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Abstract: Most of time series deriving from complex systems in real life is non-stationary, where 
the data distribution would be influenced by various internal/external factors such that the contexts 
are persistently changing. Therefore, the concept drift detection of time series has practical 
significance. In this paper, a novel method called online entropy-based time domain feature 
extraction (ETFE) for concept drift detection is proposed. Firstly, the empirical mode 
decomposition based on extrema symmetric extension is used to decompose time series, where 
features in various time scales can be adaptively extracted. Meanwhile, the end point effect caused 
by traditional empirical mode decomposition can be avoided. Secondly, by using the entropy 
calculation, the time-domain features are coarse-grained to quantify the structure and complexity 
of the time series, among which six kinds of entropy are used for discussion. Finally, a statistical 
process control method based on generalized likelihood ratio is used to monitor the change of the 
entropy, which can effectively track the mean and amplitude of the time series. Therefore, the early 
alarm of concept drift can be given. Synthetic data sets and neonatal electroencephalogram (EEG) 
recordings with seizures annotations data sets are used to validate the effectiveness and accuracy 
of the proposed method.  
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1. Introduction 

The study of time series has strong theoretical significance and application value in real life. 
Due to its practical importance, the works related to the applications of time series are widely used 
in finance, engineering, medicine, and other fields [1–4]. The time series deriving from real life are 
normally non-stationary, which means the contents of sequence data would change over time due to 
various factors. For example, EEG data of a patient with epilepsy would be considerably different in 
normal state and during the attack, which leads to distinct contents of bio-information time series. 
These changes are known as concept drift, which widely exists in various kinds of time series data 
[5,6]. The study of concept drift of time series has the practical implications. For instance, the 
prediction of time series is always a hot topic in this community and various studies have been 
proposed [7–9]. However, the existing prediction models commonly depended on the specific data, 
which means a new volatility pattern of time series could greatly affect the prediction performance. 
The root cause of the above case is the existence of concept drifts. Since the prediction models are 
trained based on the original concepts of time series, with the emergence of concept drift, it cannot 
be suitable for the current situation such that the prediction accuracy would be affected. Therefore, 
how to effectively detect the concept changes of time series is of significance.  
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Generally, concept drift detection methods can be divided into two types [5], one is explicit 
detection methods, i.e., supervised detection methods, and the other is implicit detection methods, 
i.e., unsupervised detection methods. From the perspective of probability, the explicit detection 
methods regard the concept drift as the change of the joint probability distribution P(X,Y) of the 
sample data X and its corresponding label Y, and the implicit detection methods are to track the 
change of the sample data distribution P(X) [5]. From another point of view, explicit detection 
methods usually need base-learners to deal with classification problems, and directly determine the 
occurrence of drifts by monitoring whether the performance indicators of base learner classification 
(such as classification error rate) reach a threshold [10–12]. When dealing with concept drift, these 
methods usually discard the previous base-learners and replace them with a new base-learner. For 
some ensemble learning methods [13,14], they will be according to the performance of each 
base-learner to decide whether to add a new base-learner, reduce an existing one, or adjust their 
corresponding weights. Implicit detection methods do not need data labeling. By extracting and 
transforming the features of data, they monitor the changes of data features to achieve the purpose 
of concept drift detection [15,16], where the so-called changes generally include statistical 
characteristics of data, data distribution, or some particular metrics. 

Even though many approaches related to the detection of concept drifts of time series have 
been proposed in recent years [17–19], some problems are still open. On the one hand, most of the 
existing detection algorithms are based on the performance indicators of the classifiers. However, 
time series data are difficult to be marked in the real environment such that the absence of ground 
truth is an unavoidable problem. On the other hand, some concept drift detection methods are based 
on the assumption of independent data. Therefore, due to the particularity of time series data, it is 
impractical to apply the existing models without any modification. In addition, in the real 
environment, considering the influence of noises in the time series, the obtained data is also difficult 
to be learnt directly [20].  

In order to solve the difficulties mentioned above, in this paper, a novel unsupervised 
algorithm is proposed for the online time series concept drift detection. Firstly, an empirical mode 
decomposition (EMD) method [21] based on extrema symmetric extension is used to decompose 
time series. After decomposition, a series of intrinsic mode functions (IMFs) containing different 
time scales of the original signals can be obtained, where various features of time series in different 
scales can be revealed. Furthermore, entropy methods have been used to measure the structure and 
complexity of time series, where the structural characteristics of IMFs with different frequencies can 
be analyzed. Compared with directly monitoring from the original signals, the obtained data has 
higher signal-to-noise ratio and intuitiveness. When concept drifts occur, the changes of time series 
would result in the fluctuations of entropy values. In order to detect the changes, a generalized 
likelihood ratio (GLR) based statistical process control algorithm [22] is used. This method calculates 
the statistical characteristics of the data in each sliding window and compares with a given 
threshold to judge the breakpoint, so as to determine the location of the concept drift. The main 
contributions are summarized as follows: 

• A novel unsupervised algorithm is proposed for online time series concept drift detection, 
which can effectively detect the occurrence of concept drift in streaming data by capturing the 
fine structures of data in different time scale. 

• Entropy methods are used to capture the changes of intrinsic structures of the original sequence 
in different time domains, where multiple application scenarios are discussed according to the 
characteristics of entropies in detail.  

• A statistical process control method based on GLR is designed to monitor the changes of the 
obtained entropy information, which can determine the concept drift in time and reduce the 
false alarms.  

The rest of the paper is organized as follows: The second part presents the literature review; the 
third part is the introduction of the proposed algorithm entropy-based time domain feature 
extraction (ETFE), where the principle and implementation are included; the fourth part is the 
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related experiments, which include the performance evaluation of the proposed method in synthetic 
data and real data; the fifth part is the conclusion and prospect of our work. 

2. Related Works 

In recent years, some theoretical results have been proposed to tackle with the concept drifts in 
time series. In order to solve the problem that real time series data are difficult to be labeled due to 
the characteristics of flow patterns and high frequencies, Cavalcante [23] proposed an explicit drift 
method by exploring the influence of concept drift in financial time series on prediction accuracy, 
where ELM [24] was used as prediction method, DDM [10] and ECDD [11] were used as drift 
detectors. In the following work, Cavalcante proposed a new concept drift detection method called 
feature extraction drift detection (FEDD) [17], which determined the presence of concept drifts by 
detecting the temporal characteristics of the time series, and it can also provide a better explanation 
of temporal evolution than monitoring prediction accuracy.  

In order to deal with the influence of time dependence of time series on concept drift detection, 
Guajardo [25] proposed a support vector machine regression model based on seasonal pattern to 
predict time series. The idea of this method was to divide the data in a sliding window into training 
set and test set. When the sliding window moved forwards, latest data were used to retrain the 
model. The size of the sliding window was adjusted according to the seasonal pattern of the time 
series to adapt to the characteristics of the data in the current time period. In this way, the model 
structure can take the latest data information into account, but for real time series without 
predefined seasonal patterns, the cycle of acquiring seasonal patterns will not be practical. 

Costa et al. [19] dealt with the concept drift of time series by decomposing the time series into 
deterministic components consisting of non-independent observations and stochastic components 
consisting of independent observations. In order to eliminate the time dependence in deterministic 
components, Taken’s immersion theory was used to decompose deterministic components into 
independently and identically distributed data. In this way, both deterministic and stochastic 
components were subjected to independent and identical distribution, and the constructed model 
from these data can be more stable. 

In this paper, a novel unsupervised algorithm is proposed for the online time series concept 
drift detection. Compared with the existing detection methods, the novelty and innovation brought 
by this approach is that, based on IMFs revealing the original signals, entropy methods are used to 
capture the changes of intrinsic structures of the original sequence in different time domains, where 
the extracted features have higher signal-to-noise ratio. Furthermore, the statistical control process 
can effectively determine the occurrence of concept drift and reduce the false alarms. 

3. Model 

In this section, the ETFE method is to be introduced in detail, which is an online unsupervised 
concept drift detection algorithm for time series. Since the existence of noise and abnormal 
interferences in the original time series, it is difficult to directly detect concept drift from the original 
data [26]. Based on EMD with the extrema value symmetric extension, IMFs obtained by 
decomposing the original time series can extract the features of time series in various time scales. 
Since the high frequency IMF is more sensitive and the low frequency IMF can reveal the overall 
trend, by combination of different IMFs, the early alarm for concept drift can be achieved. Entropy, 
as a measure of complexity, can quantify the structure and fluctuation scales of the time series. 
Therefore, the drifts will be reflected in the changes of entropy, i.e., the changes of entropy 
information can be detected through statistical control process. Generally, the proposed method 
mainly consists of three parts: firstly, an EMD based on extrema symmetric extension is used to 
decompose the original time series; secondly, the features of IMFs in different time scales are 
calculated by using entropies; thirdly, the IMF-Entropy values are monitored by a GLR-based 
statistical control process algorithm such that the occurrence of concept drift can be detected. The 
flow chart of the whole model is shown in Figure 1. 
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Figure 1. Entropy-based time domain feature extraction (ETFE) model framework. 

3.1. The Decomposition for Time Series 

EMD is a method proposed by Huang et al. [21], which can decompose the signals into different 
IMFs according to the time scales of the data. Each IMF has a clear physical meaning and contains 
features of the original data. EMD can be used to analyze non-linear and non-stationary signal 
sequences with high signal-to-noise ratio and time-frequency focusing. In addition, EMD method 
has strong local representativeness and can be applied to tackle with time-varying signals. The 
advantages of EMD are the reason it is often used in time series analysis in the fields of medicine, 
industrial production, and financial derivatives [27,28]. 

However, the process of EMD is normally affected by the endpoint effect, and the divergent 
results will gradually pollute the data inward, resulting in distortion of the results [29]. Different 
methods have been proposed for handling with endpoint effect [30], where the symmetrical extrema 
extension can be taken as the primary method because of its small impact on the final result [31]. The 
basic idea of extrema symmetric extension is that, before the cubic spline interpolation of signals is 
carried out, the relationships between the maximum, the minimum, and the endpoint are judged 
first, and the extrema symmetric extensions of the data at both ends are implemented, respectively. 
Based on the previous works, the decomposition of time series can be carried out as follows: 

1. Let 𝑥ሺ𝑡ሻ ,  𝑡 = 1,2, … , 𝑙 present the time series. 𝑥ሺ𝑡ሻ contains M local maximums and N local 
minimums, and their indexes are denoted as 𝐼௠ሺ𝑖ሻ, 𝑖 = 1,2, … ,𝑀  and 𝐼௡ሺ𝑖ሻ, 𝑖 = 1,2, … ,𝑁 , 
respectively. In this way, the corresponding local maximum and local minimum are 𝑈ሺ𝑖ሻ =𝑥൫𝐼௠ሺ𝑖ሻ൯, 𝑖 = 1,2, … ,𝑀 and 𝑉ሺ𝑖ሻ = 𝑥൫𝐼௡ሺ𝑖ሻ൯, 𝑖 = 1,2, … ,𝑁. 

2. Start from the left side. When 𝐼௠ሺ1ሻ < 𝐼௡ሺ1ሻ, if the value of the left end point is larger than the 
first local minimum value, that is 𝑥ሺ1ሻ > 𝑉ሺ1ሻ, then the local maximum value point 𝐼௠ሺ1ሻ is 
used as the center of symmetry to extend d units to left. The time indexes and values of the 
extension sequence are: 𝑘 = 2𝐼௠ሺ1ሻ − 𝑖, 𝑥ሺ𝑘ሻ = 𝑥ሺ𝑖ሻ,    𝑖 = 𝐼௠ሺ1ሻ + 1, … , 𝐼௠ሺ1ሻ + 𝑑 

3. When 𝐼௡ሺ1ሻ < 𝐼௠ሺ1ሻ, if the value of the left end point is smaller than the first local minimum 
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value, that is 𝑥ሺ1ሻ < 𝑈ሺ1ሻ, then the local minimum value point 𝐼௡ሺ1ሻ is used as the center of 
symmetry to extend d units to left. The time indexes and values of the extension sequence are: 𝑘 = 2𝐼௡ሺ1ሻ − 𝑖, 𝑥ሺ𝑘ሻ = 𝑥ሺ𝑖ሻ,   𝑖 = 𝐼௡ሺ1ሻ + 1, … , 𝐼௡ሺ1ሻ + 𝑑 

4. When 𝑥ሺ1ሻ < 𝑉ሺ1ሻ or 𝑥ሺ1ሻ > 𝑈ሺ1ሻ, the left endpoint is used as the symmetric center to extend 
d units to the left, and the time indexes and values of the extension sequence are obtained as 
follows: 𝑘 = 2 − 𝑖, 𝑥ሺ𝑘ሻ = 𝑥ሺ𝑖ሻ,   𝑖 = 2, … ,𝑑 

5. Extend the right endpoint in the same way. 
6. Find out all local maximum points and local minimum points in the sequence 𝑥ሺ𝑡ሻ after 

extension, and fit the upper envelope 𝑢ሺ𝑡ሻ of the maximum points and the lower envelope 𝑣ሺ𝑡ሻ of the minimum points by cubic spline interpolation. Then, the original sequence is 
between the upper envelope and the lower envelope. Subsequently, by calculating the mean 𝑝ሺ𝑡ሻ of the upper envelope and the lower envelope, the original sequence can be converted into 
a new sequence ℎሺ𝑡ሻ: 𝑝ሺ𝑡ሻ = ൫𝑢ሺ𝑡ሻ + 𝑣ሺ𝑡ሻ൯/2 ℎሺ𝑡ሻ = 𝑥ሺtሻ − 𝑝ሺtሻ 

7. Check if the obtained ℎሺ𝑡ሻ meets the following conditions:  

(1) The number of local extremum points and the number of zero crossing points is equal or 
the difference is at most 1. 

(2) The average of the envelopes of the local maximum and the local minimum is zero. 

If the above two conditions are satisfied, the obtained ℎሺ𝑡ሻ is called as s-th IMF, where s 
indicates the number of repeats of steps 6 and 7. Then, the obtained ℎሺ𝑡ሻis denoted by ℎ௦ሺ𝑡ሻ. 
And if not, replace 𝑥ሺ𝑡ሻ with ℎሺ𝑡ሻ. Repeat step 6 until ℎሺ𝑡ሻ meets the above criteria.  

8. Residual 𝑟ሺ𝑡ሻ is the difference between ℎሺ𝑡ሻ and 𝑥ሺ𝑡ሻ obtained in step 7 and then 𝑥ሺ𝑡ሻ is 
replaced by 𝑟ሺ𝑡ሻ to calculate the next IMF. The steps 6–7 are repeated f times until the obtained 
f-th residual is a monotonic function. In this way, the original time series 𝑥ሺ𝑡ሻ is represented in 
the following form: 𝑥ሺ𝑡ሻ = ෍ℎ௜ሺ𝑡ሻ + 𝑟௙ሺ𝑡ሻ௙

௜ୀଵ  

9. Delete the data of the extension part and retain only the data decomposed from the original 
part. 

3.2. The Calculation of IMFs’ Entropy  

Since the noise and disturbance existing in time series, the changes of time-domain 
characteristics of time series are difficult to be captured by directly extracting information from raw 
sequence data [32]. When the contents of time series change, in order to quantify the change degrees 
and track the processes from different time scales, EMD with extrema symmetric extension is first 
used to decompose time series adaptively so as to get IMFs in different time domains. Then, the 
entropy of IMFs is calculated such that the time series can be monitored from the angle of time 
domain characteristics in various time scales.  

Approximate entropy (ApEn) is a kind of statistical measuring for the complexity of time series, 
which can be applied in the non-linear and non-stationary data with high noise [33]. Generally, the 
approximate entropy can be calculated as follows: 

1. Time series 𝑥ሺ1ሻ, 𝑥ሺ2ሻ, … , 𝑥ሺ𝑙ሻ are provided, and a threshold 𝑟（usually chosen as 0.2 𝑠𝑡𝑑, where 𝑠𝑡𝑑 is the standard deviation of the original sequence）for similarity comparison and a metric γ 
(usually chosen as 2 or 3) for defining the length of the reconstructed sequence. 

2. The original sequence is reconstructed to obtain 𝑙 − γ+ 1 subsequences 𝑋ሺ1ሻ,𝑋ሺ2ሻ, … ,𝑋ሺ𝑙 −
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γ+1ሻ. Among them, subsequence 𝑋ሺ𝑖ሻ = 𝑥ሺ𝑖ሻ, 𝑥ሺ𝑖 + 1ሻ, … , 𝑥ሺ𝑖 + γ -1 ሻ. 
3. The distance 𝑑γሾ𝑋ሺ𝑖ሻ,𝑋ሺ𝑗ሻሿ between two reconstructed vectors 𝑋ሺ𝑖ሻ and 𝑋ሺ𝑗ሻ is calculated, 

where 𝑑γ is determined by the maximum difference of the corresponding position elements in 
the two vectors. 

4. Count the number of vectors satisfying the following conditions, and calculate the ratio between 
the number and the total subsequence data length: 𝐶௜ఊሺ𝑟ሻ = 𝑛𝑢𝑚ൣ𝑑ఊ൫𝑋ሺ𝑖ሻ,𝑋ሺ𝑗ሻ൯ < 𝑟൧𝑙 − 𝛾 + 1  

This process is called the template matching process of 𝑋ሺ𝑖ሻ , and 𝐶௜ఊሺ𝑟ሻ  represents the 
matching probability between any 𝑋ሺ𝑗ሻ and template 𝑋ሺ𝑖ሻ. 

5. Calculate the average similarity rate: 𝜙ఊሺ𝑟ሻ = ∑ 𝑙𝑜𝑔 ቀ𝐶௜ఊሺ𝑟ሻቁ௅ିఊାଵ௜ୀଵ 𝑙 − 𝛾 + 1  

6. According to steps 1–5 above, the average similarity rate is calculated when the length of 
subsequence is divided by 𝛾 + 1. 

7. Calculate the approximate entropy: 𝐴𝑝𝐸𝑛ሺ𝑙, 𝛾, 𝑟ሻ = 𝜙ఊሺ𝑟ሻ − 𝜙ఊାଵሺ𝑟ሻ 
It can be seen from the calculation process of ApEn that, when the difference between two 

subsequences is large, the number that satisfies 𝑑ఊሾ𝑋ሺ𝑖ሻ,𝑋ሺ𝑗ሻሿ ≤ 𝑟 will be small, and the amount of 
information corresponding to it will be large. Meanwhile, ApEn has some shortcomings. As a result 
of the existence of self-matching, it shows a bias towards regularity. There is a lack of relative 
consistency between approximate entropy values calculated by different parameter combinations, 
and it is also sensitive to the length of data sets.  

Sample entropy (SampEn) [34] is an improvement of ApEn. The calculation process is similar to 
that of ApEn, but some shortcomings of ApEn have been overcome. SampEn is based on the model 
of logarithmic function. In order to avoid the occurrence of lnሺ0ሻ, when calculating the distance 
between reconstructed vectors, the process of self-matching is eliminated such that ApEn exhibits 
good relative consistency and is independent of the length of the data set. 

Different from SampEn, fuzzy entropy (FuzzEn) [35] introduces an exponential function, 
namely a fuzzy membership function, to measure the similarity between two sequences. The fuzzy 
membership function is continuous and therefore, it ensures that the FuzzEn value is stable and does 
not mutate. Meanwhile, it also ensures the maximum self-similarity value of the sequence. In 
addition, the change of parameters of FuzzEn has little effect on the computed results. 

Although SampEn, ApEn, and FuzzEn can be used to measure the complexity of time series, 
they ignore the time dependence of elements in time series. Permutation Entropy (PeEn) [36] is a 
measure of time series complexity from the perspective of intrinsic structure of time series. It 
calculates the PeEn value by comparing the adjacent values and mapping them to ordered patterns 
to obtain the frequency of each permutation. 

In the definition of PeEn, when extracting ordered patterns for each time series, no other 
information is retained except the ordered structure, such as the magnitude of time series 
information. This may lead to the same PeEn value for time series with different amplitude scales or 
fluctuation patterns. Weighted Permutation Entropy (WPeEn) [37] can better capture abrupt 
changes in time series by assigning different weights to sequences according to fluctuation sizes. It is 
calculated in a similar way to the PeEn method, but the WPeEn can better detect some mutations 
and amplitude changes by introducing the variance of the sequence as a weight.  

Increment entropy (IncrEn) is a new measure of time series complexity in recent years [38], the 
definition of which is similar to PeEn. But, in the calculation of IncrEn, the relationship between two 
adjacent elements in time series is expressed by two variables, one of which represents the direction 
of fluctuation and the other represents the magnitude of fluctuation. In this way, a time series is 
characterized by the direction and amplitude of fluctuations between adjacent elements, and then 
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the frequency of the characteristic vectors is counted to quantify the complexity of the time series. 
Additionally, IncrEn also introduces a parameter to indicate the precision of the fluctuation 
amplitude. If the precision is set too large, it will be sensitive to noise, and if the setting is too small, 
the information expressed will be less. Therefore, the choice of parameter will affect the value of 
IncrEn to some extent. 

Therefore, in order to comprehensively analyze the application of entropy in the concept drift 
detection, various entropy methods, including the six entropies above, have been conducted and the 
comparative results have been discussed.  

3.3. Statistical Process Control for the Detection of Concept Drifts 

From the discussion results of IMF-Entropy, it can be seen that, when concept drift occurs, the 
calculation results of IMFs’ entropy change in the values of the mean, variance, or both. In order to 
monitor its changes, a statistical process control (SPC) model based on GLR [39] is used. In the 
existing works, the traditional concentration inequality such as Hoeffding's Inequality [40], 
Bernstein's Inequality [41], can only capture the deviation between the mean and its expectation, but 
it is difficult to work in the situation where the mean changes are slight but the fluctuation is 
obvious. Therefore, the statistical process control model is applied, where changes existing in both 
mean and variance can be detected. 

We simulate a process as follows: 𝑥(𝑖)~ ൜𝑁(𝜇ଵ,𝜎ଵଶ)  𝑖𝑓 𝑖 ≤ 𝜏𝑁(𝜇ଶ,𝜎ଶଶ)  𝑖𝑓 𝑖 > 𝜏 

where 𝑥(1), 𝑥(2), … , 𝑥(𝑖), …are the successive observations. In this process, the mean, the variance, or 
both, of the processes change after the time point 𝜏. 

It is assumed that the change point 𝜗, and the current time step is q, where 0 < 𝜗 < 𝑞, the 
GLR test statistic is defined as:  𝐺𝐿𝑅 = 𝜗𝑙𝑜𝑔 𝑆଴,௤𝑆଴,ణ + (𝑞 − 𝜗)𝑙𝑜𝑔 𝑆଴,௤𝑆ణ,௤ 

where 𝑆௜,௝ = 𝑉௜,௝/(𝑗 − 𝑖), and 𝑉௜,௝ is the variance of the sequence 𝑥(𝑖 + 1), … , 𝑥(𝑗).  
According to [39], in the case of no shift, this statistic has an asymptotic chi-squared distribution 

with 2 degrees of freedom. The quality of this approximation can be improved substantially by 
dividing the Bartlett correction factor, so as to make the expectation of the GLR equal to the degrees 
of freedom: 𝐺ణ,௤ = ቆ𝜗𝑙𝑜𝑔 𝑆଴,௤𝑆଴,ణ + (𝑞 − 𝜗)𝑙𝑜𝑔 𝑆଴,௤𝑆ణ,௤ቇ /𝐶 𝐶 = 1 + 1112 ൬1𝜗 + 1𝑞 − 𝜗 − 1𝑞൰ + ൬ 1𝜗ଶ + 1(𝑞 − 𝜗)ଶ − 1𝑞ଶ൰ 

If there is no prior knowledge to determine the location of the change point, the max 𝐺ణ,௤ can 
be found through the GLR test process at all possible points, yielding 𝐺௠௔௫,௤ = 𝑚𝑎𝑥ణ𝐺ణ,௤, and then 
the drift can be determined by comparing with the control threshold. The whole continuous SPC 
process is as follows: 

1. When the number of consecutive observations reaches a predefined number, 𝐺௠௔௫,௤  is 
calculated. 

2. If 𝐺௠௔௫,௤ ≤ 𝛿௤, where 𝛿௤ is an appropriate control threshold, it means that there is insufficient 
evidence for the occurrence of shifts of variance and mean in the data stream.  

3. If 𝐺௠௔௫,௤ > 𝛿௤, it means that there is evidence for the occurrence of shifts of variance and mean 
in the data stream. 

In the implementation of GLR algorithm, the space complexity is not high. Only two arrays are 
needed for the calculation. One array is the sum of the whole data 𝑊௤ = ∑ 𝑥(𝑖)௤௜ୀଵ , and the other 
array is the sum of squared deviations from the moving mean 𝑃଴,௤. The calculation of two arrays can 
be quickly updated by the following recursive formulas: 
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𝑊௤ାଵ = 𝑊௤ + 𝑥(𝑞 + 1) 𝑃଴,௤ାଵ = 𝑃଴,௤ + 𝑞൫𝑥(𝑞 + 1) −𝑊௤/𝑞൯ଶ/(𝑞 + 1) 

GLR test statistics can be easily calculated: Xഥ௜,ణ = (𝑊ణ −𝑊௜)/(𝜗 − 𝑖) 𝑃௜,ణ = 𝑃଴,ణ − 𝑃଴,௜ − 𝑖(𝜗 − 𝑖)/𝜗൫Xഥ଴,௜ − Xഥ௜,ణ൯ଶ 

Although the computational speed of the statistics required for GLR test is fast, the process of 
finding the appropriate breakpoint 𝜗  to maximize 𝐺ణ,௤  will become a burden because of the 
increasing amount of streaming data. So, the Willsky–Jones [42] method is applied to keep only the 
H most recent observations and using only these observations in the testing procedure. Whenever a 
new observation arrives, 𝑊௤ and 𝑃଴,௤ are computed, and then the longest element is removed from 
the H most recent observations, and the latest value is added. In this way, the breakpoint 𝜗 calculated by GLR test is limited to the latest H data. This method does not ignore all the 
information outside the window, which not only has statistical significance but also makes the 
calculation faster.   

Assuming no change occurs, the average number of observations received before a false 
positive detection is equal to 1/α, where α is the specified probability of an erroneous signal. This 
quantity is referred to as the average run length (ARL) [43]. The calculation of ARL is a 
computationally expensive procedure but it only needs to be carried out a single time, and the 
values can then be stored in a look-up table. We use the Change Point Model (CPM) package [43] in 
the implementation of GLR control process algorithm, which includes some pre-calculated 
thresholds for specific ARL, because the control threshold is related to the selection of ARL and takes 
a lot of computing time. 

3.4. The Overall Approach of Concept Drifts Detection 

The above three modules constitute the proposed method. The origin series data need to be 
decomposed based on a segment of time series, therefore a sliding window is required. If the 
window size is too small, it will contain less information, and a larger window will miss catching 
some local behaviors. Actually, there is not a general way to determine the length of window size, 
which is related to features of time series. For instance, the window size of data deriving from 
medical field may be considerably different from the one from financial field. Therefore, the size of 
the sliding window can be selected according to the prior knowledge in the actual application 
scenes.  

With the addition of new observations, time series data in the window is decomposed by the 
extrema symmetric extension EMD method. When drift occurs, it will inevitably lead to changes in 
the original time series. Since IMFs are the characteristic expressions of the original time series in 
various time scales, the changes in the internal structures and complexity of IMFs would 
correspondingly occur. From the above discussion, we can see that, when drifts occur, although the 
changes are difficult to be directly observed from the original data, the variance and mean of IMF's 
entropy have significantly changed. Therefore, in order to detect this change in the environment of 
streaming data, we introduce a GLR-based statistical process control method. Through GLR 
statistical test, the breakpoint that maximizes the GLR statistics can be found out. Then, one can 
judge whether the condition of drifts is reached by comparing GLR statistics with the predefined 
control threshold. When the drifts are detected, the detector will start again from the next 
observation value of the detection point. The overall ETFE Algorithm proposed is shown in 
Algorithm 1. And the implementation code of this algorithm has been uploaded [44]. 
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Algorithm 1 The overall algorithm of ETFE 
Input: data stream 𝑥ଵ, 𝑥ଶ, … 
Initialization: Initialize the parameters of the specified entropy, the size of sliding window 𝐻, the threshold of control limit 𝛿௤  
1 foreach observation 𝑥௜ in stream do 
2   if 𝑖 < 𝐻 then   
3     sliding window append 𝑥௜           
4     continue 
5   else 
6     sliding window append 𝑥୧ 
7   imfs ← EMD({𝑥ଵ, 𝑥ଶ, … ,𝑥௪}) /* use EMD with the data in sliding window */ 
8   entropy value ← Entropy({imfs}) /* use the specific entropy method to calculate the 

entropy value of imfs */ 
9   update the interim parameters of GLR with entropy value  
10   calculate the GLR test statistic  
11   𝐺௠௔௫,௤ ← 𝑚𝑎𝑥ణ𝐺ణ,௤ /* GLR test is used for finding the change point ϑ */ 
12   If 𝐺௠௔௫,௤ ≤ 𝛿௤ then      
13     There is no evidence of drift occurs  
14   else  
15     There is evidence of drift occurs 
16     drift detection position ← ϑ 
17     drift detection time  ← i 
18     restart from the next observation 

From the Algorithm 1, one can see the time complexity mainly lies in the computations of EMD, 
entropy and GLR test statistic. EMD is widely used in data stream processing because of its low time 
complexity [28]. The time cost of EMD lies in the generation of IMFs in each iteration, and its time 
complexity is 𝑂(𝑛𝑙𝑜𝑔𝑛), where n is the length of sliding windows. Here, only the first two IMF are 
used in the proposed approach. In the calculation of entropy, it is necessary to compare the relations 
among the reconstructed subsequences, so the time complexity is 𝑂(𝑛ଶ) . GLR test statistic is 
calculated based on the latest window, and the time complexity is 𝑂(𝑛). From the above analysis, 
one can see that time consumption is related to the size of sliding window. Meanwhile, the 
decomposition and the calculation process of entropy and GLR test statistic are carried out on the 
data in each sliding window, so the space complexity is also related to the size of the window as 𝑂(𝑛), where the sliding window approach is known for avoiding memory cost. Therefore, the 
proposed algorithm is adequate for real-time streaming data processing.  

Through the analysis of the space and time complexity of the proposed algorithm, it can be seen 
that the proposed algorithm can be fully applied to the big data scene including high frequency with 
high volumes, where the detection of concept drifts in the real-time data flow can be achieved. 
Therefore, the proposed model can be implemented in some applications, such as monitoring 
abnormal price fluctuation caused by manipulation in financial derivatives market, change of data 
distribution caused by machine faults in industrial production and the attack of patients, etc.  

4. Performance 

In this part, a full evaluation of the proposed method is carried out. Firstly, six entropy methods 
are involved to make a brief comparative study, by which one can intuitively observe the feasibility 
of scheme. Secondly, by using synthetic data sets, the effectiveness of the proposed method is 
validated. Thirdly, the real EEG data sets are used to achieve the further verification. 
  



Entropy 2019, 21, 1187 10 of 23 

 

4.1. The Evaluation of Various Entropy Methods 

Two autoregressive processes 𝑥௧ = 1.5𝑥௧ିଵ − 0.4𝑥௧ିଶ − 0.3𝑥௧ିଷ + 0.2𝑥௧ିସ + 𝑤௧  and 𝑥௧ =−0.1𝑥௧ିଵ + 1.2𝑥௧ିଶ + 0.4𝑥௧ିଷ − 0.5𝑥௧ିସ + 𝑤௧ are used to create a sequence of data over a period of 
time, and the synthetic series is shown in Figure 2. 

 
Figure 2. Synthetic time series data consisting of two autoregressive processes. 

Two autoregressive processes represent two different concepts of time series, and the length of 
each phase is 2000. As shown in Figure 2, the process of concept drift is simulated by combining two 
synthetic sequence data, in which distinct concepts are displayed in different colors. As a result of 
the fluctuations of two time series being similar, it is difficult to be directly detected from the original 
data. By decomposing the synthesized data, IMFs with different frequency characteristics can be 
obtained. By using the entropy method, the structure and complexity of each IMF can be quantified. 
Figure 3 shows the results of IMF1 and IMF2 using different kinds of entropy. 

 
(a) 
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Figure 3. Entropies of intrinsic mode function 1 (IMF1) and intrinsic mode function 2 (IMF2). (a) 
IMF-ApEn; (b) IMF-SampEn; (c) IMF-FuzzEn; (d) IMF-PeEn; (e) IMF-WPeEn; (f) IMF-IncrEn. 

In this group of experiments, IMF1 and IMF2, i.e., the two highest frequency IMFs, are used, 
where a sliding window with size 100 is set up. Whenever new observation enters, the sliding 
window moves forward one unit. By transforming the original time series, the entropy change of 
IMF1 and IMF2 can be seen after 2000 points, where the concept drift occurs and the distribution of 
data begins to change.  

As to IMF-FuzzEn, it shows that IMF1’s entropy fluctuates around 0.2 in the first concept. After 
2000 points, IMF1’s entropy declines significantly and maintains around -0.1. IMF2’s entropy 
maintains the fluctuation around 0.1 in the first concept. After the first 2000 points, IMF2’s entropy 
experiences a significant upward change, and maintains around 0.25. It can be seen that the 
occurrences of the concept drifts will lead to the changes of the structure and complexity of time 
series in different time-domain features. Since the frequency of IMF1 is higher than the one of IMF2, 
IMF1 reveals more complex fluctuation patterns and is sensitive to the change of time series. 
Therefore, when the concept of original time series changes, the entropy of IMF1 can provide a 
reflection earlier than the one of IMF2. The same situation is also reflected in IMF-PeEn and 
IMF-IncrEn.  
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In IMF-SampEn, after 2000 points, although the mean value of IMF1’s entropy has not 
obviously changed, the variance reflects large fluctuations, where the variance of IMF1’s entropy 
becomes smaller and that of IMF2 becomes larger. Similarly, the change of high-frequency IMF1 in 
ApEn occurs earlier than that of IMF2. 

From the results of IMF-WPeEn, one can see that after 2000 points, the mean and variance of the 
entropies of both IMF1 and IMF2 have changed. The mean of the entropy of IMF1 has increased, but 
the variance has decreased. Meanwhile, the mean and variance of the entropy of IMF2 have 
increased. Similarly, the change of IMF1 is earlier than that of IMF2. 

From the above results of IMF-Entropy, it can be concluded that, when concept drift occurs, the 
entropies of IMFs will change in mean, variance, or both. In addition, from the view of entropy, the 
change of higher frequency IMF is earlier than that of lower frequency IMF, which means that high 
frequency IMF is more sensitive to the change and low frequency IMF will need a certain time delay 
to catch the change. Such a mechanism can filter the anomalies or noises in original data. Therefore, 
the features extracted by the calculation results of IMFs’ entropy can better reflect the concept 
change of data and have more robustness. 

4.2. Experiments in Synthetic Data 

Although there are many studies on concept drift, the data used for concept drift is mostly 
based on supervised classification algorithms, and the data set aimed for studies of concept drift in 
time series is still lack. In order to determine the breakpoints of concept drift and to measure the 
effectiveness of detection algorithm, synthetic data is also an effective method. Due to the 
particularity of time series, there is a lack of benchmark data set for concept drift detection of time 
series in real environment. In this work, the artificial data set in [17] are applied, which contains the 
time series with concept drifts. In order to simulate the concepts of time series, time series is created 
using the autoregressive process, that is, time series are represented as 𝑥௧ = 𝑎ଵ𝑥௧ିଵ +𝑎ଶ𝑥௧ିଶ+, … , +𝑎௣𝑥௧ି௣ + 𝑤௧ , where 𝑤௧  is white noise and subjects to a normal distribution 𝑤௧~𝑁(0,𝜎ଶ), 𝑎௣ is the coefficient of the autoregressive model. The standard deviation 𝜎ଶ of 𝑤௧ 
and the autoregressive coefficient 𝑎௣ are shown in Table 1. The data set consists of 120 time series : 
(1) AR(4) time series, which are affected by AR coefficient and standard deviation of white noise. (2) 
AR(6) time series, which are affected by AR coefficient and standard deviation of white noise. (3) 
AR(𝑝) time series, which are affected by order 𝑝, AR coefficient, and white noise standard deviation. 
Each group of data consists of 40 pieces of time series data, each of which has a length of 12,000 
points and is composed of 4 concepts. Drifts are achieved by changing the parameters. 

Table 1. The parameters of synthetic time series data. 

Time Series Group Concept 𝒂𝒑 𝛔𝟐 

Linear 1 

1 {0.9, −0.2, 0.8, −0.5} 0.5 
2 {−0.3, 1.4, 0.4, −0.5} 1.5 
3 {1.5, −0.4, −0.3, 0.2} 2.5 
4 {−0.1, 1.4, 0.4, −0.7} 3.5 

Linear 2 

1 {1.1, −0.6, 0.8, −0.5, −0.1, 0.3} 0.5 
2 {−0.1, 1.2, 0.4, 0.3, −0.2, −0.6} 1.5 
3 {1.2, −0.4, −0.3, 0.7, −0.6, 0.4} 2.5 
4 {−0.1, 1.1, 0.5, 0.2, −0.2, −0.5} 3.5 

Linear 3 

1 {0.5, 0.5} 0.5 
2 {1.5, 0.5} 1.5 
3 {0.9, −0.2, 0.8, −0.5} 2.5 
4 {0.9, 0.8, −0.6, 0.2, −0.5, −0.2, 0.4} 3.5 

According to the common configuration, the parameters of the six entropies are set to be shown 
in Table 2, where std is the standard deviation of the time series, and the parameter 𝜏 in PeEn and 
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WPeEn represents the embedding time delay and the parameter φ in IncrEn represents the 
precision of the fluctuation amplitudes. The sliding window size is 100, the ARL is 200, which is 
equivalent to the significance level 𝛼=0.95, and the startup is set to be 10% of the total sequence 
length. It should be noted that we do not pre-process the original data, such as normalization or 
standardization, so that there is no prior knowledge and can better simulate data flow in the real 
environment. 

Table 2. The parameters of the six kinds of entropy methods. 

Entropy Type Parameters 
Approximate Entropy γ = 3, r = 0.2 std 

Sample Entropy γ = 3, r = 0.2 std 
Fuzzy Entropy γ = 3, r = 0.2 std 

Permutation Entropy γ = 4, 𝜏 = 1 
Weighted Permutation 

Entropy 
γ = 4, 𝜏 = 1 

Increment Entropy γ = 3, φ = 2 

In order to verify the effectiveness of the proposed algorithm in synthetic time series, four 
metrics, including detection delay, detection position offset, false alarms, and miss detection 
numbers are implemented, where detection delay represents the number of delay instances between 
detection time and the occurrence time of drift, detection position offset represents the number of 
instances between the detection position and the actual drift position, false alarms represents the 
number of false alarms and miss detection numbers represents the number of true alarms missed by 
the detector. An example is shown in Figure 4, where the blue line represents the false detection and 
the red line represents the correct detection.  

 
Figure 4. An example of alarms for a data stream (red lines indicate true alarms and blue lines 
indicate false alarms). 

In the experiments, the proposed method runs in 120 time series data, each of which runs 30 
times. The statistical results obtained by IMF1 and IMF2 are shown in Table 3 and Table 4 in the form 
of mean േ standard deviation. 
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Table 3. Comparisons of ETFE using IMF1 and other detection methods. 

Data 
Set 

Method 
Detection 

Delay 
(instances) 

Detection 
Position Offset 
（instances） 

False 
Alarms 

Miss 
Detection 
Numbers 

Linear 
1 

ETFE_ApEn 222.31 ± 60.91 45.19 ± 10.61 11.57 ± 2.11 0 
ETFE_SampEn 216.30 ± 71.21 59.05 ± 19.52 10.88 ± 1.95 0.03 ± 0.17 
ETFE_FuzzEn 264.53 ± 89.27 47.33 ± 8.91 12.61 ± 1.67 0.06 ± 0.24 

ETFE_PeEn 249.82 ± 77.36 31.62 ± 9.26 11.38 ± 1.42 0.03 ± 0.17 
ETFE_WPeEn 280.44 ± 81.46 63.51 ± 11.61 10.93 ± 1.38 0 
ETFE_IncrEn 251.71 ± 89.98 34.24 ± 13.56 11.55 ± 2.37 0.03 ± 0.17 

FEDD_cos 197.33 ± 56.67 197.33 ± 56.67 2.47 ± 1.33 0 
FEDD_pear 188.78 ± 43.91 188.78 ± 43.91 2.52 ± 1.17 0.03 ± 0.17 
ELM_ECDD 419.23 ± 97.34 419.23 ± 97.34 3.47 ± 2.37 0.56 ± 0.61 
ELM_DDM 306.66 ± 45.65 306.66 ± 45.65 4.89 ± 1.92 0.43 ± 0.49 
ELM_PHt 487.34 ± 87.40 487.34 ± 87.40 3.56 ± 1.87 0.54 ± 0.51 

Linear 
2 

ETFE_ApEn 300.95 ± 90.40 32.04 ± 12.63 13.61 ± 2.58 0 
ETFE_SampEn 398.20 ± 101.34 56.0 ± 21.42 12.43 ± 1.53 0.03 ± 0.17 
ETFE_FuzzEn 401.20 ± 121.77 67.2 ± 34.76 11.58 ± 1.07 0.03 ± 0.17 

ETFE_PeEn 345.94 ± 77.95 28.0 ± 11.93 10.98 ± 1.53 0 
ETFE_WPeEn 298.35 ± 81.85 44.1 ± 19.80 12.53 ± 1.57 0.03 ± 0.17 
ETFE_IncrEn 387.32 ± 99.29 51.2 ± 21.13 10.12 ± 2.10 0.06 ± 0.24 

FEDD_cos 256.93 ± 87.67 256.93 ± 87.67 2.56 ± 1.11 0.03 ± 0.17 
FEDD_pear 248.34 ± 98.24 248.34 ± 98.24 2.12 ± 1.23 0.03 ± 0.17 
ELM_ECDD 455.86 ± 104.98 455.86 ± 104.98 3.64 ± 1.82 0.54 ± 0.42 
ELM_DDM 411.31 ± 94.56 411.31 ± 94.56 4.78 ± 1.63 0.37 ± 0.38 
ELM_PHt 516.78 ± 132.54 516.78 ± 132.54 3.36 ± 1.66 0.58 ± 0.61 

Linear 
3 

ETFE_ApEn 411.52 ± 121.66 72.9 ± 11.22 10.77 ± 1.41 0 
ETFE_SampEn 512.38 ± 205.30 101.2 ± 29.25 9.89 ± 1.54 0 
ETFE_FuzzEn 503.06 ± 211.45 41.2 ± 19.31 11.55 ± 1.34 0 

ETFE_PeEn 385.57 ± 113.48 52.3 ± 21.54 12.71 ± 1.87 0.03 ± 0.17 
ETFE_WPeEn 431.35 ± 138.35 57.6 ± 14.52 9.78 ± 1.10 0 
ETFE_IncrEn 392.52 ± 177.43 48.3 ± 10.56 11.12 ± 1.16 0 

FEDD_cos 289.78 ± 89.63 289.78 ± 89.63 2.83 ± 1.53 0 
FEDD_pear 304.39 ± 89.10 304.39 ± 89.10 2.32 ± 1.29 0.03 ± 0.17 
ELM_ECDD 501.89 ± 160.35 501.89 ± 160.35 3.66 ± 1.86 0.60 ± 0.22 
ELM_DDM 453.80 ± 174.23 453.80 ± 174.23 4.23 ± 1.43 0.41 ± 0.33 
ELM_PHt 567.32 ± 214.55 567.32 ± 214.55 3.49 ± 1.44 0.53 ± 0.39 
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Table 4. Comparisons of ETFE using IMF2 and other detection methods. 

Data 
Set 

Method 
Detection 

Delay 
(instances) 

Detection 
Position Offset 
（instances） 

False 
Alarms 

Miss 
Detection 
Numbers 

Linear 
1 

ETFE_ApEn 382.91 ± 154.34 45.19 ± 11.35 9.13 ± 1.24 0.03 ± 0.17 
ETFE_SampEn 489.02 ± 169.55 69.05 ± 22.44 9.33 ± 1.54 0 
ETFE_FuzzEn 494.17 ± 201.74 78.33 ± 31.52 11.56 ± 2.11 0.06 ± 0.24 

ETFE_PeEn 329.82 ± 139.45 60.13 ± 17.88 11.17 ± 1.33 0.03 ± 0.17 
ETFE_WPeEn 430.21 ± 111.43 71.56 ± 26.43 9.21 ± 1.49 0 
ETFE_IncrEn 442.26 ± 122.43 44.24 ± 10.36 10.08 ± 1.34 0.06 ± 0.24 

FEDD_cos 197.33 ± 56.67 197.33 ± 56.67 2.47 ± 1.33 0 
FEDD_pear 188.78 ± 43.91 188.78 ± 43.91 2.52 ± 1.17 0.03 ± 0.17 
ELM_ECDD 419.23 ± 97.34 419.23 ± 97.34 3.47 ± 2.37 0.56 ± 0.61 
ELM_DDM 306.66 ± 45.65 306.66 ± 45.65 4.89 ± 1.92 0.43 ± 0.49 
ELM_PHt 487.34 ± 87.40 487.34 ± 87.40 3.56 ± 1.87 0.54 ± 0.51 

Linear 
2 

ETFE_ApEn 467.32 ± 144.77 72.30 ± 19.82 9.64 ± 1.34 0 
ETFE_SampEn 472.35 ± 156.81 83.14 ± 21.43 9.89 ± 1.16 0.06 ± 0.24 
ETFE_FuzzEn 367.75 ± 135.65 77.27 ± 13.21 12.57 ± 1.96 0.10 ± 0.3 

ETFE_PeEn 578.85 ± 189.11 48.34 ± 9.87 11.34 ± 1.78 0 
ETFE_WPeEn 414.35 ± 131.32 53.12 ± 12.21 11.56 ± 1.99 0.06 ± 0.24 
ETFE_IncrEn 517.56 ± 176.44 67.33 ± 15.43 12.33 ± 1.87 0.06 ± 0.24 

FEDD_cos 256.93 ± 87.67 256.93 ± 87.67 2.56 ± 1.11 0.03 ± 0.17 
FEDD_pear 248.34 ± 98.24 248.34 ± 98.24 2.12 ± 1.23 0.03 ± 0.17 
ELM_ECDD 455.86 ± 104.98 455.86 ± 104.98 3.64 ± 1.82 0.54 ± 0.42 
ELM_DDM 411.31 ± 94.56 411.31 ± 94.56 4.78 ± 1.63 0.37 ± 0.38 
ELM_PHt 516.78 ± 132.54 516.78 ± 132.54 3.36 ± 1.66 0.58 ± 0.61 

Linear 
3 

ETFE_ApEn 543.87 ± 189.45 89.53 ± 35.43 11.21 ± 1.60 0.03 ± 0.17 
ETFE_SampEn 598.45 ± 197.05 134.23 ± 62.34 9.80 ± 1.42 0.06 ± 0.24 
ETFE_FuzzEn 532.54 ± 156.07 88.23 ± 21.33 11.77 ± 1.50 0 

ETFE_PeEn 433.33 ± 145.67 124.66 ± 65.41 11.46 ± 1.23 0.06 ± 0.24 
ETFE_WPeEn 513.45 ± 173.40 111.76 ± 54.98 9.08 ± 1.09 0.03 ± 0.17 
ETFE_IncrEn 612.24 ± 211.04 156.78 ± 71.37 8.56 ± 1.76 0 

FEDD_cos 289.78 ± 89.63 289.78 ± 89.63 2.83 ± 1.53 0 
FEDD_pear 304.39 ± 89.10 304.39 ± 89.10 2.32 ± 1.29 0.03 ± 0.17 
ELM_ECDD 501.89 ± 160.35 501.89 ± 160.35 3.66 ± 1.86 0.60 ± 0.22 
ELM_DDM 453.80 ± 174.23 453.80 ± 174.23 4.23 ± 1.43 0.41 ± 0.33 
ELM_PHt 567.32 ± 214.55 567.32 ± 214.55 3.49 ± 1.44 0.53 ± 0.39 

In the experiments, the proposed ETFE combining with six kinds of entropy methods are 
evaluated, the results of which would compare with the existing detection algorithms proposed in 
[17,23]. The parameter configurations of FEDD, ELM_ECDD, ELM_DDM, and ELM_PHt are the 
same as those in [17]. The differences of the detection delays between FEDD and ETFE are not 
obvious, but the proposed algorithm has a fewer detection position offset, which makes a great help 
for the drift position location in specific production. The proposed ETFE is different from static data 
detection, and therefore the detection process will be affected by local data, which results in a larger 
number of false alarms comparing with the five comparisons. However, missing warnings of 
ELM_DDM, ELM_ECDD, and ELM_PHt are higher than that of the proposed method. In actual 
application, the harm caused by missing alarms is much serious than that of false detection. 

In the actual application, the appropriate entropy method can be selected according to the 
intrinsic structure of the data to be tested. If the regularity or similarity is present in the time series, 
the approximate entropy or sample entropy may be selected; fuzzy entropy can be selected when the 
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data are stable or insensitive to parameter selection; when one pays attention to the order relation 
within the data, the permutation entropy or the increment entropy can be chosen. If one needs to 
consider fluctuation scale within the data and capture the anomalies, the weighted permutation 
entropy is the appropriate one. 

In addition, from the results of ETFE detection using IMF1 and IMF2, one can obtain that, the 
detection delay and detection offset of IMF2 are normally higher than those of IMF1, which shows 
that IMF2, as a low-frequency feature, is less sensitive to time series changes compared with IMF1. 
And, judging from the number of false alarms, false alarms in IMF2 are less than that those in IMF1, 
which shows that IMF2 as a low-frequency feature is slightly affected by noise or anomalies. 
Moreover, the number of miss detection numbers in IMF2 is higher than that in IMF1, which also 
shows that IMF2 is not sensitive to data changes. Therefore, when IMF2 is used to implement 
detection, some drifts with slight changes may miss. Even so, the number of missing warnings using 
IMF2 remains at a very low level. Based on the above results, in the practical application, the high 
frequency IMFs can be used as a low-delay detection, while the low frequency IMFs can be used as a 
follow-up drift confirmation, which can make the results more robust and practical. 

4.3. Experiments in Real Data 

The real data applied is a dataset of neonatal EEG recordings and seizure annotations [45]. 
Neonatal epilepsy is a common emergency in neonatal intensive care unit. The data set contains EEG 
records from newborns and the labeling of EEG by human experts. EEG records are recorded from 
79 newborns in the Neonatal Intensive Care Unit of Helsinki University Hospital. The median 
duration of these EEG records is 74 minutes (IOR: 64–96 minutes). In the data set, each expert 
commented on an average of 460 epileptic seizures, including 39 neonatal seizures and 22 
non-epileptic seizures by consensus. Detailed data set information can be referred to [45]. 

In the dataset of neonatal EEG recordings and seizure annotations, not all EEG data are labeled 
by experts, data from the EEG dataset containing the annotations of the experts are selected. In 
addition, since the opinions of three experts are not uniform for some periods of onset, in order to 
ensure the consistency of the expert labeling, 30 periods of data with annotations of three experts are 
chosen. The applied data sets are shown in Table 5, where Data is the EEG record of selected patients 
containing epileptic seizures, Annotated Period is the annotation of three experts A, B, and C for 
epilepsy detection during seizures, and Selected Period is a period of time that contains three 
experts' annotation periods. The length of onset time is about 1/3 of the selected time period, which 
will be used as the data for the effectiveness test of the proposed method. 

Table 5. EEG data labeled by experts for experiments. 

Data. 
Annotated Period (s) 

Selected Period (s) 
A B C 

EEG1 [104, 121] [96, 122] [96, 121] [70, 150] 
EEG1 [1179, 1209] [1178, 1206] [1179, 1194] [1150, 1220] 
EEG5 [975, 1508] [993, 1449] [993, 1446] [500, 2000] 
EEG7 [95, 112]  [97, 106] [98, 110] [80, 130] 
EEG14 [255, 278] [254, 282] [256, 279] [210, 310] 
EEG14 [3331, 3342] [3330, 3343] [3330, 3342] [3310, 3360] 
EEG16 [5685, 5707] [5692, 5707] [5685, 5706] [5660, 5730] 
EEG17 [2957, 3011] [2904, 3116] [2901, 2940] [2800, 3200] 
EEG20 [559, 586] [563, 584] [565, 585] [540, 610] 
EEG20 [3827, 3885] [3824, 3899] [3827, 3886] [3760, 3960] 
EEG20 [3962, 3980] [3952, 3985] [3965, 3980] [3930, 4010] 
EEG25 [3449, 3477] [3414, 3484] [3451, 3473] [3400, 3490] 
EEG25 [4792, 4814] [4767, 4829] [4792, 4811] [4750, 4860] 
EEG31 [1885, 1964] [1887, 1966] [1887, 1966] [1800, 2040] 
EEG31 [2423, 2524] [2423, 2523] [2423, 2522] [2320, 2620] 
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EEG38 [5367, 5460] [5369, 5438] [5369, 5438] [5300, 5490] 
EEG38 [5857, 5886] [5840, 5889] [5859, 5885] [5800, 6020] 
EEG44 [294, 375] [297, 375] [293, 374] [210, 450] 
EEG44 [644, 661] [647, 663] [644, 663] [620, 690] 
EEG44 [2504, 2518] [2508, 2517] [2504, 2517] [2480, 2540] 
EEG47 [1841, 1898] [1841, 1896] [1832, 1898] [1790, 1960] 
EEG51 [4356, 4684] [4373, 4679] [4344, 4663] [4040, 5000] 
EEG62 [1344, 1725] [1346, 1725] [1336, 1725] [940, 2125] 
EEG63 [2423, 2526] [2427, 2528] [2424, 2519] [2330, 2630] 
EEG67 [751, 780] [753, 788] [754, 782] [720, 810] 
EEG67 [1366, 1410] [1367, 1410] [1348, 1407] [1300, 1470] 
EEG73 [1429, 1454] [1429, 1454] [1429, 1479] [1380, 1500] 
EEG76 [391, 436] [393, 432] [386, 435] [350, 475] 
EEG79 [565, 620] [540, 620] [566, 620] [460, 700] 
EEG79 [2441, 2494] [2416, 2490] [2444, 2493] [2360, 2570] 

Figure 5 shows a sample of EEG data selected, and the annotations of the experts A, B, and C on 
the epileptic seizures are indicated by dotted lines in three different colors. 

 
Figure 5. EEG data with expert annotations. 

One can observe that the change of EEG data mainly occurs in amplitudes of sequence data. 
Since the weighted permutation entropy and the increment entropy are more sensitive to the 
changes of data amplitudes, they are used in the group of experiments. The parameters of WPeEn 
and IncrEn are the same as those of the previous experiments. The size of sliding window is set to be 
100, moving forward 5 units at a time. In the setting of GLR parameters, startup is 20% of the total 
data length and ARL is 200, which is equivalent to the significance level 𝛼=0.95. 

The data stream of EEG data cannot obtain the labels in real time so it is impossible to directly 
use the supervised detection method. Therefore, in the comparative experiments, the algorithm 
proposed in [23] is used, where ELM is used to establish a regression model for time series. ELM is a 
regression model widely used in time series prediction and has strong generalization ability. The 
regression error 𝑦ො − 𝑦௧௥௨௘ is assumed to meet the normal distribution, and the regression errors are 
monitored by using Drift Detection Method (DDM) [10], Early Drift Detection Method (ECDD) [11] 
and Page-Hinkley method (PHt) [6]. ELM-DDM, ELM-ECDD, and ELM-PHt have similar 
application scenarios in concept drift detection, therefore, they are applied for the comparative 
study. 
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In order to verify the effect of the proposed method, Cohen’s kappa consistency test [46] is used 
to calculate the test results obtained by all methods and the annotations of three experts. The Kappa 
value is calculated in seconds by unifying the unit of expert labeling and the results obtained by all 
methods, and then the whole EEG records used in the experiment are averaged. All the methods 
used in the experiments are used to determine the onset interval by monitoring the concept drift in 
real time. The results presented are kappa values and the corresponding 95% confidence interval 
obtained by bootstrap. In addition, all methods are compared by false alarm numbers and miss 
detection rates. 

Table 6. Kappa values and confidence intervals obtained from the test results. 

Methods Comparison Expert A Expert B Expert C 
ETFE_WPeEn 0.824 (0.705–0.901) 0.802 (0.698–0.895) 0.833 (0.716–0.871) 
ETFE_IncrEn 0.815 (0.731–0.897) 0.798 (0.717–0.874) 0.825 (0.729–0.903) 
ELM_ECDD 0.655 (0.545–0.713) 0.637 (0.596–0.744) 0.678 (0.530–0.796) 
ELM_DDM 0.715 (0.601–0.813) 0.694 (0.612–0.785) 0.723 (0.578–0.849) 
ELM_PHt 0.709 (0.604–0.785) 0.661 (0.591–0.762) 0.735 (0.586–0.801) 

From Table 6, the Kappa values of the detection results of ETFE_WPeEn and ETFE_IncrEn are 
significantly higher than those of the other three methods. On the one hand, the time-domain 
features of EEG can be extracted and denoised after decomposition, so as to filter the interference of 
noise and timely capture the frequency change at the time of onset. On the other hand, the WPeEn 
and the IncrEn are sensitive to the structural and amplitude changes of the sequence data. 
Compared with other entropy, the coarsening results obtained by these two entropies can better 
reflect the changes. And the concept drift can be better detected by the statistical control process 
based on GLR. Since EEG signals do not change slowly but rapidly during the onset of disease, 
methods such as DDM and PHt tend to detect abrupt concept drifts more effectively [17], while 
ECDD is better at the concept drift detection of gradual patterns. Therefore, when detecting EEG 
data, ELM_DDM and ELM_PHt will more accurately locate the onset of the disease than 
ELM_ECDD. However, due to the influence of high noise, high frequency, uncertainty, and other 
factors in EEG data, the overall detection effect of ELM_ECDD, ELM_DDM, and ELM_PHt is not as 
good as that of ETFE. 

 
Figure 6. Comparison of false alarms. 

Figure 6 shows the effect of these five methods on false alarms. The false alarms of ELM-PHt, 
ELM-DDM, and ELM-ECDD are significantly higher than those of the proposed algorithm. This is 
because there are some noises in EEG data, so the fit ability of ELM model is weak when using 
original data to train ELM directly. Therefore, it is difficult to distinguish the occurrences of concept 
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drifts, which would limit its robustness. The proposed algorithm can obtain features in different 
time scales, which can play a role in denoising. Furthermore, the features of the original sequence 
can be transformed by IMF-Entropy. Since the WPeEn and IncrEn are good at capturing the 
amplitude changes of the sequence. they are used to coarsen the time domain characteristics of the 
original sequence. Since a statistical process control method that can capture mean and variance 
changes, GLR will detect such changes and give early warning in time.  

 
Figure 7. Comparison of miss detection rates. 

Figure 7 shows the comparison of five methods in miss detection rates. Since the EEG data to be 
detected is a segment of data containing epilepsy onset, it is equivalent to three contexts, which 
means that there are two detection points with concept drifts, where 50% of the detection results 
mean that only one of the two detection points has been captured. From the display of the results, we 
can see that the median of all the methods in the box plot of the Missing detection rate is near zero, 
which indicates that there are few missing detection cases in the detection process. On the one hand, 
compared with ELM_ECDD and ELM_PHt, the miss detection of ETFE_WPeEn and ETFE_IncrEn 
only appears as an exception. Meanwhile, the miss detections of ELM_ECDD and ELM_PHt are 
significantly more than that of the proposed method. On the other hand, compared with 
ELM_DDM, although it obtains a similar effect, but, ELM_DDM would trigger more error alarms 
than that of the proposed method. 

Generally speaking, experiments show that compared with ELM_ECDD, ELM_DDM, and 
ELM_PHt, ETFE combined with WPeEn and IncrEn have higher accuracy in determining the onset 
interval by detecting concept drift, trigger fewer false alarms, and also have lower miss detection 
rate.  

5. Conclusions 

In this paper, a novel method called ETFE is proposed for online detection of concept drifts in 
time series. Firstly, because the real time series data have the characteristics of non-stationary and 
high noise, the empirical mode decomposition method based on extrema symmetric extension is 
used to decompose the time series. The time-domain features in different time scales can be 
effectively extracted and have good signal-to-noise ratio. Secondly, because the concept drift of time 
series is accompanied by the change of time series structure, the entropy information is used to 
represent the time-domain characteristics in a coarse-grained way. Finally, when concept drift 
occurs, the changes of contents in time series will lead to the variation of entropy information. 
Therefore, the concept drift can be determined by monitoring the changes of the values of mean and 
variance based on GLR statistical control process. 

In the experimental part, synthetic time series data and real data are used to verify the proposed 
algorithm. As to synthetic time series data, six entropy methods are conducted to discuss the time 
domain characteristics in different time scales obtained by decomposition. The metrics of detection 
delay, detection position offset, false alarms, and miss detection numbers are used to verify the 
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effectiveness of the proposed method. In the real data experiment part, the newborn EEG record and 
epileptic seizure annotation data set are applied, where three existing methods are compared with 
the proposed method. The results show that our method has better detection results of concept drift 
with higher robustness. In the further research, when the complexity of time series is analyzed under 
different time scales, it would be meaningful to introduce multi-scale entropy into this work. In 
addition, statistical process control methods can be further enhanced to improve the detection of 
concept drift. 
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