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Abstract: This paper aims to substantiate and formulate the main principles of the physical 
discipline-mechanothermodynamics that unites Newtonian mechanics and thermodynamics. Its 
principles are based on using entropy as a bridge between mechanics and thermodynamics. 
Mechanothermodynamics combines two branches of physics, mechanics and thermodynamics, to 
take a fresh look at the evolution of complex systems. The analysis of more than 600 experimental 
results allowed for determining a unified mechanothermodynamical function of limiting states 
(critical according to damageability) of polymers and metals. They are also known as fatigue 
fracture entropy states. 
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1. Introduction 

Any scientific discipline is based on the understanding and mathematical description of the 
behavior of certain phenomena revealing specific properties of some existing or imaginary objects 
[1,2]. 

Hierarchical structure of objects can be found from the study of specific objects that give rise to 
relevant branches of mechanics. Figure 1 shows a simplified hierarchical structure of objects (in case 
gas and fluid continua are absent) and mechanothermodynamics as a new branch of knowledge [2]. 
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Figure 1. Objects of study in mechanics (from simple to complex) in a simplified hierarchical form. 

The concept of a material object given as a dimensionless and structureless point capable of 
moving in time and space gave impetus to the development of Newtonian theoretical mechanics 
aimed at understanding and describing a great variety of motions of such a physically unreal object. 
This concept made theoretical mechanics a useful science. As a result, the motion of points like 
electrons or planets, i.e., extremely small microcosm objects and huge universe objects can be 
correctly analyzed. If “big points” have mass, then the interaction patterns of moving celestial 
bodies, etc., in mechanics of space flight, machines, and mechanisms, all that moves, are the subject 
of the analysis with the implication of theoretical Newtonian mechanics methods.  

An interconnected set of points may represent а continuum—a solid, for example. When solid 
points are capable of moving or shifting relative to each other at different loads, it becomes possible 
to develop the concept of a new object, let us say a deformable solid. Naturally, mechanics of 
deformable solids must be developed in order to examine its stress-strain state at any point and, 
finally, to understand and mathematically describe changes in size, motion, and distortion of a solid 
as a whole. A deformable solid may be considered as a specimen, material, or a structural element in 
relation to the study objectives. Mechanics of materials, composites, structures, soil, etc., damage 
and failure mechanics (under static, cyclic, impact, loads, etc.), mesomechanics, and 
micromechanics, etc., examined specific properties of these objects. Mechanical behavior and 
properties of reversible and irreversible points motions in deformable solids were found as well by 
theories of elasticity and plasticity, respectively. Deformable solids also had a diversity of specific 
properties: viscoelasticity, elasto-viscoplasticity, etc. It was discovered that mechanics of deformable 
solids is one of the most powerful research means to model behavior of objects at various conditions. 

One of the components of numerous mechanical systems is a deformable solid. The 
compression of two solids together started the development of a new branch of deformable solid 
mechanics–contact mechanics. Then, it is a study of a friction pair, for which a relative motion of two 
bodies at contact load is considered. Later, tribology as a special scientific discipline emerged. Its 
main objective is to examine friction behavior between solid bodies and interface damage of 
materials of various friction pairs at rolling, sliding, impact, slippage, etc. A friction pair may be 
treated as a multicomponent system since the third body forms in the region of moving contact due 
to the appearance of tribo-destruction products and/or the presence of lubricant.  
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A “peculiar object” (active system) is more complicated than a friction pair [3]. In the twentieth 
century, the concept of an active system was introduced. An active system is defined by any 
mechanical system at cycling loading. Here, the friction process proceeds simultaneously at rolling, 
sliding, impact, etc. So, the active system may be considered as a friction pair, at least one element of 
which undergoes volumetric deformation. Such systems have complex wear-fatigue damage due to 
kinetic interactions of friction, fatigue, wear, corrosion, erosion, etc. Naturally, the appearance of a new 
object of study gave impetus to a scientific discipline shortly named tribo-fatigue (“tribo” is friction in 
Greek and “fatigue” is fatigue in French [3]) or mechanics of wear-fatigue damage [2] (mechanics of 
tribo-fatigue systems [4]). 

Figure 1 displays the increase of complexity of objects that are studied by successive arrows. 
The last object is represented by a multi-phase system. It is a mechanothermodynamical (MTD) 
system uniting the laws of Newtonian mechanics and thermodynamics. The union of Newtonian 
mechanics and thermodynamics was formulated and experimentally proved for metals, alloys, and 
composites [5–14]. 

The above approaches and models for the energy and stress-strain states of complex systems at 
thermodynamic and mechanical loads are considered in the well-known works [15–18]. Damage and 
entropy concepts are important for building a model of an MTD system.  

The main ideas of materials’ behavior at fracture process conditions are discussed in Reference 
[19]. Study [20] considers features of mechanics of damage as a part of fracture mechanics and its 
applications. The basics of heterogeneous continuum physical mesomechanics, which develops on 
the border of physics of plasticity, continuum mechanics, and strength of materials, are given in 
Reference [21]. This discipline is concerned with stressed and damaged materials at macro-, meso- 
and micro-levels. 

References [22,23] examine the constitutive relations for strain-induced damage at 
thermodynamic loads. They also discuss the use of failure mechanics of civil and mechanical 
engineering components in the brittle, fatigue, creep, and ductile conditions at thermomechanical 
loads. References [24,25] discuss the related tasks of formation plasticity and vibration theories for 
steady-state vibrations in elastoplastic bodies. 

References [26,27] present a concise review of the main damage models for mechanics of 
continua and micromechanics, including evolution kinetics, and discuss further research areas. 
Reference [28] proposes a general development of continuum damage models. This model is defined 
by yield and empirical damage potential surfaces in space. It also considers damage mechanisms 
(cracking, isotropic damage, etc.) reducing material strength. 

The stress-based limiting criterion for the conditions of linear and spatial strain states is 
described in Reference [29] using the results of experimental and theoretical studies. A 
thermodynamic model of friction and non-associated flow for geotechnical materials is given in 
Reference [30]. Models of large strain elastic-plastic behavior of ductile metals under anisotropic 
damage are investigated extensively in References [31,32]. References [33,34,35] deal with elastic, 
plastic, and damage behavior of materials in a thermodynamic statement using hardening internal 
state variables for both plasticity and damage. Some authors proposed damage theory of 
polycrystalline material [36,37], taking into account kinematic, thermodynamic, and kinetic 
coupling. 

Reference [38] considers the model of microscopic damage of ellipsoidal voids that are capable 
of changing their shape for the materials at mixed hardening. The results of model materials X-ray 
tomography were used to study voids behavior in References [39–41]. Void growth and the shape 
change at large plastic deformation studied by means of scanning electron microscopy (SEM) is 
discussed in Reference [42]. Anisotropic damage progression for porous ductile metals with second 
phases is presented through mechanisms of void nucleation, growth, and coalescence in Reference 
[40]. Reference [43] presents the analytical and computational mesoscopic models for nucleation and 
interaction of microcracks near a macrocrack tip based on elasticity and dislocation theories. The 
framework allowing a combination of plasticity and damage models of inelastic behavior is 
proposed in Reference [44].  
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Generation of entropy in flow with silver and copper nanoparticles was studied in Reference 
[45]. Radiative mixed convective flow of viscous fluid to rotating disk was considered subject to 
viscous dissipation and Joule heating. It was shown that entropy generation rate increases for higher 
radiation parameter, Brinkman number, nanoparticle volume fraction, and Reynolds number. 
Entropy generation in magnetohydrodynamic radiative flow to the rotating disk of variable 
thickness was studied in Reference [46] and showed that entropy generation rate increases for higher 
radiation parameter but decreases for higher Eckert number. Another interesting study is devoted to 
entropy generation in nonlinear radiative flow of viscous nanomaterial towards a stretched surface 
[47]. An increasing trend was observed for both entropy generation and Bejan number due to the 
increase of thermophoresis variable and temperature difference parameter. Study of entropy 
generation in mixed convective flow of nanofluid between two stretchable rotating discs was made 
using Buongiorno nanofluid model [48] and showed that the entropy generation rate has inverse 
behavior in relation to the Hartman number. A study of magnetohydrodynamic radiative 
nanomaterial flow of Casson fluid towards a stretched surface [49] showed that entropy generation 
rates boost through the magnetic variable while the Bejan number decays. 

References [1,50–52] contain the fundamentals of mechanothermodynamics and formulate two 
of its principles. The first principle states that damageability of all things has no conceivable 
boundaries. The second principle states that effective energy fluxes (entropies) at loads of different 
nature under irreversible changes in a MTD system are not additive, they interact dialectically. 
Corresponding entropy analysis [1] is made on the basic principles of tribo-fatigue [2–4] and 
thermodynamics [5]. The present study is dedicated to the analysis based on the energy 
presentations of mechanics, thermodynamics, and tribo-fatigue. It allowed us to reveal and study 
novel behavior and evolution patterns of a MTD system. 

Current and perspective models and methods address the following specific features of 
mechanothermodynamics that differ it from thermodynamics:  

1. An object (a system of interacting continuums, but not a continuum), 
2. The state of the object (observed and limiting, but not just the observed), 
3. Energy model (the allocation of the effective part in the irreversible component of the 

energy—the part spent on the production of damage, but not just the separation of energy 
into reversible and irreversible parts), 

4. Non-additivity (the interaction of energy or entropy components caused by loads of 
different nature, but not their simple addition). 

2. Thermomechanical State 

We consider the thermomechanical task [15–18]. It will be used for the creation of energy and 
entropy models of MTD systems. 

Continuum state of an elementary volume dV is described in the following way [16,17]: 

,3,2,1  ,, =ρ=ρ+σ ivf iijij   (1) 

where, the σij are the stresses, ρ is the density, the fi are the volumetric forces, and the vi are the 
velocities. 

With the repeated index summation rule used, mechanical energy conservation of a continuum 
of volume V is obtained by multiplying scalar equation (1) by a velocity vector vi: 

., dVvvdVfvdVv
V

ii

V

ii

V

jiji  ρ=ρ+σ   (2) 

The right side of Equation (2) is kinetic energy K change in the continuum of volume V: 

.
22

2

dt
dKdVv

dt
ddVvv

dt
ddVvv

VV

ii

V

ii =ρ=ρ=ρ    (3) 
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Using the known transformations with the consideration of Gauss–Ostrogradsky’s theorem, we 
obtain the equation for continuum mechanical energy [16]: 

,dVfvdldV
dt
dK

V

iijijij

V

ij  ρ+Πσ=εσ+
Π

  (4) 

or, 

dt
A

dt
U

dt
dK δ=δ+

, 
where, εij denotes the strain rate, Π the continuum surface, l the director cosines at the continuum 
surface, δU/dt the internal force power, and δA/dt the power of internal surfaces and volumetric 
forces.  

In Expression (4), the symbol δ shows that in the general case, the increment (variation) cannot 
be an accurate differential.  

In the thermomechanical statement, the rate of change in the internal energy U [16] is usually 
given by the integral: 

,dVudVu
dt
d

dt
dU

VV
 ρ=ρ=   (5) 

where 
m
muu

m Δ
Δ=

→Δ

)(lim
0

 is the specific internal energy (internal energy density) of an elementary 

volume of mass Δm. 
The rate of heat transfer to the continuum is expressed in the following form: 

,dVzdlc
dt
Q

V

ii  ρ+Π−=δ

Π

 (6) 

where, сi characterizes the heat flux per unit area of the continuum surface per unit time due to heat 
conduction and z–the constant of heat radiation per unit mass per unit time. 

The pattern of change in thermomechanical continuum energy is then of the form: 

dt
Q

dt
A

dt
dU

dt
dK δ+δ=+  (7) 

In Expression (7), transforming surface integrals into volume integrals yields the local form of 
the energy equation:  

( ) .11
2 ,,

2

zcvfvuv
dt
d

iiiijiij +
ρ

−+σ
ρ

=







+  (8) 

If we subtract the scalar product of Equation (1) and the velocity vector vi from Equation (8), 
then the local energy equation will be obtained as follows: 

dt
dqzc

dt
du

ijijiiijij +εσ
ρ

=+
ρ

−εσ
ρ

=  111
,  (9) 

where dq is the heat flux per unit mass. 
According to Equation (9), the internal energy changes are equal to the sum of the stress power 

and the heat flux to the continuum. 
In relation to the thermodynamic system, we define two characteristic functions of its state: 

absolute temperature T and entropy S that can be interpreted as the characteristic of the ordered (or 
chaotic) state of the thermodynamic system. Usually, the entropy is assumed to have an additivity 
property, i.e., 

.i
i

S S=  (10) 
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Continuum mechanics [16,17] considers the specific entropy S per unit mass as: 

.
V

S sdV= ρ  (11) 

References [16,17] show that the specific entropy increment ds can occur because of the 
interaction with the environment (the increment ds(e)) or inside the system itself (the increment ds(i)): 

.)()( ie dsdsds +=  (12) 

The quantity ds(i) is equal to zero in reversible processes and is above zero in irreversible 
processes.  

If we express the heat flux per unit mass through dq, then in the case of reversible processes, the 
increment will be as follows: 

.dqTds =  (13) 

By the second law of thermodynamics, we see that the rate of change in the total entropy S of 
the continuum of volume V cannot be smaller than the sum of the heat flux through the volume 
boundary and the entropy produced by external sources inside the volume (Clausius–Duhem’s 
inequality) [16, 17]: 

i i

V V

c ld sdV edV d
dt TΠ

ρ ≥ ρ − Π    (14) 

where, e is the local external entropy source power per unit mass. Formula (14) shows that the 
equality is valid for reversible processes and the inequality is valid for irreversible processes.  

In Formula (14), transforming the surface integral into the volume integral arrives at a relation 
for a rate of internal entropy production per unit mass: 

01 ≥







ρ

−−≡γ
j

i

T
ce

dt
ds  (15) 

Continuum mechanics assumes that we can decompose the stress tensor into two parts: the 
conservative part )(C

ijσ  for reversible processes (elastic deformation, liquid pressure) and the 

dissipative part )(D
ijσ  for irreversible processes (plastic deformation, liquid viscous stresses): 

)()( D
ij

C
ijij σ+σ=σ  (16) 

We can then present an expression for energy change rate (9) in the following form: 

.111 )()(

dt
dq

dt
dq

dt
du

ij
D
ijij

C
ijijij +εσ

ρ
+εσ

ρ
=+εσ

ρ
=   (17) 

If Equation (13) is assumed to be valid for irreversible processes, then the total entropy 
production rate is:  

,111 )()(

dt
dq

TTTdt
ds

ij
D
ijij

C
ij +εσ

ρ
+εσ

ρ
=   (18) 

or 









++

ρ
=







 +
ρ

=
dt
du

dt
du

dt
du

Tdt
du

dt
du

Tdt
ds T

D
M

C
MTM

)()(11

 
Expression (18) for the total local entropy change rate in the continuum elementary volume can 

find wide use in practice.  
In view of entropy additivity assumption (10), the sum in Expression (18) can be supplemented 

by other terms that allow the internal entropy production in the liquid (gas) volume due to different 
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mechanisms to be taken into consideration. Similarly, for the continuum volume dV we can consider 
the internal chemical processes [15]: 

1
,

n

sub k kdU dQ dA dU TdS pdV dN= + + = − + μ  (19) 

1

1 .
n

k k
dU pdVdS dN

T T
+= − μ  (20) 

If dV is considered not as a finite, but elementary volume of continuum, then based on 
Equations (17), (19), and (20), we can write the changes in its specific energy and entropy in the 
following differential form: 

1 ;ij ij k k
k

du d dq dn= σ ε + + μ
ρ   (21) 

1 1 1 ,ij ij k k
k

ds d dq dn
T T T

= σ ε + + μ
ρ   (22) 

where, nk is the number of mols per unit mass. 
For the continuum of volume V, on the basis of Equations (5) and (11), Expressions (21) and (22) 

will assume the form: 

 ;ij ij k k
kV V V V

dU dudV d dV dqdV dn dV= ρ = σ ε + ρ + ρ μ     (23) 

1 1 1  .ij ij k k
kV V V V

dS dsdV d dV dqdV dn dV
T T T

= ρ = σ ε + ρ + ρ μ     (24) 

Having introduced the chemical entropy component (the last terms in Expressions (21)–(23)), 
we can have not only a more complete behavior of the continuum state, but we can also describe 
self-organization processes initiating stable structures with increasing the heat flux to the 
continuum. 

Being quite common, the specified models of continuum energy and entropy states (Equations 
(17)–(24)) nevertheless do not permit one to satisfactorily describe some processes to occur in such a 
continuum as a deformable solid. However, a convenient idea of the additivity of energy and 
entropy components (Equation (11)) applicable to model elastic deformation is not suitable to 
describe non-linear processes. The available models do not also take into account an entropy growth 
due to the solid damageability as a specific characteristic of change in the structure organization. 
Following the tribo-fatigue ideas [2–4,51], the damageability is understood as any irreversible 
change in structure, continuum, shape, etc., of a deformable solid that leads to its limiting state. 
Although at plasticity modeling, the elasticity limit is not implicitly allowed for, the damageability at 
mechanical or contact fatigue proceeds in the course of linear elastic deformation. To describe it, we 
need a particular approach and must examine limiting fatigue characteristics of material. The below 
approach overcomes the above drawbacks. 

3. Main Principles 

References [2,4,50] show that in the general case, an MTD system is given as a thermodynamic 
continuum where solids are distributed (scattered), interacting with each other and with the 
continuum. Figure 2 illustrates the continuum fragment of limited size ),,( ZYXΩ . The continuum 
with a temperature θ  and a chemical composition Ch () has two solid elements (А and В) 
interacting in the contact zone ),,( zyxS  that can move relatively to each other. Arbitrary 
mechanical loads perceived by one of them (by element А) in the x, y, z coordinate system are 
transformed into internal transverse forces Qx, Qy, Qz, longitudinal forces Nx, Ny, Nz , as well as into 
bending moments Мx, Мy, Мz. Element B is pressed to element A by the loads that are reduced to the 
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distributed normal pressure ),( yxp  and the tangential pressure ),( yxq . The origin of the 
coordinates is shifted to the point of original contact О of the two elements (before deformation). We 
can easily notice that the elements А and В form the tribo-fatigue system [4], presented in Reference 
[2] as a friction pair (it consists of the element A without internal forces ( 0=iN , 0=iQ , 0=iM , i = 
x, y, z) and of the element B). So, the tribo-fatigue system is the friction pair, in which, at least one of 
these elements perceives non-contact loads, and hence, it undergoes volumetric deformation. The 
advantage of such an MTD system is that the corresponding solutions reported in mechanics of 
deformable solids, contact mechanics, mechanics of tribo-fatigue systems (tribo-fatigue), and in 
tribology can be adopted to analyze the state of solids and the system components. 

 

Figure 2. Mechanothermodynamical (MTD) system (A) denotes surface (contact) tractions; (B) 
denotes loaded body). . 

Now, it is the task to describe the MTD system energy state at mechanical and thermodynamic 
loads with the consideration of the environment influence.  

The energy state of any system is of interest. However, in relation to the MTD system, of 
importance is to examine its damageability, and as a consequence, conditions of reaching the 
limiting state. Of special interest is the analysis of the so-called translimiting or supercritical 
conditions [2]. 

According to References [2–4], we can formulate the main ideas, being the basis of the 
developed theory. 

I. Bearing in mind that the MTD system elements perceive different loads: mechanical, thermal, 
and electrochemical, the traditional analysis of their damageability and limiting state at mechanical 
stresses or strains [53–61] can be a basis of studies, but it appears insufficient, and hence, ineffective. 
This means that the MTD system states must be analyzed using more general energy concepts. 

II. Since mechanical, thermodynamic [62–66], and electrochemical loads specify the 
damageability of MTD system solids, we should use a generalized idea of its complex damage due 
to these loads when they act simultaneously. Such damage will be called any irreversible change in 
shape, size, volume, mass, composition, structure, continuity, and hence, physical-mechanical 
properties of system elements. It is a corresponding change in the functions of the system as a whole. 

III. Four particular phenomena: mechanical fatigue, friction, and wear, as well as 
thermodynamic and electrochemical processes, specify the complex damage onset and 
development. These phenomena are called particular ones in the sense that each of them can be 
implemented as independent and individual. This leads to the corresponding energy state and 
damageability by particular (individual) criteria. 

IV. In the general case, all particular phenomena and MTD system processes develop 
simultaneously and in one zone. The MTD system states are attributed to not one of any of the above 
phenomena, but to their joint (collective) development, and consequently, to their interaction. 
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V. If all the energy U  supplied to the MTD system is responsible for its physical state, then 

the condition of its damageability is specified by the effective (dangerous) part  <<UU eff  spent for 
generation, motion, and interaction of irreversible damages. 

VI. The effective energy effU  at volumetric deformation of solids can be given in the form of 

the function of three energy components: thermal eff
TU , force eff

nU , and frictional effUτ :  

( ) ,,, effeff
n

eff
T

eff UUUFU τΛ =  (25) 

where, FΛ considers the irreversible kinetic interaction of particular damage phenomena. The 
components effeff

n
eff
T UUU τ,,  of the effective energy effU  do not possess the additivity property. 

VII. We allow for the processes of electrochemical (in particular, corrosion) damage of solids by 
introducing the parameter 0 ≤ Dch ≤ 1 and study them as electrochemical damageability when acted 
upon by temperature (DT(ch)), stress (Dσ(ch)), as well as by corrosion and friction (Dτ(ch)). So, Function 
(25) assumes the form:  

( ).,, )()()(
eff
ch

eff
chn

eff
chT

eff UUUFU τΛ =  (26) 

VIII. The condition for the effective energy effU  to attain its limiting value—the critical 
quantity U0 in some area of limited size—in the dangerous volume of the MTD system, serves as the 
generalized criterion of the limiting (critical) state. 

IX. It is considered that the energy U0 is a fundamental constant for a given material and must 
not depend on testing conditions, input energy types, or damage mechanisms. 

X. The three-dimensional (3D) area 0VVij ⊂  of a deformable solid ( 0V  is the working volume) 
with the critical state of the material of its components at all its points is called the dangerous 
volume. 

XI. In the general case, the limiting (critical) state of the MDT system is attained not because 
effective energy components grow, and hence, because irreversible damages at individual 
different-nature loads are accumulated, but because they interact dialectically. Their direction is 
characterized by the development of spontaneous hardening-softening of materials at the 
considered operating conditions. Thus, when Function (26) is taken into account, the hypothesis of 
the limiting (critical) state of the MTD system can be presented in the following general form:  

,0),,,,,( 0\\)()()( =ΛΦ τσ umuuu klkn
eff
chT

eff
ch

eff
ch  (27) 

where, the mk k = 1, 2, …, are some characteristic properties (hardening-softening) of contacting 
materials, and the nlk \\Λ  1 are the functions (parameters) of dialectic interactions of effective 
energies (irreversible damages) at different-nature loads. It means that at Λk > 1, the damageability 
increase is realized, at Λl < 1—its decrease, and at Λn = 1—its stable development.  

XII. When item III is taken into consideration, hypothesis (27) must be multi-criterion from the 
physical viewpoint, i.e., it must describe not only the states of the system as a whole, but its 
individual elements through different criteria of performance loss (wear, fatigue damage, pitting, 
corrosion damage, thermal damage, etc.). In particular cases, we can attain the corresponding 
limiting (critical) states through one or two, three, or several criteria at a time.   

XIII. Attaining the limiting state: 

0uueff =Σ  (28) 

means that the MTD system completely loses its integrity, i.e., all of its functions. At the same 
time, its elements reach the critical damageability:  

00 uueffeff
u Σ=ψ<  (29) 

( ) 1,,,, \\)()()( =Λψψψψ τσ knlkchTchch
eff
u m  (30) 
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XIV. If t = t0 is the time of the system onset and ⊕T  is the time when the system reaches the 
limiting (critical) state, then the failure time of its functions is consistent with the relative lifetime 
(longevity) 1/ =⊕Tt . But the system lifetime *T  as a material object is longer than its lifetime as a 
whole ( ⊕>>TT* ), since at ⊕>Tt , the long process of its degradation–disintegration is realized when 
a great number of remains, pieces, fragments, etc., are formed. This process develops when acted 
upon by not only possible mechanical loads, but mainly by the environment, up to the moment 
when the system as a material object dies at t = T*. The system death is its complete disintegration 
into an infinitely large number of ultimately small particles (atoms). The below conditions describe 
the translimiting existence of the system as a gradually disintegrating material object:  

∞→ψeffu , (31) 

0→ψd , (32) 

where ψd  is the average size of disintegration particles. The organic relationship )( ψψ deff
u  must 

exist between Σψ  and ψd . Then, the condition for the system death is:   

1* =Tt  (33) 

XV. The disintegration particles of the “old system” are not destroyed and are spent to form and 
increase a number of “new systems”. This is the essence of the MTD system evolution hysteresis. 

4. Damageability Energy Theory and Limiting States 

First, we concretize Function (25). 
For the effective energy to be determined, we will consider the work of internal forces in the 

elementary volume dV of tribo-fatigue systems (А, В in Figure 2). In the general case, we can write 
the differential of work of internal forces and the temperature dTΣ with the consideration of the 
disclosure rule of the biscalar product of the stress and strain tensors σ and ε: 

 ;

xx xy xz xx xy xz

ij ij yx yy yz yx yy yz

zx zy zz zx zy zz

xx xx yy yy zz zz xy xy xz xz yz yz

d d d
du d kdT d d d

d d d

kdT d d d d d d kdT

Σ

Σ Σ

   σ σ σ ε ε ε
   = σ ⋅⋅ ε + = σ σ σ ⋅⋅ ε ε ε +   
   σ σ σ ε γ ε   

+ = σ ε +σ ε +σ ε +σ ε +σ ε +σ ε +

 (34) 

where k is the Boltzmann constant. 
We will proceed from the fact that in the general case, according to References [2,4], normal and 

shear stresses, which cause the processes of shear (due to friction) and tear (due to 
tension-compression), play a decisive role in forming wear-fatigue damage.  

In this case, it makes sense to divide the tensor σ into two parts: στ is the friction-shear stress 
tensor, or, briefly, the shear tensor, σn is the normal stress tensor (tension-compression), or, briefly, 
the tear tensor. In Equation (28), we will distinguish the tear part σn and the shear part στ of the 
tensor σ as: 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

, , , , ,

, , , , . .

V W V W V W V W V W
ij ij n ij

V W V W V W V W
n ij ij n T

du d kdT d kdT

d d kdT du du du

Σ τ Σ

τ Σ τ

= σ ⋅⋅ ε + = σ +σ ⋅⋅ ε + =

= σ ⋅⋅ ε + σ ⋅⋅ ε + = + +
 (35) 

In accordance with items III and IV, we must present the tensors σij and εij as follows: 

( ) ( ) ( )( )
( ) ( ) ( )( )

,

,

, ,

, .

V W V W
ij ij ij ij ij

V W V W
ij ij ij ij ij

σ = σ = σ σ σ

ε = ε = ε ε ε
 (36) 
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where, the volume loads (the general cases of 3D bending, torsion, tension-compression) give rise to 
the stress and strain tensors with the superscript V and the contact interaction of system elements to 
those with the superscript W.  

We can present Expression (35) with regard to (36) as follows:  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

, , , , ,

, , , , .

V W V W V W V W V W
ij ij n ij

V W V W V W V W
n ij ij n T

du d kdT d kdT

d d kdT du du du

Σ τ Σ

τ Σ τ

= σ ⋅⋅ ε + = σ +σ ⋅⋅ ε + =

= σ ⋅⋅ ε + σ ⋅⋅ ε + ⋅ = + +
 (37) 

When there is a linear relationship between stresses and strains, Expression (36) will assume the 
form: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, ,

V W V W V W
xx xx xy xy xz xz

V W V W V W V W V W
ij ij ij ij yx yx yy yy yz yz

V W V W V W
zx zx zy zy zz zz

 σ + σ σ + σ σ + σ
 
 σ = σ = σ + σ = σ + σ σ + σ σ + σ
 
 σ + σ σ + σ σ + σ 

 (38) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, ,

V W V W V W
xx xx xy xy xz xz

V W V W V W V W V W
ij ij ij ij yx yx yy yy yz yz

V W V W V W
zx zx zy zy zz zz

 ε + ε ε + ε ε + ε
 
 ε = ε = ε + ε = ε + ε ε + ε ε + ε
 
 ε + ε ε + ε ε + ε 

 (39) 

And Expression (37) will be as follows: 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
2 2

1
2

0 0

0 0

0 01 
2 0

0

0

V W V W
ij ij ij ij ij ij

V W V W V W
n n ij ij

V W
xx xx

V W
yy yy

V W
zz zz

V W V W
xy xy xz xz

V W V W
yx yx yz yz

V W V W
zx zx zy zy

du u kT

kT kT

Σ

Σ τ τ Σ

= = σ ⋅⋅ε + = σ + σ ⋅⋅ ε + ε +

 + = σ + σ + σ +σ ⋅⋅ ε + ε + = 

 σ +σ
 
 σ +σ +
 
 σ + σ =
 σ +σ σ + σ

+ σ + σ σ + σ

σ + σ σ +σ

 
 
 
 
 

⋅ ⋅ 
 

 
 
   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

.

V W V W V W
xx xx xy xy xz xz

V W V W V W
yx yx yy yy yz yz
V W V W V W
zx zx zy zy zz zz

kTΣ

 ε + ε ε + ε ε + ε
 
 ⋅ ⋅ ε + ε ε + ε ε + ε +
 
 ε + ε ε + ε ε + ε 

 

(40) 

From Expression (40), it is seen that the tear part σn of the tensor σ is the sum of the tear parts of 
the tensors at the volumetric strain ( )V

nσ  and the surface load (friction) ( )W
nσ . The shear part στ is the 

sum of the shear parts ( )V
τσ  and ( )W

τσ . This is the fundamental difference of the generalized 
approach to constructing a criterion for the MTD system limiting state.  

We will distinguish the effective part of total energy (Expression (40)) according to items V and 
VIII and References [2,3]. To do this, we will introduce the coefficients An(V), Aτ(V), and AT(V) of the 
corresponding dimension. The latter determine the absorbed energy fraction:  

( ) ( ) ( ) ( ) ( ){ }\ \
eff

M T n n n ij ij Tdu V V A V d A V d A V kdTτ τ τ ΣΣ  = Λ Λ σ ⋅⋅ ε + σ ⋅ ⋅ ε +   (41) 

or 

( ) ( ) ( ) ( )[ ] ( ){ }TTnnnTM
eff duVAduVAduVAVVdu ++ΛΛ= τττΣ \\  (42) 
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where ΛМ\T(V) and Λτ\σ(V) are the functions of interaction between different energies. The subscript 
τ\σ means the function Λ responsible for the interaction between the shear (τ) and tear (σ) 
components of the effective energy and the subscript M\T—the function Λ is responsible for the 
interaction between the mechanical (М) and thermal (Т) parts of the effective energy. Generally 
speaking, the coefficients А can be different at different points of volume V. This fact allows one to 
take into account the environment inhomogeneity.  

Taking into consideration Expression (42), criteria (27) can be specified, not considering the 
environment influence: 

( ) ( )[ ]{ } .0\\ udududuVV eff
T

effeff
nnTM =++ΛΛ ττ  (43) 

When there is a linear relationship between stresses and strains, Expressions (41) and (42) will 
be of the following form:  

( ) ( ) ( ) ( ) ( )\ \
1 1 ,
2 2

eff
M T n n n ij ij Tu V V A V A V A V kTτ τ τΣ Σ

  = Λ Λ σ ⋅⋅ε + σ ⋅⋅ε +    
 (44) 

or 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }\ \ ( )eff
M T n n n T nu V V A V u V A V u V A V u Vτ τ τΣ  = Λ Λ + + = 

( ) ( ) ( ) ( ){ }\ \ ( ) .effeff eff
M T n n TV V u V u V u Vτ τ = Λ Λ + +   

(45) 

With Expression (36) considered, criterion (43) can be presented as follows:  

{ }( , ) ( , ) ( , ) ( , )
\ \ 0( , ) ( , ) .eff effeff V W V W eff V W V W

n n n n T MTu u u u uτ τ τ τΣ  = σ ε + σ ε Λ + Λ =   (46) 

When time effects must be allowed for, criterion (46) will assume the form: 

{
}

( , ) ( , ) ( , ) ( , )
\

0

\ 0

( , , ) ( , , ) ( )

( ) ( ) .

t
eff eff V W V W eff V W V W

n n n nt

eff
T MT

u u t u t t

u t t dt u

τ τ τ τΣ  = σ ε + σ ε Λ + 

+ Λ =

  (47) 

So, Expression (45) is the concretization of Equation (25) and Equation (46)—the concretization 
of criterion (27) when the environment influence is not taken into account. 

Criterion (27) in the forms of Expressions (46) and (47) states: when the sum of interacting 
effective energy components at force, frictional, and thermal (thermodynamic) loads reaches a 
critical (limiting) quantity u0, the limiting (or critical) state of the MTD system (both as individual 
elements and the system as a whole) is implemented. Physically, it is attributed to many and 
different damage mechanisms. 

Above, we noted the fundamental character of the parameter u0. Based on References [66–78], 
we will understand parameter u0 as the initial activation energy of the disintegration process. u0 
approximately means both sublimation heat for metals and crystals with ionic bonds and thermal 
destruction activation energy for polymers: 

.0 Tuu ≈  
On the other hand, the quantity u0 is determined as the activation energy for mechanical 

fracture: 
.0 Muu ≈  

Thus, the energy u0 can be a constant of a material: 

.const0 =≈≈ TM uuu  (48) 

With the physical-mechanical and thermodynamic presentations of the damageability and 
fracture processes [67,68,70] taken into account, we write Expression (48) in the following form: 
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,ln0 T
D

S
V

ath
kM u

h
kkTuC

E
su =

θ
==

α
σ

=  (49) 

where, sk is the reduction coefficient, σth the theoretical strength, E the elasticity modulus, Ca the 
atom heat capacity, αV the thermal expansion of the volume, k the Boltzmann constant, TS the 
melting point, θD the Debye temperature, and h is the Planck constant. According to Expression 
(49), we can approximately assume [67]: 

,*0
V

aCu
α

ε≈  (50) 

where ε* ≈ 0.6 is the limiting strain of the interatomic bond. Calculations according to Expression 
(50) are not difficult. The methods for experimental determination of u0 have also been developed 
[68]. 

Equation (49) shows that u0 is the activation energy of a given material and is by the order of 
magnitude equal to 1…10 eV per one particle or molecule (∼102…103 kJ/mol), i.e., it is close to the 
energy of interatomic bond rupture in the solid [71] and does not depend on a way of reaching 
rupture: mechanically, thermally, or by their simultaneous action. Reference [68] contains the tables 
of the u0 values for various materials. 

Equation (49) gives a thermomechanical constant of a material [2]: 

.ln σθ=
θα

=
σ

h
k

C
kE

T
D

a

V

S

th  (51) 

The constant θσ is the strength loss per 1 К. 
Criterion (46) is written in absolute values of physical parameters: effective and critical energy 

components. We can make this criterion dimensionless: it must be by divided by the quantity 0u . 
Criterion (46) is presented in terms of irreversible (effective) damage: 

.1
0

==ψ Σ

u
ueffeff

u  (52) 

The local (at the point) energy damageability measure eff
uψ  is within the range: 

 
 

,10 ≤ψ≤ eff
u  (53) 

or in expanded form: 

0 eff
u≤ ψ =  

{ }( , ) ( , ) ( , ) ( , )\
\

0
( , ) ( , ) 1.effeff V W V W eff V W V WT M

n n n n Tu u u
u τ τ τ τ

Λ  = σ ε + σ ε Λ + ≤   
(54) 

According to Expression (54), we can determine particular energy damageability measures   

( ) 1,0
0

),(),(

≤
εσ

=ψ≤
u

u WV
n

WV
n

eff
neff

n , (55) 

( ) 1,0
0

),(),(

≤
εσ

=ψ≤ τττ
τ u

u WVWVeff
eff , (56) 

10
0

≤=ψ≤
u
u effTeff

T , (57) 

at effective different energies determined by force (the subscript n ), frictional (the subscript 
τ ), and thermodynamic (the subscript T) loads, respectively. We can now write criterion (52) in 
dimensionless form: 
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( )[ ] .1\\ =Λψ+Λψ+ψ=ψ ττ ТМ
eff
Tn

effeff
n

eff
u  (58) 

Based on Expression (58), we can reach the MTD system limiting state at the sum of interacting 
damages ( 10 <ψ< ) for mechanical and thermodynamic loads equal to 1. Criterion (46) in the form 
of Expression (58) finds convenient use because all damageability measures are dimensionless and 
are within 10 ≤ψ≤ . 

Since we cannot describe and predict exactly numerous and innumerable interactions between 
physical damages of many-type dislocation, vacancy, non-elastic deformation, etc., the analysis of 
the MTD system must use the concept of interaction between dangerous volumes [2] that contain a 
real complex of damages (defects as a result of the action of the corresponding stress/strain fields). 
By the statistical model of a deformable solid with a dangerous volume [71,72], such a volume of a 
solid must depend on its geometric parameters responsible for the working volume 0V , on the 
parameters of the distribution functions of )( 1−σp  and )(σp  of the durability limit 1−σ  and the 
effective stresses σ , considering both the effective stress probabilities Р and 0γ , as well as the 
effective stress gradients σG : 

[ ]VVP PVGppFV ϑγσσ= σ−γ ,,,,),(),( 001 . (59) 

where, Vϑ  describes the influence of the shape of a body on the durability limit and the schemes of 
its loading in fatigue tests.  

The dangerous volume can then be taken as the equivalent of the damage complex, since its 
value is proportional, in particular to the value of effective stresses, and hence, to the number 
(concentrations) of defects (damages). 

As follows from Expression (59), the boundary between dangerous and safe volumes is 
generally blurred and probabilistic in nature. By increasing the damage probability Р of the solid, 
the dangerous volume 

γP
V  grows. At a given Р value, the volume can vary depending on the 

confidence probability 0γ . It means that at Р = const: 

maxmin γγγ
≤≤ PPP VVV , (60) 

if max0min γ≤γ≤γ . Here, maxmin , γγ  form a permissible range. If 0γ  = const, then the dangerous 
volume will have a single value associated with the damage probability Р. 

Not only the so-called smooth bodies, but also the elements with structural stress concentrators 
[71], are characterized by scattered damage within the dangerous volume. Figure 3 demonstrates 
several microcracks on the sharp cut (the rounding radius r = 0.5 mm, the theoretical stress 
concentration factor nα = 8, in Figure 3а) and on the flat cut (r = 2 mm, nα = 2.55, in Figure 3b) and 
also two fatigue cracks at a distance of 25 mm from each other at a fillet connection from the 
crankshaft journal to its web (r = 18 mm, nα = 3.2, in Figure 3c). The crankshaft journal diameter is 
360 mm. 
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Figure 3. Microcracks in the zones of stress concentrators .(a) rounding-off radius r = 0.5 mm;(b) r = 2 
mm;(c) r = 18 mm. . 

So, if in the case of the uniaxial stress state, the distribution of the stresses σ  (x, y, z) in the x, y, 
z coordinates is known, then the dangerous volume is calculated by the formula:   


−σ>σ

γ =
min1),,( zyx

P dxdydzV , (61) 

where min1−σ –the lower boundary of the solid durability limit 1−σ is such that if min11 −− σ<σ , then P 
= 0. 

Expression (61) yields the generalized condition for fatigue fracture in of the form:  

0>γPV  (62) 

with some probability P at the confidence probability 0γ . 
If 

0=γPV , (63) 

then fatigue fracture cannot occur physically (because in this case, min1−σ<σ ); hence, 
Expression (63) is the generalized condition of non-fracture.  

The methods to calculate dangerous volumes ijV  for friction pairs and tribo-fatigue systems 
are developed similar to Expression (59)  

( )00
),(

lim
),(),( ,,,,,, γσσσ= στ PVGVV

ij
WVWVWV

nijij  (64) 

and outlined in References [4,71–75]. Here, ),(
lim
WVσ  is the limiting stress by the assigned 

criterion of damage and fracture.  
Further, we can introduce the following dimensionless characteristics of damageability: integral 

energy damageability within the dangerous volume: 

( )
( ) 01eff

u

eff
eff
u

dV

uV dV
u
Σ

ψ ≥

Ψ =   (65) 

and the average energy damageability (at each point of the dangerous volume): 
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( )
( ) 01

1 .
eff
u

eff
eff
u

u dV

uV dV
V u

Σ

ψ ≥

Ψ =   (66) 

The time accumulation of energy damageability within the dangerous volume is governed by 
the formulas:  

( )
( ) 01

,
eff
u

eff
eff
u

t dV

uV t dVdt
u
Σ

ψ ≥

Ψ =    (67) 

( )
( ) 01

1, .
eff
u

eff
eff
u

ut dV

uV t dVdt
V u

Σ

ψ ≥

Ψ =    (68) 

Based on Expressions (63)–(68), the MTD system damageability can be described and analyzed 
with the adoption of the most general concepts—the energy concepts allowing for the influence of 
numerous and different factors taken into account by Expression (59), including the scale effect, i.e., 
the changes in the size and shape (mass) of system elements. 

In References [2,77], the function nlk //Λ  for damage interactions in the MTD system is 
determined by the effective energy ratio parameters: 

( )\ \ \ \ \ \,n k l n k l M T n τΛ = Λ ρ ρ 1, (69) 

\ \, .eff eff eff eff
n n M T M Tu u u uτ τρ = ρ =  (70) 

The quantities Λ  calculated by Expression (69) describe how the load parameter ratio affects 
the character and direction of interaction of irreversible damages [2–4]. If Λ >1, then the system is 
self-softening, since, when hardening–softening phenomena are in balance, softening processes are 
dominant. If Λ <1, then the system is self-hardening, since, when hardening–softening phenomena 
are in balance, hardening processes are dominant. At Λ =1, the system is stable. The spontaneous 
hardening–softening phenomena are in balance. A particular article will deal with a general analysis 
of damage interactions in MTD systems because of its fundamental importance. 

After criterion (27) has been basically formalized, the action of electrochemical loads (damages) 
should be taken into consideration in accordance with item VII. We must immediately emphasize 
that in the strict mechanothermodynamical statement, it is difficult to do this: when the environment 
interacts with a deformable solid, electrochemical reactions are very diverse, complex and 
insufficiently studied. That is why the approach proposed in References [2,3] was adopted: we 
introduced the simplification, according to which the damage of solids in the environment is 
determined by corrosion–electrochemical processes. In addition, the hypothesis is put forward, 
following which, the effective energy of corrosion–electrochemical damage is proportional to the 
square of the corrosion speed, i.e., 

eff
chu  ~ 2

chv . (71) 

If, in accordance with item VII, 10 ≤≤ chD  is the parameter of corrosion–electrochemical 
damage of the solid, then from References [2,4,76], criterion (26) considering its shape will be of the 
form: 

( )
( )

( )
( ) ( ) 1

11
,

1
,

0
\

0

),(),(

0

),(),(

\ =












−
+Λ










−
εσ+

−
εσΛ τ

τ

τττ

T

eff
T

n

WVWVeff

n

WV
n

WV
n

eff
n

TM Du
u

Du
u

Du
u , Λ 1 (72) 

where  

( )
( ) 1
1

,0 )(
0

),(),(

≤ψ=
−

εσ
≤ eff

chn
n

WV
n

WV
n

eff
n

Du
u , (73) 
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( )
( ) 1
1

,0 )(
0

),(),(

≤ψ=
−

εσ
≤ τ

τ

τττ eff
ch

WVWVeff

Du
u , (74) 

( ) 1
1

0 )(
0

≤ψ=
−

≤ eff
chT

T

eff
T

Du
u , (75) 

;1;1
)(

)(
)(

)(

)(
)(

nvm

nch

ch
nen

Tvm

Tch

ch
TeT v

vbD
v
vbD 










=−










=−

 
(76) 

where vch is the corrosion speed in this environment, vch(T), vch(σ), vch(τ) is the corrosion speed in the 
same environment at thermal, force, and friction loads respectively, the be‘s are the coefficients 
responsible for corrosive erosion processes, the )(•Vm ’s are the parameters responsible for the 
electrochemical activity of materials at force (the subscript σ ), friction (the subscript τ ), and 
thermodynamic (the subscript T) loads, wherein chV Am /2)( =•  and the parameter chA 1. 

In Reference [76], we can find other methods for assessment of the parameter chD . 

As seen, Equation (72) is the specification of criterion (27). According to this criterion, the 
limiting state of the MTD system is reached when the sum of dialectically interacting irreversible 
damages at force, friction, and thermodynamic loads (including electrochemical damage when acted 
upon by stress, friction, temperature) becomes equal to unity. 

We consider the particular case: in Expression (46), it is assumed that Aσ(V) = Aσ = const, Aτ(V) = 
Aτ = const, AT(V) = AT = const, Aτ\σ(V) = Aτ\σ = const, and AM\T(V) = AM\T = const. 

Firstly, the stress state is induced by volume deformation, for which all stress tensor 
components, with the exception of one component σ (one-dimensional tension–compression, pure 
bending), can be neglected. Secondly, the stress state is induced by surface friction, for which all 
stress tensor components, with the exception of one component wτ , can be neglected. Expression 
(40) then assumes the form: 

( )2 2
\ \ 0,M T n TA A A T uτ σ τ Σ
 Λ Λ σ + τ + =   

 

or in accordance with Expression (72):  

2 2
\ \τ 01 1 1

nT
M T n w

T n

a aa
T u

D D D
τ

Σ
τ

  
Λ +Λ σ + τ =  − − −   

, Λ   1 (77) 

where  
σ

σ

σ =
−

A
D
a

1 , 
τ

τ

τ =
−

A
D
a

1 , 
n

T

T A
D
a

=
−1 . 

Equation (77) is thus the simplest form of the energy criterion of the limiting state. Nevertheless, 
it is of great practical importance [2].  

If the electrochemical influence of the environment is absent ( chD =0), then:  

( )\
2 2

τ\ 0 ,M T T

eff
n wu a T a a uΣ Σ σ τ

 = Λ + Λ σ + τ = Λ    1.. (78) 

Equation (78) is the simplest form of the energy criterion of the limiting state and is of great 
practical importance [2,76–81]. In particular, it is used to develop methods for assessment of 

τσ aaaT ,, . In fact, at 1\τ\ =Λ=Λ nTM , the boundary conditions are:  










==σ=τ=σ

τ==τ=σ=

σ==σ=τ=

ττΣ

Σ

,/,:0,0
;/,:0,0

;/,:0,0

00

2
00

2

2
00

2

dТdТw

dd

dndnw

Tuaua

uauaT

uauaT

 (79) 
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where dd τσ ,  are the force and friction limiting stresses as T → 0 and are called the (mechanical) 
destruction limits, and Td is the destruction temperature (when σ  = 0, wτ = 0) or the thermal 
destruction limit.  

The effective (“dangerous”) part of total strain energy can also be determined from the 
following physical considerations. The strain energy flux u, generated in the material sample at its 
cyclic strain ( tωε=ε sinmax ) in the homogeneous (linear) stress state, is assumed to be similar to the 
light flux. In fact, it is continuously excited when the loading cycle is repeated with the speed 

λ=ω /1 . It can be considered as a wave of length λ. Some part of the energy u generated in such a 
way can be absorbed by material atoms and structural formations, which results in material damage. 
We denote the absorbed part of the energy by ueff. The generated energy u is then equal to: 

cons
eff uuu +=  (80) 

where, consu  is the non-absorbed part of the generated energy u. In this case, it is called the 
conservative part. 

If the analogy of light and energy strain is valid, then the strain absorption law may be similar 
to Bouguer’s light absorption law. Consequently, the equation, linking the energy ucons passed 
through the deformed material volume V and the generated energy u, has the form:  

( )Vuucons εχ−= exp , (81) 

or, by Lambert, in differential form: 

V
u
du

εχ−= . (82) 

Here, as in Bourguer–Lambert’s equation, the coefficient χε independent of u is the energy 
absorption parameter.  

Taking into account Equations (81) and (80), we obtain the strain energy absorption law:  

( )[ ]Vuueff εχ−−= exp1 , (83) 

and hence, if u = 0 or V = 0, then ueff = 0. If V → ∞, it appears that according to Equation (81), 
ucons = u, i.e., all input energy is dissipated within such a volume.  

Physically, the strain energy absorption process occurs due to many phenomena: 
– Electron transition in absorbing atoms from lower to higher energy levels (quantum theory). 
– Generation and development of dislocation structures (dislocation theory). 
– Emergence of II and III order residual strains (stresses) (elasticity theory). 
– Formation and development of any imperfections (defects) of material composition and 

structure: point, planar, and spatial (physical materials science). 
– Hardening–softening phenomena (including strain aging) developing in time (fatigue theory). 
– Changes in (internal) tribo-fatigue entropy (wear-fatigue damage mechanics [2]).  
It should be noted that approach (83) can also be extended to friction, since any indenter drives 

a strain wave upstream in the thin surface layer of the solid. The indenter is pressed to the solid. 
Here, γχ is the energy absorption parameter and the subscript γ denotes the shear strain. Similarly, 
heat absorption in the deformable solid can also be considered. Finally, by introducing the 
dangerous volume γ= PVV  into Equations (81)–(83), we can easily solve the problem of strain 
energy absorption in the non-uniform (including complex) stress state. 

It should be noted that, although criterion (78) is special, it is fundamental and general in 
nature. Its general nature follows from the fact that this case takes into consideration all four 
particular phenomena responsible for the state of the MTD system (although simplified by the 
statement of the stress-strain state) in accordance with item III. Its fundamental nature is that here, as 
in the complete solution of Expression (46), τ\nΛ  takes into account the interaction of effective 
mechanical energy components due to friction τw and normal σ stresses, whereas T\MΛ  allows for the 
interaction of thermal and mechanical components of effective energy. The thermal component of 
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the effective energy is determined by varying the total temperature TΣ = T2 –T1 in the force contact 
zone induced by all heat sources, including the heat released during mechanical (spatial and surface) 
strain, structural changes, etc. 

5. Mechanothermodynamical States 

Within the framework of mechanothermodynamics, a special approach is being developed to 
assess the entropy in terms of a generalized energy state. Following this approach and Formula (77), 
the effective part of total energy (specific at some particular loads–force, temperature, etc.) directly 
spent for the damage production is defined by the experimentally found coefficients Al in Formulas 
(41), (42), and (77) [2, 51,76].  

,ll
eff
l uAu =  (84) 

where the ul ‘s are the specific internal energies at tear (un), shear (uτ), and thermal action (uT). 
The total specific energy of an elementary volume and a rate of its change are then given as: 

( )1 ;eff
l l l

l
u A u u = − +   (85) 

( )1
eff

l l
l

l

du dudu A
dt dt dt

 
= − + 

 


 
(86) 

In addition, the Λ-functions are used to take account of a complex (non-additive) character of 
interactions between effective energies of different nature, expressed by Formula (42). This allows 
the total effective energy of the system to be assessed:  

( ) ( ) { }\ \ \ \, ,eff eff
M T n l l M T n n n T Tlu u A u A u A u A uα τ τ τ τΣ  = Λ = Λ Λ = Λ Λ + +   (87) 

where the Λα‘s are the possible combinations of interaction of effective energies (irreversible 
damages). 

The specific feature of Λ-functions is such that: 

effuΣ   ,eff
lu  (88) 

and hence,  

effuΣ   u . (89) 

By using coefficients Al and Λ-functions, the energy interaction at different-nature loads can be 
found. Such interaction can give rise both to a sharp increase and a substantial decrease in the 
effective energy, resulting in damages and limiting states, in comparison to the energy calculated by 
the ordinary additivity model of type (17): 

.l lu AuΣ =  (90) 

By taking account of formula (87), the total effective energy of volume V and its accumulation in 
time have the form:  

( )eff eff

V

U u V dVΣ Σ= ρ  (91) 

and 

( ) ( ), .eff eff

t V

U t u V t dVdtΣ Σ= ρ   (92) 

The principal moment of the mechanothermodynamical model is the account of the limiting 
state (limits of plasticity, strength, fatigue, etc.) according to item XIII (Section 3): 
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,0uueff =Σ  (93) 

where u0 is the limiting density of the internal energy treated as the initial activation energy of the 
disintegration process. 

A relationship between the current state (mechanical, thermomechanical, energy) of an 
elementary volume of a solid (medium) and its limiting state enables one to construct the parameter 
of local energy damageability: dimensionless:  

0u
ueffeff

u
Σ=ψ  (94) 

or dimensional: 

.0* uueffeff
u −=ψ Σ  (95) 

Local energy damageability (Equation (94) or (95)) is most general among the damageability 
parameters constructed in terms of different mechanical (thermomechanical) states φ [2, 51,76]: 

lim)(*/ qqq ϕϕ=ψ , (96) 

where ϕ = σ, ε, u; the σ ‘s are the stresses, the ε ‘s are the strains, u is the density of internal energy, 
the lim)(*

qϕ  ‘s are the limiting values of the state φ { int,,,,,,,, τ∈ nSiijeqvq D
ij  }eff

uu
n
uu ,,, τ , eqv is the 

equivalent mechanical state, the ij ‘s are the components of the tensor ϕ, the i ‘s are the main 
components of the tensor ϕ, S and Dij  are the sphere and deviator parts of the tensor ϕ, n and τ are 
the normal and tangential components of the tensor ϕ, int is the intensity of ϕ, and u is the specific 
potential strain energy (internal energy density). The indices at u mean: nu  and τ

u  are the specific 

potential strain energy at tension–compression and shear, and effu  is the effective specific potential 
strain energy. 

We can build integral damageability measures on the basis of local measures (Equation (96)) 
using the model of a deformable solid with a dangerous volume (Equations (64)–(68)) [4, 76].  

The dangerous volume is called the spatial region of a loaded solid. At each point of a solid, the 
local damageability value is smaller than the limiting one [4, 51,76]: 

{ },,/ lim)(*
kqqq VdVdVV ⊂ϕ≥ϕ=  (97) 

or 

{ }kqq VdVdVV ⊂≥ψ= ,1/ .  

Dangerous volumes are calculated by the following general formula: 

( ) 1

.
q

q
V

V dV
ψ ≥

=   (98) 

The integral condition of damageability of a solid or a system can be written in the form: 

10
0

<=ω<
V
Vq

q , (99) 

where V0 is the working volume of the solid. 
To analyze, at a time, dangerous volumes and local damageability distributed within them, we 

introduce the function of damageability of unit volume: 

( ) .dVVd qq ψ=Ψ  (100) 

The function of damageability of the entire volume V will then be as follows: 
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( )
1

.
q

q q V dV
ψ ≥

Ψ = ψ  (101) 

The simplest functions of damageability accumulation in time for unit volume and total volume 
will be have the following form, respectively: 

( )( )t
q q

t

d t dtΨ = ψ ; (102) 

( )( )

1

, .
q

t
q q

t

V t dtdV
ψ ≥

Ψ = ψ   (103) 

The indices of volume-mean damageability  

( )( )

1

1

q

V
q q

q

V dV
V ψ ≥

Ψ = ψ  (104) 

and its accumulation in time can be used 

( )( , )

1

1 ,
q

V t
q q

q t

V t dVdt
V ψ ≥

Ψ = ψ  . (105) 

The analysis of formulas (94), (100), and (102) leads to the conclusion: conceptually, they are 
related to the entropy concept as a difference (or relations) between two states (configurations) of a 
system, the degree of its organization (chaotic state). In relation to damageability, such states are 
current and limiting.  

By using local energy damageability (Equation (94)), we construct specific (per unit mass) 
tribo-fatigue entropy (accurate constant): 

( ) ,)(lim,,,
0

0 mu
muATAs

eff

mijl
eff
uTF Δ

Δ
=σΛψ= Σ

ψ>−Δα  (106) 

or 

( )
.

,,, 0*
* T

uu
T

TA
ss

eff
ijl

eff
u

TFTF
−

=
σΛψ

== Σα  (107) 

where ψA  is the dimensional parameter (J∙mol–1∙K–1). 
On the basis of Expression (18) for entropy and Formulas (85) and (86), the local entropy and 

the rate of its change within an elementary volume will be: 

( )1 1 l l TF
l

s A u s
T

= − +   d ( )q q V dVψ ψ=  (108) 

and 

( )1 1 l TF
l

l

du dsds A
dt T dt dt

 = − +  
 . (109) 

Formulas (108) and (109) show that unlike the thermomechanical model, the state indicators of 
the mechanothermodynamical system u and s are not equivalent. This is due to the fact that the 
calculation of the tribo-fatigue entropy sTF by Formula (106) is supplemented by the limiting state in 
the form of the limiting density of the internal energy u0. 

The tribo-fatigue entropy STF is calculated not within the total volume V, but only within its 
damaged part, i.e., within the energy effective dangerous volume :eff

uV  

{ }keffeff
u VdVuudVV ⊂≥= Σ ,/ 0 . (110) 

Based on formulas (11), (106), and (110), the tribo-fatigue entropy of volume V will be:  
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( ) ( )
0 0( ) ( )

,
eff eff

eff
TF TF u

u V u u V u

S s V dV V dV
Σ Σ≥ ≥

= ρ = ρψ   (111) 

where,  

0

( )( )
eff

eff
u

u VV
u

Σψ =  or * 0( ) ( )( )
( )

eff eff
eff u
u

V u V u
V

T T V
Σψ −

ψ = = , (112) 

and its accumulation will be: 

( ) ( ) ( )
0 0( , ) ( , )

, , ,
eff eff

eff
TF TF u

t tu V t u u V t u

S t s V t dVdt V t dVdt
Σ Σ≥ ≥

= ρ = ρψ    . (113) 

where,  

0

),(),(
u

tVutV
eff

eff
u

Σ=ψ
 
or 

),(
),(

),(
),(),( 0*

tVT
utVu

tVT
tVtV

effeff
ueff

u
−

=
ψ

=ψ Σ . (114) 

We should emphasize the fundamental feature of tribo-fatigue total STF and specific sTF 
entropies. So, a difference between two states can be assessed not only quantitatively (as 
thermomechanical entropy), but also qualitatively, because sTF is calculated through the limiting 
density of the internal energy u0. So, sTF and STF allow us to answer how much the current state of a 
solid or a system is dangerous in comparison to limiting states.  

The total entropy and the rate of its change for a system solid with regard to Equations (111) 
and (113) assume the form: 

( )1 1 ( ) ( )
( ) l l TF

lV

S A V u V dV S
T V

= ρ − +    (115) 

and 

( ) ( )1 1 ( )
( )

l TF
l

lV

du V dSdS A V dV
dt T V dt dt

 = ρ − +  
  (116) 

Based on Formulas (106)–(116), we can build the function of total entropy accumulation in time: 

( )
0( , )

( , ) ( , )
eff

l TF
lt V t u V t u

S t s V t dVdt s V t dVdt
Σ ≥

= ρ + ρ =   

( )
0( , )

( , )1 1 ( , ) ( , ) .
( , ) eff

effl
l u

lt V t u V t u

du V t
A V t dVdt V t dVdt

T V t dt
Σ ≥

 = ρ − + ρψ  
     

(117) 

Practically, bearing in mind the limiting states of a solid or a system, models (115)–(117) can 
answer whether the current state is a qualitative jump in the system, i.e., whether the current state is 
close to the limiting (critical fatigue fracture entropy) one. A similar (dialectical as a matter of fact) 
qualitative transition differs from the bifurcation point in the ability to predict the system behavior 
after a transition on the basis of the analysis of sTF and STF. Particular limiting states (limit of strength, 
mechanical or contact fatigue, etc.) enable for predicting the situation after passing the given point: 
principal changes in the system properties and behavior or the formation of a new system based on 
the previous one.  

An example can be non-linear deformation or generation of microcracks in the solid (or the 
system) that changes its strength and fatigue properties, and hence, its response to loads. In turn, 
formed macrocracks lead to local continuum violation—formation of new free surfaces (possibly, of 
new solids—destruction products), i.e., a new system. 

It should be noted that models (115)–(117) were built using a traditional concept of entropy 
additivity (Equation (10)), although with the consideration of significant refinements. These models 
also contain reversible processes described by the entropy components sl, not yielding primary 
damages, and hence, the limiting states: the points of qualitative change in the system. 
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The assessment of the entropy state on the basis of the mechanothermodynamical model of a 
solid, which uses only tribo-fatigue entropy, is more advisable for a qualitative and quantitative 
analysis of evolution of systems passing through the states traditionally defined as bifurcation 
branches. In this case, Formulas (111)–(113) for entropy and their accumulation will be of the form: 

( ) ( )
0 0( , ) ( , )eff eff

eff
TF TF u

u V t u u V t u

S S s V dV V dV
Σ Σ≥ ≥

= = ρ = ρψ  , (118) 

and 

( ) ( ) ( )
0 0( , ) ( , )

( , ) .
eff eff

eff
TF TF u

t tu V t u u V t u

S t S t s V dVdt V t dVdt
Σ Σ≥ ≥

= = ρ = ρψ     (119) 

To identify the points of qualitative change in the limiting states of solids (systems), we can use 
the indices of relative integral entropy and its accumulation using the concept of the integral 
condition of solid damageability (Equation (99)): 

( )
00 0 ( , )

1 ;
eff

TF
S TF

u V t u

S s V dV
V V

Σ ≥

ω = = ρ  (120) 

( ) ( ) ( )
00 0 ( , )

1 .
eff

TF
S TF

t u V t u

S t
t s V dVdt

V V
Σ ≥

ω = = ρ 
 

(121) 

The values of STF, STF (t), ωS, ωS(t) can grow infinitely, allowing for not only describing the 
limiting states of type (93), but also different transmitting states. In essence, they “provide” a 
quantitative description of the entropy increase. 

Now, based on formulas (24), (115), (117), and (119), we construct generalized expressions for 
entropy, a rate of its change, and its accumulation in the MTD system consisting of a liquid (gas) 
medium of volume V and a solid of volume Vψ: 

( )
0

0

1 1

1 1 1 ;

eff

eff

T l TF ij ij
lV V V Vu u

eff
k k k k u

k kV V u u

S s dV s dV s dV dV qdV
T T

n dV a u dV dV
T T

ψ Σ

ψ Σ

ψ ψ
≥

ψ ψ
≥

= ρ + ρ + ρ = σ ε + ρ +

+ ρ μ + ρ − + ρψ  

    

   
 (122) 

( )
0

1

1 1  

1 1 ;
eff

ijlT TF
ij

lV V V V

k
k

kV V

eff
k u

k
kV u u

ddsds dsdS dV dV dV dV
dt dt dt dt T dt

dndqdV dV
T dt T dt

du da dV dV
T dt dt

ψ ψ

ψ Σ

ψ ψ

ψ ψ
≥

ε
= ρ + ρ + ρ = σ +

+ ρ + ρ μ +

ψ + ρ − + ρ  

   

 

 

 (123) 

( )

( )
0

0

1

1 1 1 1

.

eff

eff

T l TF ij ij
lt V t V t t Vu u

k k l l
k lt V t V t V

eff
u

t u u

S t s dV dt s dV dt s dV dt dVdt
T

qdVdt n dVdt a u dV dt
T T T

dV dt

ψ Σ

ψ

Σ

ψ ψ
≥

ψ

ψ
≥

= ρ + ρ + ρ = σ ε +

+ ρ + ρ μ + ρ − +  

+ ρψ

       

      

 

 (124) 

Similarly, we can build entropy state values for a system consisting of many media. 
It should be noted that in formulas (122)–(125), the interaction (contact) of two media, which 

can be complex in nature, is taken into account only implicitly in terms of medium state parameters 
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(stress, strain, temperature). It is obvious that this is only the first step to a comprehensive 
(generalized) solution of the problem stated. 

The simplified writing of Expression (123) for the entropy increment of the 
mechanothermodynamical system consisting of finite volumes dV and dVψ was presented in 
Reference [51] as follows: 

( ) ( ) 1 .eff
i k k uT TF

k

dU pdVdS dS d S dN dV
T T ψ
+ Δ= + = − μ + Ψ  (125) 

Expression (125) can also be presented in terms of specific quantities as: 

0

1  
eff

eff
k k u

kV V u u

du dpdS dV dn dV d dV
T T

Σ

ψ
≥

ρ + ρ= − ρ μ + ρ ψ    (126) 

or on the basis of Expression (123): 

0

1  .
eff

eff
ij ij k u

k
kV V u u

d dq dn ddS dV dV dV
dt Tdt T dt dt

Σ

ψ
≥

σ ε + ρ ψ
= − ρ μ + ρ    (127) 

In formulas (111)–(113) for calculation of the tribo-fatigue entropy STF and its accumulation 
STF(t), the specific entropy sTF is assumed to be integrated in terms of the damageable region of the 
solid alone—the dangerous volume. However, the influence of undamageable regions can also be 
allowed for by integrating STF within the total volume: 

( ) ( ) ;eff
TF TF u

V V

S s V dV V dV= ρ = ρψ   (128) 

( ) ( ) ( ), , ,eff
TF TF u

t V t V

S t s V t dVdt V t dVdt= ρ = ρψ     (129) 

where, 

( )

( )










<<

≥≥
=ψ

Σ
Σ

Σ
Σ

,  if  ,1,

;  if  ,1,

0
0

0
0

uu
u
tVu

uu
u
tVu

eff
eff

eff
eff

eff
u  (130) 

or 

( )
( )

( )
( )
( )
( )










<<
−

≥≥
−

=
ψ

=ψ

Σ
Σ

Σ
Σ

.  if  ,0
,

,

;  if  ,0
,

,

,
,

0
0

0
0

*

uu
tVT
utVu

uu
tVT
utVu

tVT
tV

eff
eff

eff
eff

eff
ueff

u  (131) 

Expression (131) shows that eff
uψ < 0 is observed outside the dangerous volume (at 0uueff <Σ ). 

This means that the specific tribo-fatigue entropy sTF also appears to be negative (or less than unity 
for its alternative definition) outside the dangerous volume where the limiting state is not reached. 
Negative values of eff

uψ  and sTF can then be interpreted as the case where damageability is absent. In 
other words, the structure and/or properties of the solid are preserved. 

The foregoing reports that the entropy additivity assumption is wrong in the general case for a 
system, consisting of a solid and a liquid (gas), where chemical reactions can occur. By analogy with 
the Λ-functions of interaction of different energies (Equation (179)), the functions of interaction of 
different entropies must be introduced by adding them to Expression (125) to determine total 
effective entropy: 
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 (132) 

or 

( ) ( )
( ) ,1      \\

\\












Ψ+μ−Δ+Λ=

=+Λ=

ψ dVdN
TT

pdVdU

SddSdS

eff
u

k
kk

S
ChTFT

TFiT
S

ChTFT
eff
total

 (133) 

where the subscripts Q and Ch denote the thermodynamic and chemical entropy components. 
Formulas (132)–(133) are supplemented by the generalized interaction functions ( )S

TFT \Λ , ( )S
ChQ \Λ , 

and ( )S
ChTFT \\Λ  in MTD systems. This means that the hypothesis about the thermodynamic and 

tribo-fatigue entropy additivity is not accepted. The corresponding interaction Λ-functions must be 
concretized and introduced into Equations (132)–(133). 

6. Entropy Calculation under Simultaneous Contact and Non-Contact Loading 

Consider the example of entropy calculation for the tribo-fatigue system consisting of friction 
pair with the elliptic contact of the ratio between smaller b and bigger a semi-axes b/a = 0.574. One of 
the elements of the friction pair is loaded by non-contact bending. An example of such an element is 
the shaft in the roller/shaft tribo-fatigue system. 

In the case of the contact interaction over the elliptical area, the pressure is expressed as:  

( ) ( )2222)(
0

)( //1, bxaxpyxp cn −−= , 

where )(
0
cp  is the maximum contact stress under the action of force cF . 

The entropy calculation system was based on the following initial data:  

( )

( ) )(
0

(lim)
0

lim),(
0

0,0,0
)()(

0

0.3MPa 888

MPa, 2960 =

c
c

c
zyxc

n
zz

c

pFpp

Fp

===

σ=
===  (134) 

where lim),(
0
cp  is the contact fatigue limit (maximum contact stress under the action of the limiting 

force (lim)
cF  obtained in the course of mechano-rolling fatigue tests described in References [1–3]. 

The criterion of the limiting state in these tests was the limiting approach of the axes in the 
tribo-fatigue system (100 μm). The test base was equal to 3⋅107 cycles. 

Calculations of the three-dimensional stress-strain state in the neighborhood of the elliptic 
contact for b/a = 0.574 [4] show that the maximum value of the strain energy u is related to the 
maximum contact pressure )(

0
cp  in the following way:  

( ) ( )
0max , 0.47 .ccdV

u u F dV p = =   (135) 

The limiting value of the strain energy (lim)u  under the action of the limiting force (lim)
cF  is:  

( )(lim) ( ,lim)(lim)
0max , 0.47 .c

cdV
u u F dV p = =   (136) 

In the calculations performed, maximum stresses aσ  due to non-contact bending in the 
contact area were the following:  

( )
a 00.34 / 0.34cp− ≤ σ ≤ . 

Tangential surface forces (friction force is directed along the major semi-axis of the contact 
ellipse) are: 
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( ) ( ) ( )( ) ( ) ( ) 2 2 2 2
0, , 1 / /n cp x y fp x y fp x a x bτ = − = − − −

. 
The specific entropy distribution calculated according to Equation (112) shown in Figures 4–7 

can be considered to be the characteristic of the probability of appearance of local damages (initial 
cracks). The higher the specific entropy at a point of a dangerous volume, the greater the probability 
of initiation of damage (crack) at this point. The values of dangerous volume and entropy are the 
integral damageability indices (including a possible number of cracks and their sizes) of a solid or a 
system. 

From Figures 4–7 for ( )
0 0

cp p=  and the friction coefficient f = 0.2, the maximum specific 
entropy is in the center of the contact area.  

 
Figure 4. Energy dangerous volume and its sections, with specific entropy distributions for contact 
interaction without friction. 
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Figure 5. Energy dangerous volume and its sections, with specific entropy distributions for contact 
interaction with friction. 

 
Figure 6. Energy dangerous volume and its sections, with specific entropy distributions for contact 

interaction with friction and tensile stresses ( )
a 0/ 0.34cpσ =  in the contact area caused by 

non-contact bending. 

 
Figure 7. Energy dangerous volume and its sections, with specific entropy distributions for contact 

interaction with friction and compressive stresses ( )
a 0/ 0.34cpσ = −  in the contact area caused by 

non-contact bending. 



Entropy 2019, 21, 1188 28 of 49 

 

Under the joint action of contact pressure and tangential surface forces (friction) ( )n
us
+τ , the 

maximum specific entropy increases by about 30% in comparison with the maximum specific 
entropy ( )n

us . The joint action of contact pressure, friction, and tension due to bending increases 
( )n b
us
+τ+  by about 30% in comparison with ( )n

us . At compressive bending, ( )n b
Us
+τ−  increases by about 

60% in comparison with ( )n
us .  

In case of frictional contact, the values of the dangerous volumes ( )n
uV
+τ , the entropy ( )n

uS
+τ , 

and the average entropy ( ) ( )/n n
u uS V+τ +τ , increase by about 6%, 35%, and 27%, as compared to ( )n

uV , 
( )n
uS , and ( ) ( )/n n

u uS V , respectively. 
A more detailed analysis of the considered effects might be done using Figure 8. It shows a 

significant growth of entropy with increasing contact pressure, friction coefficient, and stresses 
caused by non-contact loads. The entropy increases almost at the same level for the same absolute 
values of tensile and compressive non-contact stresses. This effect may be due to the fact that the 
energy u attains positive values.  

The main conclusion of Figures 4–8 is that not only friction, but also non-contact forces 
significantly change entropy characteristics in the neighborhood of the contact area. 

Note that according to Expressions (95), (97), and (112), calculations were performed for the 
simplest case when the energy applied to the system is fully absorbed. Similar calculations may be 
done for effective energies ueff , determined by Expression (87). 

 
Figure 8. Entropy versus contact and non-contact stresses. 

7. Translimiting States 

The available information reports that the theory of translimiting states is still insufficiently 
developed [2]. Its elements will be set forth on the basis of solutions (72), (76), and (77). 

Figure 9 analyzes the contribution of mechanical–chemical–thermal damage (parameters D) to 
reaching the limit state by the MTD system. Having analyzed formulas (72), (76), and Figure 9, we 
concluded the following. 
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Figure 9. Effect of mechanical–chemical–thermal processes on the damage of a system (a) the 
dependence of parameters D on relative damage rate vch / vch(*); (b) influence of parameter mv; (c) 
specific cases analysis for D = 0,1. 

1. The growth of parameters D means that the relative damage speed vch/vch(*) decreases (Figure 
9a). Mechanical–chemical–thermal damage speeds up the process of reaching the limiting state by 
the MTD system. It is faster for the greater magnitude of D parameter and/or speed vch(*).  

2. Parameter mv greatly affects the system damage. The greater its effect, the larger this 
parameter is (Figure 9b). The MTD system is sensitive to mechanical load and temperature increase 
if electrochemical activity parameter mv > 5. In this case, the translimiting state may occur. For a state, 
the damageability measure (Equation (53)) becomes greater than unity ( eff

uψ  > 1), while eff
uψ  = 1 in 

Equation (52) is enough to obtain the limiting state. 
The first specific case in Figure 9c is D = 0. Electrochemical corrosion does not affect 

wear-fatigue damage. However electrochemical corrosion may happen. According to formula (76), 
when D = 0 for mv = 1 we obtain: 

01 *
(*)

=− b
v
v

ch

ch

 
Hence, the situation must be the following: b* = 1 and vch /vch(*) = 1. In this case, the corrosion speed 

is not influenced by mechanical or frictional stresses. So, there are threshold values of 0σ , 0
wτ , and 

T 0 for a considered environment. The speed of corrosion for this environment according to Equation 
(77) stays the same at σ  ≤ 0σ , 0

ww τ≤τ , and ΣT  ≤ T0. 
The second case is for D = 1, and hence, for 1/(1–D)→∞ . Damage of explosive type happens in a 

system if eff
uψ → ∞ . In this case, it should be: 
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0*
(*)

=b
v
v

ch

ch

 
In case vch = 0 is an impossible event, then it may be assumed that vch(*)→∞. This is the condition 

for mechanical–chemical–thermal explosive event occurrence in a MTD system. This event is not just 
due to the environmental impact that is catastrophically increased by mechanical and temperature 
stress. 

The damageability function of the MTD system (Equation (72)) can also be applied to the 
analysis of the system translimiting states. It can be done because of the possibility to take into 
account supercritical growth of frictional, mechanical, thermodynamic, and electrochemical loading 
by Equations (73)–(76), i.e., 

[ ] ∞≤ψ+ψΛ+ψΛ=ψ≤ ττ )(1 )()(\)(\ chchnnchTMT
eff
u  (137) 

According to Equation (137), many translimiting states could be described by the 1>ψeffu  
condition. It may happen if the system limiting by damageability state occurs not only at one but at 
many points (elementary volumes) that constitute a dangerous volume. It could be assumed that 
there must exist many different types of such states.  

Although the above criterion Equations (43), (47), (52), (58), (72), and (77) are constructed for the 
analysis of energy limiting state conditions, they could also be applied to the description of different 
translimiting states under supercritical loads (at fires, disasters, accidents, explosions, etc.). 

A different general way to analyze the translimiting states uses a damage space defined by 
volume damageability measures according to Equations (59) and (64): 

10
0
≤=ω≤

V
Vij

ij  (138) 

On the basis of Equations (72)–(76), volume (space) damageability measures can be defined as: 

)1(0
)(

σ

γ
σ −

=ω
DV

VP
ch

 

)1(0
)(

τ

γ
τ −

=ω
DS

SP
ch  

)1(0
)(

T

T
chT DV

V
−

=ω γ

 

(139) 

where 0V , kS  are the working volumes. Criterion (77) can then be written with regard to (139): 

\ \
0 0 0

1
(1 ) (1 ) (1 )

T P P
T M

T

V V S
V D V D S D

γ γ γ
σ τ

σ τ

  
Λ + Λ + =  − − −   

 (140) 

The advantage of Equation (140) is the following. Here, the interaction of dangerous volumes 
[2,4] at different loads when forming the limiting state of MTD systems is taken into account. Also, 
dangerous volumes are influenced by different metallurgical, technological, and structural factors as 
it is shown in Equation (59).  

If interatomic bond ruptures are analyzed only at a dangerous section of a body at all its points 
(elementary surfaces) )( 0uueff =Σ , then it divides into two parts corresponding to Σω = 1, but if loads 
(mechanical, electrochemical, thermodynamic, etc.) are combined in such a way that “all” 
interatomic bonds undergo rupture over this section, then there occurs the process called the object 
disintegration. It corresponds to ∞=ωΣ

* : 

( )[ ] ∞≤ω+Λω+ωΛ=ω≤ τστσΣ )(\)()(\
*1 chTchchMT  (141) 
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Naturally, Equation (141) is similar to (137). Their difference lies in the fact that condition (137) 
is formulated as energy damageability measures while condition (141) is formulated as volume 
(space) damageability measures. 

Table 1 contains a classification of object states by volume damageability.  

Table 1. Characteristics of the states of objects. 

A-state Undamaged Σω = 0  
 

А-evolution: 
characteristic 

states of a 
system 

(damage) 

B-state Damaged 0 < Σω  < 1 

C-state critical 
(limiting) 

Σω  =1 = 

cω  

D-state 
supercritical 

(translimiting
) 

1 < ∞<ωΣ
*   

E-state 
Disintegratio

n ∞=ωΣ
*  

Irreversible damageability events in the MTD system can be interpreted using the failure 
probability. 

If  

1)(0 ≤ω≤ ΣP  (142) 

is the traditional probability of failure by damageability ( 10 ≤ψ≤ Σ ) within the time interval ( ⊕Tt ,0 ) 
(item XIV), then 1)1( ==ω=ωΣ сP  is the reliable probability of unconditional functional failure. In 
case of supercritical states, the concept of reliable probabilities [79] can be formulated (see Figure 10): 

( ) ∞≤ω< Σ
*

*1 P  (143) 

These supercritical damages ∞<ω< Σ
*1  are consistent with numerous and innumerable shapes 

and sizes of particles forming during the system degradation (disintegration).  

 
Figure 10. Connection between system damageability and event probability. 

Data in Table 1 can be interpreted in the following way. If 

.* ∞→ωΣ  (144) 

then forming particles should have absolute size, according to Equation (32): 

.0* →ωd  (145) 

To a first approximation, we assume a logarithmic relationship between ωd and ω . Then, 
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** Σω−ω = ed  or ** ln ωΣ −=ω d  (146) 

As follows from the foregoing, all MTD system states (see Figure 11) caused by both continuous 
and discontinuous change of governing parameters are predicted by corresponding Equations (137) 
and/or (141). The law of MTD system decomposition (decay) can be formulated the in the following 
way: 

.
0VV mm

ijT
=  (147) 

Law (147) implies the conservation of mass of the system regardless of the conditions of its 
degradation and disintegration. The mass of disintegrated parts (particles)  ijTVm  (independently 

of their size) cannot exceed the initial system mass 0Vm . 

 

Figure 11. The surfaces of (a) damageability, (b) ωΣ  and (c) determined by parameters τ/τd > 0, σ/σd > 
0, Λσ\τ > 0. 

8. Analysis and Generalization of Experimental Data 

It is extremely difficult to experimentally verify generalized criterion (72) of the MTD system 
limiting state due to the lack of experimental data. Below, we consider some particular cases of 
criterion (77) in the form of (78). 

Let us obtain some applied formulas basing on criterion (78). Conditions of purely thermal at σ 
= 0 and τw = 0 or purely mechanical damage at TΣ→0 are the following: 

;0uTaT =Σ  (148) 

( ) .0
22

τ\ uaa wnn =τ+σΛ τ  (149) 

Isothermal mechanical fatigue at τw = 0 could be described by: 

( ) ,0
2

\ uaTa nTTM =σ+Λ Σ  (150) 

and isothermal frictional fatigue at σ = 0: 
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( ) .0
2

\ uaTa wTTM =τ+Λ τΣ  (151) 

The analysis of these specific criteria drives us to the following conclusions. 
(1) Increase of load parameters (σ, τw, TΣ, D) yields the corresponding acceleration of reaching 

the limiting state (u0). 
(2) System limiting state can also be reached by increasing only one (any) of the load parameters 

(when the values of other parameters are invariable).  
(3) If Λ  > 1, the system damageability increases (i.e., the processes of its softening are 

dominant). If Λ  < 1, damageability decreases (i.e., the processes of system hardening appear are 
dominant) in comparison to the damageability due to only a collective action of load parameters 
(when the dialectic interaction of irreversible damages is not allowed for). 

The last conclusion also results from a fundamentally new approach to constructing the 
criterion of the limiting state of MTD systems [80]. According to this approach, not the mutual 
influence of the factors, but the interaction (Λ   1) of phenomena, is responsible for damageability 
processes in the MTD system [1,45–52,80]. In this regard, we synthesized the results of more than 600 
diverse experimental data. This permitted the generalized MTD function of critical damageability 
states to be revealed. 

We turn to a special case of criterion (78)—isothermal mechanical fatigue. From Equation (150) 
we have: 

[ ]
n

TTMTTT a
TauCC 1;log

2
1log \01 ⋅−Λ==σ Σ−  (152) 

Figure 12 convincingly confirms the dependence (Equation (152)) of σ-1T on the parameter of 
thermomechanical resistance CT for numerous steels of different grade tested for fatigue at different 
conditions [78,81,82]. The CT magnitude changes by a factor of 100 or more and the value of fatigue 
limit T1−σ by a factor of 10 or more. Testing temperature was thus varied from the helium 
temperature to 0.8 Ts ( ST  is the melting point). As shown in Figure 12, Equation (152) adequately 
describes the results of more than 150 experiments. 

 
Figure 12. Fatigue limits of structural steels versus parameter of thermomechanical resistance СT . 

Equation (152) was also checked for different metals according to the results of fatigue test 
carried out by different authors (Figure 13а). In References [78,82], it is possible to find the list of 
references. 
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Figure 13. Dependences (а) σ–1 (CT) and (b) σи (CT) for different metals. 

Figure 13b, analyzes the results of tensile tests under different temperatures (σиT—the strength 
limit). In Equation (152), σ–1 = σиT. The correlation coefficient is obviously very high even for the rare 
cases: r = 0.722. In most cases, the coefficient exceeds r = 0.9 for more than 300 test results that were 
analyzed. References [78,82] also contain other examples of successful experimental verification of 
criterion (152). We can hope that even more general criteria given by Equations (77) and (78) will be 
acceptable in applications. 

As said above, criterion Equation (149) is valid for uσ≤σ . For specific testing, the 
conditions Wτ  can be treated as the largest contact pressure ( 0p ) at the contact zone center under 
rolling. It can also be treated as the sliding stress wτ  or as the nominal (average) pressure pa at the 
contact area under sliding, or as the pressure (q) at fretting. If 1−σ=σ  is fixed, where иσ<<σ−1 , 
then Equation (28) can be presented in the form of the diagram of the limiting states of tribo-fatigue 
systems [2,81,82] (Figure 14).  

Criterion Equation (149) clearly distinguishes the zones of realization of spontaneous 
hardening–softening processes (interaction function Λ   1). Figure 14 yields the above obvious 
conclusions: if Λ  < 1, then the self-hardening system (during tests or during operation at these 
conditions) is considered. If Λ  > 1, then the system turns to be self-softening. If Λ  < 1 is found to 



Entropy 2019, 21, 1188 35 of 49 

 

convert into Λ  > 1, then it implies that because of changing the determining operation conditions, 
hardening processes are replaced by softening ones. 

 

Figure 14. Main features of Λ-interactions in the tribo-fatigue system. 

Figures 15–17 illustrate the additional experimental verification of these conditions. Note that 
for spontaneous hardening (for Λ  < 1, Figures 14–16), the stress limit in wear-fatigue tests is higher 
than in routine fatigue tests. In these conditions, the friction and wear processes become "useful". 
Numerous works (see Reference [83]) illustrate that dosed wear in real tribo-fatigue systems 
(wheel/rail) causes an appropriate growth of their fatigue strength. When Λ  >> 1 (Figure 14), they 
lead to a strong damageability growth: the fatigue limit decreases with increasing contact pressure q 
by a factor of 2…3. In addition, there are many works (see Reference [84]), showing that the system 
wear suddenly decreases the fatigue strength. 

 
Figure 15. Influence of rolling friction on the resistance to mechano-rolling fatigue in the tests of the 
tribo-fatigue steel 45 (shaft)/steel 25 HGT (roller) system. 
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Figure 16. Limiting stresses versus the contact pressure for the tribo-fatigue steel 45 (shaft)/cast iron 
(partial bearing insert) system. 

 
Figure 17. Contact pressure versus the fatigue limit under fretting fatigue. 

Tables 2 and 3 summarize different physical signs (often encountered in practice) of the limiting 
state that can find use in relevant research areas. 

As for the determination of the parameters TM \Λ  and τΛ \n , References [2,78] show that the 
parameter τΛ \n  is the function of the relative skewness coefficient of wear-fatigue damage: 

2
1

2

\ 






σ
σ












τ
τ

=ρ −
τ

f

w
n  (153) 

Hence τρ \n  depends not only on absolute values of effective ( wτσ, ) and limiting ( fτσ− ,1 ) 

stresses, but also on their ratios: στ /w , fτσ− /1 , σσ− /1 , fw ττ /  1. This means that very different 
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patterns of accumulation of irreversible damages occur depending on the realization of inequalities 

σ   1−σ , wτ   fτ . This conclusion is supported by the known experimental results and 

theoretical models. Figure 18 depicts the analysis of the possible dependences ττ ρ−Λ \\ loglog nn  
based on References [2,78]. A more detailed analysis of the interdependences ( )ττ ρΛ \\ nn  can be 

found in References [2,78]. 

Table 2. Main signs of the physical state. 

Energy state 
Condition of Reaching the 

Limiting (Critical) State Symbol 
Physical state  

and its characteristic 
М Mechanical state ijσ  lim

0
ijeff

nu uσ →σ⎯⎯⎯⎯→  

Т Thermodynamic state TΣ  0
ST Teff

Tu uΣ→⎯⎯⎯→  

MTD Mechanothermodynamical state ijTσ , TΣ  
lim ( )

0

ijT

S

T
eff

T T
u u

Σ

σ →σ

Σ →  

tMTD 
Mechanothermodynamical state in time 

, ,ijT T tΣσ  

lim

lim

( )

0

ijT

S

T
eff

T T
t t

u u
Σ

σ →σ

 →
→

 

Here, σlim is the limiting stress, Ts is the melting point, tlim is the longevity, σij is the stress (strain) 
tensors, TΣ is the temperature due to all heat sources, σijT is the stress tensor in the isothermal (TΣ = 
const) state, σijT and TΣ are the stress-strain state and the thermodynamic state, respectively, and σijT, 
TΣ, and t are the stress-strain state and the thermodynamic state in time, respectively 

Table 3. Specification of the characteristics and their physical signs of the limiting state. 

Criterion 
Condition of Reaching the 

Limiting State 
Physical Sign 

L1 
σlim = σu 

σu
–

stress limit at tension Static fracture 

L2 
σlim = σ–1

 σ–1–mechanical fatigue limit 
Fatigue fracture 

(into parts) 

L3 

σlim= pf
 pf

 –
limiting contact pressure 

at rolling 

Pittings of critical 
density (critical depth), excessive wear 

L4 
σlim = τf

 τf
–
limiting stress at sliding Limiting wear 

L5 

1
lim

1

p−

− τ

σσ = 
σ  

σ–1p σ–1τ–limiting stress 
during the direct effect 

implementation [2] 

Fatigue fracture (into parts) depending on the contact 
pressure (subscript p) at rolling or depending on the 
friction stress (subscript τ) at sliding (direct effect in 

tribo-fatigue) 

L6 

lim
f

f

p σ

σ

σ = τ  

pfσ, τfσ–limiting stresses 
during the inverse effect 

implementation [2] 

Pittings of critical density (critical depth) or excessive 
wear at rolling or sliding depending on the level of 

cyclic stresses σ (subscript σ) (inverse effect in 
tribo-fatique) 

L7 σlim = σ–1q
 σ–1q–fretting fatigue limit 

Fatigue fracture at fretting corrosion and (or) fretting 
wear 
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L8 
σlimT= σ–1T

 σ–1T
 –

isothermal fatigue limit
 

Limiting state depending on temperature (isothermal 
fatigue) 

L9 
Tlim = Ts 

Ts–melting point 
Thermal (thermodynamic) 

damage 

L10 
tlim = tc 

tc–longevity 
Time (physical) prior to the onset of the limiting state on 

the basis of any sign 

The plot of the MT \Λ  interactions versus the parameter MT \ρ  can be analyzed in a similar way. 
Figure 19 illustrates the plots for steel, aluminum alloys, and nickel in the double logarithmic 
coordinates (according to the extensive experimental results [2,78]). The correlation coefficient r 
appears to be very high from 0.862 to 0.999. The plot of )( \\ MTMT ρΛ  suddenly changes for lg MT \ρ  = 
0 ( MT \ρ =1) when thermal and stress damages turn to be in equilibrium (in comparison to the similar 
changes in the dependencies in Figure 18). 

 

Figure 18. Typical plots of the character and direction of hardening–softening processes (Λ  1) 
versus the skewness coefficient of the damageability processes ρ : 1, 2–mechano-rolling fatigue; 2, 3, 
4–mechano-sliding fatigue; 4, 5–fretting-fatigue. 
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Figure 19. Logarithmic plots of )( \\ MTMT ρΛ  built on the basis of the experimental data  

For steels and nickel at MT \ρ  < 1, the direct dependence is found between MT \Λ  and MT \ρ , 
and at MT \ρ  > 1 it becomes inverse. For aluminum alloys, the dependence MT \Λ  ( MT \ρ ) is also direct, 

but located (at MT \ρ  < 1) in the III quadrant. 
It is experimentally confirmed that the interaction parameter MT \Λ  is sensitive not only to the 

effective thermal-to-mechanical energy ratio, but also to the structure and composition (or nature) of 
metal materials. The last conclusion is also valid for the parameter τΛ \n : its numerical values appear 
to be significantly different, for example, for metal/metal and metal/polymer active systems even in 
the case when the ratios 1-σ\σ and fw ττ \  are identical for them . 

In this section we briefly analyze the data of more than 600 tests of metals and their alloys (at 
isothermal conditions) obtained by many authors. 

It was found that the thermodynamic dependence of limiting stresses can be presented in the 
TCloglog lim −σ  coordinates (Figures 12 and 13 and formula (152)), where the function 

( )TMТnTT aauTCC \0 ,,,, Λ=  (154) 

is satisfactory at static tension (σlim = σu) and fatigue fracture (σlim = σ–1) for numerous and 
various metal materials (steels; aluminum, titanium, alloys, etc.). In addition, interrelation (152) 
appears to be valid practically within the entire possible interval of temperature ( STT 8,0≤ ) and 
stress (σ ≤ σu) varying with the correlation coefficient r = 0.7 in the specific cases and usually with r > 
0.9. Model (152) then turns to be fundamental (Figure 20). The simplified model may seem dubious 
because in the known works (see Reference [85,86]), the explicit temperature dependence of limiting 
stresses is described by complex curves. This is attributed to the changes in the failure mechanisms 
of various materials at different testing conditions: normal, operating, and other temperatures. 
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Figure 20. Generalized MTD function of the limiting states of metals and alloys 
( Sи TT 8,0;lim ≤σ≤σ ), model (7). 

Nevertheless, the fundamental nature of model (152) is supported experimentally (Figures 12 
and 13). 

From the theoretical standpoint, we can say the following in favor of model (152). It has four 
parameters (formula (154)), one of them (u0) is a fundamental constant of substance (formulas (48) 
and (49) in Reference [80]), and the other two (aT, an) are defined by the boundary conditions as the 
relations u0 and physical constants σd and Td of a given material [78]: 

2
0 / dua σ=σ , ./0 dT ua σ=  (155) 

The methods to determine σd and Td are outlined in References [2,78]. Here, we remind that 
material failure limit σd is obtained at tension fof TΣ → 0. Failure temperature Td is obtained at the 
body heating for 0=σ . Therefore, in a general case, the accumulation of damages and failure due to 
mechanical stresses and thermal activation of these stresses in time is taken into account [67]. Finally, 
as it was briefly discussed above and given in References [4,76], the function TM \Λ 1 takes into 
account damage interaction considering the change of ratio of σ  σlim. Known studies [2,4,86] 
repeatedly and convincingly prove that this ratio determines the mechanism and character damage 
at different types of strain. The role of thermal fluctuations (TΣ < Td) is also studied in detail in 
References [67,68]. 

Further analysis of non-metalic (polymer) materials proves the fundamental nature of model 
(152). Table 4 and Figure 21 contain the analysis results of the polymer tests based on the 
experimental data [87]. It is obvious that model (152) is confirmed with the correlation coefficient 
r = 0.917. It should be noted that these test results are obtained not only for usual specimens (of ~5 
mm diameter). Also, the results of tests of thin polymer films and threads are used not only under 
tensile deformation but also under torsion and bending. Large deviation of some points from the 
basic straight line could be explained by conventional accepting TM \Λ = 1 because of the lack of test 
data in order to estimate its actual value. 
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Figure 21. Dependence ( )Ти Сσ  for polymer materials. 

Table 4. Analysis of the main characteristic of polymer materials on the basis of the experimental 
data. 

Material and Reference 
mol
kJ

,0u

 








⋅⋅ 2

2

MPamol
kJ/

K mol
kJ

K
MPa,

n

T
a
а

 

Tests Data 

MPa,σ
K

b  
Sample 

size 
Polyethylene high-density film 

(HDPF), grade 20806-024 108 4102.94
0.275

−⋅  
275...383
32 386...  5 

Polypropylene film (PF) 
grade 03П10/005 119 4101.70

0.234
−⋅  

273...423
150 570...  5 

Hardened staple fiber, polyvinyl 
alcohol (PVA) "Vinol MF" 111 5107.62

0.227
−⋅  

273...453
80 802...  5 

Thread based on perchlorvinyl 
resin (PCV) grade “Chlorine” 114 4102.56

0.285
−⋅  

273...383
60 376...  5 

Caprone thread (PCA)  
(GOST 7054067) 

169 4101.68
0.282

−⋅  
275...453
300 740...  5 

Polyethylene terephthalate film 
(PET) (TU 6-05-1597-72) 

222 4109.82
0.342

−⋅  
279...498
200 362...  4 

Polyamide film PM-1 
(TU 6-05-1597-72) 

202 3102.1
0.297

−⋅  
273...673
12 240...  7 

Polystyrol (PS) at bending 281 2102
0.627

−⋅  
77...290
56 108...  

10 

Polymetalmethacrylate (PMMA) 
at bending 

277 2101.74
0.558

−⋅  
77...290
66 116...  

10 

High-impact polystyrene (HIPS) 
at tension and torsion 

277 
252 

2102.53
0.699

−⋅  

2101.84
0.636

−⋅  

77...290
48 94...  
77...290
50 105...  

10 
 
 

10 

Figure 22 illustrates the generalized experimentally verified MTD function of the limiting (by 
damageability) states. Figures 12 and 13 (compared to Figure 22) depict relatively large deviations of 
particular experimental points from the predicted ones. There are two reasons for that. The first one 
is that available references may have no data for a correct assessment of required parameters. The 
second reason is that the conducted experiments reveal significant errors, or they were not 
methodically correct. 

Note that model (152) may seem to be non-fundamental because of its simplicity. However, we 
remind the classic dictum: the fundamental dependence cannot be complicated (or: every law is 
described by the simplest formula). 

Model (152) can then serve for prediction of mechanical behavior of materials in the 
thermodynamic medium (shown by the arrows from T  to limσ in Figure 20): 

  

( )
0 \

lim 0 \ lim( )

,

log log , , , , .
,

M T

T n T M T T

n T

u

T C T u a a
a a

Λ
↓⎯⎯⎯⎯⎯→ → σ Λ →σ
↑

 (156) 
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Figure 22. Experimentally verified MTD function of the critical by damageability states of metal and 
polymer materials. 

The parameters T , Tа , and TM \Λ  are responsible for the medium state in Equation (153). 
Predictions by Equations (152) and (156) could be applied to the materials of different nature 

and structure. They are irrespective of damage and fracture mechanisms under static and cyclic 
loads.  

Of course, because of the linearity of Equation (152), the reverse prediction could be possible 
and effective. In case a mechanical state of material (defined by the parameters 0u , )lim(Tσ ) is known, 
then the requirements can be formulated to the medium (defined by the parameters T , Tа , TM \Λ ) 
where the system can work (the arrows from σlim to T in Figure 20): 

( )
0 \

lim( ) lim( ) 0 \

,

log log , , , , .
,

M T

T T T T n M T

n T

u

C C T u a a T
a a

τ

Λ
↓σ → σ ⎯⎯⎯⎯⎯→ → Λ →
↑

 (157) 

Note that the attempts to construct an explicit temperature dependence of limiting stresses in 
uniform, semi-logarithmic, and logarithmic coordinates for various materials and different testing 
conditions are quite ineffective (Figure 23). We will further briefly analyze a more complex problem 
of the MTD system operation in the medium under the processes of thermal corrosion and corrosion 
at stress. From Equation (77), at 0=τw  we have 

0
2

\ 11
u

D
aT

D
a

n

n

T

T
TM =




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


σ

−
+

−
Λ Σ  (158) 
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Figure 23. Dependencies of metals fatigue limit (according to 136 results of tests of many authors) on 
temperature. 

Upon simple manipulations we obtain: 

)(),lim( log
2
1

chTchT С=σ  (159) 

where the parameter of thermal resistance to corrosion at stress is: 

( ).,,,,,,,,, )()()()(\0)()( TvTchvchchTMTnchTchT mvmvvaauTCC σσΛ=  (160) 

It is seen that models (152) and (159) are fundamentally (and formally) identical. They differ 
because corresponding functions (154) and (160) use the parameters describing the damageability 
processes characteristic of the analyzed phenomena. In function (160), parameters 

,chv ,)(σchv ,)(σvm ,)(Tchv )(Tvm  describe the processes of thermal corrosion at stress (formula (76) in 
Reference [80]). Based on models (159) and (160), it is easy to develop prediction algorithms (type 
(156) and (157)) of resistance to thermal corrosion at stress.  

A detailed analysis of models (157) and (160) is beyond the scope of the present work. It can be 
made in the future as applications to the novel results described in References [3,4,76]. 

It should be noted that solutions (77)–(151) can be analyzed in a similar way for other operating 
(or testing) conditions. 

9. Discussion 

The foregoing gives three main conclusions: 
1. Damage is a fundamental physical property (and a functional duty) of any system and all its 

elements.  
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2. Damageability of each object (any existing one) inevitably grows up to its 
death–decomposition (disintegration) into a set of particles of arbitrarily small size, i.e., it is the 
unidirectional time process. 

3. Evolution of the system by damageability is characteristic not only of the unity and struggle 
of opposites, but also of the directivity of various and complex physical hardening–softening 
processes (depending on the load and time level). It means that the Λ-function of interaction of 
different-nature damages can take three classes of values: (1) Λ < 1 when the hardening process is 
dominant, (2) Λ > 1 when the softening process is dominant, and (3) Λ = 1 when a stable 
hardening-to-softening process ratio is found. 

So, the first law of mechanothermodynamics states that the evolution of any system inevitably 
needs a unidirectional process of its damage and disintegration, finally, into an infinitely large 
number of small components (fragments, atoms, elementary particles, etc.). In fact, it is equivalent to 
the recognition of the evolution endlessness, if it is taken into account that disintegration products of 
any system become a construction material for new systems. Thus, the evolution hysteresis is 
formed. 

The second law of mechanothermodynamics states: interaction Λ-functions must take three 
classes of values (Λ  1) to describe not only the unity and struggle of opposites, but also the 
directivity of physical hardening–softening processes in the system, i.e., the system evolution by 
damageability [50,52,76]. 

Figure 24 generalizes the above results [1,2]. It is seen that the system state can be equivalently 
described in terms of either energy or entropy. The main drawback of such descriptions is the 
known unreality of energy, and hence, of entropy: physical energy carriers are not detected and, 
apparently, do not exist. As Feynman [88] said, figuratively, they cannot be touched. Damages are 
completely different: they are physically real, can be touched, and actually define any of the 
conceivable states of material bodies and systems. The kinetic process of their accumulation, as well 
as the time stream, is inevitable and unidirectional.  

 

Figure 24. Energy (left) and entropy (right) approaches to developing mechanothermodynamics (М: 
mechanics, Т: thermodynamics, TF: tribo-fatigue). 
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An attempt was made to formulate the basic principles of a new (or, better to say, integrated) 
physical discipline–mechanothermodynamics with the use of the energy principles. This discipline 
combines two branches of physics in order not to argue or not to compete with each other, but to 
take a fresh look at the MTD system evolution (Figure 25). 

 

Figure 25. Ways towards mechanothermodynamics as a new branch of physics. 

Figure 26 shows that the principles of mechanothermodynamics can be formulated in two 
ways: (1) mechanics → tribo-fatigue → mechanothermodynamics and (2) thermodynamics → 
tribo-fatigue → mechanothermodynamics. So, tribo-fatigue has become a bridge to pass from 
mechanics and thermodynamics to mechanothermodynamics. 

 

Figure 26. Tribo-fatigue bridges from mechanics (M) and thermodynamics (T) to 
mechanothermodynamics (MTD) are denoted by the solid lines with arrows and the unrealized ways 
(during more than 150 years, from M or T to MTD)—by the dashed lines. 

The fact that both ways lead to one objective and, finally, yield the same (unified) result, means 
that the above-mentioned two methodologies of analysis are valid, correct, and do not contradict 
each other. 

10. Conclusions 

1. It is shown that a generalized physical discipline—mechanothermodynamics—can be 
created by making two main bridges. The first one is the tribo-fatigue entropy that allowed transfer 
from thermodynamics to mechanics. The second one is the fundamental tribo-fatigue understanding 
of irreversibility of damage of everything that allowed transfer from mechanics to thermodynamics.  
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2. Main principles (I–XV) founding the general theory of evolution of MTD systems were 
formulated.  

The following models and theories were developed:  
• Limiting state energy theory (Section 3).  
• Damageability energy theory (Section 4).  
• Fundamentals of electrochemical damageability theory (Section 5). 
• Elements of MTD system transmitting state theory (Section 6). 
3. Procedures and methods of calculation of effective (dangerous) energy expended for 

generation, accumulation, and motion of irreversible damages were developed (formulas (79)–(83) 
and the text related to them). 

4. Fundamentals of the theory of Λ-interaction between damages due to different loads of 
nature: thermodynamic, mechanical, etc. (formulas (69), (70), and (155) and the text related to them) 
were outlined. This theory allows consideration of the effect of accidental hardening–softening 
processes on the limiting by damageability state of MTD. 

5. The relationship between the damages of the system and the event probability (Figure 10) in 
the course of its evolution was analyzed. The idea of reliable damageability probability 1 <P* <∞ at 
the stage of translimiting states was proposed. 

6. The physical signs and specific characteristics of limiting states of objects and systems (Tables 
2 and 3) were given. These may be of use for specialists in the relevant research areas. 

7. Practically, a unified MTD function of critical by damageability (limiting) states of polymer 
and metal materials working under different and complex conditions (formula (152) and Figure 15) 
was obtained in the present work. The analysis of more than 600 experimental results (Figures 7, 8, 
14, 16, 17) showed the fundamental nature of this function since it is applicable for high-, average-, 
and low-strength states of alloys, pure metals, and polymers. MTD function can be used for a wide 
range of medium temperatures (from 0.8 TS where TS is the melting point of material to temperature 
of helium), limiting values of mechanical stresses (up to the limit of strength under static loading), 
and the fatigue life of 106…108 cycles. This function can effectively predict the behavior of specific 
MTD systems at different working (testing) conditions (procedures (156) and (157)). Models (159) 
and (160) were proposed to describe the effects of corrosion at stress and thermal corrosion on the 
change in materials’ limiting states. 

In conclusion, it should be noted that the research in mechanothermodynamics is in its initial 
stage. Expanding and deepening the front of research in this promising new area of knowledge 
could be expected in the near future.  
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