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(e pseudoexcitation method (PEM) can improve efficiency of random vibration analysis. However, for large-sized structures
with wide frequency range of response, the workload of calculation is heavy if conventional integration methods, such as
trapezoidal integration, are used to combine with the PEM to calculate structural response. In such case, self-adaptive technology
is induced to combine with the PEM to form an efficient method for solving random vibration. During calculation, this method
can realize the adaptability of random excitation to actual structural response, identify automatically critical frequency intervals of
random excitation, and process intelligently the identified critical frequency intervals and noncritical frequency intervals. Based
on the identified frequency intervals, Gauss integration is carried out to obtain response results with random characteristics. (e
computational efficiency and accuracy of PEM-SGI are verified by wind-induced performance of the slender bridge tower. Finally,
the influence of damping ratio of the bridge structure and train marshalling on vehicle-bridge coupled system is investigated to
further verify the application of the proposed method. Results show that the efficiency of solving random vibration can be
improved by the present method.

1. Introduction

Random vibration, as one of the most important topics in the
field of structure engineering, has experienced abundant
research progress [1]. (e huge computational workload,
however, often becomes bottleneck which limits its appli-
cation in practical engineering. In such case, many scholars
have been keeping efforts and obtained fruitful achievements.
Zhu reviewed the recent developments and applications of the
stochastic averaging method in random vibration [2]. Kiur-
eghian proposed a procedure to investigate a certain structure
subjected to seismic excitations [3]. Türkay et al. investigated
the response of the vehicle to profile-imposed excitation with
randomly varying traverse velocity and variable vehicle for-
ward velocity based on the quarter-car model [4]. Zhang et al.,
based on the theory of the pseudoexcitation method, pro-
posed an optimized methodology to investigate the seismic
analysis of multisupported structure subjected to spatially

varying ground motions [5]. Soyluk applied spectral analysis
approach and two response methods to investigate the spatial
variability effects of ground motion of the dynamic behavior
of long-span bridges [6]. Kareem presented some results of
addressing issues concerning the dynamic response of high-
rise buildings with stochastic wind loads [7]. Benfratello et al.
investigated the role of the quadratic term of the forcing
function in the response statistics of the multidegree-of-
freedom wind-excited linear-elastic structure [8]. Li and
Kareem studied the dynamic behavior of the tension-leg
platform under the simultaneous action of random wind and
wave fields [9]. Le and Caracoglia applied the wavelet-
Galerkin method to investigate the nonlinear stochastic dy-
namic system, and a slender building is selected as an example
to study the coupled response by transient wind load [10].

Among them, the pseudoexcitation method proposed by
Professor Lin, greatly improves computational efficiency
while guaranteeing high accuracy [11–13]. At present, the
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pseudoexcitation method has been widely used in many
engineering fields [14–17] and has gradually become one of
the most important numerical methods for random vibra-
tion analysis and dynamic reliability analysis. Besides, the
random vibration of the vehicle-bridge has obtained much
more attention. Coussy et al. [18] applied means of a the-
oretical study to analyze the effects of random surface ir-
regularities upon the dynamic response of bridges subjected
to moving loads. Rocha et al. [19] used a probabilistic
methodology to investigate the safety assessment of a short-
span railway bridge for high-speed traffic. Zeng et al. [20]
presented the formulation of a three-dimensional equation
of motion for a train-track-bridge coupling system, and its
application to random vibration analysis is also expressed.
Yu et al. [21] proposed a new random vibration theory to
study the stochastic response of the coupled train-bridge
systems. Yin et al. proposed a new approach to study the
nonstationary random response of the bridge under moving
vehicles with variable speed [22]. Mao et al. presented a new
random method for railway dynamic simulation to in-
vestigate the dynamic responses of a 3D train-bridge coupled
system involving random parameters of the system [23].
Wang et al. analyzed the dynamic behavior of the bridge
under traffic loadings and vehicle dynamic interactions
[24, 25].

For random vibration analysis, as a large number of
discrete frequency points should be extracted to calculate the
response power spectrum, numerical integration techniques,
such as trapezoidal integration, are used to obtain the
variance of structural response. However, for large-sized and
complex structures with a wide frequency response range, if
trapezoidal integration is applied to calculate the variance of
structural response, the number of discrete frequency points
would be excessive, which greatly increases the computa-
tional workload. Compared with trapezoidal numerical
integration, Gauss numerical integration that has many
advantages, such as fewer integral numbers needed and
higher integration accuracy, has been widely used in various
engineering numerical calculations [26–28].

In this paper, self-adaptive Gauss integration (SGI) is
introduced into the pseudoexcitation method (PEM) to
form a high-efficient combination method (PEM-SGI). Its
basic idea is to realize the self-adaptability of response results
to random excitation through adaptive iteration. During
calculation, the calculation program can identify automat-
ically the location of frequency points that demonstrate
critical effects of random excitation on the response of the
structural system [29]. Meanwhile, intelligent processing is
carried out for the identified critical and noncritical fre-
quency intervals to find reasonable integral subintervals, and
all the subintervals are solved by Gauss integration. Since the
hybrid method is based on the theory of pseudoexcitation
method, it is just suitable to handle dynamic response
analysis of the linear or weak nonlinear structure with ex-
ternal random excitation. In this paper, some case studies,
which are focused on the stationary random loads, are
applied to express the applicability and efficiency of the
PEM-SGI. Firstly, the numerical model of a super-high
bridge is selected, and the calculation is carried out with the

influence of Davenport’s power spectrum density function
of fluctuating wind load. Based on the wind-induced vi-
bration of the bridge tower, the PEM-SGI can be verified and
the computational efficiency is explained. (en, the single-
marshalling high-speed train model with 23 degree of
freedom is taken as an example to simulate the whole process
of the train crossing the bridge.(e influence of the damping
ratio of the bridge and train marshalling on the vehicle-
bridge coupled system is investigated.

2. Pseudoexcitation Method for Stationary
Random Excitation [11, 12, 15]

(e main feature of the pseudoexcitation method is to
transform stationary random response analysis into a series
of steady-state harmonic response analysis. Taking sta-
tionary random vibration with multiple degrees of freedom
as an example, this paper elaborates the basic ideas of this
method. (e structural dynamic equation with multiple
degrees of freedom can be written as

[M] €y􏼈 􏼉 +[C] _y􏼈 􏼉 +[K] y􏼈 􏼉 � [E] f(t)􏼈 􏼉, (1)

where [M], [C], and [K] are the mass, damping, and
stiffness matrix of the structure, f(t)􏼈 􏼉 is the excitation
vectors, [E] is the indicator matrix of excitation vectors, and
y􏼈 􏼉, _y􏼈 􏼉, and €y􏼈 􏼉 represent the displacement, velocity, and
acceleration of structural response, respectively.

When the external excitation f(t)􏼈 􏼉 is a stationary
random process with normal distribution, assuming the
autopower spectral density function as [Sff(ω)], the fre-
quency response function matrix [H(ω)] is given; mean-
while, the autopower spectral density function of response
can be written as

Syy(ω)􏽨 􏽩 � [H(ω)]
∗

Sff(ω)􏽨 􏽩[H(ω)]
T

, (2)

where superscript ∗ and T denote the complex conjugate
and transpose of the matrix to be solved.

(e autopower spectral density matrix of excitation
[Sff(ω)] is decomposed by Cholesky as

Sff(ω)􏽨 􏽩 � [L][L]
T

� 􏽘
m

k�1
l{ }k l{ }

T
k , (3)

where m represents the number of decomposed matrix, [L]

is the triangular matrix, and l{ }k is the Kth column vector of
the matrix [L]. Substituting formula (3) into formula (2)
gives

Syy(ω)􏽨 􏽩 � 􏽘
m

k�1
[H(ω)]

∗
· l{ }k · l{ }

T
k · [H(ω)]

T
. (4)

Construct m independent pseudoharmonic excitations
as

􏽥f􏽮 􏽯
k

� l{ }ke
iωt

,

k � 1 ∼ m,
(5)

for each pseudo excitation 􏽥f􏽮 􏽯
k
, the deterministic steady

response of the structure is
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􏽥y􏼈 􏼉k � [H(ω)] l{ }ke
iωt

. (6)

Compared with formula (4), the power spectral density
function of response can be expressed as

Syy(ω)􏽨 􏽩 � 􏽘
m

k�1
􏽥y􏼈 􏼉
∗
k · 􏽥y􏼈 􏼉

T

k . (7)

Calculation procedures mentioned above are the basic
ideas of the pseudoexcitation method.

(e variance of response can be obtained by integrating
the power spectral density function of response:

σ2y,i � 􏽚
+∞

− ∞
Syy,i(ω)dω, (8)

where Syy,i(ω) is the ith principal component of the power
spectral density matrix of response [Syy(ω)] and σ2y,i is the
response variance corresponding displacement. Trapezoidal
integration can be used for numerical solution of formula
(8).

3. Introduction to PEM-SGI Methodology

In order to obtain the variance of structural responses in
random vibration analysis, it is often necessary to calculate
the time-varying power spectrum of response for a large
number of discrete frequency points and to integrate the
power spectrum with numerical integration technology to
obtain response variance. Although the pseudoexcitation
method can improve significantly the computational effi-
ciency of random vibration analysis, for large-sized complex
structures with a wide frequency response range, the
computational workload will be large as a result of excessive
discrete frequency points, if the structural response variance
is calculated by the conventional integration method.
Compared with trapezoidal numerical integration, Gauss
numerical integration owing advantages of fewer integral
numbers needed and higher integration accuracy is widely
applied into numerical calculation for various engineering
fields [30, 31]. (e self-adaptive Gauss integration is in-
troduced into the pseudoexcitation method, the basic idea of
which is to find reasonable integral subintervals of frequency
intervals by self-adaptive iteration and to solve each sub-
interval by Gauss integration.

When the vehicle-bridge coupling system is calculated,
integral functions are more complex and most of them are
implicit. Even if explicit integral functions can be written,
the integration is extremely complex and numerical in-
tegration is thus often used to replace the definite integration
of functions. Numerical integration means that some points
called integral points are selected according to certain rules
in the integral region. Based on these selected integral points,
the corresponding results of integral functions are solved
and then multiplied by corresponding weighted coefficients
and summed up as approximate integral values. (e com-
monly used numerical integration methods are the rect-
angular method, trapezoidal method, and Simpson method,
which are all limited to set equal points in the selected
intervals as integral points and to approximate calculate the

integrand y(x) � amxm + am− 1x
m− 1 + am− 2x

m− 2 + · · · + a0
bym order polynomials. (e rectangular method is constant
approximation; trapezoid formula, with accuracy of the first-
order algebra, is linear approximation; and Simpson for-
mula, with accuracy of the third-order algebra, is parabolic
approximation. For Gauss integration, without limits to use
equal points as integral numbers, higher accuracy or the
same accuracy can be achieved with the same integral
numbers or fewer integral numbers. Numerical integration
methods that are commonly used are the analytical and
computational method in engineering science, among which
Gauss numerical integration has the advantages of less in-
tegral numbers and higher computational accuracy. (e
basic formula is

􏽚
b

a
f(x)dx � 􏽘

n

j�1
Ajf xj􏼐 􏼑, (9)

where Aj(j � 1 ∼ n) is the quadrature coefficient in-
dependent of f(x) and xj(j � 1 ∼ n) is the integral point.
Proper selection of Aj and xj can make formula (9) have
accuracy of 2n – 1 order algebra.

(e value of the weight factor Aj and the integral point
xj of the Gauss integration formula in the integral interval
[− 1, 1] are given in the previous literature [27]. When
integral numbers are 2, the integral point coordinates are
x1,2 � ±0.577350 and the weight factor is A1,2 � 1, 1. For
integration in any interval shown in formula (9), it can be
solved by transforming it to the interval of [− 1, 1]. It is
obvious that it is difficult to obtain satisfactory results by
integrating the whole interval with Gauss numerical in-
tegration in formula (8). It is more reasonable to divide the
integral interval into several subintervals and to integrate
each subinterval separately with the Gauss numerical
method. (erefore, how to divide Gauss integration
subintervals is very important for improving the accuracy
and efficiency of computation. In such case, self-adaptive
Gauss integration technique is induced to solve this
problem [29].

(erefore, this program can determine automatically the
convergence of results and decompose functionally fre-
quency intervals to get final results. It realizes the automatic
identification of frequency intervals which demonstrate
significant and insignificant influence of random excitation
on the stochastic characteristics of the system in the self-
adaptive optimization method and also realizes the func-
tionality to subdivide intelligently important frequency in-
tervals. (e frequency interval in which final convergence
results can be obtained only after several subdivisions is the
important interval of random excitation for random vi-
bration of the vehicle-bridge coupled system. What does not
need to be subdivided is insignificant frequency intervals,
but be roughly segmented or discarded directly, thus re-
ducing computational cost and improving computational
efficiency. Meanwhile, researchers can choose ε flexibly
according to the requirements of engineering and research
projects and adjust the target error to find the balance point
of computational efficiency and accuracy that meets actual
needs.
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4. Verification and Application of
PEM-SGI Technique

4.1. Random Wind-Induced Vibration Analysis of Slender
BridgeTower. Taking the super-high bridge tower of a cable-
stayed bridge as an example, structural wind-induced ran-
dom response subjected to fluctuating wind is analyzed. (e
structure of the bridge tower is shown in Figure 1. (e total
height of the bridge tower is 398.16m.(e pylon column is a
linearly variable cross section along the height direction.(e
bridge tower adopts C50 concrete, the elastic modulus is
3.45×104MPa, Poisson’s ratio is 0.2, the damping ratio is
0.02, and the density is 2549 kg/m3.

For calculation, the wind load power spectrum proposed
by Davenport is used [32]:

SF(ω) � 16 · k · F
2
(z) ·

v10

v(z)
􏼢 􏼣

2

×
1
ω

·
600ω/π · v10( 􏼁

2

1 + 600ω/π · v10( 􏼁
2

􏽨 􏽩
3/4,

(10)

where v10 the mean wind speed at the height of 10m, in the
present paper, is 40m/s, v(z) is the mean wind speed at the
height of z, and k is the surface roughness coefficient, which
is 0.03 in this paper. ω is the circular frequency of excitation.
When analyzing the pseudoexcitation, a single-side power
spectrum adopted as the upper limit of ω integration is
30 rad/s and the lower limit is 0 rad/s. F(z) is the mean wind
load acting on the height of Z, and the expression is as
follows:

F(z) �
1
2
ρv(z)

2
· A(z) · Cd, (11)

where ρ is the air density, set as 1.226 kg/m3, A(z) is the
windward area at the height of Z, and Cd is the drag
coefficient.

(e mean wind speed changing along the height adopts
the exponential equation. Formula of v(z) and v10 are given
as

v(z)

v10
�

z

10
􏼒 􏼓

α
, (12)

where α is the roughness index of the bottom, set as 0.12 in
this paper.

(e cross power spectral density of wind loads at two
high points z1 and z2 is defined as

SFF ω, z1, z2( 􏼁 �

�����������������

SF ω, z1( 􏼁 · SF ω, z2( 􏼁

􏽱

× ρ ω, z1, z2( 􏼁,

(13)

where ρ(ω, z1, z2) is the coherence function, and it can be
written as

ρ ω, z1, z2( 􏼁 � exp −
C1 · ω
2π

·
z1 − z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

v10
􏼠 􏼡, (14)

where the value of C1 is 7.0.
Trapezoidal integration and self-adaptive Gauss in-

tegration techniques are used to calculate the variance of
lateral displacement response at the top of the bridge tower

for random vibration of structures. (e results are shown in
Table 1. From the table, if the computational accuracy with
two valid digits after the decimal point is to be achieved, the
calculation interval should be divided into at least 1500
integral subintervals for trapezoidal integration, i.e., the
power spectral density Syy(ω) should be calculated for 1500
discrete frequency points. By self-adaptive Gauss in-
tegration, the computational accuracy with two valid digits
after the decimal point can be achieved by dividing the
calculation interval into 55 subintervals, which is 3.7% of
trapezoidal integration intervals. Only 110 frequency dis-
crete points need to be calculated in the whole self-adaptive
process, which is 7.3% of the computational times in
trapezoidal integration. (e standard deviation of the top
displacement obtained by these two methods converges to
0.5334m if the computational accuracy with four valid digits
after the decimal point is to be achieved. (e number of
integral subintervals needed for trapezoidal integration is
2400, i.e., the number of discrete frequency points calculated
by power spectrum is 2500 times. It takes almost 700
minutes to finish the whole computation. But the self-
adaptive Gauss integration only costs nearly 5 minutes to
gain the results which requires 127 intervals, and the cor-
responding number of discrete frequency points calculated
by power spectrum is 254 times, which is only 10.6% of
trapezoidal integration.

(e self-adaptive Gauss integration method is in-
troduced into the pseudoexcitation method of random vi-
bration. By self-adaptive iteration, the integral interval is
subdivided into several reasonable integral subintervals and
each integral subinterval is separately integrated by the
Gauss numerical method, which greatly improves the effi-
ciency of integration calculation. (e numerical examples
show that the self-adaptive Gauss integration technique can
significantly reduce computational times and further im-
prove computational efficiency of the pseudoexcitation
method with the same requirements for accuracy. For the
random vibration analysis of large-sized practical engi-
neering structures, this method is of practical significance in
engineering.

4.2. Analysis of Random Characteristics of Vehicle-Bridge
Coupled System

4.2.1. Background of PEM-SGI for Vehicle-Bridge Coupled
System [29]. PEM-SGI is used to study the random vibra-
tion response of the vehicle-bridge coupled system when
train passes the three-span simply supported bridge. (e
length of every span bridge is 40m and the total length of the
bridge is 120m, cross-sectional area is A� 9.6632m2, tor-
sional moment of inertia is Ix � 32.75m4, lateral bending
moment of inertia is Iy � 87.96m4, vertical bending moment
of inertia is Iz � 17.14m4, the damping ratio of bridge is 0.02,
concrete density is 2600 kg/m3, and secondary dead load of
mass per meter is 7730 kg/m. (e power spectrum of sta-
tionary random processes with three kinds of irregular orbits
is obtained by the power spectrum density German rail
irregularity spectra for high-speed railway. (e parameters
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of the vehicle model are cited in article [29]. For the standard
deviation of dynamic response of the vehicle-bridge coupled
system, the vertical vibration shape of the vehicle body is
selected as the target value for statistical analysis. (erefore,
the X axis of all the figures of the bridge response starts with
40mwhen the vehicle steps on the second span of the bridge.
(e vertical and lateral natural frequencies of the bridge are
4.22Hz and 9.53Hz, respectively. (e natural frequencies of
the vehicle stay in the range of 0.52∼1.41Hz, and the natural
frequencies of the vehicle body are also presented in Table 2.

In the cited paper [29], theMonte Carlo method is applied to
verify the proposed method for the dynamic response of the
vehicle-bridge system. For the bridge and vehicle responses,
the discrepancy reduced with the increasing of the number
of samples.

(e Monte Carlo method has been used to validate the
PEM-SGI method for random vibration problems of the
vehicle-bridge coupled system. Comparing the mean value
and standard deviation of PEM-SGI with those of the Monte
Carlo method, the results show that the acceleration of the
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Figure 1: Structural arrangement concrete bridge tower (unit: m).

Table 1: Random vibration analysis results of the bridge tower.

Integration Subintervals Standard deviation Time (minutes)

Trapezoidal integration

500 0.4247 145.77
1000 0.5591 291.54
1500 0.5289 437.31
1600 0.5383 466.47
2000 0.5346 583.08
2100 0.5326 612.24
2300 0.5343 670.55
2400 0.5334 699.70

Self-adaptive Gauss integration

10 0.7690 2.92
19 0.4612 5.54
55 0.5385 16.03
127 0.5334 37.03
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vehicle body and the bridge structure coincides well, which
can meet the requirements for calculation. For the same
accuracy of results, the sample number required for PEM-
SGI is 73 and 246 samples are required for traditional PEM.
It reflects the proposed method increases the computational
efficiency 3.37 times.

4.2.2. Coupled System with Different Damping Ratio of
Bridge. As high-speed of trains will cause the increase of
vibration, it is very crucial to reduce vehicle vibration to
ensure their smooth running on the bridge. Vehicle vi-
bration includes vibration caused by the track irregularity
and the interaction between the vehicle and bridge, among
which vehicle vibration caused by the track irregularity is
mainly controlled by the power spectrum of track irregu-
larity and dynamic characteristics of the vehicle model.
However, vehicle vibration caused by the interaction be-
tween the vehicle and bridge structure is determined by
inherent characteristics of the vehicle model and bridge
structure. It is difficult to correct relevant parameters of the
vehicle model and cannot change effectively the inherent
characteristics of vehicle model. But the damping ratio of the
bridge structure can be modified by adding the damper, so as
to change the dynamic vibration of the bridge structure. In
this section, numerical calculation and analysis, therefore,
are mainly conducted for the influence of structural
damping ratio of the bridge structure on the random vi-
bration of the vehicle-bridge coupled system.

(e single-marshalling vehicle was selected as the vehicle
model, with a running speed of 250 km/h and step length of
calculation is 0.004s. Comparing the damping ratio 0.02 and
0.05, respectively, of the bridge structure, the target value of
the bridge is set as response results of the center point in the
second span. (e random response of the vehicle-bridge
coupled system is mainly caused by track irregularity. (e
vehicle vibration is mainly influenced by track irregularity
and inertial force generated by vibration of the bridge
structure. In the present calculated condition, the large
stiffness of the bridge structure makes natural frequency of
bridge vibration far away from that of vehicle model vi-
bration. So generated vibration of the bridge structure is
considered as the equivalent track irregularity within the
excited vibration of frequency range; meanwhile, the
equivalent track irregularity cannot affect the dynamic
performance of the vehicle model and the coupled effect
between vehicle and bridge therefore cannot be obvious. As a
result, different damping ratios of bridge structure will not
have a significant impact on response variance of the vehicle
body. Structural vibration is mainly divided into forced

vibration under external loads and free vibration without
load. (e different damping ratios of the structure cannot
change vehicle dynamic characteristics, but it can effectively
control the free vibration of the bridge structure. (erefore,
the results of the bridge are expressed in Figure 2, but the
vehicle is not exhibited. It can be seen from the figure that
the increase of the damping ratio of the structure has a
significant impact on response of the bridge structure.

With the increase of damping ratio of the structure,
response of the bridge structure significantly decreases.
When the vehicle travels in the interval of 40∼60m, which is
the whole process from the train step on the target span of
the bridge, there is no obvious change in the response of the
bridge structure and results are shown in Figure 2. It shows
that when the bridge structure is suddenly subjected to an
external load in the process of gradual appearing of vibra-
tion, the influence of damping ratio on the vibration of the
bridge structure is slight. However, when the vehicle body is
on the bridge and even running through the bridge, the
damping ratio will have effects since all vertical responses of
the bridge structure are greatly reduced and also the gap
between these two working conditions is gradually widened.
(e gap between these two working conditions in the lateral
response of the bridge structure gradually widens after the
vehicle is on the bridge (60∼80m) and after the vehicle is off
the bridge completely (95∼140m). (erefore, the increase of
structural damping ratio can reduce the response variance of
the bridge structure effectively. However, for the vehicle-
bridge coupled system model selected in this paper, as vi-
bration of the bridge structure cannot be applied to the
vehicle model effectively, the increase of damping ratio of
the bridge structure cannot control or reduce the dynamic
response of the vehicle model availably. (erefore, measures
to control dynamic vibration of the vehicle-bridge coupled
system can be selected after analyzing actual response of the
specific structure, thus meeting the practical requirements of
engineering projects.

4.2.3. Coupled System with Different Vehicle Marshalling.
In order to reflect and be combined with the actual engi-
neering projects, simulation of the whole process of single-,
double-, four-, and eight-marshaling vehicle crossing the
bridge was conducted to compare the difference between
random characteristics of the multiple units (MU) train and
that of the single train. (e multimarshalling MU trains are
20m away from the end of the bridge with a running speed
of 250 km/h and step is 0.004 s. (e first vehicle of each
multimarshalling MU train is selected as the research object.
(e results are shown in Figures 3–4 where abscissa shows
the position of MU trains, that is, 0m at the end of the bridge
and 120m of leaving the bridge, while the vertical coordinate
is the standard deviation of the response of MU trains. From
results, it can be seen that changes in the standard deviation
of vehicle response are consistent and effects of marshalling
types are mainly reflected in the magnitude of vehicle re-
sponse. For the vehicles and bridge model applied into this
paper, the total length of each vehicle model is 20m, the
single is 40m, and the length of a single-span bridge can only

Table 2:(e natural frequencies of the vehicle body (unit: Hz) [29].

Order Proposed model Vibration shape
1 0.0000 Rigid body movement
2 0.0000 Rigid body movement
3 0.7228 Vehicle body floating
4 0.8913 Vehicle body rolling
5 0.8980 Vehicle body nodding
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contain two carriages at a time. Against the influence of track
irregularity, the inertia force combination generated by
vehicle vibration of each carriage forms continuous load

with periodic variation that acts on the bridge structure,
which makes the response of MU crossing the bridge dis-
tinctly different from that of a single-marshalling train
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Figure 2: (e mean square deviation of the bridge with different damping ratios.
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crossing the bridge. However, as shown in Figures 3–4, the
standard deviation of response of the first train in double-
marshalling, four-marshalling, and eight-marshalling trains

is basically coincident, which means that random charac-
teristics of vehicle response do not change with the different
marshalling account when the vehicle is on the bridge
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Figure 3: (e mean square deviation of the vehicle with different train marshalling.
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completely. Taking the vertical acceleration of the vehicle
body as an example, response of random vibration of MU
trains is obviously larger than that of the single-marshalling

train crossing the bridge. (e standard deviation curves of
these two models demonstrate a similar tendency that ac-
celeration response becomes steady random process at the

0

1 × 10–5

2 × 10–5

3 × 10–5

4 × 10–5
Ve

rt
ic

al
 d

isp
la

ce
m

en
t o

f b
rid

ge
 (m

)

40 80 120 160 200 240 280
Distance (m)

One vehicle
Two vehicles

Four vehicles
Eight vehicles

(a)

0.0

1.0 × 10–4

2.0 × 10–4

3.0 × 10–4

4.0 × 10–4

5.0 × 10–4

Ve
rt

ic
al

 v
elo

ci
ty

 o
f b

rid
ge

 (m
/s

)

40 80 120 160 200 240 280
Distance (m)

One vehicle
Two vehicles

Four vehicles
Eight vehicles

(b)

0.0

3.0 × 10–3

6.0 × 10–3

9.0 × 10–3

1.2 × 10–2

Ve
rt

ic
al

 ac
ce

le
ra

tio
n 

of
 b

rid
ge

 (m
/s

2 )

40 80 120 160 200 240 280
Distance (m)

One vehicle
Two vehicles

Four vehicles
Eight vehicles

(c)

0.0

5.0 × 10–6

1.0 × 10–5

1.5 × 10–5

2.0 × 10–5

La
te

ra
l a

cc
el

er
at

io
n 

of
 b

rid
ge

 (m
/s

2 )

40 80 120 160 200 240 280
Distance (m)

One vehicle
Two vehicles

Four vehicles
Eight vehicles

(d)

0.0

7.0 × 10–5

1.4 × 10–4

2.1 × 10–4

2.8 × 10–4

3.5 × 10–4

4.2 × 10–4

4.9 × 10–4

La
te

ra
l v

elo
ci

ty
 o

f b
rid

ge
 (m

/s
)

40 80 120 160 200 240 280
Distance (m)

One vehicle
Two vehicles

Four vehicles
Eight vehicles

(e)

0.0

5.0 × 10–3

1.0 × 10–2

1.5 × 10–2

2.0 × 10–2

2.5 × 10–2

La
te

ra
l a

cc
el

er
at

io
n 

of
 b

rid
ge

 (m
/s

2 )

40 80 120 160 200 240 280
Distance (m)

One vehicle
Two vehicles

Four vehicles
Eight vehicles

(f )

Figure 4: (e mean square deviation of the bridge with different train marshalling.
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same position and the random vibration response of the
vehicle will not be affected by marshalling. With combined
effects of multimarshalling, the coupling force generated by
vehicle vibration forms a periodic dynamic load acting on
the bridge model, which increases the vertical vibration of
the bridge and the random vibration response of the vehicle
also increases sharply. Different from the vertical acceler-
ation of the vehicle body, the periodic dynamic load formed
by marshalling MU trains reduces the lateral random vi-
bration response. During vehicle’s moving, the lateral pe-
riodic load generated by the vehicle body can control the
lateral dynamic vibration.(e axle load of moving vehicles is
the decisive factor leading to the dynamic vibration of the
bridge, while the decisive factor of dynamic response of the
vehicle is external excitation load. (erefore, random
characteristics of vehicles are less affected by the dynamic
vibration of the bridge. For the random vibration of vehicles,
the random characteristics of response are less affected by
marshalling types when the stiffness of the bridge structure is
large.

(e marshalling number of MU trains has a significant
impact on the random characteristics of response of the
bridge. Figure 4 shows that standard deviation of lateral
displacement in the bridge span changes steadily when trains
reach 74.74m, i.e., when MU trains are completely loaded on
the simply supported girder bridge, demonstrating that the
marshalling number does not affect the amplitude of the
lateral displacement. Similarly, when MU trains are com-
pletely loaded on the simply supported girder bridge, standard
deviation of the vertical displacement shows a quasisteady
trend as standard deviation changes in a very small range.
However, the vertical velocity and acceleration of bridge
structure show a decreasing trend. It can be predicted that the
vertical velocity and acceleration of bridge will gradually
decrease and show a steady change in a certain range if the
marshalling number increases. Additionally, as random
characteristics of the lateral velocity and acceleration of the
bridge show monotonic increase, the amplitude of standard
deviation of response also increases.(e standard deviation of
the response of vertical displacement, vertical velocity, and
vertical acceleration increase by nearly 1 time, 0.6 times, and
0.4 times, respectively. However, the amplitude of standard
deviation of lateral response does not change significantly.

5. Conclusions

In this paper, a self-adaptive optimization algorithm, which
combines self-adaptive Gauss integration with the pseu-
doexcitation method, is applied to investigate random vi-
bration of the structure with different external loads. By self-
adaptive iteration, the integral interval is subdivided into
several reasonable integral subintervals and each integral
subinterval is separately integrated by the Gauss numerical
method, which greatly improves the efficiency of integration
calculation. (e proposed method can handle the random
vibration of linear structure with random excitation, and the
stationary excitation is calculated in this paper. (e nu-
merical examples show that self-adaptive Gauss integration
technique can significantly reduce computational times and

further improve computational efficiency of the pseu-
doexcitation method with the same requirements for ac-
curacy. For the random vibration analysis of large-sized
practical engineering structures, this method is of practical
significance in engineering.

(1) Compared with the pseudoexcitation method, cal-
culation times are only 10.6% of trapezoidal in-
tegration and the computational efficiency is
increased by nearly 10 times in the application of the
present method into the wind-induced random vi-
bration analysis of structures

(2) (e PEM-SGI is suitable to investigate the vibration
of the vehicle-bridge coupling system. (e structural
damping ratio can effectively reduce the vibration of
the bridge structure. Since the excitation frequency
of the vehicle model is quite different from that of the
bridge structure, the change of structural damping
ratio cannot affect the random response of the ve-
hicle model, but effectively control the dynamic
response of the bridge structure.

(3) Due to the influence of MU trains’ marshalling,
inertial force generated by the vibration of the ve-
hicle against the effect of track irregularity forms a
periodic load acting on the bridge structure, which
increases the standard deviation of the vertical re-
sponse of vehicle models and bridge structure, but
reduces the lateral standard deviation of vehicle
models. With the influence of multimarshalling, the
variance of displacement response of the bridge
structure also shows some characteristics of regular
random process.
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