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Abstract: Community detection in networks plays a key role in understanding their structures, and 

the application of clustering algorithms in community detection tasks in complex networks has 

attracted intensive attention in recent years. In this paper, based on the definition of uncertainty of 

node community belongings, the node density is proposed first. After that, the DD (the combination 

of node density and node degree centrality) is proposed for initial node selection in community 

detection. Finally, based on the DD and k-means clustering algorithm, we proposed a community 

detection approach, the density-degree centrality-jaccard-k-means method (DDJKM). The DDJKM 

algorithm can avoid the problem of random selection of initial cluster centers in conventional k-

means clustering algorithms, so that isolated nodes will not be selected as initial cluster centers. 

Additionally, DDJKM can reduce the iteration times in the clustering process and the over-short 

distances between the initial cluster centers can be avoided by calculating the node similarity. The 

proposed method is compared with state-of-the-art algorithms on synthetic networks and real-

world networks. The experimental results show the effectiveness of the proposed method in 

accurately describing the community. The results also show that the DDJKM is practical a approach 

for the detection of communities with large network datasets. 

Keywords: community detection; CB-uncertainty (Community belongings uncertainty); DD (the 

combination of node density and node degree centrality); k-means 

 

1. Introduction 

Recently, complex networks have attracted a great deal of attention in various fields [1,2], 

including sociology, computer science, mathematics, and biology. For large-scale networks, the 

presence of communities is an important feature, as it indicates the existence of groups of vertices 

within which connections are dense, but between which they are sparse [3]. Indeed, community 

detection has been widely applied in, e.g., community establishment in social media [4], the collection 

of similar features in parallel processing [5,6], and sharing research interests by intergroup authors 

in co-authorship networks [7]. 

To date, a large number of community detection algorithms for complex networks have been 

proposed [8,9], including hierarchical clustering algorithms [10], label propagation algorithms [11–

13], density-based algorithms [14,15], random-walk-based algorithms [16,17], and so on. The k-means 

clustering algorithm divides the data into clusters (the cluster number is predetermined) based on 

minimum error functions [18]. This algorithm is characterized by rapid clustering, easy 

implementation, and effective classification in large-scale dataset, and has been widely applied for 

community detection in complex networks. Additionally, the k-means clustering algorithm shows 
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low time complexity compared to clustering methods based on centrality and similarity [19–21]. 

Nevertheless, conventional k-means clustering algorithms have several limitations [22]. First, the 

selection of initial cluster centers in traditional k-means clustering algorithms, which has a 

determining effect on the clustering result, is a random process. Hence, effective clustering cannot be 

guaranteed [23]. Second, the node similarity has a significant effect on the convergence rate and 

accuracy of k-means clustering algorithms. Therefore, the iteration times in the k-means clustering 

algorithm can be effectively reduced, and the accuracy of community classification can be effectively 

improved by selecting appropriate initial cluster centers, defining appropriate node similarities, and 

setting appropriate stop conditions. 

In this paper, the k-means clustering-based DDJKM algorithm for community detection was 

proposed, in which the community belongingness of nodes was described by the node uncertainty; 

density was introduced by information entropy, and the initial cluster centers were selected by the 

balance of the degree centrality, density, and the similarity of nodes. In this algorithm, the node 

similarity matrix is constructed as the clustering matrix by the node similarity in the network. This 

algorithm can effectively select the clustering center, thus preventing the selection of initial cluster 

centers that are too close to each other, and reducing the iteration times in the clustering process. The 

experimental results show the feasibility of the algorithm. 

The rest of the paper is organized as follows: The theory behind the proposed algorithm, 

including the calculation equations for node uncertainty, node degree, node density, node balance, 

and node similarity, is discussed in Section 2. The details of DDJKM algorithm are given in Section 3. 

The performance of the proposed algorithm is evaluated in real-world networks and artificial 

networks, and compared with those of existing algorithms in Section 4. Finally, the conclusion is 

presented in Section 5. 

2. Theory 

2.1. Uncertainty 

In the study of community structures in complex networks, the community belongingness (CB) 

of a node is certain if this node and its adjacent nodes are in the same community. Otherwise, the CB 

of a given node exhibits uncertainty. This is consistent with evaluations of information uncertainty 

by information entropy, where information uncertainty is proportional to information entropy. 

Therefore, the uncertainty of CB of nodes was established as follows: 

The network is represented by an unweighted, undirected graph 𝐺 =  (𝑉, 𝐸) , where 𝑉(𝐺) =

{𝑣1, 𝑣2, … , 𝑣𝑛} refers to the node set, and 𝐸(𝐺) = {𝑒1, 𝑒2, … , 𝑒𝑘} refers to the edge set. |𝑉| = 𝑛, |𝐸| =

𝑚 . 𝑁(𝑣𝑖) refers to the neighbor node set in the subgraph generated by the h hops forward breadth-

first search (BFS) of 𝑣
𝑖
 . If all 𝑁(𝑣𝑖) are in community 𝑐𝑗  , the CB uncertainty of 𝑣

𝑖
 in 𝑐𝑗 is 0; if the 

majority of 𝑁(𝑣𝑖) are in community 𝑐𝑗  , the CB uncertainty of 𝑣
𝑖
 in 𝑐𝑗 is considered to be low; if the 

majority of 𝑁(𝑣𝑖) are not in community 𝑐𝑗  , the CB uncertainty of 𝑣
𝑖
 in 𝑐𝑗 is considered to be high. 

The parameter m refers to the number of communities in the network, and the CB uncertainty of the 

node refers to a quantified parameter if the node does not belong to a specific community. The CB 

uncertainty of a node in a specific community is defined as a random variable 𝐶 (𝑐
1

, 𝑐
2

, 𝑐
3

, … , 𝑐
𝑚

), 

and the probability of the 𝑖 -th node in the 𝑞 -th community is defined as 𝑝(𝑐
𝑞
) , where 𝑞 =

1,2, … , 𝑚 . Then, the CB uncertainty of 𝑣
𝑖
 is defined as: 

𝐸𝑛𝑡𝑜𝑟𝑝𝑦(𝑣𝑖
ℎ) = − ∑ 𝑝(𝑐

𝑞
) 𝑙𝑜𝑔

2
𝑝(𝑐

𝑞
)

𝑚

𝑞=1
  (1) 

where 𝑖  refers to the node number, ℎ  refers to the forward hops of BFS, and 𝐺
𝑖

ℎ
 refers to the 

subgraph generated by h-hop BFS of 𝑣
𝑖
 as the initial node respectively. 𝑝(𝑐

𝑞
)  refers to the ratio of 

the number of nodes in the subgraph 𝐺𝑖
ℎ(𝑁) to the number of nodes in the community 𝑐𝑞(𝑁′) : 
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𝑝 (𝑐
𝑞
) =

𝑁
′

𝑁
 (2) 

Figure 1 describes the CB uncertainty of example nodes. As shown in Figure 1a, three 

communities (𝑐
1

, 𝑐
2

, 𝑐
3

) were presented, node 2 was identified in 𝑐
1

 , as well as nodes 1–4 in its 

subgraph of node 2 generated by two-hop forward BFS. According to Equation (2), the quantity ratios 

of nodes in the subgraph generated by a two-hop forward BFS of node 2 that are in c1, c2, and c3 and 

all nodes in the subgraph were 𝑝(𝑐
1

) = 1, 𝑝(𝑐
2

) = 0, and 𝑝(𝑐
3

) = 0 , respectively. The uncertainty of 

node 2 at h = 2 was calculated by Equation (1): 

𝐸𝑛𝑡𝑜𝑟𝑝𝑦 (𝑣
2

2
) = −(1 × log2 1 + 0 + 0) = 0  

Figure 1b shows the uncertainty of nodes on the sample network (node uncertainty decreased 

with its size). According to Figure 1b, nodes with high uncertainty are marginal ones connected to 

the community (e.g., nodes 4, 5, 8, and 10 in Figure 1b). Herein, node 5 exhibits maximum uncertainty, 

as it is connected to all three communities. On the other hand, nodes with low uncertainty are 

marginal ones that are not adjacent to any other community (e.g., nodes 2, 6, and 11–13 in Figure 1b), 

as the community belongingness of these nodes is highly likely. 

  

(a) (b) 

Figure 1. (a) Sample network; (b) Node uncertainty on the sample network at h = 2. 

2.2. Community Belongingness 

To determine the CB uncertainty of a given node, it is essential to obtain the CB of the node in 

advance. However, the initial CB of nodes for community detections in complex networks is 

unknown, and the CB uncertainty of nodes cannot be used as criteria for the selection of initial nodes 

in community detection algorithms; instead, quantified evaluation of the CB certainty of the 

corresponding node is required. As density is a measurable parameter in nature, we propose that the 

selection of initial nodes for community detection shall be based on the node density, instead of the 

entropy in the network. The node density is determined based on quantities of edges and nodes in 

the subgraph generated by a h-hop forward BFS of this node; it quantifies the CB certainty of this 

node in a specific community. The node density is defined as: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑣𝑖
ℎ) = |𝐸′|/(|𝑉′|(|𝑉′| − 1)/2) (3) 

where 𝑖 refers to the 𝑖 -th node, ℎ refers to the forward hop count from 𝑣𝑖  , 𝑉′ refers to the set of 

nodes in the subgraph 𝐺′ with ℎ hops forward BFS from 𝑣𝑖  , |𝑉′ | refers to the quantity of nodes in 

𝑉′ , 𝐸′ refers to the set of edges in the subgraph 𝐺′ , and |𝐸′ | refers to the quantity of edges in 𝐸′ . 

Figure 2 shows a sample network for the calculation of node density, and Table 1 summarizes 

the node density of the two-hop subgraph of each node. 
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Figure 2. Community Belongingness of each node on the sample network of Figure 1a when h = 2. 

Figure 2 illustrates a sample network for the calculation of node density. Herein, a two-hop 

forward was involved due to the small size of the sample network. For example, from the calculation 

of the density of node 1, the set of nodes two hops forward from node 1 is: 

𝑛(𝑣𝑖
ℎ) = 𝑛(𝑣1

2) = {1, 2, 3, 4, 5}.  

Five nodes and five edges were observed in the subgraphs. The density of node 1 can be 

calculated by Equation (3): 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑣1
2) =

5

 (5×4) /2
= 0.2.  

Table 1 summarizes the density of each node in two-hop subgraph of the sample network in 

Figure 2. As observed, the value of density is proportional to the CB certainty of the node, which is 

directly related to its location in the network. For instance, nodes 2, 6, node 12, which are marginal 

nodes in the network, exhibited high node density, while node 5, in the central part of the network, 

exhibited lowest node density. The real community structure has a similar characteristic: nodes with 

low node densities tend to occur with close connections to other communities, while nodes with high 

node densities exhibit no connections to other communities. This is the opposite to the node centrality 

in conventional community detections, and can be used for the determination of seed nodes for 

community division. 

Table 1. CB uncertainty of each node in the two-hop subgraph on the sample network shown in 

Figure 2. 

Node Density 

2, 6, 12 0.667 

1, 3, 7, 9, 11, 

13 
0.5 

4, 8, 10 0.333 

5 0.2 

2.3. Similarity 

In complex networks, the connections among intracommunity nodes are dense, while 

intercommunity nodes are sparse [24]. Node similarity is an effective parameter for the quantification 

of node affinity; the degree of similarity between two nodes is proportional to their common adjacent 

nodes, i.e., nodes with high similarity tend to connect to each other. So, the similarity of two nodes is 

a key parameter in the evaluation of the affinity of nodes i and j [25]. Node similarity includes 

common neighbors, Cosine, Jaccard, Sorensen index, PHI, Preferential attachment, Adamic-Adar, 

Allocation of resources [26–33], and Random walk similarities [34–36]. In this paper, we interpret 

similarity of 𝑣𝑖 and 𝑣𝑗 by calculating it based on their Jaccard correlation coefficients: 
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𝐽𝑎𝑐𝑆𝑖𝑚(𝑣𝑖 , 𝑣𝑗) =
|𝑁(𝑣𝑖) ∩ 𝑁(𝑣𝑗)|

|𝑁(𝑣𝑖) ∪ 𝑁(𝑣𝑗)|
  (4) 

where 𝑁(𝑣𝑖) and 𝑁(𝑣𝑗)  are adjacent node sets of node 𝑣𝑖  and 𝑣𝑗  , |𝑁(𝑣𝑖) ∩ 𝑁(𝑣𝑗)|  refers to the 

quantity of common adjacent nodes shared by 𝑣𝑖 and 𝑣𝑗  , and |𝑁(𝑣𝑖) ∪ 𝑁(𝑣𝑗)| refers to the quantity 

of nodes in the union of common adjacent node sets of 𝑣𝑖 and 𝑣𝑗  . 

2.4. Balance 

It is well known that the selection of seed nodes with good centrality can improve the 

performance of k-means clustering. Centrality parameters including betweenness, closeness, k-shell, 

and uniform H-index have limitations in community detections [37]. The community centrality can 

precisely describe node centrality [38], and the computing complexity of community centrality is 

𝑂 (𝑛𝑘5) . Despite this, the node degree centrality is a key parameter describing the community 

centrality in networks. Only the selection of seed nodes in k-means clustering algorithms based on 

node degree centrality may lead to overly-short distances between initial cluster centers, thus 

affecting clustering performance. As it can precisely reflect the CB certainty of nodes, the node 

density can be combined with the degree centrality as criteria for the selection of initial nodes. 

Therefore, 𝐷𝐷(𝑣𝑖) , the parameter for selection of the 𝑖 -th initial node, is defined as: 

𝐷𝐷(𝑣𝑖) = 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑣𝑖
ℎ) × 𝐷𝑒𝑔𝑟𝑒𝑒(𝑣𝑖) (5) 

where ℎ  refers to the hop count of forward BFS, 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑣𝑖
ℎ)  refers to the node density of 𝑣𝑖 

calculated by Equation (3), and 𝐷𝑒𝑔𝑟𝑒𝑒(𝑣𝑖) refers to the node degree of 𝑣𝑖  . 

3. Method 

In k-means clustering algorithms, the number of clusters is a key parameter. In [39], the Monte 

Carlo-based algorithm proposes an effective method by which to determine the community quantity. 

Hence, this study focuses on the effective selection of initial seed nodes and community detection in 

networks using k-means clustering algorithms in complex network with known community 

numbers. 

As mentioned, node density is proportional to the CB certainty of a node in a specific 

community, and can be employed for the selection of seed nodes. However, the seed nodes cannot 

be selected based on the node density alone, as it may lead to the selection of isolated nodes, thus 

reducing the accuracy of clustering. Meanwhile, the seed nodes cannot be selected based on the 

degree centrality alone either, as most of the seed nodes selected in this way may be in same 

community due to the limited information contained in the degree centrality. Therefore, we propose 

𝐷𝐷 , a parameter balancing node degree centrality and node density, as a criterion for initial node 

selection.  

In summary, the DDJKM algorithm based on node density, degree centrality, and conventional 

k-means clustering algorithms is proposed. In this algorithm, initial cluster centers are selected based 

on a combination of node degree, density, and similarity, while node centrality is also considered to 

avoid the selection of isolated nodes, thus avoiding local convergence in clustering and improving 

the effectiveness of community detection. 

3.1. DDJKM Algorithm 

Input: undirected connection network 𝐺 = {𝑉, 𝐸} , the quantity of communities to be divided is 

𝐾. 𝑉, and 𝐸 are sets of nodes and edges. 

Output: community division = Com (1), Com (2), …, Com (K). 

Step 1: Establish the n-dimensional vector 𝐸 (𝐺) of the node degree and the n-dimensional 

vector  𝐷(𝐺) of node density based on 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑣𝑖
ℎ) : 

𝐷(𝐺) = (𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑣1
ℎ), 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑣2

ℎ), ⋯ , 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑣𝑛
ℎ)) (6) 
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Step 2: All nodes in the network are arranged in descending order, 𝐷𝐷 (𝑣
𝑖
) , which is the product 

of node density and node degree according to Equation (5). In cases of nodes with same 𝐷𝐷(𝑣𝑖) , 

these nodes are arranged in ascending order of node number. In this way, 𝐷𝐷𝑆𝑒𝑞(𝐺), a sequence of 

𝐷𝐷(𝑣𝑖) of nodes in the entire network, is established; 

Step 3: Select the first element in 𝐷𝐷𝑆𝑒𝑞(𝐺) as the first initial node in the k-means clustering 

algorithm, add it to the clustering center node set 𝑆𝑒𝑒𝑑(𝑣) , and obtain 𝑆(𝑣) , which consists of nodes 

in the network that are not clustering center nodes: 

𝑆(𝑣) = 𝐺(𝑣) − 𝑆𝑒𝑒𝑑(𝑣) (7) 

where 𝐺(𝑣) is the set of all nodes in network 𝐺. 

Step 4: Calculate the node similarity using Equation (4) and establish the n-dimensional 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐺)  of nodes in network 𝐺: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐺) = [

𝐽𝑎𝑐𝑆𝑖𝑚(𝑣
1

, 𝑣
1

) ⋯ 𝐽𝑎𝑐𝑆𝑖𝑚 (𝑣
1

, 𝑣
𝑛

)

⋮ ⋯ ⋮

𝐽𝑎𝑐𝑆𝑖𝑚 (𝑣
𝑛

, 𝑣
1

) ⋯ 𝐽𝑎𝑐𝑆𝑖𝑚 (𝑣
𝑛

, 𝑣
𝑛

)

]  (8) 

where 𝐽𝑎𝑐𝑆𝑖𝑚(𝑣
𝑖
, 𝑣

𝑗
)  refers to the Jaccard correlation coefficient between 𝑣

𝑖
 and 𝑣

𝑗
. 

Step 5: Calculate the correlation matrix 𝐷𝐷𝐽(𝐺) of nodes in network 𝐺 using Equations (6) and 

(8): 

𝐷𝐷𝐽(𝐺) = (𝐷(𝐺)𝐷(𝐺)𝑇) 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐺) (9) 

where 𝐷(𝐺)𝐷(𝐺)𝑇 is matrix product of 𝐷(𝐺) and 𝐷(𝐺)𝑇  , and 𝐷𝐷𝐽(𝐺) is the Hadamard product of 

𝐷(𝐺)𝐷(𝐺)𝑇 and 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐺) . 

Step 6: Calculate the average correlation ( 𝑅𝑝 ) of nodes in 𝑆(𝑣) and nodes in 𝑆𝑒𝑒𝑑(𝑣) : 

𝑅𝑝 = ∑ 𝑅𝑞𝑝
|𝑆𝑒𝑒𝑑(𝑣)|
𝑞=1 |𝑆𝑒𝑒𝑑(𝑣)|⁄   (10) 

where 𝑅𝑞𝑝 refers to the node correlation (correlation value in the correlation matrix 𝐷𝐷𝐽(𝐺) ) of 𝑣𝑝 

and 𝑠𝑞  , 𝑞 = 1, 2, … , |𝑆𝑒𝑒𝑑(𝑣)|, 𝑝 = 1, 2, … , |𝑆(𝑣)|, |𝑆𝑒𝑒𝑑(𝑣)|  refers to the number of nodes in 

𝑆𝑒𝑒𝑑(𝑣) , and |𝑆(𝑣)| refers to the quantity of nodes in 𝑆(𝑣) . 

Step 7: Determine the minimum average correlation ( Min𝑅𝑝 ) and establish 𝑀𝑖𝑛𝑀𝑒𝑎𝑛(𝑣) that 

consists of nodes in 𝑆(𝑣) with average correlation = Min𝑅𝑝 . 

Step 8: Calculate 𝐷𝐷 (𝑣
𝑖
) , which is the product of node density and node degree of each node 

in the node set 𝑀𝑖𝑛𝑀𝑒𝑎𝑛(𝑣), and add the node with the maximum 𝐷𝐷(𝑣𝑖) to 𝑆𝑒𝑒𝑑(𝑣) . 

Step 9: If |𝑆𝑒𝑒𝑑(𝑣)| = K, terminate iteration; if not, return to Step 6. 

Step 10: Execute the k-means community detection clustering algorithm. 

Step 11: Export K communities (Com (1), Com (2), …, Com (K)) as each community corresponds 

to a clustering result. 

3.2. K-Means Community Detection Clustering Algorithm 

Input: K clustering centers, node similarity matrix 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐺) . 

Output: Cluster (1), Cluster (2), …, Cluster (K). 

Step 1: The Euclidean distance of node similarity vector is: 

𝐽𝑎𝑐𝑑(𝑗𝑣𝑎 , 𝑗𝑣𝑏) = √∑ (𝐽𝑎𝑐𝑆𝑖𝑚(𝑣𝑎 , 𝑣𝑖) − 𝐽𝑎𝑐𝑆𝑖𝑚(𝑣𝑏 , 𝑣𝑖))
2𝑛

𝑖=1   (11) 

where 𝑗𝑣
𝑎
 and 𝑗𝑣

𝑏
 refer to similarity vectors (in 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐺) ) corresponding to va  and vb . The 

Euclidean distance of other nodes to K clustering centers are inversely proportional to their similarity. 

Then, all nodes are categorized into the cluster whose clustering center has a shortest distance from 

this node. In this way, K clusters (Cluster (1), Cluster (2), …, Cluster (K)) are generated. 

Step 2: Recalculate the clustering center of Cluster (j) and define it as a new clustering center 𝐶𝑗  : 
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𝐶𝑗 = ∑ 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐺)𝑛𝑗
|𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑗)|
𝑛=1 |𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑗)|⁄   (12) 

where 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐺) 𝑛𝑗  refers to the vector in 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐺) corresponding to 𝑣𝑛  in the j-th cluster, 

𝑛 = 1, 2, … , |𝐶𝑙𝑢𝑠𝑡𝑟 (𝐾)| , and |𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝑗)| refers to the number of nodes in the j-th cluster. 

Step 3: Calculate the Euclidean distances of all new and previous clustering centers to determine 

their maximum variation (MaxDist). 

Step 4: If MaxDist remains unchanged or the maximum iteration times (Max-Iteration) were 

reached, iteration is terminated; proceed to the next step, otherwise return to Step 1. 

3.3. Complexity Analysis 

The complexity of community detection in this study is mainly caused by the density and 

community detections. In the calculation of density, the density of each node should be calculated. 

Meanwhile, we define the forward hop count as ℎ , the average node density as �̅� , the total number 

of nodes in the network as 𝑛 , and the time complexity in the process as  𝑂(𝑛�̅�ℎ) . As the density 

calculation is a local process, it can be achieved by distributed computation; the time complexity is 

𝑂(�̅�ℎ) where ℎ ≤ 3 in most cases. The DDJKM algorithm involves the calculation of a correlation 

degree matrix 𝐷𝐷𝐽(𝐺) , which is a sparse matrix. Meanwhile, 𝐷 (𝐺) × 𝐷 (𝐺)𝑇  is a sparse matrix 

whose calculated complexity does not exceed 𝑂(𝑚) . In community detection, the degree and local 

similarity of each node should be obtained, taking 𝑂(𝑚𝑛)  operations to traverse all edges and 

adjacent nodes, where 𝑚  is the number of edges. The complexity of the k-means algorithm is 

𝑂(𝑛𝐾𝑡), where 𝐾 refers to the cluster quantity and 𝑡 to the iteration times. As 𝐾 ≪ 𝑛 and 𝑡 ≪ 𝑛 in 

most cases, the complexity of DDJKM algorithm is 𝑂(�̅�ℎ + 𝑚𝑛 + 𝑛𝐾𝑡 + 𝑚) = 𝑂(𝑚𝑛).  

4. Experimental 

In this section, we used seven real network datasets and the LFR benchmark datasets to validate 

the performance of the proposed algorithm . The real-world networks include Zachary’s karate club 

network [40], the Dolphin social network [41], Books about US politics network [42,43], the American 

college football network [44], the Amazon copurchase network [45], and the YouTube network [45]. 

LFR benchmark networks possess properties found in real-world networks, such as heterogeneous 

distributions of degree and community size. First, we present some commonly-used evaluation 

measures. Then, we explain the real network and computer-generated networks we use, and compare 

our algorithm with some known algorithms. 

4.1. Evaluation Measures 

Normalized mutual information (NMI) is taken as the performance measure. NMI reflects the 

similarity between the true community and the detected community structures. Given two parts, 𝐴 

and 𝐵, of a network, 𝐶 is the confusion matrix. In 𝐶 , 𝐶𝑖𝑗 is the number of nodes of community 𝑖 of 

part 𝐴 that are also in community 𝑗 of part 𝐵 [46]. NMI 𝐼(𝐴, 𝐵) is defined as follows [47]: 

𝐼(𝐴, 𝐵) =
−2 ∑ ∑ 𝐶𝑖𝑗 𝑙𝑜𝑔(

𝐶𝑖𝑗∙𝑁

𝐶𝑖∙𝐶.𝑗
)

𝐶𝐵
𝑗=1

𝐶𝐴
𝑖=1

∑ 𝐶𝑖∙𝑙𝑜𝑔(
𝐶𝑖
𝑁

)
𝐶𝐴
𝑖=1

+∑ 𝐶.𝑗∙𝑙𝑜𝑔(
𝐶.𝑗

𝑁
)

𝐶𝐵
𝑗=1

  (13) 

where, 𝐶𝐴(𝐶𝐵) is the number of classes in part 𝐴(𝐵) , 𝐶𝑖 ∙ (𝐶.𝑗 ) is the number of elements of 𝐶 in 

row 𝑖 (column 𝑗 ), and 𝑁 is the total number of nodes. If 𝐴 = 𝐵 , 𝐼(𝐴, 𝐵) = 1 ; if 𝐴 and 𝐵 are totally 

different, 𝐼(𝐴, 𝐵) = 0 . As NMI increases, the detected communities become more approximate to the 

true communities. 

Given a network 𝐺 = (𝑉, 𝐸) , let T be the set of ground-truth communities and 𝐃 be the set of 

communities detected by the community detection algorithm. Each ground-truth community 𝑇𝑖 ∈

T  (or each detected community 𝐷𝑖 ∈ 𝐃 ) is a set consisting of the member nodes. Average 𝐹1 score 

is a popular metric to evaluate the degree of similarity between two sets. When applied in community 

detection, it can be formed as [48]. 
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𝐹1(𝐓, 𝐃) =
1

2
(

1

|𝐓|
∑ 𝐹(𝑇𝑖 , 𝐃)𝑇𝑖∈𝐓 +

1

|𝐃|
∑ 𝐹(𝐷𝑗 , 𝐓)𝐷𝑗∈𝐃 )  (14) 

where 

𝐹(𝑇𝑖 , 𝐃) = max
𝐷𝑗∈𝐃

𝐹1(𝑇𝑖 , 𝐷𝑗) (15) 

and 𝐹1(𝑇𝑖 , 𝐷𝑗) is the harmonic mean of precision and recall. The formulation of 𝐹(𝐷𝑗 , 𝐓) can be 

expressed in the same way. 

4.2. Testing Networks 

4.2.1. Real-World Networks 

In the following part, we provide a simple description of the real network used in the 

experiments. For all these networks, the community structure is recognized which makes them 

suitable to evaluate the community detection methods. Zachary’s karate club [40] is one of most the 

widely-used networks in community detection. The 34 members of the club constitute the 34 nodes 

of the network. The relationships between members constitute the 78 edges of the network. The 

Dolphin social network [41], proposed by Lusseau, is shown in Figure 3. The connection of any two 

dolphins represents a tighter connection between them. The dolphin social network consists of 62 

dolphins as the nodes and 159 connections as the edges. The network can be detected as two 

communities, as shown in Figure 4. The Books about US politics [42,43] network consists of 105 books 

about US politics published in 2004 and sold by amazon.com. Based on the descriptions and reviews 

of the books posted on Amazon, Newman divided the network into three communities. The network 

is shown in Figure 5. The American college football [44] network was proposed by Girvan and 

Newman. The nodes represent different football teams, and the edges represent the matches between 

them. The network consists of 115 nodes and 616 edges. The network consists of 12 communities 

comprising 12 football teams. The network is shown in Figure 6. The Amazon copurchase and 

YouTube networks are provided by SNAP [45]. 

 

Figure 3. Zachary's karate club. 
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Figure 4. Dolphin social network. 

 

Figure 5. Books about US politics. 

 

Figure 6. American College football. 

4.2.2. Computer-Generated Network 

We tested our algorithm on LFR benchmark networks which were proposed by Lancichinetti et 

al. [49]. The LFR generation program provides a rich set of parameters through which the network 

topology can be controlled, including network size 𝑁 , the average degree 〈𝑘〉 , the maximum degree 

𝑘𝑚𝑎𝑥  , the minimum and maximum community size, 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥   respectively, and the mixing 

parameters 𝜇 . The node degrees are governed by power laws with exponents of 𝜏1 and 𝜏2 . In this 

work, we employ four types of LFR networks with scales of 1000 (LFR1), 2000 (LFR2), and 5000 (LFR3, 

LFR4) nodes with other corresponding parameters, as shown in Table 2. 

Table 2. Parameter settings of LFR benchmark networks. 

Network  𝑵   𝝉𝟏   𝝉𝟐   𝑪𝒎𝒊𝒏   𝑪𝒎𝒂𝒙   〈𝒌〉   𝒌𝒎𝒂𝒙   𝝁  

LFR1 1000 2 1 20 50 20 50 0.1-0.9 

LFR2 2000 2 1 20 100 20 50 0.1-0.9 

LFR3 5000 2 1 20 50 20 50 0.1-0.9 

LFR4 5000 2 1 20 100 15 75 0.1-1.0 

4.3. Experimental Results and Analysis 

In this study, the performance of the proposed algorithm was evaluated using five real-world 

networks and LFR networks. According to the small world effect, which indicates that the average 

minimum route between any two nodes in a complex network is 6, h in the forward BFS shall be set 

as 3 to achieve optimized performance. The criteria for iteration termination in the proposed 

algorithm are consistent with those in conventional k-means algorithms, i.e., once the Euclidean 

distances of new and previous clustering center vectors remain unchanged, iteration is terminated, 
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indicating convergence at constant clustering, which is defined as one of the iteration termination 

conditions. Meanwhile, the Max-Iteration variable was set to 100 since the maximum number of 

observed in this paper iterations was 20. Therefore, the network parameters in this study were 

determined based on h = 3 and Max-Iteration = 100. 

4.3.1. Experiments on Real-World Networks 

We used the five real-world networks mentioned above to verify the efficiency of our algorithm. 

As shown in Figure 3; Figure 7, the final community structure of the Zachary’s karate club network 

detected by DDJKM was consistent with the actual structure. It can be seen from Figures 4 and 8 that 

the structure in the Dolphin social network detected by our algorithm is also very close to the actual 

structure. Only node 40 is misidentified by our algorithm, and it can be seen that node 40 is in close 

proximity to two communities. The results for the Books about US politics network detected by our 

algorithm are shown in Figure 9. In the American college football network, our algorithm divides it 

by 12 (Figure 10) and 11 (Figure 11). Compared with the results shown in Figure 6, we can see that 

our algorithm performs well on the American football network; most nodes are correctly classified 

into their actual community structures. 

 

Figure 7. The community structure of the Zachary’s karate club network as detected by the proposed 

method. 

 

Figure 8. The community structure of the Dolphin social network as detected by the proposed 

method. 

 

Figure 9. The community structure of the Books about US politics network as detected by the 

proposed method. 
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Figure 10. The community structure of the American college football network as detected by the 

proposed method (12 communities). 

  

Figure 11. The community structure of the American college football network as detected by the 

proposed method (11 communities). 

We compared the performance of our algorithm with the GN algorithm [24], the Newman fast 

greedy algorithm (FG) [50], the sparse linear coding method (SLC) [51], the MIGA algorithm [52], the 

Equation (20) algorithm [53], and the k-means algorithm in Section 3.2 on real-world networks. The 

results are presented in Table 3. The F1-score (F1) and Normalized mutual information (NMI) were 

used to compare our algorithm with the reference algorithms. Our algorithm performed well on most 

of the networks. Furthermore, the algorithm grouped most of the nodes into the correct communities 

and the normalized mutual information value (NMI) reached 0.933 and 0.923, respectively, when 11 

and 12 communities were divided in the American college football network. 

We use the top-5000 ground-truth communities of the Amazon copurchase and the YouTube 

networks provided by SNAP [45]. We compared the experimental results of our proposed algorithm 

with the weighted version of LPA (WLPA) [48] on these real-world networks. As shown in Table 4, 

we can see that the DDJKM algorithm performed well. The score of DDJKM on the Amazon network 

is slightly lower than of WLAP, but its score on the YouTube is higher than that of WLAP, and the 

mixing (𝜇) of the YouTube network is higher than the Amazon network, i.e., up to 0.840, which 

indicates that our algorithm can also achieve good community detection results on a highly-mixed 

network. 

Table 3. Experimental results ( 𝐹 , 𝑁𝑀𝐼) of the community detection algorithm. The best results are 

marked in bold. 

Network  GN FG MIGA SLC 
Equati

on (20) 
k-means DDJKM 

Karate 
 |𝒄|  2 2 2 2 2 2 2 

 𝐹1  0.970 0.971 1 0.971 1 0.879 1 

  𝑁𝑀𝐼  0.836 0.837 1 0.837 1 0.666 1 

Dolphins 

 |𝑐|  2 2 2 2 2 2 2 

 𝐹1  0.980 0.937 0.965 0.980 0.961 0.770 0.982 

 𝑁𝑀𝐼  0.890 0.652 0.814 0.890 0.814 0.417 0.889 

Polbooks 
 |𝑐|  3 3 3 3 3 3 2  3 

 𝐹1  0.808 0.725 0.797 0.798 0.829 0.655 0.784 0.726 
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 𝑁𝑀𝐼  0.568 0.568 0.585 0.584 0.597 0.454 0.571 0.530 

Football 

 |𝑐|  12 12 12 12 12 12 11  12 

 𝐹1  0.802 0.528 0.864 0.846 0.859 0.730 0.920 0.885 

 𝑁𝑀𝐼  0.878 0.697 0.916 0.793 0.865 0.822 0.933 0.923 

Table 4. Experimental results ( 𝐹 , 𝑁𝑀𝐼) of the community detection algorithm. The best results are 

marked in bold. 

Network  WLPA DDJKM 

Amazon  𝐹1  0.582 0.554 

  𝑁𝑀𝐼  0.761 0.755 

YouTube 
 𝐹1  0.273 0.482 

 𝑁𝑀𝐼  0.547 0.625 

4.3.2. Experiments on LFR Benchmark Networks 

Next, we used LFR networks LFR1, LFR2, and LFR3 to test DDJKM and the k-means algorithm 

described in Section 3.2. Because the results of the k-means algorithm are different each time, we took 

the average of the results of the above three networks and ran them 20 times using these algorithms. 

Figure 12 shows the results of our algorithm and the k-means algorithm on the LFR1, LFR2, and 

LFR3 networks; the DDJKM results showed the best performance. The DDJKM algorithm performs 

well in the range of 𝜇 < 0.6, and with an increase of 𝜇 , the DDJKM algorithm was stable on the LFR 

network of 1000, 2000, and 5000 nodes, and there is no significant difference in the performance of 

the network with different numbers of nodes and community scales. This means that the DDJKM 

algorithm is stable in the dense network, and is not affected by the number of nodes or the community 

scale. However, when 𝜇 > 0.6, the NMI value of DDJKM and the k-means algorithms running on the 

three computer-generated networks suddenly drop everything, because the community structure is 

less obvious as the mixing parameters increase, causing too many nodes to merge into the same 

community. Therefore, the accuracy of the algorithms continues to decrease. 
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(b) 

 

(c) 

Figure 12. Values of NMI over the 20 runs on (a) LFR1, (b) LFR2, and (c) LFR3. 

On the LFR (LFR4) network of 5000 nodes, we ran some of the known community detection 

algorithms, i.e., Newman’s fast greedy algorithm (FG), Louvain (Lvn) [10], Label Propagation (LPA) 

[12], PCN, and PSC [54] and compared their results with the results of our algorithms. We generated 

100 LFR networks per 𝜇 value, ran the algorithms on all the 100 generated datasets, and averaged the 

results for each algorithm. The results of the NMI performance are shown in Figure 13. We present the 

detailed results of the algorithms on the LFR4 networks of 5000 nodes in Table 5. On the networks 

generated with higher mixing values (i.e., 𝜇 > 0.8), our algorithm with PCN and PSC was among the 

top four best performing algorithms according to the NMI values; our algorithm has slightly lower 

accuracy than PCN and PSC when the mixing parameters are high; on most networks, PCN, PSC, and 

our algorithm yield the best results; Newman’s algorithm and the Louvain algorithm only have higher 

NMI values when the mixing value is low, as they tend to merge communities which may lead to a 

resolution limit [55]. The NMI value of LPA is relatively high when the mixing value is low in a large-

scale network. However, with the increase of mixing values, the community structure is less obvious, 

and its accuracy is significantly reduced. Our algorithm can still successfully identify the community, 

and its performance is better than Newman's greedy fast algorithm, Louvain, and LPA. 
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Figure 13. Comparison of our method and known algorithms on LFR4. 

Table 5. Generated LFR benchmark networks of 5000 (LFR4) nodes. 

|𝑽| 
 𝝁   𝑵𝑴𝑰       

 DDJKM PCN PSC LPA FG Lvn 

5000 0.1 0.99 0.99 0.94 0.99 0.93 0.99 

5000 0.2 0.99 0.99 0.92 0.99 0.78 0.98 

5000 0.3 0.97 0.99 0.90 0.99 0.64 0.97 

5000 0.4 0.94 0.97 0.86 0.99 0.55 0.95 

5000 0.5 0.87 0.93 0.80 0.98 0.46 0.93 

5000 0.6 0.73 0.81 0.69 0.81 0.30 0.87 

5000 0.7 0.42 0.62 0.52 0.00 0.14 0.47 

5000 0.8 0.25 0.40 0.33 0.00 0.06 0.10 

5000 0.9 0.20 0.30 0.25 0.00 0.04 0.04 

5000 1.0 0.18 0.27 0.23 0.00 0.03 0.03 

5. Conclusions 

In this study, the concepts of CB uncertainty of nodes based on information entropy and of CB 

certainty of nodes as node density were defined. In addition, based on node density and degree 

centrality, a k-means clustering-based community detection algorithm, DDJKM, was proposed. This 

algorithm can select clustering centers well, thus preventing the selection of initial cluster centers 

which are too close to each other, and reducing the iteration times in the process. The proposed 

algorithm exhibited good performance in several representative, real-world networks, as well as in 

artificial networks. In future works, as the node density can reflect its community belongingness, 

nodes can be divided into two categories, i.e., with CB certainty and with CB uncertainty, so that 

study of community detection can focus on the detection of nodes with CB uncertainty. In this way, 

the number of required iterations for the community division of nodes can be effectively reduced. 
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