a delivery to a
given set of customers [106]. Examples of important applications of
VRP in healthcare include medical emergency management [107],
and medical supplies insurance in large-scale emergencies [108].

The Ant System (AS) is the first ACO, which proved to be a viable
method for solving hard combinatorial optimization problems.
Over time, different variants of this algorithm have been designed.
In an AS, initially, each agent (artificial ant) is placed on some ran-
domly chosen node. An agent k currently at a node i choose to move
to node j by applying the probabilistic transition rule (2). After each
agent completes its tour, the pheromone amount on each path will
be adjusted according to Egs. (3-5).

« g
[z 0] x [n5] ifi € . )

P =1 2 [m® x @)
! 1€,6)

0 otherwise
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7 (t+1) = (1-p) X7, () + Az, () (3)
ATy () = D) ATf (1) (4)
k=1

Q/L, if (i,j) € tour done by agent k

j ( ) 0 otherwise

©)

In Egs. (2-5) the following notations are used: Q denotes an arbi-
trary constant; o and 3 are adjustable parameters that control the
relative weights of the heuristic visibility and the pheromone trail.
In the parameters establishment, a trade-off between edge length
and pheromone intensity appears to be necessary. Also, hy,, by, =
1/d, represents the heuristic visibility of edge (k, k), with dy , to be
the distance between the cities (k and /), and 0 < p < 1 to repre-
sent the trail evaporation. m denotes the number of ants. L; denotes
the length of the tour performed by agent k.

The Best-Worst Ant System (BWAS) [109,110] model tries to
improve the performance of ACO models applying some modifi-
cations in the specific way how the artificial ants search for food.
BWAS achieves exploitation of the search by allowing both the
iteration-best agent and the iteration-worst agents to update the
pheromone on the traversed trail. It makes use of the positive feed-
back of iteration-best agent and use of the negative feedback of
iteration-worst agent. This property has been proved efficient in dif-
ferent problem-solving. The use of this simple mechanism to limit
the strengths of the pheromone trails, effectively avoids premature
convergence of the search.

In a BWAS the applied probabilistic transition rule is defined by Eq.
(2). After each agent completes its tour, the evaporation is applied
according to Eq. (6) on all the edges (i, j). The iteration-best agent
and iteration-worst agent updates pheromones.

7 () = (1 -p)X7;(1) (6)

In the following, k denotes the iteration-best agent; L is the length
of the tour performed by the agent k. The iteration-best agent
update of pheromones is indicated in Egs. (7) and (8):

Q/L, if (i,j) € tour done by agent k

AT.IY 1) =
v ® 0 otherwise

@)

7; () = 7; (1) + AT (1) (8)

On the paths of the round trip of the iteration-worst agent for the
current iteration that are not in the best-to-date solution has addi-
tional evaporation as indicated in the following:

T () = (1 -p,) X7 () 9)

where p,,is an additional factor forall L,, € T,, and L,, & T,, N T,
T,, is the worst solution for the given iteration, and T, is the best-
to-date solution. Eq. (10) establishes the final pheromone update at
the end of iteration ¢ on all the edges (i, j).

T (t+1) =7, (1) (10)

A Min-Max Ant System (MMAS) [97,111,112] is an ACO, a vari-
ant of the AS. MMAS have some differences from the AS in some
aspects. The MMAS can be seen as an Interactive Machine Learn-
ing implementation, with external intervention [113]. An MMAS
give dynamically evolving bounds on the pheromone trail inten-
sities, this is done in such a way that the pheromone intensity on
all the paths is always within a specified limit of the path with the
greatest pheromone intensity. All the paths will have permanently
a non-trivial probability of being selected. This way a wider explo-
ration of the search space is assured. MMAS uses lower and upper
pheromone bounds to ensure that all of the pheromone intensities
are between this two bounds.

In an MMAS the applied probabilistic transition rule is defined
by Eq. (2). There are allowed to update pheromones: the best-
for-current-iteration or best-to-date agent or the best-after-latest-
reset agent or the best- to-date agent for even (or odd) iterations.
There are minimal and maximal pheromone limits to the quan-
tity of pheromone on the paths between cities, denoted as 7,,;,and
T,.ax. The evaporation can be expressed by Eq. (11), p € (0,1)
represents the trail evaporation. Eq. (12) expresses the pheromone
update based on the selected agent’s round trip

7; (1) = max ((1 - p) - T (1) , Tyin) (11)
7 (t+1) = min (7 (1) + AT (1), Tnar) (12)

where At? (f) = Q/LY™ if the path ij € T%, T¥ is the selected best-

to-date agent’s round trip L* is the length of the trip. It was used for
initiation 7y = 1/nr, where nr denotes the number of cities.

In our experimental setup, we considered ILSPL operating as a

BWAS [109,110]. ILSP' focuses on the solution of the TSP [42,43].
There are many applications, adaptations and similar problems
with the TSP. For example, Borsani et al. [114] proposed a human
resource scheduling model of home health service, and Kergosien
et al. [115] proposed a home health care problem that resembles an
extended, multiple TSP.

We considered a simple rote-learning approach, where ILSBL sim-

ply copies the behavior of a MMAS [97,111,112]. After learning, the
obtained multiagent system is denoted as ILSL. The effect of learn-
ing is the adaptation of the cooperative multiagent problem-solving
behavior. In our case study, we aim to verify if the adaptation has
as result a statistical significant change (increase or decrease) of the
ILSBL intelligence using the proposed metric.

We applied an a priori calculus in order to establish the necessary
experimental evaluations, |IntA| and |IntB|.

Calculation Input: aMet = 0.05; PowerMet (1 — BMet) = 0.8;
|IntA|/|IntB| = 0.96 (is not requested to sample sizes to be the
same, |IntA| to be equal |IntB|); Tails = two; Effect size d = 0.575
(medium effect size).

Calculation Output: |IntA| = 48, |IntB| = 50.

In the experimental setup, we considered maps with nr = 35 ran-
domly placed cities on the map. The problems considered in the
experimental problem-solving intelligence evaluations are by the
same type and dimensionality/complexity in the case of both ILS®t
and ILSAY. The parameters were considered: No = 1000 (number
of iterations); a, a = 1 (power of the pheromone); 8, f = 1 (dis-
tance/edge weight) and p = 0.1 (the evaporation factor). Figure 1
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and Table 2 present the obtained experimental evaluation results. In
the experimental evaluations, it was considered as the intelligence
indicator the obtained best-to-date travel value from the end of the
problem-solving.

In Table 2, symbol “#” indicates an intelligence indicator value that
is not identified as an outlier, but it is statistically further from the
rest. It can be noticed that no outlier values were detected. The
superscripts indices indicate at which application of the outliers’
detection test those value is identified as further from the rest. It
can be noticed that the outlier detection test was applied two times
on IntA (at the second application it does not detect any value
further from the rest), and recursively three times on IntB (at the
third application it does not detect any value further from the rest).
Table 2

The first two columns of Table 3, labeled as “IntA” and “IntB,
present the results of the Normality Verification and Extraction
Algorithm. The CIT is calculated as the mean of intelligence indica-
tors. SD denotes the standard deviation.

29
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Figure 1 Graphical representation of IntA and IntB.

Table2 IntA and IntB problem-solving intelligence evaluations results.
IntA IntB
7.172;  6.864; 7.691; 6.12 5.932; 5.454; 5.657; 5.706;
6.572; 6.612; 7.413; 5.786; 5.409; 5.442; 5.826; 5.123;
6.262;  6.626; 6.13; 6.217;  5.065; 4.81; 5.579;  5.853;
6.586; 6.467; 8.084; 7.313; 5.121; 5.459;  4.492; 4.944;
7.295; 6.473; 6.516; 6.657; 5.466; 4.978; 5.095; 5917
7.009; 8.297%1; 7.714;  5.76; 5315 5.558; 5.661;
6.729; 7.177; 6.887; 6.612; 5.546; 5.809; 5.729; 5.519;
5.99; 7.007;  7.333; 5.78; 5.288; 5.293;  5.365; 5.806;
6.585;  7.257; 7.225;  8.005; 4.465#2; 5.345; 5427, 5.217;
6.592; 6.741; 6.37; 5.944;  5.244; 5.741;  5.724; 5.579;
6.573; 6911; 6.513; 7.447; 5.599; 5.506; 5.907; 5.421;
7.066; 7.277; 6.924; 7.343; 5.312; 5.632; 5.101; 5.476;
6.204 4.405*1; 5111
Table 3 Results of VerExtr algorithm.
First Application Second Application
IntA IntB IntA* IntB*

CentrInd 6.841 5.40378 6.81 5.444
[LCIm, HCIm]  [6.671, [5.3,5.508] [6.648, [5.354,

7.011] 6.972] 5.535]
INVCentrind 0.1462 0.1851 0.1468 0.1837
SD 0.5861 0.3647 0.5515 0.3115
Sample size 48 50 47 48
CV/homogeneity 8.567/hom. 6.749/hom. 8.1/hom. 572CV <

10/hom.

CV, Coefficient of Variation; SD, Standard Deviation.

As a first approach for the normality verification, the K-S test of
normality was applied, at N = 0.05 significance level. The obtai-
ned results, presented in Table 4 shows that both samples, IntA and
IntB, passed the normality assumption. Based on this fact, the appli-
cation of a transformation or opting for the elimination of outlier
values is not required.

Furthermore, the forthcoming processing and analysis of the Verify
Evolution in Intelligence by Learning algorithm was applied. For the
verification of statistical equality of standard deviations SD, and
SDg, the F-test was applied. The calculation results where F = 2.583
and Pfval = 0.0013 (P-value of the F-test). The obtained result,
Pfval < oF with significance level aF = 0.05, proves that the
difference between the two considered SDs is statistically signifi-
cant. Based on this result, according to Step 3 of the Verify Evolu-
tion in Intelligence by Learning algorithm, it can be deduced that it
should be applied the Welch Corrected Unpaired Two-Sample T-test.
By applying the Welch’s Corrected Unpaired Two-Sample T-test we
obtained T = 14.507 and Pval =~ 0.0001. Based on the fact that
the Pval < aMet, it can be concluded that the ILSP intelligence
is changed, it performed an evolutionary or involutionary step in
intelligence. We calculated the INVCentrind = 1/CentrInd, based
on the fact that in the experimental study it was considered as intel-
ligence indicator the global-best found solution. Smaller global-best
value is better, suggests higher intelligence than a higher global-
best. Given that INVCentrIndA < INVCentrIndB, based on Step 4
of the II-Learn metric algorithm, it can be deduced that the intelli-
gence of ILSBL evolved, in intelligence, by making an evolutionary
step in intelligence.

The CL is established as 95%. LCIm, HCIm denotes the low and high
bounds of the confidence interval of the mean.

In order to obtain a precise conclusion related to the fact that ILS®"

has made an evolutionary step, as a second analysis of the normality
using the Shapiro-Wilk test. By analyzing the results of the Shapiro-
Wilk test for IntA and IntB presented in Table 5, can be formulated
the conclusion that the data did not pass the normality assumption.
For an alternative visual analysis, we created the histograms cor-
responding to IntA, (Figure 2) and IntB (Figure 3), and Q-Q Plots
corresponding to IntA (Figure 4) and IntB (Figure 5). The provided
visual representation suggests also the violation of the normality
assumption.

To obtain normally distributed data, we opted for the applica-
tion of outlier intelligence detection using the Grubbs test. The

Table 4 Results of K-S test applied to IntA, IntB.

IntA IntB
K-S statistic 0.1023 0.1057
Pn (P-value of normality test) >0.10 >0.10
Normality passed (Pn > aN) Yes Yes

K-S, Kolmogorov—Smimov.

Table 5 Results of S-W test for IntA and IntB.

IntA IntB
S-W statistic 0.977 0.931
Pn (P-value of normality test) 0.457 0.006
Normality passed (Pn > aN) No No

S-W test, Shapiro-Wilk test.
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Figure 2 Histogram of the IntA data for the visual analysis of the
normality.
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Figure 3 Histogram of the IntB data for the visual analysis of the

normality.
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Figure 4 Normal Quantile-Quantile (Q-Q) Plot of IntA.
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Figure 5 Normal Quantile-Quantile (Q-Q) Plot IntB.

decision was made also taking into consideration the expectable
data normality by analyzing the drawn Q-Q plots. The Grubbs test
was applied at a significance level of aG = 0.05. The two-sided
Grubbs test was applied in order to detect at the same time low and
high outlier values and low and high values that are not outliers but
are statistically further from the rest.

Table 6 Results of normality tests applied to IntA* and IntB*.

IntA* IntB*
K-S statistic 0.09878 0.08
Pn (calculated >0.01 >0.1 F
P-value) g
Normality Yes Yes &
passed
(Pn > aN)
S-W statistic 0.98 0.965 »
Pn (calculated 0.609 0.161 J
P-value) §
Normality Yes Yes 2
passed
(Pn > aN)

K-S, Kolmogorov-Smirnov, S-W test, Shapiro-Wilk.

In the case of IntA, at the first application of the outlier detection
test, outliers were not identified, only the value 8.297 that was iden-
tified as further from the rest (calculated Z = 2.484 and the Critical
Value Of Z: 3.112). The decision was the elimination of this value,
IntA* = IntA - {8.297}. The second column of Table 6 labeled
“ILSBL/IntA*” presents the results obtained by analyzing IntA*. It
can be noticed that all the normality tests were passed.

In the case of IntB at the first application of the outlier detection
test, outliers were not identified, only the value 4.405 that was iden-
tified as further from the rest (the calculated Z = 2.739 and the
Critical Value Of Z: 3.128). Thus, we decided on the elimination
of this value, IntB* = IntB - {4.405}. The obtained result of the
Shapiro-Wilk test indicated that IntB* did not pass the normality
assumption. We applied the outlier intelligence detection test again.
No outliers were identified, only a value 4.465 that was further from
the rest (the calculated Z = 2.834 and the Critical Value Of Z: 3.12).
Thus we decided to eliminate this value, IntB* = IntB - {4.465}.
Table 6 shows that in the case of IntB* all the normality tests were
passed. The second column of Table 6 presents the results obtained
by analyzing IntB*.

The final obtained IntA* and IntB* passed the normality assump-
tion according to K-S and S-W tests, thus allowing the application
of the specific data analysis in order of verification if the studied
system performed an evolutionary step in intelligence.

For the verification of statistical equality of standard deviations
SD,* and SDg*, the F-test was applied. The obtained calculation
results where F = 3.134 and Pfval = 0.0002 (P-value of the F-test).
The obtained Pfval, Pfval < aF with aF = 0.05, proves that the dif-
ference between the SD of SD * and SDg %, is statistically significant.
Based on this result, according to Step 2 of the Verify Evolution in
Intelligence by Learning algorithm, it can be deduced that the Welch’s
Corrected Unpaired Two-Sample T-test should be applied. Following
this, T = 14.822, and Pval < 0.0001 were obtained. Based on the
fact that Pval < aMmet, it can be concluded that the ILSP intelli-
gence is changed significantly. This proves that ILS®L made an evo-
lutionary step in intelligence or involutionary step in intelligence.
Based on the fact that INVCentrIndA < INVCentrIndB, it can be
concluded that an evolutionary step in intelligence was made.

Summarizing, in the performed experimental study, first we applied
the K-S test. The data passed the normality test, and based on
this consideration we used the proposed metric for measuring the
machine intelligence of the studied learning system. At a second
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approach, we applied the S-W test that is considered more power-
ful than the K-S test. None of IntA and IntB passed the normality
assumption by using the Shapiro- Wilk test. Based on this fact it was
opted for the elimination of outliers, finally obtaining normally dis-
tributed intelligence indicator data, followed by the application of
the metric. The conclusion in both cases with the results presented
in the previous paragraphs, was the same, that LSl made a mea-
surable evolutionary step in intelligence.

5. DISCUSSION

Intelligent CMASs are challenged to solve difficult practical prob-
lems in an efficient and effective way. In our study, we consider that
machine intelligence measuring based on the ability of a CMAS to
solve difficult problems. If learning results in a statistically signif-
icant improvement of machine intelligence then this improvement
should be measurable by a metric. There are very few designed met-
rics that can be applied for measuring machine intelligence. Usual
drawbacks of such metrics include limitations in universality, accu-
racy and robustness. Another important aspect that a metric should
treat consists in the variability of intelligence.

Considering the previously mentioned limitations, it was proposed
a novel accurate and robust metric called II-Learn (metric for mea-
suring Intelligence Increase of artificial Learning systems) for measur-
ing the increase of intelligence of a CMAS after a learning process.

The intelligence measuring criteria in our approach is based on
some kind of difficult problem-solving ability. The fact that a spe-
cific type of problem could be solved with more or less intelli-
gence by different CMASs is well-known. In case of a CMAS if
there are some changes (changing of the problem-solving knowl-
edge or details detained by a problem whose solving is in progress),
which could be the result, for example, of performed autonomous
learning, the problem-solving ability could change also (it could
increases, remains unmodified or it could even decreases).

In a previous study, the MetrIntComp metric [41] with the purpose
of measurement of machine intelligence of CMASs is proposed. The
intelligence measuring criteria was also based on the principle of
difficult problem-solving ability. MetrIntComp was designed to be
robust, which is based on the fact that in the process of classification
it uses the Two-Sample Unpaired Mann-Whitney test that is known
as a non-parametric robust test [116]. Since both metrics quantify
the problem-solving intelligence of learning systems, both II-Learn
and MetrIntComp can be considered comparable.

The novelty of II-Learn versus MetrIntComp is based on different
performed processing and analyses. One of the significant differ-
ences from the performed computations point of view between the
two metrics is that II-Learn uses Two-Sample Unpaired T-test [88-
90] and Welch Two-Sample Unpaired T-test (Welch’s test) [91,92]
for intelligence comparison as the parametric analog of the Mann-
Whitney test. Two-Sample Unpaired T-test is appropriate in the case
of equality from the statistical point of view between the SDs of the
two intelligence indicators samples. One representing the problem-
solving intelligence evaluation result of the system before learn-
ing, the other one representing the problem-solving intelligence
evaluation result after the learning. The Welchs test [90] is more
appropriate when the SDs are not equal from the statistical point

of view. Welch’s test represents a generalization of the Two-Sample
Unpaired T-test, in the sense that it can be used in case of unequal
SDs [91]. In [92] the Welchs test was proved more reliable than Two-
Sample Unpaired T-test when the two samples have unequal SDs
and unequal sample sizes. The statistical power of Welch’s t-test is
very close to that of Two-Sample Unpaired T-test, when the popu-
lation SDs are equal and sample sizes are balanced [92]. In [117]
a generalization to the Welch’s t-test was presented, in order to be
applied to any number of samples (even more than two samples).
That study showed that this generalization is more robust than
One-Way Analysis of Variance (ANOVA) that can be applied to any
number of samples; however, it requires the assumption of normal-
ity and equality of sample sizes.

The main advantage of II-Learn over the MetrIntComp is its
accuracy for smaller sample sizes. It takes into consideration the
sample intelligence indicator data property to be normally dis-
tributed. Based on this fact, a mathematically grounded calculus is
applied for verification if the studied CMAS made an evolutionary
step, which is the most appropriate for normally distributed data.
In the case of non-Gaussian intelligence indicator data, a trans-
formation should be applied (see Table 1), resulting in enhanced
robustness. Another advantage in the calculation of II-Learn over
MetrIntComp is that it considers the presence of possible extremes
and applies a methodology to remove them from the samples.

Similarly to the humans, intelligent computing systems have a vari-
ability of intelligence in problem-solving. The elaborated II-Learn
metric takes into consideration this variability in problem-solving
intelligence. In a specific situation, the studied system’s reaction
could be more or less intelligent. As a measure of the CIT, we estab-
lished as the most representative the mean based on the considera-
tion that the data were sampled from a Gaussian population.

The Central Limit Theorem can be enounced as follows [118]: given
independent random samples of M observations, the distribution
of sample means approaches normality as the size of M increases,
regardless of the shape of the population distribution. In general,
many studies consider that M should be at least 30 or higher. In
[119] it is proved that in the case of samples consisting of hun-
dreds of data, the distribution of the data can be ignored. In our
case study making hundreds of problem-solving intelligence, evalu-
ations could be very expensive or even impossible. As a good prac-
tice, we recommend using intelligence indicators sets larger than
30. Thus, we suggest the application of II-Learn metric with at least
30 experimental evaluation of the learning system before the learn-
ing process and with at least 30 experimental evaluations after the
learning process.

The number of necessary experimental evaluations is also an
important issue that should be analyzed in order to formulate scien-
tifically correct conclusions. Conclusions formulated based on too
few experimental evaluations could be inaccurate or even incorrect.
Sometimes the realization of an experiment could be expensive or
time-consuming, thus suggesting the limitation of the number of
experiments. Based on this aspect we consider that, in some cases,
a compromise must be made with respect to the number of exper-
iments that will be realized, and the chance of an error occurrence
(in our approach the probability of occurrence of a type I error or
a type II error). In this paper, we proposed a calculus for the exact
estimation of the number of experimental evaluations.



L.B. Iantovics et al. / International Journal of Computational Intelligence Systems, in press 13

Different metrics presented in the literature like those based on
analytical models are limited in universality. II-Learn metric is
universal, it can be used for intelligent learning systems gener-
ally; it does not depend on aspects like the intelligent system’s
architecture. II-Learn can be applied even in the case of indi-
vidual learning agents. The universality is assured based on our
specific approach on that a system’s intelligence is evaluated on
some difficult problems-solving evaluations before a learning pro-
cess and problem-solving intelligence evaluations after a learning
process. On these two obtained intelligence indicators data sets is
applied some specific calculus in order to verify if the intelligence as
result of learning is changed, and if this has as an effect that the
system has made an evolutionary or involutionary step in intel-
ligence. The method of the metric provides both accuracy
and robustness, addressing the variability in problem-solving
intelligence.

We would like to mention that the significance that we give to the
notion universality is different from the significance given to uni-
versality in some other studies, like that presented by Hernandez-
Orallo and Dowe [60]. The researchers proposed the idea of
universal anytime intelligence test able to measure any kind of nat-
ural/biological and Al In our approach, the notion of universality
in intelligence measuring is considered independent of the studied
system architecture. We do not intend to build metrics able to mea-
sure both biological (including the human) and Al

6. CONCLUSIONS

In this paper, we proposed a novel metric called II-Learn, for
measuring a cooperative multiagent system (able to learn) intelli-
gence, and the verification if the learning resulted in an intelligence
level/measure modification by statistically significant increasing or
decreasing. II-Learn metric takes into consideration the variability
in the problem-solving intelligence (lower and higher intelligence
in different situations). Advantages of the II-Learn metric consist in
universality, accuracy and robustness.

The proposed II-Learn metric was compared with the state-of-the-
art MetrIntComp metric that was also designed to be robust. For the
II-Learn metric robustness increase we proposed solutions based
on the experimental intelligence evaluations results transforma-
tion and detection of experimentally obtained outlier intelligence
values. The main advantage of II-Learn over the MetrIntComp
is its increased accuracy. Another advantage of II-Learn over
MetrIntComp is that it considers the presence of possible outliers
and applies a methodology to remove them from the measured
problem-solving intelligence samples.

For proving the effectiveness of the metric, we performed a case
study, which showed that the learning process had as an effect the
making of an evolutionary step in the intelligence (the studied sys-
tem evolved).

II-Learn is an original metric, and it will represent the basis for
the intelligence measurement of learning systems, and intelligence
increase based on learning, in many future researches related to
different intelligent systems, which operate individually or coop-
erate with each other. Examples of practical applications, may
include intelligent robotic transportation systems; swarm of robots
performing different tasks in different environments; agents spe-
cialized in solving different tasks in the healthcare, agents and

cooperative multiagent systems able to solve different tasks in
transportation.
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