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Abstract: Bounding the best achievable error probability for binary classification problems is relevant
to many applications including machine learning, signal processing, and information theory. Many
bounds on the Bayes binary classification error rate depend on information divergences between
the pair of class distributions. Recently, the Henze–Penrose (HP) divergence has been proposed
for bounding classification error probability. We consider the problem of empirically estimating
the HP-divergence from random samples. We derive a bound on the convergence rate for the
Friedman–Rafsky (FR) estimator of the HP-divergence, which is related to a multivariate runs
statistic for testing between two distributions. The FR estimator is derived from a multicolored
Euclidean minimal spanning tree (MST) that spans the merged samples. We obtain a concentration
inequality for the Friedman–Rafsky estimator of the Henze–Penrose divergence. We validate our
results experimentally and illustrate their application to real datasets.

Keywords: classification; Bayes error rate; Henze–Penrose divergence; Friedman–Rafsky test statistic;
convergence rates; bias and variance trade-off; concentration bounds; minimal spanning trees

1. Introduction

Divergence measures between probability density functions are used in many signal processing
applications including classification, segmentation, source separation, and clustering (see [1–3]).
For more applications of divergence measures, we refer to [4].

In classification problems, the Bayes error rate is the expected risk for the Bayes classifier, which
assigns a given feature vector x to the class with the highest posterior probability. The Bayes error
rate is the lowest possible error rate of any classifier for a particular joint distribution. Mathematically,
let x1, x2, . . . , xN ∈ Rd be realizations of random vector X and class labels S ∈ {0, 1}, with prior
probabilities p = P(S = 0) and q = P(S = 1), such that p + q = 1. Given conditional probability
densities f0(x) and f1(x), the Bayes error rate is given by

ε =
∫
Rd

min
{

p f0(x), q f1(x)
}

dx. (1)

The Bayes error rate provides a measure of classification difficulty. Thus, when known, the Bayes error
rate can be used to guide the user in the choice of classifier and tuning parameter selection. In practice,
the Bayes error is rarely known and must be estimated from data. Estimation of the Bayes error rate
is difficult due to the nonsmooth min function within the integral in (1). Thus, research has focused
on deriving tight bounds on the Bayes error rate based on smooth relaxations of the min function.

Entropy 2019, 21, 1144; doi:10.3390/e21121144 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-2531-9670
http://www.mdpi.com/1099-4300/21/12/1144?type=check_update&version=1
http://dx.doi.org/10.3390/e21121144
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 1144 2 of 42

Many of these bounds can be expressed in terms of divergence measures such as the Bhattacharyya [5]
and Jensen–Shannon [6]. Tighter bounds on the Bayes error rate can be obtained using an important
divergence measure known as the Henze–Penrose (HP) divergence [7,8].

Many techniques have been developed for estimating divergence measures. These methods can
be broadly classified into two categories: (i) plug-in estimators in which we estimate the probability
densities and then plug them in the divergence function [9–12], (ii) entropic graph approaches,
in which the relationship between the divergence function and a graph functional in Euclidean
space is derived [8,13]. Examples of plug-in methods include k-nearest neighbor (K-NN) and Kernel
density estimator (KDE) divergence estimators. Examples of entropic graph approaches include
methods based on minimal spanning trees (MST), K-nearest neighbors graphs (K-NNG), minimal
matching graphs (MMG), traveling salesman problem (TSP), and their power-weighted variants.

Disadvantages of plug-in estimators are that these methods often require assumptions on the
support set boundary and are more computationally complex than direct graph-based approaches.
Thus, for practical and computational reasons, the asymptotic behavior of entropic graph approaches
has been of great interest. Asymptotic analysis has been used to justify graph based approaches.
For instance, in [14], the authors showed that a cross match statistic based on optimal weighted
matching converges to the the HP-divergence. In [15], a more complex approach based on the K-NNG
was proposed that also converges to the HP-divergence.

The first contribution of our paper is that we obtain a bound on the convergence rates for the
Friedman and Rafsky (FR) estimator of the HP-divergence, which is based on a multivariate extension
of the non-parametric run length test of equality of distributions. This estimator is constructed using a
multicolored MST on the labeled training set where MST edges connecting samples with dichotomous
labels are colored differently from edges connecting identically labeled samples. While previous works
have investigated the FR test statistic in the context of estimating the HP-divergence (see [8,16]), to the
best of our knowledge, its minimax MSE convergence rate has not been previously derived. The bound
on convergence rate is established by using the umbrella theorem of [17], for which we define a dual
version of the multicolor MST. The proposed dual MST in this work is different than the standard dual
MST introduced by Yukich in [17]. We show that the bias rate of the FR estimator is bounded by a

function of N, η and d, as O
(
(N)−η2

/
(d(η+1))), where N is the total sample size, d is the dimension

of the data samples d ≥ 2, and η is the Hölder smoothness parameter 0 < η ≤ 1. We also obtain the
variance rate bound as O

(
(N)−1).

The second contribution of our paper is a new concentration bound for the FR test statistic.
The bound is obtained by establishing a growth bound and a smoothness condition for the multicolored
MST. Since the FR test statistic is not a Euclidean functional, we cannot use the standard subadditivity
and superadditivity approaches of [17–19]. Our concentration inequality is derived using a different
Hamming distance approach and a dual graph to the multicolored MST.

We experimentally validate our theoretic results. We compare the MSE theory and simulation in
three experiments with various dimensions d = 2, 4, 8. We observe that, in all three experiments, as
sample size increases, the MSE rate decreases and, for higher dimensions, the rate is slower. In all sets
of experiments, our theory matches the experimental results. Furthermore, we illustrate the application
of our results on estimation of the Bayes error rate on three real datasets.

1.1. Related Work

Much research on minimal graphs has focused on the use of Euclidean functionals for signal
processing and statistics applications such as image registration [20,21], pattern matching [22], and
non-parametric divergence estimation [23]. A K-NNG-based estimator of Rényi and f -divergence
measures has been proposed in [13]. Additional examples of direct estimators of divergence measures
include statistic based on the nonparametric two sample problem, the Smirnov maximum deviation
test [24], and the Wald–Wolfowitz [25] runs test, which have been studied in [26].
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Many entropic graph estimators such as MST, K-NNG, MMG, and TSP have been considered for
multivariate data from a single probability density f . In particular, the normalized weight function
of graph constructions all converge almost surely to the Rényi entropy of f [17,27]. For N uniformly
distributed points, the MSE is O(N−1/d) [28,29]. Later, Hero et al. [30,31] reported bounds on Lγ-norm
bias convergence rates of power-weighted Euclidean weight functionals of order γ for densities
f belonging to the space of Hölder continuous functions Σd(η, K) as O

(
N−αη/(αη+1) 1/d), where

0 < η ≤ 1, d ≥ 1, γ ∈ (1, d), and α = (d− γ)/d. In this work, we derive a bound on convergence
rate of FR estimator for the HP-divergence when the density functions belong to the Hölder class,
Σd(η, K), for 0 < η ≤ 1, d ≥ 2 [32]. Note that throughout the paper we assume the density functions
are absolutely continuous and bounded with support on the unit cube [0, 1]d.

In [28], Yukich introduced the general framework of continuous and quasi-additive Euclidean
functionals. This has led to many convergence rate bounds of entropic graph divergence estimators.

The framework of [28] is as follows: Let F be finite subset of points in [0, 1]d, d ≥ 2, drawn from
an underlying density. A real-valued function Lγ defined on F is called a Euclidean functional of order
γ if it is of the form Lγ(F) = min

E∈E
∑

e∈E
|e(F)|γ, where E is a set of graphs, e is an edge in the graph E, |e|

is the Euclidean length of e, and γ is called the edge exponent or power-weighting constant. The MST,
TSP, and MMG are some examples for which γ = 1.

Following this framework, we show that the FR test statistic satisfies the required continuity
and quasi-additivity properties to obtain similar convergence rates to those predicted in [28]. What
distinguishes our work from previous work is that the count of dichotomous edges in the multicolored
MST is not Euclidean. Therefore, the results in [17,27,30,31] are not directly applicable.

Using the isoperimetric approach, Talagrand [33] showed that, when the Euclidean functional Lγ

is based on the MST or TSP, then the functional Lγ for derived random vertices uniformly distributed
in a hypercube [0, 1]d is concentrated around its mean. Namely, with high probability, the functional Lγ

and its mean do not differ by more than C(N log N)(d−γ)/2d. In this paper, we establish concentration
bounds for the FR statistic: with high probability 1− δ, the FR statistic differs from its mean by not

more than O
(
(N)(d−1)/d( log(C/δ)

)(d−1)/d
)

, where C is a function of N and d.

1.2. Organization

This paper is organized as follows. In Section 2, we first introduce the HP-divergence and the
FR multivariate test statistic. We then present the bias and variance rates of the FR-based estimator
of HP-divergence followed by the concentration bounds and the minimax MSE convergence rate.
Section 3 provides simulations that validate the theory. All proofs and relevant lemmas are given in
the Appendices A–E.

Throughout the paper, we denote expectation by E and variance by abbreviation Var. Bold face
type indicates random variables. In this paper, when we say number of samples we mean number of
observations.

2. The Henze–Penrose Divergence Measure

Consider parameters p ∈ (0, 1) and q = 1− p. We focus on estimating the HP-divergence measure
between distributions f0 and f1 with domain Rd defined by

Dp( f0, f1) =
1

4pq

[∫ (
p f0(x)− q f1(x)

)2

p f0(x) + q f1(x)
dx− (p− q)2

]
. (2)

It can be verified that this measure is bounded between 0 and 1 and, if f0(x) = f1(x), then Dp = 0.
In contrast with some other divergences such as the Kullback–Liebler [34] and Rényi divergences [35],
the HP-divergence is symmetrical, i.e., Dp( f0, f1) = Dq( f1, f0). By invoking relation (3) in [8],
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∫
(p f0(x)− q f1(x))

2

p f0(x) + q f1(x)
dx = 1− 4pqAp( f0, f1),

where

Ap( f0, f1) =
∫ f0(x) f1(x)

p f0(x) + q f1(x)
dx = E f0

[(
p

f0(X)
f1(X)

+ q
)−1
]
,

up( f0, f1) = 1− 4pq Ap( f0, f1),

one can rewrite Dp in the alternative form:

Dp( f0, f1) = 1− Ap( f0, f1) =
up( f0, f1)

4pq
− (p− q)2

4pq
.

Throughout the paper, we refer to Ap( f0, f1) as the HP-integral. The HP-divergence measure belongs to
the class of φ-divergences [36]. For the special case p = 0.5, the divergence (2) becomes the symmetric
χ2-divergence and is similar to the Rukhin f -divergence. See [37,38].

2.1. The Multivariate Runs Test Statistic

The MST is a graph of minimum weight among all graphs E that span n vertices. The MST has
many applications including pattern recognition [39], clustering [40], nonparametric regression [41],
and testing of randomness [42]. In this section, we focus on the FR multivariate two sample test statistic
constructed from the MST.

Assume that sample realizations from f0 and f1, denoted by Xm ∈ Rm×d and Yn ∈ Rn×d,
respectively, are available. Construct an MST spanning the samples from both f0 and f1 and color
the edges in the MST that connect dichotomous samples green and color the remaining edges black.
The FR test statistic Rm,n := Rm,n(Xm,Yn) is the number of green edges in the MST. Note that the
test assumes a unique MST, therefore all inter point distances between data points must be distinct.
We recall the following theorem from [7,8]:

Theorem 1. As m→ ∞ and n→ ∞ such that
m

n + m
→ p and

n
n + m

→ q,

1−Rm,n(Xm,Yn)
m + n
2mn

→ Dp( f0, f1), a.s. (3)

In the next section, we obtain bounds on the MSE convergence rates of the FR approximation for
HP-divergence between densities that belong to Σd(η, K), the class of Hölder continuous functions
with Lipschitz constant K and smoothness parameter 0 < η ≤ 1 [32]:

Definition 1 (Hölder class). Let X ⊂ Rd be a compact space. The Hölder class Σd(η, K), with η-Hölder
parameter, of functions with the Ld-norm, consists of the functions g that satisfy{

g :
∥∥g(z)− pbηcx (z)

∥∥
d ≤ K

∥∥x− z
∥∥η

d , x, z ∈ X
}

, (4)

where pk
x(z) is the Taylor polynomial (multinomial) of g of order k expanded about the point x and bηc is defined

as the greatest integer strictly less than η.

In what follows, we will use both notations Rm,n and Rm,n(Xm,Yn) for the FR statistic over the
combined samples.
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2.2. Convergence Rates

In this subsection, we obtain the mean convergence rate bounds for general non-uniform Lebesgue
densities f0 and f1 belonging to the Hölder class Σd(η, K). Since the expectation of Rm,n can be closely
approximated by the sum of the expectation of the FR statistic constructed on a dense partition of
[0, 1]d, Rm,n is a quasi-additive functional in mean. The family of bounds (A16) in Appendix B enables
us to achieve the minimax convergence rate for the mean under the Hölder class assumption with
smoothness parameter 0 < η ≤ 1, d ≥ 2:

Theorem 2 (Convergence Rate of the Mean). Let d ≥ 2, and Rm,n be the FR statistic for samples drawn
from Hölder continuous and bounded density functions f0 and f1 in Σd(η, K). Then, for d ≥ 2,∣∣∣∣∣E

[
Rm,n

]
m + n

− 2pq
∫ f0(x) f1(x)

p f0(x) + q f1(x)
dx

∣∣∣∣∣ ≤ O
(
(m + n)−η2

/
(d(η+1))

)
. (5)

This bound holds over the class of Lebesgue densities f0, f1 ∈ Σd(η, K), 0 < η ≤ 1. Note that this
assumption can be relaxed to f0 ∈ Σs

d(η, K0) and f1 ∈ Σs
d(η, K1) that is Lebesgue densities f0 and f1

belong to the Strong Hölder class with the same Hölder parameter η and different constants K0 and
K1, respectively.

The following variance bound uses the Efron–Stein inequality [43]. Note that in Theorem 3 we
do not impose any strict assumptions. We only assume that the density functions are absolutely
continuous and bounded with support on the unit cube [0, 1]d. Appendix C contains the proof.

Theorem 3. The variance of the HP-integral estimator based on the FR statistic, Rm,n
/
(m + n) is bounded by

Var
(Rm,n(Xm,Yn)

m + n

)
≤

32 c2
d q

(m + n)
, (6)

where the constant cd depends only on d.

By combining Theorems 2 and 3, we obtain the MSE rate of the form O
(

m + n)−η2/(d(η+1))
)
+

O
(
(m + n)−1). Figure 1 indicates a heat map showing the MSE rate as a function of d and N = m = n.

The heat map shows that the MSE rate of the FR test statistic-based estimator given in (3) is small for
large sample size N.

Figure 1. Heat map of the theoretical MSE rate of the FR estimator of the HP-divergence based on
Theorems 2 and 3 as a function of dimension and sample size when N = m = n. Note the color
transition (MSE) as sample size increases for high dimension. For fixed sample size N, the MSE rate
degrades in higher dimensions.
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2.3. Proof Sketch of Theorem 2

In this subsection, we first establish subadditivity and superadditivity properties of the FR statistic,
which will be employed to derive the MSE convergence rate bound. This will establish that the mean
of the FR test statistic is a quasi-additive functional:

Theorem 4. Let Rm,n(Xm,Yn) be the number of edges that link nodes from differently labeled samples Xm =

{X1, . . . , Xm} and Yn = {Y1, . . . , Yn} in [0, 1]d. Partition [0, 1]d into ld equal volume subcubes Qi such
that mi and ni are the number of samples from {X1, . . . , Xm} and {Y1, . . . , Yn}, respectively, that fall into the
partition Qi. Then, there exists a constant c1 such that

E
[
Rm,n(Xm,Yn)

]
≤

ld

∑
i=1

E
[
Rmi ,ni

(
(Xm,Yn) ∩Qi

)]
+ 2 c1 ld−1 (m + n)1/d. (7)

Here, Rmi ,ni is the number of dichotomous edges in partition Qi. Conversely, for the same conditions as above on
partitions Qi, there exists a constant c2 such that

E
[
Rm,n(Xm,Yn)

]
≥

ld

∑
i=1

E
[
Rmi ,ni

(
(Xm,Yn) ∩Qi

)]
− 2 c2 ld−1 (m + n)1/d. (8)

The inequalities (7) and (8) are inspired by corresponding inequalities in [30,31]. The full proof is
given in Appendix A. The key result in the proof is the inequality:

Rm,n(Xm,Yn) ≤
ld

∑
i=1

Rmi ,ni

(
(Xm,Yn) ∩Qi

)
+ 2|D|,

where |D| indicates the number of all edges of the MST which intersect two different partitions.
Furthermore, we adapt the theory developed in [17,30] to derive the MSE convergence rate of the

FR statistic-based estimator by defining a dual MST and dual FR statistic, denoted by MST∗ and R∗m,n
respectively (see Figure 2):

Figure 2. The dual MST spanning the merged set Xm (blue points) and Yn (red points) drawn from
two Gaussian distributions. The dual FR statistic (R∗m,n) is the number of edges in the MST∗ (contains
nodes in Xm ∪Yn ∪ {2 corner points}) that connect samples from different color nodes and corners
(denoted in green). Black edges are the non-dichotomous edges in the MST∗.

Definition 2 (Dual MST, MST∗ and dual FR statistic R∗m,n). Let Fi be the set of corner points of the
subsection Qi for 1 ≤ i ≤ ld. Then, we define MST∗(Xm ∪Yn ∩Qi) as the boundary MST graph of partition
Qi [17], which contains Xm and Yn points falling inside the section Qi and those corner points in Fi which
minimize total MST length. Notice it is allowed to connect the MSTs in Qi and Qj through points strictly
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contained in Qi and Qj and corner points are taken into account under condition of minimizing total MST
length. Another word, the dual MST can connect the points in Qi ∪Qj by direct edges to pair to another point
in Qi ∪Qj or the corner the corner points (we assume that all corner points are connected) in order to minimize
the total length. To clarify this, assume that there are two points in Qi ∪Qj, then the dual MST consists of the
two edges connecting these points to the corner if they are closed to a corner point; otherwise, dual MST consists
of an edge connecting one to another. Furthermore, we define R∗m,n(Xm,Yn ∩Qi) as the number of edges in an
MST∗ graph connecting nodes from different samples and number of edges connecting to the corner points. Note
that the edges connected to the corner nodes (regardless of the type of points) are always counted in dual FR test
statistic R∗m,n.

In Appendix B, we show that the dual FR test statistic is a quasi-additive functional in mean
and R∗m,n(Xm,Yn) ≥ Rm,n(Xm,Yn). This property holds true since MST(Xm,Yn) and MST∗(Xm,Yn)

graphs can only be different in the edges connected to the corner nodes, and in R∗(Xm,Yn) we take all
of the edges between these nodes and corner nodes into account.

To prove Theorem 2, we partition [0, 1]d into ld subcubes. Then, by applying Theorem 4 and
the dual MST, we derive the bias rate in terms of partition parameter l (see (A16) in Theorem A1).
See Appendix B and Appendix E for details. According to (A16), for d ≥ 2, and l = 1, 2, . . . , the slowest
rates as a function of l are ld(m + n)η/d and l−ηd. Therefore, we obtain an l-independent bound by
letting l be a function of m + n that minimizes the maximum of these rates i.e.,

l(m + n) = arg min
l

max
{

ld(m + n)−η/d, l−ηd
}

.

The full proof of the bound in (2) is given in Appendix B.

2.4. Concentration Bounds

Another main contribution of our work in this part is to provide an exponential inequality
convergence bound derived for the FR estimator of the HP-divergence. The error of this estimator can
be decomposed into a bias term and a variance-like term via the triangle inequality:∣∣∣∣Rm,n −

∫ f0(x) f1(x)
p f0(x) + q f1(x)

dx
∣∣∣∣ ≤ ∣∣Rm,n −E

[
Rm,n

]∣∣︸ ︷︷ ︸
variance-like term

+

∣∣∣∣E[Rm,n
]
−
∫ f0(x) f1(x)

p f0(x) + q f1(x)
dx
∣∣∣∣︸ ︷︷ ︸

bias term

.

The bias bound was given in Theorem 2. Therefore, we focus on an exponential concentration
bound for the variance-like term. One application of concentration bounds is to employ these bounds
to compare confidence intervals on the HP-divergence measure in terms of the FR estimator. In [44,45],
the authors provided an exponential inequality convergence bound for an estimator of Rény divergence
for a smooth Hölder class of densities on the d-dimensional unite cube [0, 1]d. We show that if Xm

and Yn are the set of m and n points drawn from any two distributions f0 and f1, respectively, the FR
criteria Rm,n is tightly concentrated. Namely, we establish that, with high probability, Rm,n is within

1− O
(
(m + n)−2/dε∗2

)
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of its expected value, where ε∗ is the solution of the following convex optimization problem:

min
ε≥0

C′m,n(ε) exp
(−(t/(2ε))d/(d−1)

(m + n)C̃

)
subject to ε ≥ O

(
7d+1(m + n)1/d), (9)

where C̃ = 8(4)d/(d−1) and

C′m,n(ε) = 8
(

1− O
(
(m + n)−2/dε2

))−2

. (10)

Note that, under the assumption (m + n)1/d ' 1, C′m,n(ε) becomes a constant depending only

on ε by 8
(
1− (c ε2)−2, where c is a constant. This is inferred from Theorems 5 and 6 below as

(m + n)1/d ' 1. See Appendix D, specifically Lemmas A8–A12 for more detail. Indeed, we first show
the concentration around the median. A median is by definition any real number Me that satisfies
the inequalities P(X ≤ Me) ≥ 1/2 and P(X ≥ Me) ≥ 1/2. To derive the concentration results, the
properties of growth bounds and smoothness for Rm,n, given in Appendix D, are exploited.

Theorem 5 (Concentration around the median). Let Me be a median of Rm,n which implies that P
(
Rm,n ≤

Me
)
≥ 1/2. Recall ε∗ from (9) then we have

P
(∣∣Rm,n(Xm,Yn)−Me

∣∣ ≥ t
)
≤ C′m,n(ε

∗) exp
(−(t/ε∗)d/(d−1)

(m + n)C̃

)
, (11)

where C̃ = 8(4)d/(d−1).

Theorem 6 (Concentration of Rm,n around the mean). Let Rm,n be the FR statistic. Then,

P
(∣∣Rm,n −E[Rm,n]

∣∣ ≥ t
)
≤ C′m,n(ε

∗) exp

(
−(t/(2ε∗))d/(d−1)

(m + n) C̃

)
. (12)

Here, C̃ = 8(4)d/(d−1) and the explicit form for C′m,n(ε
∗) is given by (10) when ε = ε∗.

See Appendix D for full proofs of Theorems 5 and 6. Here, we sketch the proofs. The proof of
the concentration inequality for Rm,n, Theorem 6, requires involving the median Me, where P(Rm,n ≤
Me) ≥ 1/2, inside the probability term by using∣∣Rm,n −E[Rm,n]

∣∣ ≤ |Rm,n −Me
∣∣+ |E[Rm,n]−Me

∣∣.
To prove the expressions for the concentration around the median, Theorem 5, we first consider

the hd uniform partitions of [0, 1]d, with edges parallel to the coordinate axes having edge lengths h−1

and volumes h−d. Then, by applying the Markov inequality, we show that with at least probability
1−

(
δh

m,n/ε
)
, where δh

m,n = O
(
hd−1(m + n)1/d), the FR statistic Rm,n is subadditive with 2ε threshold.

Afterward, owing to the induction method [17], the growth bound can be derived with at least
probability 1−

(
h δh

m,n
/

ε
)
. The growth bound explains that with high probability there exists a constant

depending on ε and h, Cε,h, such that Rm,n ≤ Cε,h
(
m n

)1−1/d. Applying the law of total probability
and semi-isoperimetric inequality (A108) in Lemma A11 gives us (A35). By considering the solution to
convex optimization problem (9), i.e., ε∗ and optimal h = 7 the claimed results (11) and (12) are derived.
The only constraint here is that ε is lower bounded by a function of δh

m,n = O
(
hd−1(m + n)1/d).
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Next, we provide a bound for the variance-like term with high probability at least 1− δ. According
to the previous results, we expect that this bound depends on ε∗, d, m and n. The proof is short and is
given in Appendix D.

Theorem 7 (Variance-like bound for Rm,n). Let Rm,n be the FR statistic. With at least probability 1− δ,
we have

|Rm,n −E[Rm,n]| ≤ O
(

ε∗ (m + n)(d−1)/d
(

log
(
C′m,n(ε

∗)
/

δ
))(d−1)/d

)
. (13)

or, equivalently, ∣∣∣∣ Rm,n

m + n
− E[Rm,n]

m + n

∣∣∣∣ ≤ O
(

ε∗ (m + n)−1/d
(

log
(
C′m,n(ε

∗)
/

δ
))(d−1)/d

)
, (14)

where C′m,n(ε
∗) depends on m, n, and d is given in (10) when ε = ε∗.

3. Numerical Experiments

3.1. Simulation Study

In this section, we apply the FR statistic estimate of the HP-divergence to both simulated and real
data sets. We present results of a simulation study that evaluates the proposed bound on the MSE.
We numerically validate the theory stated in Sections 2.2 and 2.4 using multiple simulations. In the
first set of simulations, we consider two multivariate Normal random vectors X, Y and perform three
experiments d = 2, 4, 8, to analyze the FR test statistic-based estimator performance as the sample sizes
m, n increase. For the three dimensions d = 2, 4, 8, we generate samples from two normal distributions
with identity covariance and shifted means: µ1 = [0, 0], µ2 = [1, 0] and µ1 = [0, 0, 0, 0], µ2 = [1, 0, 0, 0]
and µ1 = [0, 0, . . . , 0], µ2 = [1, 0, . . . , 0] when d = 2, d = 4 and d = 8, respectively. For all of the
following experiments, the sample sizes for each class are equal (m = n).

We vary N = m = n up to 800. From Figure 3, we deduce that, when the sample size increases,
the MSE decreases such that for higher dimensions the rate is slower. Furthermore, we compare
the experiments with the theory in Figure 3. Our theory generally matches the experimental results.
However, the MSE for the experiments tends to decrease to zero faster than the theoretical bound.
Since the Gaussian distribution has a smooth density, this suggests that a tighter bound on the MSE
may be possible by imposing stricter assumptions on the density smoothness as in [12].

0 100 200 300 400 500 600 700 800
N

10-3

10-2

10-1

M
SE

d=2, Experiment
d=2, Theory
d=4, Experiment
d=4, Theory
d=8, Experiment
d=8, Teory

Figure 3. Comparison of the bound on the MSE theory and experiments for d = 2, 4, 8 standard
Gaussian random vectors versus sample size from 100 trials.
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In our next simulation, we compare three bivariate cases: first, we generate samples from a
standard Normal distribution. Second, we consider a distinct smooth class of distributions i.e.,
binomial Gamma density with standard parameters and dependency coefficient ρ = 0.5. Third, we
generate samples from Standard t-student distributions. Our goal in this experiment is to compare the
MSE of the HP-divergence estimator between two identical distributions, f0 = f1, when f0 is one of
the Gamma, Normal, and t-student density function. In Figure 4, we observe that the MSE decreases
as N increases for all three distributions.

100 200 300 400 500 600 700 800

Number of Samples

10
-4

10
-3

10
-2

M
S

E

Normal

Gamma

t-student

Figure 4. Comparison of experimentally predicted MSE of the FR-statistic as a function of sample size
m = n in various distributions Standard Normal, Gamma (α1 = α2 = 1, β1 = β2 = 1, ρ = 0.5) and
Standard t-Student.

3.2. Real Datasets

We now show the results of applying the FR test statistic to estimate the HP-divergence using
three different real datasets [46]:

• Human Activity Recognition (HAR), Wearable Computing, Classification of Body Postures and
Movements (PUC-Rio): This dataset contains five classes (sitting-down, standing-up, standing,
walking, and sitting) collected on eight hours of activities of four healthy subjects.

• Skin Segmentation dataset (SKIN): The skin dataset is collected by randomly sampling B,G,R
values from face images of various age groups (young, middle, and old), race groups (white,
black, and asian), and genders obtained from the FERET and PAL databases [47].

• Sensorless Drive Diagnosis (ENGIN) dataset: In this dataset, features are extracted from electric
current drive signals. The drive has intact and defective components. The dataset contains 11
different classes with different conditions. Each condition has been measured several times under
12 different operating conditions, e.g., different speeds, load moments, and load forces.

We focus on two classes from each of the HAR, SKIN, and ENGIN datasets, specifically, for HAR
dataset two classes “sitting” and “standing” and for SKIN dataset the classes “Skin” and “Non-skin”
are considered. In the ENGIN dataset, the drive has intact and defective components, which results in
11 different classes with different conditions. We choose conditions 1 and 2.

In the first experiment, we computed the HP-divergence using KDE plug-in estimator and then
the MSE for the FR test statistic estimator is derived as the sample size N = m = n increases. We used
95% confidence interval as the error bars. We observe in Figure 5 that the estimated HP-divergence
ranges in [0, 1], which is one of the HP-divergence properties [8]. Interestingly, when N increases the
HP-divergence tends to 1 for all HAR, SKIN, and ENGIN datasets. Note that in this set of experiments
we have repeated the experiments on independent parts of the datasets to obtain the error bars. Figure 6
shows that the MSE expectedly decreases as the sample size grows for all three datasets. Here, we
have used the KDE plug-in estimator [12], implemented on the all available samples, to determine the



Entropy 2019, 21, 1144 11 of 42

true HP-divergence. Furthermore, according to Figure 6, the FR test statistic-based estimator suggests
that the Bayes error rate is larger for the SKIN dataset compared to the HAR and ENGIN datasets.
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Figure 5. HP-divergence vs. sample size for three real datasets HAR, SKIN, and ENGIN.

Figure 6. The empirical MSE vs. sample size. The empirical MSE of the FR estimator for all three
datasets HAR, SKIN, and ENGIN decreases for larger sample size N.

In our next experiment, we add the first six features (dimensions) in order to our datasets and
evaluate the FR test statistic’s performance as the HP-divergence estimator. Surprisingly, the estimated
HP-divergence doesn’t change for the HAR sample; however, big changes are observed for the SKIN
and ENGIN samples (see Figure 7).
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Figure 7. HP-divergence vs. dimension for three datasets HAR, SKIN, and ENGIN.

Finally, we apply the concentration bounds on the FR test statistic (i.e., Theorems 6 and 7) and
compute theoretical implicit variance-like bound for the FR criteria with δ = 0.05 error for the real



Entropy 2019, 21, 1144 12 of 42

datasets ENGIN, HAR, and SKIN. Since datasets ENGIN, HAR, and SKIN have the equal total sample
size N = m + n = 1200 and different dimensions d = 14, 12, 4, respectively; here, we first intend
to compare the concentration bound (13) on the FR statistic in terms of dimension d when δ = 0.05.
For real datasets ENGIN, HAR, and SKIN, we obtain

P (|Rm,n −E[Rm,n]| ≤ ξ) ≥ 0.95,

where ξ = ξ ′.[0.257, 0.005, 0.6 × 10−11], respectively, and ξ ′ is a constant not dependent on d.
One observes that as the dimension decreases the interval becomes significantly tighter. However,
this could not be generally correct and computing bound (13) precisely requires the knowledge of
distributions and unknown constants. In Table 1, we compute the standard variance-like bound by
applying the percentiles technique and observe that the bound threshold is not monotonic in terms
of dimension d. Table 1 shows the FR test statistic, HP-divergence estimate (denoted by Rm,n, D̂p,
respectively), and standard variance-like interval for the FR statistic using the three real datasets HAR,
SKIN, and ENGIN.

Table 1. Rm,n, D̂p, m, and n are the FR test statistic, HP-divergence estimates using Rm,n, and sample
sizes for two classes, respectively.

FR Test Statistic

Dataset E[Rm,n] D̂p m n Variance-Like Interval

HAR 3 0.995 600 600 (2.994,3.006)
SKIN 4.2 0.993 600 600 (4.196,4.204)

ENGIN 1.8 0.997 600 600 (1.798,1.802)

4. Conclusions

We derived a bound on the MSE convergence rate for the Friedman–Rafsky estimator of the
Henze–Penrose divergence assuming the densities are sufficiently smooth. We employed a partitioning
strategy to derive the bias rate which depends on the number of partitions, the sample size m + n,
the Hölder smoothness parameter η, and the dimension d. However, by using the optimal partition
number, we derived the MSE convergence rate only in terms of m + n, η, and d. We validated our
proposed MSE convergence rate using simulations and illustrated the approach for the meta-learning
problem of estimating the HP-divergence for three real-world data sets. We also provided concentration
bounds around the median and mean of the estimator. These bounds explicitly provide the rate that the
FR statistic approaches its median/mean with high probability, not only as a function of the number of
samples, m, n, but also in terms of the dimension of the space d. By using these results, we explored
the asymptotic behavior of a variance-like rate in terms of m, n, and d.
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Abbreviations

HP Henze-Penrose
BER Bayes error rate
MST Minimal Spanning Tree
FR Friedman-Rafsky
MSE Mean squared error

Appendix A. Proof of Theorem 4

In this section, we prove the subadditivity and superadditivity for the mean of FR test statistic.
For this, first we need to illustrate the following lemma.

Lemma A1. Let {Qi}ld

i=1 be a uniform partition of [0, 1]d into ld subcubes Qi with edges parallel to the
coordinate axes having edge lengths l−1 and volumes l−d. Let Dij be the set of edges of MST graph between
Qi and Qj with cardinality |Dij|, then for |D| defined as the sum of |Dij| for all i, j = 1, . . . , ld, i 6= j, we have
E|D| = O(ld−1 n1/d), or more explicitly

E[|D|] ≤ C′ld−1n1/d + O(ld−1n(1/d)−s), (A1)

where η > 0 is the Hölder smoothness parameter and

s =
(1− 1/d)η

d ((1− 1/d)η + 1)
.

Here, and in what follows, denote ΞMST(Xn) the length of the shortest spanning tree on
Xn = {X1, . . . , Xn}, namely

ΞMST(Xn) := min
T

∑
e∈T
|e|,

where the minimum is over all spanning trees T of the vertex set Xn. Using the subadditivity relation
for ΞMST in [17], with the uniform partition of [0, 1]d into ld subcubes Qi with edges parallel to the
coordinate axes having edge lengths l−1 and volumes l−d, we have

ΞMST(Xn) ≤
ld

∑
i=1

ΞMST(Xn ∩Qi) + C ld−1, (A2)

where C is constant. Denote D the set of all edges of MST
( M⋃

i=1
Qi

)
that intersect two different subcubes

Qi and Qj with cardinality |D|. Let |ei| be the length of i-th edge in set D. We can write

∑
i∈|D|
|ei| ≤ Cld−1 and E ∑

i∈|D|
|ei| ≤ Cld−1,

also we know that

E ∑
i∈|D|
|ei| = ED ∑

i∈|D|
E
[
|ei|
∣∣D]. (A3)

Note that using the result from ([31], Proposition 3), for some constants Ci1 and Ci2, we have

E|ei| ≤ Ci1n−1/d + Ci2n−(1/d)−s, i ∈ |D|. (A4)
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Now, let C1 = max
i
{Ci1} and C2 = max

i
{Ci2}, hence we can bound the expectation (A3) as

E|D| (C1n−1/d + C2(n−(1/d)−s)) ≤ Cld−1,

which implies

E|D| ≤ (C1n−1/d + O(n−(1/d)−s))

≤ C′ld−1n1/d + O(ld−1n(1/d)−s).

To aim toward the goal (7), we partition [0, 1]d into M := ld subcubes Qi of side 1/l. Recalling
Lemma 2.1 in [48], we therefore have the set inclusion:

MST
( M⋃

i=1

Qi

)
⊂

M⋃
i=1

MST(Qi) ∪ D, (A5)

where D is defined as in Lemma A1. Let mi and ni be the number of sample {X1, . . . , Xm} and
{Y1, . . . , Yn} respectively falling into the partition Qi, such that ∑

i
mi = m and ∑

i
ni = n. Introduce sets

A and B as

A := MST
( M⋃

i=1

Qi

)
, B :=

M⋃
i=1

MST(Qi).

Since set B has fewer edges than set A, thus (A5) implies that the difference set of B and A contains at
most 2|D| edges, where |D| is the number of edges in D. On the other word,

|A∆B| ≤ |A− B|+ |B− A| = |D|+ |B− A|

= |D|+ (|B| − |B ∩ A| ≤ |D|+ (|A| − |B ∩ A|) = 2|D|.

The number of edge linked nodes from different samples in set A is bounded by the number of edge
linked nodes from different samples in set B plus 2|D|:

Rm,n(Xm,Yn) ≤
M

∑
i=1

Rmi ,ni

(
(Xm,Yn) ∩Qi

)
+ 2|D|. (A6)

Here, Rmi ,ni stands with the number edge linked nodes from different samples in partition Qi, M.
Next, we address the reader to Lemma A1, where it has been shown that there is a constant c such that
E|D| ≤ c ld−1 (m + n)1/d. This concludes the claimed assertion (7). Now, to accomplish the proof, the
lower bound term in (8) is obtained with similar methodology and the set inclusion:

M⋃
i=1

MST(Qi) ⊂ MST
( M⋃

i=1

Qi

)
∪ D. (A7)

This completes the proof.

Appendix B. Proof of Theorem 2

As many of continuous subadditive functionals on [0, 1]d, in the case of the FR statistic, there
exists a dual superadditive functional R∗m,n based on dual MST, MST∗, proposed in Definition 2. Note
that, in the MST* graph, the degrees of the corner points are bounded by cd, where it only depends on
dimension d, and is the bound for degree of every node in MST graph. The following properties hold
true for dual FR test statistic, R∗m,n:
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Lemma A2. Given samples Xm = {X1, . . . , Xm} and Yn = {Y1, . . . , Yn}, the following inequalities hold true:

(i) For constant cd which depends on d:

R∗m,n(Xm,Yn) ≤ Rm,n(Xm,Yn) + cd 2d,

Rm,n(Xm,Yn) ≤ R∗m,n(Xm,Yn).
(A8)

(ii) (Subadditivity on E[R∗m,n] and Superadditivity) Partition [0, 1]d into ld subcubes Qi such that mi, ni be
the number of sample Xm = {X1, . . . , Xm} and Yn = {Y1, . . . , Yn} respectively falling into the partition
Qi with dual R∗mi ,ni

. Then, we have

E
[
R∗m,n(Xm,Yn)

]
≤

ld

∑
i=1

E
[
R∗mi ,ni

((Xm,Yn) ∩Qi)
]
+ c ld−1 (m + n)1/d,

R∗m,n(Xm,Yn) ≥
ld

∑
i=1

R∗mi ,ni
((Xm,Yn) ∩Qi)− 2dcdld,

(A9)

where c is a constant.

(i) Consider the nodes connected to the corner points. Since MST(Xm,Yn) and MST∗(Xm,Yn) can only
be different in the edges connected to these nodes, and in R∗(Xm,Yn) we take all of the edges between these
nodes and corner nodes into account, so we obviously have the second relation in (A8). In addition, for the first
inequality in (A8), it is enough to say that the total number of edges connected to the corner nodes is upper
bounded by 2d cd.

(ii) Let |D∗| be the set of edges of the MST∗ graph which intersect two different partitions. Since MST
and MST∗ are only different in edges of points connected to the corners and edges crossing different partitions.
Therefore, |D∗| ≤ |D|. By eliminating one edge in set D in the worse scenario we would face two possibilities:
either the corresponding node is connected to the corner which is counted anyways or any other point in MST
graph which wouldn’t change the FR test statistic. This implies the following subadditivity relation:

R∗m,n(Xm,Yn)− |D| ≤
ld

∑
i=1

R∗mi ,ni

(
(Xm,Yn) ∩Qi

)
.

Further from Lemma A1, we know that there is a constant c such that E|D| ≤ c ld−1 (m + n)1/d. Hence, the
first inequality in (A9) is obtained. Next, consider |D∗c | which represents the total number of edges from both
samples only connected to the all corners points in MST∗ graph. Therefore, one can easily claim:

R∗m,n(Xm,Yn) ≥
ld

∑
i=1

R∗mi ,ni

(
(Xm,Yn) ∩Qi

)
− |D∗c |.

In addition, we know that |D∗c | ≤ 2dldcd where cd stands with the largest possible degree of any vertex. One
can write

R∗m,n(Xm,Yn) ≥
ld

∑
i=1

R∗mi ,ni

(
(Xm,Yn) ∩Qi

)
− 2dcdld.

The following list of Lemmas A3, A4 and A6 are inspired from [49] and are required to prove
Theorem A1. See Appendix E for their proofs.

Lemma A3. Let g(x) be a density function with support [0, 1]d and belong to the Hölder class Σd(η, L),
0 < η ≤ 1, stated in Definition 1. In addition, assume that P(x) is a η-Hölder smooth function, such that its
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absolute value is bounded from above by a constant. Define the quantized density function with parameter l and
constants φi as

ĝ(x) =
M

∑
i=1

φi1{x ∈ Qi}, where φi = ld
∫
Qi

g(x) dx. (A10)

Let M = ld and Qi = {x, xi : ‖x− xi‖ < l−d}. Then,∫ ∥∥∥(g(x)− ĝ(x)
)

P(x)
∥∥∥ dx ≤ O(l−dη). (A11)

Lemma A4. Denote ∆(x,S) the degree of vertex x ∈ S in the MST over set S with the n number of vertices.
For given function P(x, x), one obtains∫

P(x, x)g(x)E[∆(x,S)] dx = 2
∫

P(x, x)g(x) dx + ςη(l, n), (A12)

where, for constant η > 0,

ςη(l, n) =
(

O
(
l/n
)
− 2 ld/n

) ∫
g(x)P(x, x) dx + O(l−dη). (A13)

Lemma A5. Assume that, for given k, gk(x) is a bounded function belong to Σd(η, L). Let P : Rd ×Rd 7→
[0, 1] be a symmetric, smooth, jointly measurable function, such that, given k, for almost every x ∈ Rd, P(x, .)
is measurable with x a Lebesgue point of the function gk(.)P(x, .). Assume that the first derivative P is bounded.
For each k, let Zk

1, Zk
2, . . . , Zk

k be an independent d-dimensional variable with common density function gk. Set
Zk = {Zk

1, Zk
2 . . . , Zk

k} and Zx
k = {x, Zk

2, Zk
3 . . . , Zk

k}. Then,

E
[ k

∑
j=2

P(x, Zk
j )1
{
(x, Zk

j ) ∈ MST(Zx
k)
}]

= P(x, x) E
[
∆(x,Zx

k)
]
+
{

O
(
k−η/d)+ O

(
k−1/d)}. (A14)

Lemma A6. Consider the notations and assumptions in Lemma A5. Then,∣∣∣k−1 ∑ ∑
1≤i<j≤k

P(Zk
i , Zk

j )1{(Zk
i , Zk

j ) ∈ MST(Zk)} −
∫
Rd

P(x, x)gk(x) dx
∣∣∣

≤ ςη(l, k) + O(k−η/d) + O(k−1/d).
(A15)

Here, MST(S) denotes the MST graph over nice and finite set S ⊂ Rd and η is the smoothness Hölder
parameter. Note that ςη(l, k) is given as before in Lemma A4 (A13).

Theorem A1. Assume Rm,n := R(Xm,Yn) denotes the FR test statistic and densities f0 and f1 belong to the
Hölder class Σd(η, L), 0 < η ≤ 1. Then, the rate for the bias of the Rm,n estimator for d ≥ 2 is of the form:∣∣∣∣∣E

[
Rm,n

]
m + n

− 2pq
∫ f0(x) f1(x)

p f0(x) + q f1(x)
dx

∣∣∣∣∣ ≤ O
(
ld(m + n)−η/d)+ O(l−dη). (A16)

The proof and a more explicit form for the bound (A16) are given in Appendix E.

Now, we are at the position to prove the assertion in (5). Without loss of generality, assume that
(m + n)l−d > 1. In the range d ≥ 2 and 0 < η ≤ 1, we select l as a function of m + n to be the sequence
increasing in m + n which minimizes the maximum of these rates:

l(m + n) = arg min
l

max
{

ld(m + n)−η/d, l−ηd
}

.
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The solution l = l(m + n) occurs when ld(m + n)−η/d = l−ηd, or equivalently l = b(m + n)η/(d2(η+1))c.
Substitute this into l in the bound (A16), the RHS expression in (5) for d ≥ 2 is established.

Appendix C. Proof of Theorems 3

To bound the variance, we will apply one of the first concentration inequalities which was proved
by Efron and Stein [43] and further was improved by Steele [18].

Lemma A7 (The Efron–Stein Inequality). Let Xm = {X1, . . . , Xm} be a random vector on the space S .
Let X′ = {X′1, . . . , X′m} be the copy of random vector Xm. Then, if f : S × · · · × S → R, we have

V
[

f (Xm)
]
≤ 1

2

m

∑
i=1

E
[(

f (X1, . . . , Xm)− f (X1, . . . , X′i, . . . , Xm)
)2
]
. (A17)

Consider two set of nodes Xi, 1 ≤ i ≤ m and Yj for 1 ≤ j ≤ n. Without loss of
generality, assume that m < n. Then, consider the n − m virtual random points Xm+1, . . . , Xn

with the same distribution as Xi, and define Zi := (Xi, Yi). Now, for using the Efron–Stein
inequality on set Zn = {Z1, . . . , Zn}, we involve another independent copy of Zn as Z′n =

{Z′1, . . . , Z′n}, and define Z
(i)
n := (Z1, . . . , Zi−1, Z′i, Zi+1, . . . , Zn), then Z

(1)
n becomes (Z′1, Z2, . . . , Zn) ={

(X′1, Y′1), (X2, Y2), . . . , (Xm, Yn)
}
=: (X(1)

m ,Y(1)
n ) where (X′1, Y′1) is independent copy of (X1, Y1). Next,

define the function rm,n(Zn) := Rm,n/(m + n), which means that we discard the random samples
Xm+1, . . . , Xn, and find the previously defined Rm,n function on the nodes Xi, 1 ≤ i ≤ m and Yj for
1 ≤ j ≤ n, and multiply by some coefficient to normalize it. Then, according to the Efron–Stein
inequality, we have

Var(rm,n(Zn)) ≤
1
2

n

∑
i=1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]
.

Now, we can divide the RHS as

1
2

n

∑
i=1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]
=

1
2

m

∑
i=1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]
+

1
2

n

∑
i=m+1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]
.

(A18)

The first summand becomes

=
1
2

m

∑
i=1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]
=

m
2 (m + n)2E

[
(Rm,n(Xm,Yn)−Rm,n(X

(1)
m ,Y(1)

n ))2
]

,

which can also be upper bounded as follows:∣∣∣Rm,n(Xm,Yn)−Rm,n(X
(1)
m ,Y(1)

n )
∣∣∣ ≤ ∣∣∣Rm,n(Xm,Yn)−Rm,n(X

(1)
m ,Yn)

∣∣∣
+
∣∣∣R(X

(1)
m ,Yn)−Rm,n(X

(1)
m ,Y(1)

n )
∣∣∣ .

(A19)

For deriving an upper bound on the second line in (A19), we should observe how much changing
a point’s position modifies the amount of Rm,n(Xm,Yn). We consider two steps of changing X1’s
position: we first remove it from the graph, and then add it to the new position. Removing it would
change Rm,n(Xm,Yn) at most by 2 cd because X1 has a degree of at most cd, and cd edges will be
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removed from the MST graph, and cd edges will be added to it. Similarly, adding X1 to the new
position will affect Rm,n(Xm,n,Ym,n) at most by 2cd. Thus, we have∣∣∣Rm,n(Xm,Yn)−Rm,n(X

(1)
m ,Yn)

∣∣∣ ≤ 4 cd,

and we can also similarly reason that∣∣∣Rm,n(X
(1)
m ,Yn)−Rm,n(X

(1)
m ,Y(1)

n )
∣∣∣ ≤ 4 cd.

Therefore, totally we would have∣∣∣Rm,n(Xm,Yn)−Rm,n(X
(1)
m ,Y(1)

n )
∣∣∣ ≤ 8 cd.

Furthermore, the second summand in (A18) becomes

=
1
2

n

∑
i=m+1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]
= Km,nE

[
(Rm,n(Xm,Yn)−Rm,n(X

(m+1)
m ,Y(m+1)

n ))2
]

,

where Km,n = n−m
2 (m+n)2 . Since, in (X

(m+1)
m ,Y(m+1)

n ), the point X′m+1 is a copy of virtual random point
Xm+1, therefore this point doesn’t change the FR test statistic Rm,n. In addition, following the above
arguments, we have ∣∣∣Rm,n(Xm,Yn)−Rm,n(Xm,Y(m+1)

n )
∣∣∣ ≤ 4 cd.

Hence, we can bound the variance as below:

Var(rm,n(Zn)) ≤
8c2

d(n−m)

(m + n)2 +
32 c2

d m
(m + n)2 . (A20)

Combining all results with the fact that
n

m + n
→ q concludes the proof.

Appendix D. Proof of Theorems 5–7

We will need the following prominent results for the proofs.

Lemma A8. For h = 1, 2, . . . , let δh
m,n be the function c hd−1(m + n)1/d, where c is a constant. Then, for

ε > 0 , we have

P
(
Rm,n(Xm,Yn) ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
)
≥

ε− δh
m,n

ε
. (A21)

Note that, in the case ε ≤ δh
m,n, the above claimed inequality becomes trivial.

The subadditivity property for FR test statistic Rm,n in Lemma A8, as well as Euclidean functionals,
leads to several non-trivial consequences. The growth bound was first explored by Rhee (1993b) [50],
and as is illustrated in [17,27] has a wide range of applications. In this paper, we investigate the
probabilistic growth bound for Rm,n. This observation will lead us to our main goal in this appendix
that is providing the proof of Theorem 6. For what follows, we will use δh

m,n notation for the expression
O
(
hd−1(m + n)1/d).
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Lemma A9. (Growth bounds for Rm,n) Let Rm,n be the FR test statistic. Then, for given non-negative ε,

such that ε ≥ h2 δh
m,n, with at least probability g(ε) := 1−

h δh
m,n

ε
, h = 2, 3, . . . , we have

Rm,n(Xm,Yn) ≤ c′′ε,h
(
#Xm #Yn

)1−1/d. (A22)

Here, c′′ε,h = O
(

ε

hd−1 − 1

)
depending only on ε and h.

The complexity of Rm,n’s behavior and the need to pursue the proof encouraged us to explore the
smoothness condition for Rm,n. In fact, this is where both subadditivity and superadditivity for the FR
statistic are used together and become more important.

Lemma A10 (Smoothness for Rm,n). Given observations of

Xm := (Xm′ ,Xm′′) = {X1, . . . , Xm′ , Xm′+1, . . . , Xm},

where m′ + m′′ = m and Yn := (Yn′ ,Yn′′) = {Y1, . . . , Yn′ , Yn′+1, . . . , Yn}, where n′ + n′′ = n, denote
Rm,n(Xm,Yn) as before, the number of edges of MST(Xm,Yn) which connect a point of Xm to a point of Yn.
Then, for given integer h ≥ 2, for all (Xn,Ym) ∈ [0, 1]d, ε ≥ h2 δh

m,n where δh
m,n = O

(
hd−1(m + n)1/d),

we have

P
(∣∣∣Rm,n(Xm,Yn)−Rm′ ,n′(Xm′ ,Yn′)

∣∣∣ ≤ c̃ε,h
(
#Xm′′ #Yn′′

)1−1/d
)

≥ 1−
2h δh

m,n

ε
,

(A23)

where c̃ε,h = O
(

ε

hd−1 − 1

)
.

Remark: Using Lemma A10, we can imply the continuty property, i.e., for all observations (Xm,Yn)

and (Xm′ ,Yn′), with at least probability 2 g(ε)− 1, one obtains∣∣∣Rm,n(Xm,Yn)−Rm′ ,n′(Xm′ ,Yn′)
∣∣∣

≤ c∗ε,h
(
#(Xm∆ Xm′) #(Yn∆ Yn′)

)1−1/d,
(A24)

for given ε > 0, c∗ε,h = O
(

ε

hd−1 − 1

)
, h ≥ 2. Here, Xm∆ Xm′ denotes symmetric difference of

observations Xm and Xm′ .

The path to approach the assertions (11) and (12) proceeds via semi-isoperimentic inequality for
the Rm,n involving the Hamming distance.

Lemma A11 (Semi-Isoperimetry). Let µ be a measure on [0, 1]d; µn denotes the product measure on space
([0, 1]d)n. In addition, let Me denotes a median of Rm,n. Set

A :=
{
Xm ∈

(
[0, 1]d

)m,Yn ∈
(
[0, 1]d

)n;Rm,n(Xm,Yn) ≤ Me

}
. (A25)
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Following the notations in [17], H(x, x′) = #{i, xi 6= x′i) and φA(x′) + φA(y′) = min{H(x, x′) +
H(y, y′) : x, y ∈ A} and φA(x′) φA(y′) = min{H(x, x′) H(y, y′) : x, y ∈ A} . Then,

µm+n
({

x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]d)n : φA(x′) φA(y′) ≥ t
})

≤ 4 exp
( −t

8(m + n)

)
.

(A26)

Now, we continue by providing the proof of Theorem 5. Recall (A25) and denote

Fx :=
{

xi, i = 1, . . . , m, xi = x′i
}

,

Fy :=
{

yj, j = 1, . . . , n, yj = y′j
}

,

and

Gx :=
{

xi, i = 1, . . . , m, xi 6= x′i
}

,

Gy :=
{

yj, j = 1, . . . , n, yj 6= y′j
}

.

In addition, for given integer h, define events B, B′ by

B :=
{∣∣∣Rm,n(X′m,Y′n)−R(Fx,Fy)

∣∣∣ ≤ cε,h
(
#Gx #Gy

)1−1/d
}

,

B′ :=
{∣∣∣R(Fx,Fy)−Rm,n(Xm,Yn)

∣∣∣ ≤ cε,h
(
#Gx #Gy

)1−1/d
}

,

where cε,h is a constant. By virtue of smoothness property, Lemma A10, for ε ≥ h2δh
m,n, we know

P(B) ≥ 2g(ε)− 1 and P(B′) ≥ 2g(ε)− 1. On the other hand, we have

Rm,n(X
′
m,Y′n) ≤

∣∣∣Rm,n(X
′
m,Y′n)−R(Fx,Fy)

∣∣∣
+
∣∣∣R(Fx,Fy)−Rm,n(Xm,Yn)

∣∣∣+Rm,n(Xm,Yn).

= |v′|+ |v|+Rm,n(Xm,Yn) (say).

Moreover, P(Rm,n(Xm,Yn) ≤ Me) ≥ 1/2. Therefore, we can write

1/2 ≤ P
(
Rm,n(X

′
m,Y′n) ≤ Me + |v′|+ |v|

)
≤ P

(
Rm,n(X′m,Y′n) ≤ Me + |v′|+ |v|

∣∣ B∩B′)P(B∩B′)

+P(Bc ∪B′c).

(A27)

Thus, we obtain

P
(
Rm,n(X

′
m,Y′n) ≤ Me + 4ε

(
#Gx #Gy

)1−1/d
)

≥
(
1/2− 1 + P(B∩B′)

)/
P(B∩B′)

= 1−
((

2 P(B∩B′)
)−1
)

.

Note that P(B∩B′) = P(B) P(B′) ≥
(
2 g(ε)− 1

)2. Now, we easily claim that

1−
((

2 P(B∩B′)
)−1
)
≥ 1−

((
2 (2 g(ε)− 1)2)−1

)
. (A28)
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Thus,
P
(
Rm,n(X′m,Y′n) ≤ Me + 4ε

(
#Gx #Gy

)1−1/d
)
≥ 1−

((
2 (2 g(ε)− 1)2)−1

)
.

On the other word, calling φA(x′) and φA(y′) in Lemma A11, we get

P
(
Rm,n(X′m,Y′n) ≤ Me + 4ε

(
φA(x′) φA(y′)

)1−1/d
)
≥ 1−

((
2 (2 g(ε)− 1)2)−1

)
. (A29)

Furthermore, denote event

C :=
{
Rm,n(X

′
m,Y′n) ≤ Me + 4ε

(
φA(x′) φA(y′)

)1−1/d}.

Then, we have

P
(
Rm,n(Xm,Yn) ≥ Me + t

)
= µm+n(Rm,n(X′m,Y′n) ≥ Me + t

)
= µm+n(

(
Rm,n(X′m,Y′n) ≥ Me + t

)∣∣C)P(C)

+µm+n(
(
Rm,n(X

′
m,Y′n) ≥ Me + t

)∣∣Cc)P(Cc)

≤ µm+n
((

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

)
P(C)

+µm+n(
(
Rm,n(X

′
m,Y′n) ≥ Me + t

)∣∣Cc)P(Cc).

Using P(C) = 1− P(Cc)

= µm+n
((

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

)
+P(Cc)

{
µm+n(

(
Rm,n(X

′
m,Y′n) ≥ Me + t

)∣∣Cc)

−µm+n
((

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

)}
.

(A30)

Define set Kt =
{(

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

}
, so

µm+n(Rm,n(X
′
m,Y′n) ≥ Me + t

∣∣Cc)
= µm+n(Rm,n(X

′
m,Y′n) ≥ Me + t

∣∣Cc,Kt
)
µm+n(Kt) + µm+n(

(
Rm,n(X

′
m,Y′n) ≥ Me + t

)∣∣Cc,Kc
t )µ

m+n(Kc
t ).

Since
µm+n(Rm,n(X

′
m,Y′n) ≥ Me + t

∣∣Cc,Kt
)
= 1,

and

µm+n(Rm,n(X
′
m,Y′n) ≥ Me + t

∣∣Cc,Kc
t
)
= µm+n(Rm,n(X

′
m,Y′n) ≥ Me + t

)
.
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Consequently, from (A30), one can write

P
(
Rm,n(Xm,Yn) ≥ Me + t

)
≤ µm+n

((
φA(x′) φA(y′)

)1−1/d ≥ t
4ε

)
+P(Cc)

{
µm+n(Rm,n(X

′
m,Y′n) ≥ Me + t

)
µm+n(Kc

t )
}

≤ µm+n
((

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

)
+
((

2 (2 g(ε)− 1)2)−1
)

P
(
Rm,n(Xm,Yn) ≥ Me + t

)
.

(A31)

The last inequality implies by owing to (A29) and µm+n(Kc
t ) ≤ 1. For g(ε) ≥ 1/2 + 1/

(
2
√

2
)
, we have

1−
((

2 (2 g(ε)− 1)2)−1
)
≥ 0,

or equivalently this holds true when ε ≥ (2h
√

2 δh
m,n)

/
(
√

2− 1). Furthermore, for h ≥ 7, we have

h2δh
m,n ≥ (2h

√
2 δh

m,n)
/
(
√

2− 1), (A32)

therefore P
(
Rm,n(Xm,Yn) ≥ Me + t

)
is less than and equal to

(
1−

((
2 (2 g(ε)− 1)2)−1

))−1

µm+n
((

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

)
. (A33)

By virtue of Lemma A11, finally we obtain

P
(
Rm,n(Xm,Yn) ≥ Me + t

)
≤ 4

(
1−

((
2 (2 g(ε)− 1)2)−1

))−1

exp
( −td/(d−1)

8(4ε)d/d−1(m + n)

)
. (A34)

Similarly, we can derive the same bound on P
(
Rm,n(Xm,Yn) ≤ Me − t

)
, so we obtain

P
(∣∣Rm,n −Me

∣∣ ≥ t
)
≤ C′m,n(ε, h) exp

( −td/(d−1)

8(4ε)d/(d−1)(m + n)

)
, (A35)

where

C′m,n(ε, h) = 8
(

1− 2−1
(

1−
2h O

(
hd−1(m + n)1/d)

ε

)−2
)−1

. (A36)

We will analyze (A35) together with Theorem 6. The next lemma will be employed in Theorem 6’s proof.

Lemma A12 (Deviation of the Mean and Median). Consider Me as a median of Rm,n. Then, for ε ≥ h2δh
m,n

and given h ≥ 7, we have∣∣∣E[Rm,n(Xm,Yn)
]
−Me

∣∣∣ ≤ Cm,n(ε, h) (m + n)(d−1)/d, (A37)

where Cm,n(ε, h) is a constant depending on ε, h, m, and n by

Cm,n(ε, h) = C
(

1−
((

2 (2 g(ε)− 1)2)−1
))−1

, (A38)
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where C is a constant and

δh
m,n = O

(
hd−1(m + n)1/d), and g(ε) = 1−

h δh
m,n

ε
.

We conclude this part by pursuing our primary intension which has been the Theorem 6’s proof.
Observe from Theorem 5, (11) that

P
(∣∣∣Rm,n −E[Rm,n]

∣∣∣ ≥ t + Cm,n(ε, l)
(
m + n)(d−1)/d

)
≤ P

(∣∣Rm,n −Me
∣∣+ ∣∣E[Rm,n]−Me

∣∣
≥ t + Cm,n(ε, l)

(
m + n)(d−1)/d

)
≤ P

(∣∣Rm,n −Me
∣∣ ≥ t

)
≤ 8

(
1−

((
2 (2 g(ε)− 1)2)−1

))−1

exp
( −td/(d−1)

8(4ε)d/d−1(m + n)

)
.

Note that the last bound is derived by (11). The rest of the proof is as the following: When t ≥
2Cm,n(ε, h)

(
m + n)(d−1)/d, we use

(
t− Cm,n(ε, h)

(
m + n)(d−1)/d

)d/(d−1)
≥
(

t/2
)d/(d−1)

.

Therefore, it turns out that

P
(∣∣∣Rm,n −E[Rm,n]

∣∣∣ ≥ t
)

≤ 8
(

1−
((

2 (2 g(ε)− 1)2)−1
))−1

exp
( −td/(d−1)

8(8ε)d/(d−1)(m + n)

)
.

(A39)

In other words, there exist constants C′m,n(ε, h) depending on m, n, ε, and h such that

P
(∣∣∣Rm,n −E[Rm,n]

∣∣∣ ≥ t
)
≤ C′m,n(ε, h) exp

(
−(t/(2ε))d/(d−1)

(m + n) C̃

)
, (A40)

where C̃ = 8(4)d/(d−1).
To verify the behavior of bound (A40) in terms of ε, observe (A35) first; it is not hard to see that

this function is decreasing in ε. However, the function

exp

(
−(t/(2ε))d/(d−1)

(m + n)C̃

)

increases in ε. Therefore, one can not immediately infer that the bound in (12) is monotonic with respect
to ε. For fixed N = n + m, d, and h, the first and second derivatives of the bound (12) with respect to
ε are quite complicated functions. Thus, deriving an explicit optimal solution for the minimization
problem with the objective function (12) is not feasible. However, in the sequel, we discuss that under
conditions when t is not much larger than N = m + n, this bound becomes convex with respect to ε.
Set

K(ε) = C′m,n(ε, h) exp
( −B(t)

εd/(d−1)

)
, (A41)
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where C′m,n is given in (10) and

B(t) =
td/(d−1)

8 (8)d/(d−1)(N)
.

By taking the derivative with respect to ε, we have

dK(ε)
dε

= K(ε)
(

d
dε

(
log C′m,n

)
+

B(t) d/(d− 1)
ε(2d−1)/(d−1)

)
, (A42)

where
d
dε

(
log C′m,n

)
=

−4 ah ε

(ε− 2ah)(8a2
h − 8εah + ε2)

, (A43)

where ah = hδh
m,n. The second derivative K(ε) with respect to ε after simplification is given as

d2

dε2 K(ε) =

(
−4 ah ε

(ε− 2ah)(8a2
h − 8εah + ε2)

+
B(t) d̄
εd̄+1

)2

+K(ε)

(
8ah (8a3

h + ε2(ε− 5ah))

(8a2
h − 8ahε + ε2)2(ε− 2ah)2

− B(t)d̄(d̄ + 1)
εd̄+2

)
,

(A44)

where d̄ = d/(d− 1). The first term in (A44) and K(ε) are non-negative, so K(ε) is convex if the second
term in the second line of (A44) is non-negative. We know that ε ≥ h2δh

m,n = h ah, when h = 7, we can
parameterize ε by setting it equal to γah, where γ ≥ 7. After simplification, K(ε) is convex if

ad̄−1
h

(
γd̄−1 + 3γd̄−2

)
+ B(t)d̄(d̄ + 1)

×
{

a−1
h

(
− 32γ−6 + 64γ−5 − 48γ−4 + 8γ−3 − 7

2
γ−2 + 2γ−1 − 1

8

)
+a−2

h

(
32γ−6 − 64γ−5 + 40γ−4 + 8γ−3 +

1
2

γ−2
)}
≥ 0.

(A45)

This is implied if

0 ≤ B(t)d̄(d̄ + 1) a−1
h

×
(
− 32γ−6 + 64γ−5 − 48γ−4 + 8γ−3 − 7

2
γ−2 + 2γ−1 − 1

8

)
,

(A46)

such that γ ≥ 7. One can easily check that, as γ → ∞, then (A46) tends to −1
8

B(t)d̄(d̄ + 1) a−1
h .

This term can be negligible unless we have t that is much larger than N = m + n with the threshold
depending on d. Here, by setting B(t)/ah = 1, a rough threshold t = O

(
7d−1(m+ n)1−1/d2)

depending
on d, m + n is proposed. Therefore, minimizing (A35) and (A40) with respect to ε when optimal h = 7
is a convex optimization problem. Denote ε∗ the solution of the convex optimization problem (9).
By plugging optimal h (h = 7) and ε (ε = ε∗) in (A35) and (A40), we derive (11) and (12), respectively.

In this appendix, we also analyze the bound numerically. By simulation, we observed that lower
h i.e., h = 7 is the optimal value experimentally. Indeed, this can be verified by Theorem 11’s proof.
We address the reader to Lemma A8 in Appendix D and Appendix E where, as h increases, the lower
bound for the probability increases too. In other words, for fixed N = m + n and d, the lowest h implies
the maximum bound in (A92). For this, we set h = 7 in our experiments. We vary the dimension d
and sample size N = m + n in relatively large and small ranges. In Table A1, we solve (9) for various
values of d and N = m + n. We also compute the lower bound for ε i.e., 7d+1N1/d per experiment. In
Table A1, we observe that as we have higher dimension the optimal value ε∗ equals the ε lower bound
hd+1N1/d, but this is not true for smaller dimensions with even relatively large sample size.
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Table A1. d, N, ε∗ are dimension, total sample size m + n, and optimal ε for the bound in (12).
The column hd+1N1/d represents approximately the lower bound for ε which is our constraint in the
minimization problem and our assumption in Theorems 5 and 6. Here, we set h = 7.

Concentration Bound (11)

d N = m + n ε∗ t0 hd+1N1/d Optimal (11)

2 103 1.1424× 104 2× 107 1.0847× 104 0.3439
4 104 1.7746× 105 3× 1010 168,070 0.0895
5 550 4.7236× 105 1010 4.1559× 105 0.9929
6 104 3.8727× 106 2× 1012 3.8225× 106 0.1637
8 1200 9.7899× 107 12× 1012 9.7899× 107 0.7176

10 3500 4.4718× 109 2× 1015 4.4718× 109 0.4795
15 108 1.1348× 1014 1024 1.1348× 1014 0.9042

To validate our proposed bound in (12), we again set h = 7 and for d = 4, 5, 7 we ran experiments
with sample sizes N = m + n = 9000, 1100, 140, respectively. Then, we solved the minimization
problem to derive optimal bound for t in the range 1010[1, 3]. Note that we chose this range to have a
non-trivial bound for all three curves; otherwise, the bounds partly become one. Figure A1 shows that
when t increases in the given range, the optimal curves approach zero.
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Figure A1. Optimal bound for (12), when h = 7 versus t ∈ 1010[1, 3]. The bound decreases as t grows.

To prove the Theorem 7 in the concentration of Rm,n, Theorem 6, let

δ = C′m,n(ε
∗) exp

(−(t/(2ε∗))d/(d−1)

(m + n) C̃

)
,

this implies t = O
(

ε∗ (m + n)(d−1)/d( log
(
C′m,n(ε

∗)
/

δ)
)(d−1)/d

)
and the proofs are completed.

Appendix E. Additional Proofs

Lemma A3: Let g(x) be a density function with support [0, 1]d and belong to the Hölder class
Σd(η, L), 0 < η ≤ 1, expressed in Definition 1. In addition, assume that P(x) is a η-Hölder smooth
function, such that its absolute value is bounded from above by some constants c. Define the quantized
density function with parameter l and constants φi as
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ĝ(x) =
M

∑
i=1

φi1{x ∈ Qi}, where φi = ld
∫
Qi

g(x) dx, (A47)

and M = ld and Qi = {x, xi : ‖x− xi‖ < l−d}. Then,∫ ∥∥∥(g(x)− ĝ(x)
)

P(x)
∥∥∥ dx ≤ O(l−dη). (A48)

Proof. By the mean value theorem, there exist points εi ∈ Qi such that

φi = ld
∫
Qi

g(x) dx = g(εi).

Using the fact that g ∈ Σd(η, L) and P(x) is a bounded function, we have

∫ ∥∥g(x)− ĝ(x)
)

P(x)
∥∥ dx =

M

∑
i=1

∫
Qi

∥∥(g(x)−Φi)P(x)
∥∥dx

=
M

∑
i=1

∫
Qi

∥∥(g(x)− g(εi))P(x)
∥∥dx

≤ c L
M

∑
i=1

∫
Qi

∥∥x− εi
∥∥η dx.

Here, L is the Hölder constant. As x, εi ∈ Qi, a sub-cube with edge length l−1, then
∥∥x− εi

∥∥η
= O(l−dη)

and
M

∑
i=1

∫
Qi

dx = 1. This concludes the proof.

Lemma A4: Let ∆(x,S) denote the degree of vertex x ∈ S in the MST over set S ⊂ Rd with the n
number of vertices. For given function P(x, x), one yields∫

P(x, x)g(x)E[∆(x,S)] dx = 2
∫

P(x, x)g(x) dx + ςη(l, n), (A49)

where for constant η > 0,

ςη(l, n) =
(

O
(
l/n
)
− 2 ld/n

) ∫
g(x)P(x, x) dx + O(l−dη). (A50)

Proof. Recall notations in Lemma A3 and∣∣∣ ∫ g(x)P(x) dx−
∫

ĝ(x)P(x) dx
∣∣∣ ≤ ∫ ∣∣(g(x)− ĝ(x)

)
P(x)

∣∣ dx.

Therefore, by substituting ĝ, defined in (A47), into g with considering its error, we have∫
P(x, x)g(x)E[∆(x,S)] dx

=
∫

P(x, x)E[∆(x,S)]
M

∑
i=1

φi1{x ∈ Qi} dx + O(l−dη)

=
M

∑
i=1

φi

∫
Qi

P(x, x)E[∆(x,S)] dx + O(l−dη).

(A51)
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Here, Qi represents as before in Lemma A3, so the RHS of (A51) becomes

M

∑
i=1

φi

∫
Qi

P(x, x)E[∆(x,S ∩Qi)] dx +
M

∑
i=1

φi

∫
Qi

P(x, x)O(l1−d/n) + O(l−dη)

=
M

∑
i=1

φiP(xi, xi)
1
M

∫
Qi

M E[∆(x,S ∩Qi)] dx +
M

∑
i=1

φi

∫
Qi

P(x, x)O(l1−d/n) + 2 O(l−dη).
(A52)

Now, note that
∫

Qi

M E[∆(x,S ∩ Qi)] dx is the expectation of E[∆(x, S ∩ Qi)] over the nodes in Qi,

which is equal to 2− 2
ki

, where ki =
n
M

. Consequently, we have

∫
P(x, x)g(x)E[∆(x,S)] dx =

(
2− 2 M

n

) M

∑
i=1

φi P(xi, xi)
1
M

+ O

(
l1−d

n

)
M

∑
i=1

φi P(xi, xi) + 3 O(l−dη)

= 2
∫

g(x)P(x, x) dx + 5 O(l−dη)) + M

(
O

(
l1−d

n

)
−
(

2
n

)) ∫
g(x)P(x, x) dx.

(A53)

This gives the assertion (A49).

Lemma A5: Assume that, for given k, gk(x) is a bounded function belong to Σd(η, L). Let
P : Rd×Rd 7→ [0, 1] be a symmetric, smooth, jointly measurable function, such that, given k, for almost
every x ∈ Rd, P(x, .) is measurable with x a Lebesgue point of the function gk(.)P(x, .). Assume that
the first derivative P is bounded. For each k, let Zk

1, Zk
2, . . . , Zk

k be independent d-dimensional variable
with common density function gk. Set Zk = {Zk

1, Zk
2 . . . , Zk

k} and Zx
k = {x, Zk

2, Zk
3 . . . , Zk

k}. Then,

E
[ k

∑
j=2

P(x, Zk
j )1
{
(x, Zk

j ) ∈ MST(Zx
k)
}]

= P(x, x) E
[
∆(x,Zx

k)
]
+
{

O
(
k−η/d)+ O

(
k−1/d)}.

(A54)

Proof. Let B(x, r) = {y : ‖y− x‖d ≤ r}. For any positive K, we can obtain:

E
k

∑
j=2

∣∣∣P(x, Zk
j )− P(x, x)

∣∣∣1{Zk
j ∈ B

(
x, Kk−1/d)}

= (k− 1)
∫

B
(

x;Kk−1/d
)
∣∣∣(P(x, y)gk(y)− P(x, x)gk(x)

)
+ P(x, x)

(
gk(x)− gk(y)

)∣∣∣ dy

≤ (k− 1)
[ ∫
B
(

x;Kk−1/d
)
∣∣∣(P(x, y)gk(y)− P(x, x)gk(x)

)∣∣∣dy + O
(
k−η/d)V(B(x, Kk−1/d)],

(A55)

where V is the volume of space B which equals O(k−1). Note that the above inequality appears because
gk(x) ∈ Σd(η, L) and P(x, x) ∈ [0, 1]. The first order Taylor series expansion of P(x, y) around x is

P(x, y) = P(x, x) + P(1)(x, x)‖y− x‖+ o
(
‖y− x‖2)

= P(x, x) + O
(
k−1/d)+ o

(
k−2/d).

Then, by recalling the Hölder class, we have∣∣∣P(x, y)gk(y)− P(x, x)gk(x)
∣∣∣ =

∣∣∣(P(x, x) + O(k−1/d)
)(

gk(x) + O(k−η/d)
)
− P(x, x)gk(x)

∣∣∣
= O(k−η/d) + O(k−1/d).
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Hence, the RHS of (A55) becomes

(k− 1)
[(

O(k−η/d) + O(k−1/d)
)
V
(
B
(
x, Kk−1/d))+ O

(
k−η/d)V(B(x, Kk−1/d))]

= (k− 1)
[
O
(
k−1−η/d)+ O

(
k−1−1/d)].

The expression in (A54) can be obtained by choice of K.

Lemma A6: Consider the notations and assumptions in Lemma A5. Then,∣∣∣k−1 ∑ ∑
1≤i<j≤k

P(Zk
i , Zk

j )1{(Zk
i , Zk

j ) ∈ MST(Zk)−
∫
Rd

P(x, x)gk(x) dx
∣∣∣

≤ ςη(l, k) + O(k−η/d) + O(k−1/d).
(A56)

Here, MST(S) denotes the MST graph over nice and finite set S ⊂ Rd and η is the smoothness Hölder
parameter. Note that ςη(l, k) is given as before in (A50).

Proof. Following notations in [49], let ∆(x,S) denote the degree of vertex x in the MST(S) graph.
Moreover, let x be a Lebesgue point of gk with gk(x) > 0. In addition, let Zx

k be the point process
{x, Zk

2, Zk
3, . . . , Zk

k}. Now, by virtue of (A55) in Lemma A5, we can write

E
[

k
∑

j=2
P(x, Zk

j )1{(x, Zk
j ) ∈ MST(Zx

k)}
]
= P(x, x) E

[
∆(x,Zx

k)
]
+
{

O
(
k−η/d)+ O

(
k−1/d)}. (A57)

On the other hand, it can be seen that

k−1E
[

∑ ∑
1≤i<j≤k

P(Zk
i , Zk

j )1{(Zk
i , Zk

j ) ∈ MST(Zk)}
]

=
1
2
E
[ k

∑
j=2

P(Zk
1, Zk

j )1{(Zk
i , Zk

j ) ∈ MST(Zk)}
]

=
1
2

∫
gk(x) dx E

[ k

∑
j=2

P(x, Zk
j )1{(x, Zk

j ) ∈ MST(Zk)}
]
.

(A58)

Recalling (A57),

=
1
2

∫
gk(x)P(x, x)E

[
∆(x,Zx

k)
]

dx + O
(
k−η/d)+ O

(
k−1/d). (A59)

By virtue of Lemma A4, (A49) can be substituted into expression (A59) to obtain (A56).

Theorem A1: Assume Rm,n := R(Xm,Yn) denotes the FR test statistic as before. Then, the rate
for the bias of the Rm,n estimator for 0 < η ≤ 1, d ≥ 2 is of the form:

∣∣∣E[Rm,n
]

m + n
− 2pq

∫ f0(x) f1(x)
p f0(x) + q f1(x)

dx
∣∣∣ ≤ O

(
ld(m + n)−η/d)+ O(l−dη). (A60)
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Here, η is the Holder smoothness parameter. A more explicit form for the bound on the RHS is given
in (A61) below:

∣∣∣E[R′m,n(Xm,Yn)
]

m + n
−
∫ 2pq f0(x) f1(x)

p f0(x) + q f1(x)
dx
∣∣∣ ≤ O

(
ld(m + n)−η/d)

+O
(
ld(m + n)−1/2)+ 2 c1 ld−1(m + n)(1/d)−1 + cd 2d (m + n)−1

−2 ld(m + n)−1
∫ 2pq f0(x) f1(x)

p f0(x) + q f1(x)
dx + c2 (m + n)−1ld

+O(l)(m + n)−1
M

∑
i=1

ld(ai)
−1
∫ 2 f0(x) f1(x)

p f0(x) + q f1(x)
dx + O(l−dη)

+O(l)
M

∑
i=1

ld/2
√

bi

a2
i

∫ 2 f0(x) f1(x)
(

f0(x)
√

m + f1(x)
√

n
)(

m f0(x) + n f1(x)
)2 dx

+
M

∑
i=1

2 l−d/2
√

bi

a2
i

∫ f0(x) f1(x)
(

αiβi
(
mai f 2

0 (x) + nbi f 2
1 (x)

))1/2

(
m f0(x) + n f1(x)

)2
(m + n)

dx.

(A61)

Proof. Assume Mm and Nn be Poisson variables with mean m and n, respectively, one independent
of another and of {Xi} and {Yj}. Let also X′m and Y′n be the Poisson processes {X1, . . . , XMn} and
{Y1, . . . , YNn}. Set R′m,n := Rm,n(X′m,Y′n). Applying Lemma 1, and (12) cf. [49], we can write∣∣∣R′m,n −Rm,n

∣∣∣ ≤ Kd
(
|Mm −m|+ |Nn − n|). (A62)

Here, Kd denotes the largest possible degree of any vertex of the MST graph in Rd. Moreover, by the
matter of Poisson variable fact and using Stirling approximation [51], we have

E
[∣∣Mm −m

∣∣] = e−m mm+1

m!
≤ e−m mm+1

√
2πmm+1/2e−m

= O
(

m1/2). (A63)

Similarly, E
[∣∣Nn − n

∣∣] = O(n1/2). Therefore, by (A62), one yields

E[Rm,n] = E
[
Rm,n −R′m,n

]
+E

[
R′m,n

]
= O

(
(m + n)1/2)+E

[
R′m,n

]
. (A64)

Therefore,

E[Rm,n]

m + n
=

E
[
R′m,n

]
m + n

+ O
(
(m + n)−1/2). (A65)

Hence, it will suffice to obtain the rate of convergence of E
[
R′m,n

]/
(m+ n) in the RHS of (A65). For this,

let mi, ni denote the number of Poisson process samples X′m and Y′n with the FR statistic R′m,n, falling
into partitions Q′i with FR statistic R′mi ,ni

. Then, by virtue of Lemma 4, we can write

E
[
R′m,n

]
≤

M

∑
i=1

E
[
R′mi ,ni

]
+ 2 c1 ld−1(m + n)1/d.
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Note that the Binomial RVs mi, ni are independent with marginal distributions mi ∼ B(m, ail−d), ni ∼

B(n, bil−d), where ai, bi are non-negative constants satisfying, ∀i, ai ≤ bi and
ld

∑
i=1

ail−d =
ld

∑
i=1

bil−d = 1.

Therefore,

E
[
R′m,n

]
≤

M

∑
i=1

E
[
E
[
R′mi ,ni

|mi, ni

]]
+ 2 c1 ld−1(m + n)1/d. (A66)

Let us first compute the internal expectation given mi, ni. For this reason, given mi, ni,

let Zmi ,ni
1 , Zmi ,ni

2 , . . . be independent variables with common densities gmi ,ni (x) =
(

mi f0(x) +

ni f1(x)
)/

(mi + ni), x ∈ Rd. Moreover, let Lmi ,ni be an independent Poisson variable with mean

mi + ni. Denote F′mi ,ni
= {Zmi ,ni

1 , . . . , Zmi ,ni
Lmi .ni
} a non-homogeneous Poisson of rate mi f0 + ni f1. Let Fmi ,ni

be the non-Poisson point process {Zmi ,ni
1 , . . . Zmi ,ni

mi+ni
}. Assign a mark from the set {1, 2} to each points

of F′mi ,ni
. Let X̃′mi

be the sets of points marked 1 with each probability mi f0(x)
/(

mi f0(x) + ni fi(x)
)

and
let Ỹ′ni

be the set points with mark 2. Note that owing to the marking theorem [52], X̃′mi
and Ỹ′ni

are
independent Poisson processes with the same distribution as X′mi

and Y′ni
, respectively. Considering

R̃′mi .ni
as FR statistic over nodes in X̃′mi

∪ Ỹ′ni
we have

E
[
R′mi ,ni

|mi, ni
]
= E

[
R̃′mi ,ni

|mi, ni
]
.

Again using Lemma 1 and analogous arguments in [49] along with the fact that E
[
|Mm + Nn −

m− n|
]
= O((m + n)1/2), we have

E
[
R̃′mi ,ni

|mi, ni
]
= E

[
E
[
R̃′mi ,ni

|F′mi ,ni

]]
= E

[
∑ ∑

s<j<mi+ni

Pmi ,ni (Zmi ,ni
s , Zmi ,ni

j )1
{
(Zmi ,ni

s , Zmi ,ni
j ) ∈ Fmi ,ni

}]
+ O((mi + ni)

1/2)).

Here,

Pmi ,ni (x, y) := Pr{mark x 6= mark y, (x, y) ∈ F′mi ,ni
}

=
mi f0(x)ni f1(y) + ni f1(x)mi f0(y)(

mi f0(x) + ni f1(x)
)(

mi f0(y) + ni f1(y)
) .

By owing to Lemma A6, we obtain

M

∑
i=1

Emi ,niE
[

∑ ∑
s<j<mi+ni

Pmi ,ni (Zmi ,ni
s , Zmi ,ni

j )1
{
(Zmi ,ni

s , Zmi ,ni
j ) ∈ Fmi ,ni

}]
+

M

∑
i=1

Emi ,ni

[
O
(
(mi + ni)

)1/2]
=

M

∑
i=1

Emi ,ni

[
(mi + ni)

∫
gmi ,ni (x, x)Pmi ,ni (x, x) dx +

(
ςη(l, mi, ni) + O

(
(mi + ni)

−η/d)
+O

(
(mi + ni)

−1/d))(mi + ni)
]
+

M

∑
i=1

Emi ,ni

[
O
(
(mi + ni)

1/2)],
(A67)

where

ςη(l, mi, ni) =
(

O
(
l/(mi + ni)

)
− 2 ld/(mi + ni)

) ∫
gmi ,ni (x)Pmi ,ni (x, x) dx + O(l−dη).
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The expression in (A67) equals

M

∑
i=1

∫
Emi ,ni

[ 2mini f0(x) f1(x)
mi f0(x) + ni f1(x)

]
dx +

M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
+O

(
ld(m + n)1−η/d)+ O

(
ld(m + n)1/2).

(A68)

Because of Jensen inequality for concave function:

M

∑
i=1

Emi ,ni

[
O
(
(mi + ni)

1/2)] = M

∑
i=1

O
(
E[mi] +E[ni]

)1/2

=
M

∑
i=1

O(mail−d + nbil−d)1/2 = O
(
ld(m + n)1/2).

In addition, similarly since η < d, we have

M

∑
i=1

Emi ,ni

[
O
(
(mi + ni)

1−η/d)] = O
(
ld(m + n)1−η/d), (A69)

and, for d ≥ 2, one yields

M

∑
i=1

Emi ,ni

[
O
(
(mi + ni)

1−1/d)] = O
(
ld(m + n)1−1/d) = O

(
ld(m + n)1/2). (A70)

Next, we state the following lemma (Lemma 1 from [30,31]), which will be used in the sequel:

Lemma A13. Let k(x) be a continuously differential function of x ∈ R which is convex and monotone

decreasing over x ≥ 0. Set k′(x) =
dk(x)

dx
. Then, for any x0 > 0, we have

k(x0) +
k(x0)

x0
|x− x0| ≥ k(x) ≥ k(x0)− k′(x0)|x− x0|. (A71)

Next, continuing the proof of (A60), we attend to find an upper bound for

Emi ,ni

[ mini
mi f0(x) + ni f1(x)

]
. (A72)

In order to pursue this aim, in Lemma A13, consider k(x) =
1
x

and x0 = Emi ,ni

[
mi f0(x) + ni f1(x)

]
,

therefore as the function k(x) is decreasing and convex, one can write

1
mi f0(x) + ni f1(x)

≤ 1
Emi ,ni

[
mi f0(x) + ni f1(x)

] +
∣∣∣mi f0(x) + ni f1(x)−Emi ,ni

[
mi f0(x) + ni f1(x)

]∣∣∣
E2

mi ,ni

[
mi f0(x) + ni f1(x)

] . (A73)

Using the Hölder inequality implies the following inequality:

Emi ,ni

[ mini
mi f0(x) + ni f1(x)

]
≤ Emi ,ni [mini]

Emi ,ni

[
mi f0(x) + ni f1(x)

]

+

(
Emi ,ni

[
m2

i n2
i
])1/2

E2
mi ,ni

[
mi f0(x) + ni f1(x)

] ×(Emi ,ni

[
mi f0(x) + ni f1(x)−Emi ,ni

[
mi f0(x) + ni f1(x)

]]2
)1/2

.

(A74)
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As random variables mi, ni are independent, and because of V[mi] ≤ mail−d, V[ni] ≤ nbil−d, we can
claim that the RHS of (A74) becomes less than and equal to

mnaibil−2d

mail−d f0(x) + nbil−d f1(x)
+

(
αiβi

(
mail−d f 2

0 (x) + nbil−d f 2
1 (x)

))1/2

(
mai f0(x) + nbi f1(x)

)2 , (A75)

where

αi = maild (1− ail−d) + m2a2
i ,

βi = nbild (1− bil−d) + n2b2
i .

Going back to (A66), we have

E
[
R′m,n(Xm,Yn)

]
≤

M

∑
i=1

aibil−d
∫ 2 mn f0(x) f1(x)

mai f0(x) + nbi f1(x)
dx

+
M

∑
i=1

2
∫ f0(x) f1(x)

(
αiβi

(
mail−d f 2

0 (x) + nbil−d f 2
1 (x)

))1/2

(
mai f0(x) + nbi f1(x)

)2 dx

+
M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
+ O

(
ld(m + n)1−η/d)

+O
(
ld(m + n)1/2)+ 2c1 ld−1(m + n)1/d.

(A76)

Finally, owing to ai ≤ bi and
M

∑
i=1

bil−d = 1, when
m

m + n
→ p, we have

E
[
R′m,n(Xm,Yn)

]
m + n

≤
∫ 2 pq f0(x) f1(x)

p f0(x) + q f1(x)
dx

+
M

∑
i=1

2
∫ f0(x) f1(x)

(
αiβi

(
mail−d f 2

0 (x) + nbil−d f 2
1 (x)

))1/2

(
mai f0(x) + nbi f1(x)

)2
(m + n)

dx

+
1

m + n

M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
+ O

(
ld(m + n)−η/d)

+O
(
ld(m + n)−1/2)+ 2c1 ld−1 (m + n)(1/d)−1.

(A77)

Passing to Definition 2, MST∗, and Lemma A2, a similar discussion as above, consider the
Poisson processes samples and the FR statistic under the union of samples, denoted by R′∗m,n,
and superadditivity of dual R∗m,n, we have

E
[
R′∗m,n(Xm,Yn)

]
≥

M

∑
i=1

E
[
R′
∗
mi ,ni

(
(Xm,Yn) ∩Qi

)]
− c2 ld

=
M

∑
i=1

Emi ,ni

[
E
[
R′
∗
mi ,ni

(
(Xm,Yn) ∩Qi

)
|mi, ni

]]
− c2 ld

≥
M

∑
i=1

Emi ,ni

[
E
[
R′mi ,ni

(
(Xm,Yn) ∩Qi

)
|mi, ni

]]
− c2 ld,

(A78)
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the last line is derived from Lemma A2, (ii), inequality (A8). Owing to the Lemma A6, (A69), and (A70),
one obtains

E
[
R′∗m,n(Xm,Yn)

]
≥

M

∑
i=1

∫
Emi ,ni

[ 2mini f0(x) f1(x)
mi f0(x) + ni f1(x)

]
dx

−
M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
−O

(
ld(m + n)1−η/d)−O

(
ld(m + n)1/2)− c2 ld.

(A79)

Furthermore, by using the Jenson’s inequality, we get

Emi ,ni

[ mini
mi f0(x) + ni f1(x)

]
≥ E[mi]E[ni]

E[mi] f0(x) +E[ni] f1(x)
=

l−d(mainbi
)

mai f0(x) + nbi f1(x)
.

Therefore, since ai ≤ bi, we can write

Emi ,ni

[ mini
mi f0(x) + ni f1(x)

]
≥ l−dmn aibi

bi
(
m f0(x) + n f1(x)

) =
l−dmn ai(

m f0(x) + n f1(x)
) . (A80)

Consequently, the RHS of (A79) becomes greater than or equal to

M

∑
i=1

ai l−d
∫ 2mn f0(x) f1(x)

m f0(x) + n f1(x)
dx

−
M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
−O

(
ld(m + n)1−η/d)−O

(
ld(m + n)1/2)− c2 ld.

(A81)

Finally, since
M

∑
i=1

ail−d = 1 and
m

m + n
→ p, we have

E
[
R′∗m,n(Xm,Yn)

]
m + n

≥
∫ 2pq f0(x) f1(x)

p f0(x) + q f1(x)
dx− (m + n)−1

M

∑
i=1

Emi ,ni

[
(mi + ni) ς(l, mi, ni)

]
−O

(
ld(m + n)−η/d)−O

(
ld(m + n)−1/2)− c2 ld(m + n)−1.

(A82)

By definition of the dual R∗m,n and (i) in Lemma A2,

E
[
R′m,n(Xm,Yn)

]
m + n

+
cd 2d

m + n
≥

E
[
R′∗m,n(Xm,Yn)

]
m + n

, (A83)

we can imply

E
[
R′m,n(Xm,Yn)

]
m + n

≥
∫ 2pq f0(x) f1(x)

p f0(x) + q f1(x)
dx− (m + n)−1

M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
−O

(
ld(m + n)−η/d)−O

(
ld(m + n)−1/2)− c2 ld(m + n)−1 − cd 2d (m + n)−1.

(A84)
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The combination of two lower and upper bounds (A84) and (A77) yields the following result

∣∣∣E[R′m,n(Xm,Yn)
]

m + n
−
∫ 2pq f0(x) f1(x)

p f0(x) + q f1(x)
dx
∣∣∣

≤ O
(
ld(m + n)−η/d)+ O

(
ld(m + n)−1/2)+ 2 c1 ld−1 (m + n)(1/d)−1

+cd 2d (m + n)−1 + c2 (m + n)−1 ld +
1

m + n

M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]

+
M

∑
i=1

2
∫ f0(x) f1(x)

(
αiβi

(
mail−d f 2

0 (x) + nbil−d f 2
1 (x)

))1/2

(
mai f0(x) + nbi f1(x)

)2
(m + n)

dx.

(A85)

Recall ςη(l, mi, ni), then we obtain

M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
=

M

∑
i=1

O(l)
∫

E
[ 2mini f0(x) f1(x)
(mi + ni)(mi f0(x) + ni f1(x))

]
dx

−2 ld
M

∑
i=1

∫
E
[ 2mini f0(x) f1(x)
(mi + ni)(mi f0(x) + ni f1(x))

]
dx + O(l−η)

M

∑
i=1

Emi ,ni [mi + ni].

(A86)

In addition, we have

Emi ,ni

[ 2mini f0(x) f1(x)
(mi + ni)(mi f0(x) + ni f1(x))

]
≥ 1

m + n
Emi ,ni

[ 2mini f0(x) f1(x)
(mi f0(x) + ni f1(x))

]
. (A87)

This implies

M

∑
i=1

∫
E
[ 2mini f0(x) f1(x)
(mi + ni)(mi f0(x) + ni f1(x))

]
dx ≥

∫ 2pq f0(x) f1(x)
p f0(x) + q f1(x)

dx. (A88)

Note that the above inequality is derived from (A80) and
m

m + n
→ p. Furthermore,

1
m + n

M

∑
i=1

O(l)
∫

Emi ,ni

[ 2mini f0(x) f1(x)
(mi + ni)(mi f0(x) + ni f1(x))

]
dx

≤
M

∑
i=1

O(l)
∫

Emi ,ni

[ 2mini f0(x) f1(x)
(mi + ni)2(mi f0(x) + ni f1(x))

]
dx

≤
M

∑
i=1

O(l)
∫

Emi ,ni

[ 2 f0(x) f1(x)
(mi f0(x) + ni f1(x))

]
dx.

(A89)

The last line holds because of mini ≤ (mi + ni)
2. Going back to (A73), we can give an upper bound for

the RHS of above inequality as

Emi ,ni

[(
mi f0(x) + ni f1(x)

)−1
]
≤
(
mail−d f0(x) + nbil−d f1(x)

)−1

+
(
Emi ,ni

∣∣∣mi f0(x) + ni f1(x)−
(
E[mi] f0(x) +E[ni] f1(x)

∣∣∣)/(mail−d f0(x) + nbil−d f1(x)
)2.
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Note that we have assumed ai ≤ bi and by using Hölder inequality we write

Emi ,ni

[(
mi f0(x) + ni f1(x)

)−1
]
≤ ld(ai)

−1(m f0(x) + n f1(x)
)−1

+
(

f0(x)
√
V(mi) + f1(x)

√
V(ni)

)/(
a2

i l−d(m f0(x) + n f1(x))2) ≤ ld(ai)
−1(m f0(x) + n f1(x)

)−1

+ l−d/2√bi

(
f0(x)

√
m + f1(x)

√
n
)/(

a2
i l−d(m f0(x) + n f1(x))2).

(A90)

As result, we have

M

∑
i=1

O(l)
∫

Emi ,ni

[ 2 f0(x) f1(x)
(mi f0(x) + ni f1(x))

]
dx

≤
M

∑
i=1

O(l)
∫

ld(ai)
−1 2 f0(x) f1(x)

m f0(x) + n f1(x)
dx

+
M

∑
i=1

O(l)
∫

l−d/2
√

bi
2 f0(x) f1(x)

(
f0(x)

√
m + f1(x)

√
n
)

a2
i l−d

(
m f0(x) + n f1(x)

)2 dx.

(A91)

As a consequence, owing to (A85), for 0 < η ≤ 1, d ≥ 2, which implies η ≤ d− 1, we can derive (A61).
Thus, the proof can be concluded by giving the summarized bound in (A60).

Lemma A8: For h = 1, 2, . . . , let δh
m,n be the function c hd−1(m + n)1/d. Then, for ε > 0, we have

P
(
Rm,n(Xm,Yn) ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
)
≥

ε− δh
m,n

ε
. (A92)

Note that in case ε ≤ δh
m,n the above claimed inequality is trivial.

Proof. Consider the cardinality of the set of all edges of MST
( hd⋃

i=1
Qi
)

which intersect two different

subcubes Qi and Qj, |D|. Using the Markov inequality, we can write

P
(
|D| ≥ ε

)
≤ E(|D|)

ε
,

where ε > 0. Since E|D| ≤ c hd−1(m + n)1/d := δh
m,n, therefore for ε > δh

m,n and h = 1, 2, . . . :

P
(
|D| ≥ ε

)
≤

δh
m,n

ε
.

In addition, if Qi, i = 1, . . . hd is a partition of [0, 1]d into congruent subcubes of edge length 1/h, then

P
( hd

∑
i=1

Rmi ,ni (Xm,Yn ∩Qi) + 2|D| ≥
hd

∑
i=1

Rmi ,ni (Xm,Yn ∩Qi) + 2ε

)
≤

δh
m,n

ε
. (A93)

This implies

P
( hd

∑
i=1

Rmi ,ni (Xm,Yn ∩Qi) + 2|D| ≤
hd

∑
i=1

Rmi ,ni (Xm,Yn ∩Qi) + 2ε

)
≥ 1−

δh
m,n

ε
. (A94)
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By subadditivity (A6), we can write

Rm,n(Xm,Yn) ≤
hd

∑
i=1

Rmi ,ni (Xm,Yn ∩Qi) + 2|D|,

and this along with (A94) establishes (A92).

Lemma A9: (Growth bounds for Rm,n) Let Rm,n be the FR statistic. Then, for given non-negative

ε, such that ε ≥ h2 δh
m,n, with at least probability g(ε) := 1−

h δh
m,n

ε
, h = 2, 3, . . . , we have

Rm,n(Xm,Yn) ≤ c′′ε,h
(
#Xm #Yn

)1−1/d. (A95)

Here, c′′ε,h = O
(

ε

hd−1 − 1

)
depending only on ε, h. Note that, for ε < h2 δh

m,n, the claim is trivial.

Proof. Without loss of generality, consider the unit cube [0, 1]d. For given h, if Qi, i = 1, . . . hd is a
partition of [0, 1]d into congruent subcubes of edge length 1/h, then, by Lemma A8, we have

P
(
Rm,n(Xm,Yn) ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
)
≥

ε− δh
m,n

ε
. (A96)

We apply the induction methodology on #Xm and #Yn. Set c := sup
x,y∈[0,1]d

Rm,n({x, y}) which is finite

according to assumption. Moreover, set c2 :=
2ε

hd−1 − 1
and c1 := c+ d hd−1c2. Therefore, it is sufficient

to show that for all (Xm,Yn) ∈ [0, 1]d with at least probability g(ε)

Rm,n(Xm,Yn) ≤ c1
(
#Xm #Yn

)(d−1)/d. (A97)

Alternatively, as for the induction hypothesis, we assume the stronger bound

Rm,n(Xm,Yn) ≤ c1
(
#Xm #Yn

)(d−1)/d − c2 (A98)

holds whenever #Xm < m and #Yn < n with at least probability g(ε). Note that d ≥ 2, ε > 0 and c1, c2

both depend on ε, h. Hence,

c1 − c2 = c + c2
(
d hd−1 − 1

)
≥ c + c2

(
hd−1 − 1

)
= c + 2ε ≥ c,

which implies P(Rm,n ≤ c1 − c2) ≥ P(Rm,n ≤ c). In addition, we know that P(Rm,n ≤ c) = 1 ≥ g(ε);
therefore, the induction hypothesis holds particularly #Xm = 1 and #Yn = 1. Now, consider the
partition Qi of [0, 1]d; therefore, for all 1 ≤ i ≤ hd, we have mi := #(Xm ∩ Qi) < m and ni :=
#(Yn ∩Qi) < n and thus, by induction hypothesis, one yields with at least probability g(ε)

Rmi ,ni (Xm,Yn ∩Qi) ≤ c1 (mi ni)
1−1/d − c2. (A99)

Set B the event
{

all i : Rmi ,ni ≤ c1 (mi ni)
1−1/d − c2

}
and Bi stands with the event

{
Rmi ,ni ≤

c1 (mi ni)
1−1/d − c2

}
. From (A96) and since Qi’s are partitions, which implies

P(B) =
(

P(Bi)
)hd
≤ P(Bi), P(Bc) = P(

ld⋃
i=1

Bc
i ) ≤

hd

∑
i=1

P(Bc
i ) ≤ hd(1− g(ε)

)
,

and P(B) =
hd

∏
i=1

P(Bi) ≥
(

g(ε)
)hd

,
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we thus obtain

ε− δh
m,n

ε
≤ P

(
Rm,n ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
∣∣B)P(B) + P

(
Rm,n ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
∣∣Bc
)

P(Bc)

≤ P
(
Rm,n ≤

ld

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
∣∣B)P(B) + P(Bc).

Equivalently,

P
(
Rm,n ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
∣∣B) ≥ (1− δh

m,n

ε
− 1 + P(B)

)/
P(B) = 1−

δh
m,n

ε P(B) .

In fact, in this stage, we want to show that

1−
δh

m,n

ε P(B) ≥ g(ε) or P(B) ≥
δh

m,n

ε (1− g(ε))
.

Since P(B) ≥
(

g(ε)
)hd

, therefore it is sufficient to derive that
(

g(ε)
)hd
≥

δh
m,n

ε (1− g(ε))
. Indeed, for

given g(ε) =
( ε− h δh

m,n

ε

)
, we have g(ε) ≤

ε− δh
m,n

ε
hence

δh
m,n

ε (1− g(ε))
=

1
h
≤ 1. Furthermore, we

know
1
h
≤ 1− 1

h(1/hd)
and since ε ≥ h2 δh

m,n this implies
h δh

m,n

ε
≤ 1

h
and consequently

h δh
m,n

ε
≤ 1− 1

hh−d

or

g(ε)hd
=
( ε− h δh

m,n

ε

)hd

≥ 1
h
=

δh
m,n

ε (1− g(ε))
.

This implies the fact that for ε ≥ h2δh
m,n

P
(
Rm,n ≤

hd

∑
i=1

(
c1(mini)

1−1/d − c2
)
+ 2ε

)
≥ g(ε), where g(ε) =

ε− h δh
m,n

ε
.

Now, let γ := #{i : mi, ni > 0} and using Hölder inequality gives

P
(
Rm,n(Xm,Yn) ≤ c1γ1/d(m n)1−1/d − γc2 + c2 (hd−1 − 1)

)
≥ g(ε). (A100)

Next, we just need to show that c1γ1/d(m n)1−1/d − γc2 + c2 (hd−1 − 1) in (A100) is less than or equal
to c1(m n)1−1/d − c2, which is equivalent to show

c2
(
hd−1 − γ

)
≤ c1(m n)1−1/d(1− γ1/d).

We know that m, n ≥ 1 and c1 ≥ d hd−1c2, so it is sufficient to get

c2
(
hd−1 − γ

)
≤ d hd−1c2(1− γ1/d), (A101)

choose t as γ = t hd, then 0 < t ≤ 1, so (A101) becomes

(h−1 − t) ≥ d h−1(1− h t1/d). (A102)
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Note that the function d h−1(1− h t1/d) + t− h−1 has a minimum at t = 1 which implies (A101) and
subsequently (A95). Hence, the proof is completed.

Lemma A10: (Smoothness for Rm,n) Given observations of

Xm := (Xm′ ,Xm′′) = {X1, . . . , Xm′ , Xm′+1, . . . , Xm},

such that m′ + m′′ = m and Yn := (Yn′ ,Yn′′) = {Y1, . . . , Yn′ , Yn′+1, . . . , Yn}, where n′ + n′′ = n,
denote Rm,n(Xm,Yn) as before, the number of edges of MST(Xm,Yn) which connect a point of Xm

to a point of Yn. Then, for integer h ≥ 2, for all (Xn,Ym) ∈ [0, 1]d, ε ≥ h2 δh
m,n, where δh

m,n =

O
(
hd−1(m + n)1/d), we have

P
(∣∣∣Rm,n(Xm,Yn)−Rm′ ,n′(Xm′ ,Yn′)

∣∣∣ ≤ c̃ε,h
(
#Xm′′ #Yn′′

)1−1/d
)
≥ 1−

2h δh
m,n

ε
, (A103)

where c̃ε,h = O
(

ε

hd−1 − 1

)
. For the case ε < h2 δh

m,n, this holds trivially.

Proof. We begin with removing the edges which contain a vertex in Xm′′ and Yn′′ in minimal spanning
tree on (Xm,Yn). Now, since each vertex has bounded degree, say cd, we can generate a subgraph in
which has at most cd(#Xm′′ + #Yn′′) components. Next, choose one vertex from each component and
form the minimal spanning tree on these vertices, assuming all of them can be considered in FR test
statistic, we can write

Rm,n(Xm,Yn) ≤ Rm′ ,n′(Xm′ ,Yn′) + c′′ε,h
(
c2

d #Xm′′ #Yn′′
)1−1/d,

or equivalently

≤ Rm′ ,n′(Xm′ ,Yn′) + ch
ε1
(

#Xm′′ #Yn′′
)1−1/d,

(A104)

with probability at least g(ε), where g(ε) is as in Lemma A9. Note that this expression is obtained
from Lemma A9. In this stage, it remains to show that with at least probability g(ε)

Rm,n(Xm,Yn) ≥ Rm′ ,n′(Xm′ ,Yn′)− c̃ε,h
(
#Xm′′ #Yn′′

)1−1/d, (A105)

which, again by using the method before, with at least probability g(ε), one derives

Rm′ ,n′(Xm′ ,Yn′) ≤ Rm,n(Xm,Yn) + ĉε,h
(
c2

d (#Xm′′ #Yn′′)
)1−1/d,

orequivalently
≤ Rm,n(Xm,Yn) + ch

ε2
(
#Xm′′ #Yn′′

)1−1/d.

Letting c̃ε,h = max{ch
ε1, ch

ε2} implies (A105). Thus,

P
(∣∣∣Rm,n(Xm,Yn)−Rm′ ,n′(Xm′ ,Yn′)

∣∣ ≥ c̃ε,h
(
#Xm′′ #Yn′′

)1−1/d
)
≤ 2− 2 g(ε), (A106)

Hence, the smoothness is given with at least probability 2 g(ε) − 1 as in the statement of
Lemma A10.

Lemma A11: (Semi-Isoperimetry) Let µ be a measure on [0, 1]d; µn denotes the product measure
on space ([0, 1]d)n. In addition, let Me denotes a median of Rm,n. Set

A :=
{
Xm ∈

(
[0, 1]d

)m,Yn ∈
(
[0, 1]d

)n;Rm,n(Xm,Yn) ≤ Me

}
. (A107)
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Then,

µm+n
({

x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]n) : φA(x′) φA(y′) ≥ t
})
≤ 4 exp

( −t
8(m + n)

)
. (A108)

Proof. Let φA(z′) = min{H(z, z′), z ∈ A}. Using Proposition 6.5 in [17], isoperimetric inequality,
we have

µm+n
({

z′ ∈ ([0, 1]d)m+n : φA(z′) ≥ t
})
≤ 4 exp

( −t2

8(m + n)

)
. (A109)

Furthermore, we know that (
φA(x′) + φA(y′)

)2
≥ φA(x′) φA(y′),

hence

µm+n
({

(x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]n) : φA(x′)φA(y′) ≥ t
})

≤ µm+n
({

(x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]n) :
(
φA(x′) + φA(y′)

)2 ≥ t
})

= µm+n
({

(x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]n) : φA(x′) + φA(y′) ≥
√

t
})

.

(A110)

The last equality in (A110) achieves because of φA(x′), φA(y′) ≥ 0 and note that φA(z′) ≥ φA(x′) +
φA(y′). Therefore,

µm+n
({

(x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]n) : φA(x′) + φA(y′) ≥
√

t
})

≤ µm+n
({

(z′ ∈ ([0, 1]d)m+n : φA(z′) ≥
√

t
})

.

By recalling (A109), we derive the bound (A108).

Lemma A12: (Deviation of the Mean and Median) Consider Me as a median of Rm,n. Then, for

given g(ε) = 1−
h δh

m,n

ε
, and δh

m,n = O
(
hd−1(m + n)1/d) such that for h ≥ 7, ε ≥ h2δh

m,n, we have

∣∣∣E[Rm,n(Xm,Yn)
]
−Me

∣∣∣ ≤ Cm,n(ε, h) (m + n)(d−1)/d, (A111)

where Cm,n(ε, h) stands with a form depends on ε, h, m, n as

Cm,n(ε, h) = C
(

1−
((

2 (2 g(ε)− 1)2)−1
))−1

, (A112)

where C is a constant.
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Proof. Following the analogous arguments in [17,53], we have∣∣∣E[Rm,n(Xm,Yn)
]
−Me

∣∣∣ ≤ E
∣∣∣Rm,n(Xm,Yn)−Me

∣∣∣ = ∫ ∞

0
P
(∣∣∣Rm,n(Xm,Yn)−Me

∣∣∣ ≥ t
)

dt

≤ 8
(

1−
(

1
/(

2 (2 g(ε)− 1)2)))−1 ∫ ∞

0
exp

( −td/(d−1)

8(4ε)d/d−1(m + n)

)
dt

= C
(

1−
((

2 (2 g(ε)− 1)2)−1
))−1

(m + n)(d−1)/d,

(A113)
where g(ε) = 1−

(
h O

(
hd−1(m + n)1/d))/ε. The inequality in (A113) is implied from Theorem 5.

Hence, the proof is completed.
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