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ABSTRACT This paper investigates the problem of anti-jamming communication in dynamic and intelligent
jamming environment. A sequential deep reinforcement learning algorithm (SDRLA) without prior infor-
mation is proposed, and raw spectrum information is used as the input of SDRLA. The proposed SDRLA
algorithm mainly contains two parts: Firstly, deep learning and sliding window principle are introduced to
identify jamming patterns; Secondly, reinforcement learning is carried out to make on-line channel selection
based on recognized jamming patterns. In addition, channel switching cost is introduced for the purpose of
formulating the trade-off relationship between throughput and overhead. Taking advantage of both deep
learning and reinforcement learning, this method can realize rapid and effective anti-jamming channel
selection with no need for modeling the jammer’s characteristics. Simulation results show the convergence
and effectiveness of the proposed SDRLA algorithm. Compared with single-mode reinforcement learning,
our approach can reach better convergence performance and higher utility.

INDEX TERMS Pattern-aware, reinforcement learning (RL), deep learning (DL), anti-jamming
communication, channel switching cost.

I. INTRODUCTION
Anti-jamming is an eternal topic in communications,
especially for wireless communications. External jamming
environment puts great threat on communication link quality.
In recent years, with the development of artificial intelli-
gence, combating intelligent jamming attacks is extremely
challenging and interesting [1]–[3]. Facing complex exter-
nal jamming environment and changeable jamming patterns,
users can hardly deal with these new threats. In addition, due
to the rapid change of jamming attacks, it is difficult for users
to adopt anti-jamming strategy in real time.

Since jamming attacks pose serious threat to the security
of wireless communication, anti-jamming researches have
attracted more and more attention in recent years. How-
ever, most existing anti-jamming works need to obtain some
prior information of the jammer before formulating relevant
anti-jamming strategies [4]–[7]. In addition, some researches
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adopted machine learning algorithms to make online anti-
jamming decisions [2], [3], [8]. However, those proposed
algorithms can only be applied in high regularity jamming
environment and converged slowly in the early stage. If the
external jamming mode changed, these algorithms needed
to relearn until they achieve convergence. Therefore, these
algorithms have strong limitation when applied in practical
scenarios.

To solve these problems and challenges mentioned above,
this paper propose a pattern-aware intelligent anti-jamming
approach to realize channel access in complex and change-
able jamming environment. Moreover, motivated by [9],
we define the raw spectrum information as the environment
states to avoid the loss of jammer information. A sequen-
tial deep reinforcement learning algorithm (SDRLA) without
prior information is proposed. Firstly, the raw historical spec-
trum information is stored and analyzed. Secondly, according
to the characteristics of different jamming types, the jam-
ming modes are classified using a convolutional neural net-
work. Finally, on the basis of recognized jamming pattern,
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a reinforcement learning (RL) algorithm is designed for
achieving real-time anti-jamming channel access. The key
contributions of the paper are as follows:
• A sequential deep reinforcement learning algorithm
(SDRLA) without prior information is proposed. The
proposed algorithm does not need to estimate and make
assumptions about the pattern and utility function of
the jammer, which has strong environmental adaptability
and wide application range.

• A sliding window processing mechanism is designed to
solve the transition problem of multiple and changeable
intelligent jamming modes.

• The concept of channel switching cost is introduced, and
the communication overhead is optimized by reducing
the frequency of channel switching.

The rest of this paper is organized as follows. We review
the related work in Section II. The system model and
problem formulation are presented in Section III. More-
over, the sequential deep reinforcement learning approach
is presented in Section IV and Section V. In detail,
the multi-jamming pattern awareness algorithm is presented
in Section IV, and the anti-jamming reinforcement learning
algorithm based on recognized jamming mode is proposed
in Section V. Channel switching cost is also introduced in
Section V. In Section VI, simulation results and performance
analysis are presented. In the end, conclusion is presented
in Section VII.

II. RELATED WORK
Various studies with respect to the anti-jamming techniques
have been proposed. However, traditional anti-jamming tech-
niques like frequency hopping spread spectrum (FHSS)
and Direct sequence spread spectrum (DSSS) have some
drawbacks in dealing with new intelligent jamming attacks.
For example, frequency hopping spread spectrum (FHSS)
relied heavily on a predefined secret frequency hopping
sequence [10]. Direct sequence spread spectrum (DSSS)
relied on a local pseudo-random code [11]. Considering
the interactions between users and malicious jammer, game
theory is suitable for analyzing the communication strategy
under jamming, and has been widely used in anti-jamming
field, spectrum resource allocation and dynamic spectrum
access [4]–[7], [12]–[19]. The anti-jamming problem under
incomplete information was investigated in [20] and [21].
However, in those papers, model and prior information of
jammer were preconditions for designing the anti-jamming
algorithms [22], [23]. Thus, these anti-jamming methods
have some limitations in practical application scenarios.

In general, collecting and analyzing of raw spectral infor-
mation was an important way to obtain jamming informa-
tion [3]. Therefore, to obtain malicious jammer’s strategies,
feature extraction was carried out in paper [1], [8], [24] to
simply distinguish between interference and users. Moreover,
in paper [25], feature extraction was used to identify different
kinds of jamming patterns. However, when applied to anti-
jamming problems, feature extraction has two disadvantages:

i). Using preprocessed data for feature extraction may cause
some loss of important information. ii). When the jammer
can switch the jamming patterns fast enough, it is impossible
for legitimate users to track and obtain the jamming infor-
mation in real time. Hence, It is very important to design
an anti-jamming method which can adapt to the dynamic
environment.

Reinforcement learning is an effective method to solve
the decision-making problems in dynamic jamming envi-
ronment. As a kind of widely used reinforcement learn-
ing algorithm, Q-learning [26], [27] has been widely used
in solving anti-jamming problems [4], [28], [29]. How-
ever, when facing complex jamming environment, Q-learning
(QL) can not process the raw environment information
directly. Thus, paper [8] introduced deep reinforcement
learning into anti-jamming decision-making. By learning the
real-time changes of the external jamming, anti-jamming
decisions were made [30] rapidly. Moreover, [31] proposed
a deep reinforcement learning based frequency-space anti-
jamming mobile communication scheme, which can realize
the optimal power distribution and mobile strategy of mobile
devices. [32] proposed a deep reinforcement learning method
to extract jamming features from raw time-frequency data,
which provided a new idea for us to solve anti-jamming
problem.

Different from most existing works, in this paper, the idea
of combining deep learning with reinforcement learning is
proposed to solve the communication anti-jamming channel
access problem. The principle of sliding window and channel
switching factor are introduced to improve the performance
of the algorithm and reduce the system overhead.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
As shown in Fig. 1, we consider a wireless communication
scenario which includs one or several jammers and one user
(transmitter-receiver pair). An agent which is installed at the
receiving end can make real-time anti-jamming strategies,
and then send strategies to the transmitter through reliable
control link. Moreover, wide-band spectrum sensing can be
conducted at the receiving end [8]. In the communication
process, jammer can switch jamming patterns by changing
the jamming period randomly. As different kinds of jamming
patterns can be distinguished by jamming characteristics,
we can identify those jamming patterns through observ-
ing local raw information and designing rational learning
algorithm.

Under malicious jamming environment, it is impossible
for a jammer to notify its jamming strategy to legitimate
users. Hence, analyzing and effectively utilizing the stored
raw jamming information is necessary for users to obtain
jamming strategy. Moreover, the receiver can collect raw
spectrum information by sensing the channel state.

The essence of analyzing the historical jamming informa-
tion is feature extraction. That is to extract jamming behav-
ior or jamming pattern from the observed environmental
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FIGURE 1. System model.

information. According to different jamming characteristics,
the jamming pattern is classified by using labels. When the
user receives the signal, the agent stores decision feedback
through the perceptual spectrum, judges the current jamming
type, and then makes anti-jamming channel decision under
current jamming type.

The receiver continuously senses the spectrum of the
entire communication band and stores the historical infor-
mation of the spectrum in the background of the agent.
We assume that the spectrum vector of communication band
at time t is P t =

(
pt,1, pt,2, . . . , pt,i, . . . , pt,n

)
, where pt,i =

10 log
[∫ (i+1)1f
i1f S (f + fL) df

]
represents the spectral energy

of frequency n at time t . Moreover, S (f ) is the power spectral
density (PSD) function and 1f is the resolution of spec-
trum analysis. The time-frequency characteristic St is gen-
erated though the spectrum vector’s correlation rules. The
thermodynamic diagram of St is called spectral waterfall
diagram [33] (or thermal chart), which represents the col-
lected time and frequency domain information. Based on the
collected historical spectrum vector, the thermal chart of the
time-frequency characteristic matrix St can be expressed:

St =


Pt−1
Pt−2
...

Pt−M

 =

pt−1,1 pt−1,2 · · · pt−1,N
pt−2,1 pt−2,2 · · · pt−2,N
...

...
. . .

...

pt−M ,1 pt−M ,2 · · · pt−M ,N

 , (1)

where St contains all historical spectral information before
time t . As M approaches infinity, the state value becomes
extremely large, which makes the optimization problemmore
difficult. In consequence, M needs an appropriate value to
solve relevant problems, and it specific value needs to be
determined according to the time-varying characteristics of
the interfering environment. The thermodynamic diagrams of
St matrix under several common jamming modes are given
to illustrate the rationality of using St as the basis in anti-
jamming decision-making. As shown in Fig. 2 and Fig. 3,
we can exhibit the frequency range and intensity (color) of
signal accurately and intuitively.

Different from the paper [2], St is defined as the environ-
mental state. To reduce the complexity of its state set, we need

FIGURE 2. Thermodynamic chart of jamming pattern.

FIGURE 3. Graphical state under dynamic jamming.

to pretreat the St . Firstly, channelization is performed on
the range of transmitting frequency and received frequencies
used by a user. Hence, the model can be closer to the actual
communication situation and the state set is reduced. Sec-
ondly, pattern awareness in this paper is based on the change
of external jamming environment to identify different kinds
of jamming patterns, and the identified jamming pattern are
tagged. Then, the reinforcement learning is carried out under
different jamming modes. Above methods can reduce the
complexity of the behavior decision set, and realize the fast
convergence and real-time decision of the on-line learning
algorithm. Specific pattern awareness methods and details
of implementing reinforcement learning are presented in the
next section.

Due to the actual scenario and the model set in this paper
has certain differences, we make the following assumptions:
• The jamming mode can be switched randomly or peri-
odically, and the historical information collected by the
user must include all jamming patterns.

• We assume that there is a reliable link for real-time anti-
jamming channel access strategy transmission.

B. PROBLEM FORMULATION
Assuming that the central frequency of communication is ft ,
the jamming optional central frequency is fj, the user’s com-
munication transmission bandwidth is b, the power spec-
tral density (PSD) function of white Gaussian noise is n(f ),
the PSD of the jamming signal is Jt , the transmission
power p, the channel gain of transmission link is gt , and
the channel gain of the jamming link is gj. Inspired by the
paper [8], the signal-to-interference-plus-noise ratio (SINR)
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at the receiving end can be expressed as:

η
(
ft , fj

)
=

gtp∫ ft+b/2
ft−b/2

{
n(f )+

∑J
j=1 gjJt

(
f − fj

)}
df
. (2)

Considering the coexistence of user signals and jamming,
the power spectral density (PSD) function of the receiving
end is expressed as:

St (f ) = guU (f − ft)+
J∑
i=1

gjJt
(
f − fj

)
+ n(f ). (3)

Denoteµ
(
ft , fj

)
as the indicator function for successful trans-

mission, which can be expressed as follows [3]:

µ
(
ft , fj

)
=

{
rm, β

(
ft , fj

)
≥ βth,

0, β
(
ft , fj

)
< βth,

(4)

where βth is defined as the threshold of SINR and rm is the
feedback after a successful transmission (rm ≥ 1). When
SINR β (ft) < βth, the transmission is seen as failed. The
jamming frequency range is denoted by Bj, and the user
available frequency range is denoted by Bu. To simplify the
problem, we set Bj = Bu. Denote ub as user’s transmission
band, then the number of user’s strategy set can be calculated
as n = Bu

bu
. The action set of user can be denoted by A =

{a1, a2, a3, . . . an}. a(t) ∈ A represents the channel selection
of the user at time t . Moreover, the cost formula of user
switching channel is expressed as:

W
(
ft , fj

)
=

{
0, a(t) = a(t − 1),
c, a(t) 6= a(t − 1),

(5)

where c represents the channel switching factor. To sum up,
the optimization objective of the user is:

max
f ′t ∈A

U =
∞∑
t=0

γ t
(
µ
(
ft , fj

)
−W

(
ft , fj

))
, (6)

where γ is the discount factor and γ ∈ (0, 1).
The goal is to select anti-jamming decisions in a fashion

that maximizes the cumulative future reward. In this paper,
the switching communication frequency is the key to realize
anti-jamming communication. Hence, the switching cost is
considered in the optimization objective.

IV. MULTI-JAMMING PATTERN AWARENESS
ALGORITHM
The multi-jamming pattern awareness algorithm is presented
in this section. Firstly, the basic principle of pattern aware-
ness is introduced. Secondly, the pattern awareness algorithm
adopted in this paper is demonstrated. Finally, the mechanism
of sliding window is introduced.

A. BASIC PRINCIPLE
Pattern recognition is the foundation of artificial
intelligence [30]. With the development of computer and
artificial intelligence technology, pattern recognition applica-
tions becomes ever more extensive [35]. Pattern recognition

can identify the external jamming patterns by processing col-
lected information and classifying things with the same char-
acteristics through classifiers according to certain rules. It is
mainly used in many fields such as speech recognition and
image processing. Pattern recognition is divided into super-
vised learning classification and unsupervised learning clas-
sification. The main difference between the two is whether
the categories are already known. For supervised learning
classification, feature extraction is carried out through a large
number of sampled data, and previously extracted features
are taken as labels for the classification of other new samples.
The recognition effect of supervised learning classification is
very good, but it has some limitations in solving practical
problems if new samples do not belong any category that
has been labeled [36]. Unsupervised classification is a direct
classification method using the raw data, and does not need
labels as the basis for classification. Considering the strong
pattern recognition ability of Convolutional neural network
(CNN), we adopt Convolutional neural network as the basis
of multi-jamming pattern awareness algorithm. CNN is gen-
erally composed of convolution layer, pooling layer and full
connection layer, and has achieved good results in machine
learning applications. The following three levels of functions
are introduced respectively:
• Convolutional Layer: The convolutional layer is mainly
used for local feature extraction. Each layer has follow-
ing parameters: map size, kernel size, and the number of
maps. Moreover, a kernel can shift over the region of the
input picture [35].

• Pooling Layer: The pooling layer plays two main roles.
The first is to extract the main features. The second is
to compress the feature map to simplify the network
computational complexity.

• Classification Layer: The classification output layer
allocates one neuron to every label in the classification
task, and the classification layer is situated at the end of
the CNN.

B. PATTERN AWARENESS ALGORITHM DESCRIPTION
In this section, we propose a deep learning algorithm for
multi-jamming pattern awareness. This paper conducts jam-
ming feature extraction and jamming classification based on
the acquired external history information, so the supervised
learning method is adopted. The user obtains the raw spectral
information in real-time and generates the thermal chart.
Due to the dynamic nature and uncertainty of the external
environment, the historical information of the processing is
large, and the number of samples of the spatial state set is
large. Therefore, it is difficult to perform artificial feature
extraction.

Convolution neural network can effectively solve the fea-
ture extraction and data classification for a large num-
ber of historical data sample set. Therefore, we consider
putting historical data into convolutional neural networks
for correlation processing. Due to the continuous historical
data information is collected, the large number of image
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FIGURE 4. Special frame state comparison.

(thermodynamic chart) data are similar to video frame shots.
The adjacent data sets collected by these data sets have a high
degree of similarity. Later, we take the historical information
in sweeping jamming mode as an example.

When switching between different jamming modes, there
will be a special case of ‘‘jamming transition band’’. As is
shown in Fig. 4 (a), we can judge that the current moment
is sweep jamming according to the characteristics of thermal
chart. Moreover, the comb jamming is shown in Fig. 4 (b).
When the jamming transition zone is in critical condition as
shown in Fig. 4 (c) and (d), we define the jamming pattern
in Fig. 4 (c) as sweep jamming transition zone and Fig. 4 (d)
as the comb jamming transition zone.

For convolutional neural networks, if the jamming modes
are simply classified according to different labels, the transi-
tion band will be divided into corresponding jamming modes.
If the above classification method is adopted for neural net-
work fitting, over-fitting will occur and the accuracy of the
fitted network decision will be greatly reduced. Therefore,
in order to achieve the goal of improving classification accu-
racy, the transition bands in each mode are re-divided and
defined as a new type of jamming mode in the convolutional
neural network. If there are N types of current jamming
patterns. The type of ‘‘jamming transition band’’ generated
is N × (N −1) types. In conclusion, it is necessary to perform
N 2 classification labels in the convolutional neural network.
The flow chart of the multi-jamming pattern awareness algo-
rithm (MPA) is shown in Algorithm 1.

For the purpose of implementing the MPA algorithm,
a convolutional neural network (CNN) that can classifymulti-
mode jamming states needs to be built. According to the rele-
vant design principles and processing requirements, a total of
six hidden layers are designed. Fig. 5 shows the constructed

Algorithm 1 Multi-Jamming Pattern Awareness
Algorithm (MPA)
Initialize:
Preprocess historical information, set up relevant learning

parameters, learning times and loss functions, and build the
designed neural network.
Step 1) Classify the obtained historical jamming channel
information according to the jamming characteristics, and
classify the required I jamming modes;
Step 2) Tagged historical information is divided into train-
ing set, verification set and test set according to requirements;
Step 3) Input the training set data into the designed neural
network for training;
Step 4) The validation set is used to determine whether
the over-fitting phenomenon occurs in the training process,
and the neural network with good test effect is obtained by
adjusting the relevant parameters of the network;
Step 5) Conduct data test set test, verify and evaluate the
final generalization model of the model;
Step 6) Save the final model and relevant parameters and
directly introduce the results into the anti-jamming algorithm
under real-time jamming identification;
End the algorithm

FIGURE 5. The network structure of CNN.

convolutional neural network structure. The first three layers
are composed of convolution layer and pooling layer. The last
three layers are fully connected layers. The main function is
equivalent to a ‘‘classifier’’ for label classification output.

The convolution neural network described in this paper
needs to calculate the gradient and update the weight. In the
deep learning fitting process, loss function as shown in
equation (7) is used for the ith iteration,

Li (θi) = Ee
[
(yi − St)2

]
, (7)

where θi represents the parameters of the deep learning
convolutional neural network (CNN) in the ith iteration.
According to the gradient descent method, the loss function
is differentiated. The gradient of loss function is obtained,
as shown in equation (8):

∇eiLi (θi) = Ee
[
(yi − St)∇eiSt

]
, (8)

where Li (θi) represents the loss function, and ∇θi represents
the gradient operation.

The neural network designed and constructed in this paper
is composed of three convolutional layers and three full con-
nected layers. First layer of the network convolves input with
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FIGURE 6. Schematic diagram of sliding window algorithm.

16 filters of size 3×3 and stride 4. The second layer convolves
output of the first layer with 32 filters of size 2×2 and stride 2.
The third layer convolves output of the second layer with
64 filters of size 1 × 1 and stride 1. Then, a full-connected
layer with 128 units is followed, and the last full-connected
layer outputs the estimated long-term cumulative rewards for
each action. In addition, activation function is used in each
layer (tanh function is used as an activation function in this
paper). At the same time, in order to improve the fitting
accuracy of the training neural network and speed up the
fitting speed, the gradient descent function of deep learning
network is optimized.

C. DESIGN MECHANISM OF SLIDING WINDOW
The jamming types can be judged in real-time through pattern
recognition. In order to control the input of pattern informa-
tion, the concept of ‘‘sliding Windows’’ needs to be intro-
duced. As shown in Fig. 6, the size of sliding window is set,
and the distance each frame of the sliding window is defined.
The sliding window forward sliding time of each frame is
set to T . The moment of the current sliding window in the
figure is a (the moment of the middle position in current slid-
ing window). After S = nT time, the sliding window moves
to the moment a + nT to intercept jamming information of
the same amount of information. The width of the sliding
window size and the moving speed of each frame depend
on the processing speed of real-time information of the con-
volutional neural network. Different from traditional sliding

window protocol, the proposed sliding window algorithm
neither requires the transmitter to acknowledge ACK, nor
needs to change window size in real-time. According to the
mathematical model in this paper, the real-time information
obtained by sliding window generates the relevant jamming
diagram (thermal chart). Then, we put it into the trained
convolutional network for pattern awareness and judge the
current jamming type. Reinforcement learning is carried out
based on current jamming types and relevant channel infor-
mation.

V. MULTI-PATTERN REINFORCEMENT LEARNING BASED
ON RECOGNIZED JAMMING MODES
This section mainly gives the multi-pattern reinforcement
learning algorithm based on the identification of the current
jamming mode. Firstly, the basic principle of reinforcement
learning is introduced. Secondly, the detail of proposed algo-
rithm is given. Finally, for the purpose of reducing the net-
work cost, channel switching factor is introduced.

A. BASIC PRINCIPLE
As mentioned above, due to the different characteristics of
each jamming mode, it is the best method adopt different
anti-jamming strategies for specific jamming modes. For
anti-jamming strategies, we mainly adopt the reinforcement
learning on-line real-time judgment method. Reinforcement
learning, also known as motivational learning, generally con-
sisted of the following elements to form a general frame-
work for reinforcement learning [38]. The three most basic
elements are state space (S), action space (A), and imme-
diate reward (R = r(s, a), (s ∈ S, a ∈ A)). In order to
make these three elements intrinsically linked to promote the
intensive learning operation, it is also necessary to introduce
the transition probability space (P), the state-action value
function (S-A value function: qπ (s, a))and the adopted policy
set (π (s) ∈ A). For reinforcement learning, the external
environment is affected by the current state and the actions
made, it is generally modeled as a Markov decision process.
By introducing the immediate reward function of status-
action, the Q-learning algorithm is driven based on the action
policy of the maximization of long-term reward.

Q-learning process generally obtains information through
the external environment and defines it as the current state.
The action can be selected randomly in the current action
space, or selected based on the relevant data in the current
policy set. After the action is made, the state will be changed,
and feedback is received when the state changes. According
to the feedback, the calculation of S-A value function is given
to update the set of strategies we need. The agent aims to find
the optimal policy π∗(s) to maximization of long-term reward
qπ (s, a) for each environmental state s. The state transition
probability (pss′ ) is the probability of moving from the current
state to the next after the action is made. The formula (9)
given by the S-A value function shows that reinforcement
learning usually adopts a strategy of maximizing long-term
return value. Since long-term reward is related to both current
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and future reward, we can express long-term reward in a
recursive form as:

qπ∗ (s, a) = r(s, a)+ η
∑
s∈S

pss′ (a) max
a∈A

qπ∗
(
s′, a′

)
(9)

where η ∈ [0, 1] is the effect of the subsequent action reward
on the current reward, called the discount factor.

(
s′, a′

)
is

the next state-action pair after the QL algorithm executes the
action a at the state s. Then, the optimal policy is

π∗(s) = argmax
a∈A

[qπ∗ (s, a)] ,∀s ∈ S (10)

The classical Q-learning algorithm in reinforcement learn-
ing is adopted in this paper. Since the Q-learning algorithm
has its own Q value table, it is equivalent to the above policy
set as the basis for selecting strategies. The Q value table
size is |S| × |A|, which stores the cumulative reward (long-
term reward) by executing the action a in the environment
(state s). Moreover, the update principle of the Q value table
is as follows:

Q(s, a)← (1− α)Q(s, a)+ α
[
r(s, a)+ ηmax

a∈A
Q
(
s′, a′

)]
,

(11)

where a is the learning rate. Q
(
s′, a′

)
is the next state opera-

tion a′ and the next environmental state s′, after Q-learning to
perform the current operation. In order to achieve a balance
between the exploration of best actions and the exploitation
of experiences, Q-learning introduces the ε-greedy algorithm
to select actions for each state. The ε-greedy algorithm
means that the probability 1 − ε performs the action a =
argmaxa∈A Q(s, a), and the probability ε randomly selects
the action set. Here ε is the trade-off factor for making an
action. So we can optimize the ε to achieve the fastest speed
convergence of the optimal decision.

B. MULTI-PATTERN REINFORCEMENT LEARNING
ALGORITHM DESCRIPTION
Due to the influence of the dynamics and uncertainty of
the environment, the state set is large and the corresponding
behavior strategy table (π ) is complex. If only use the inde-
pendent reinforcement learning (single mode reinforcement
learning) [34], the corresponding behavioral strategy table
cannot adapt to the dynamics of the environment. If a neural
network is used to fit the behavior strategy table, the deep
reinforcement learning requires higher regularity of jamming.
It takes a long time for deep reinforcement learning to learn
and extract the characteristics of jamming, which leads to
a slower convergence. When the exterior jamming is ran-
dom or switch the jamming mode quickly, the algorithm used
is difficult or even impossible to converge. The reinforcement
learning algorithm for anti-jamming is different from the sin-
gle mode reinforcement learning algorithm. First we define
the state space, the action space, and the immediate reward
function:.
• State space: We define the current state of all channels
as s. If the i channel has jamming at the current time,

FIGURE 7. Time-frequency schematic diagram of user and jammer.

the channel is defined as 1. If the i channel has no
jamming at the current time, the channel is defined as 0.
Therefore, the channel state can be represented by a so-
called binary number. Assuming that the current channel
has a total of n, the state set size is 2n. For example,
assume that there are 5 available channels, when the sec-
ond channel and the fourth channel are jammed, the state
is expressed as [01010].

• Action space:Let An be the channel n policy selected
by the user, then A denotes all the strategies for
the user to select the channel, and its state space is
A = {a1, a2, a3, . . . , an}

• Immediate reward function: We call it the instant reward
function r(s, a, t), which represents the feedbacks that
performs action a in state s at time slot t . As shown
in Fig. 7, the relation of state and action is demonstrated,
and the vertical axis and the horizontal axis represent
time and frequency respectively. For example, at time
slot t − 2, environment state is [00010], and the user’s
action is a(t − 2) = a1, hence, the user is not attacked
by the jammer, and user switches from channel a5 to a1.
Hence, the user can obtain reward r(s, a, t−2) = rm−C .

In the early stage, jamming has been pattern-identified and
classified, so the external jamming signal in the anti-jamming
reinforcement learning (RL) are more obvious. The agent
algorithm can select a channel with a better channel quality
for communication based on the characteristics of the current
jamming. In the frame structure shown Fig. 8, it can be known
that the user can obtain the channel status (whether there
is jamming or not) from the transmitter to the receiver and
the current jamming type through channel perception at the
beginning of each frame.

We assume that the user’s transmitter and receiver have
achieved the communication synchronization. In a single
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FIGURE 8. Q-learning time slot structure design.

communication time slot, the receiver performs wide-band
spectrum sensing in the early phase of the time slot. Accord-
ing to the the current Q table information, the channel access
strategy is selected. The channel access selection strategy is
sent to the transmitter through the control link, and data trans-
mission is carried out by transmitter. If the data transmission
is success, the receiver sends an ACK to the transmitter. The
receiver determines the immediate reward value of the current
time slot according to the result of the transmission data, and
then sends back ACK to the transmitter. The agent performs
an iterative update of the Q value table according to the ACK
sent by the control link of the receiver under the current time
slot.

On the other hand, the optimal channel selection scheme
is related to the optimal behavior selection rules of the state.
Hence, the key point of this algorithm is updating Q-values.
The algorithm flow is shown in the Fig. 9 and the proposed
algorithm is shown in Algorithm 2.

C. ANTI-JAMMING MRL ALGORITHM INTRODUCING
CHANNEL SWITCHING FACTOR
In previous subsection, the multi-pattern reinforcement learn-
ing algorithm for anti-jamming channel selection is intro-
duced. In this subsection, considering that the rapid change of
selected channel may cause heavy system overhead, we intro-
duce the channel switching factor for the purpose of achieving
maximal network utility [37].

In fact, there may be some channel switchers that do not
change the channel when the current dynamic jamming envi-
ronment changes. Therefore, there is no significant impact on
long-term rewards. For example, at time t − 1, the selected
action is a(t − 1) = argmaxa∈A Q(s(t − 1), a). In addition,
at time t , the selected action is a(t) = argmaxa∈A Q(s(t), a).
If a(t) is different from a(t − 1), channel switching occurs.
However, Q (s(t), a(t)) and Q (s(t), a(t − 1)) may have no
effect on long-term rewards in channel switching. Therefore,
based on the above principle, the purpose of reducing system
overhead is achieved via avoiding frequent channel switch-
ing. Hence, it is necessary to re-plan and design the immedi-
ate reward function, and the incentive function is expressed

Algorithm 2 Multi-Pattern Reinforcement Learning (MRL)
Initialize:
Set the simulation start-end time, the relevant learning

parameters and initialize the Q value table in the state of each
jamming mode.
Loop:
The user observes the current state of the environment to

obtain real-time jamming information. The obtained jamming
state thermal chart is input into the trained convolutional
neural network. The current jamming pattern is n. Turn into
Q-learning algorithm with current jamming type n.
Q-learning algorithm for the current jamming type n :
Step 1) The user observes current state and selects the
channel according to the following rules:
1. Independent channel strategy π∗n (s) is selected randomly
with probability ε ;
2. The channel strategy with the maximal Q value of current
state is selected with probability 1− ε;
Step 2) The agent transfers the channel selection strategy
to the transmitter. In the process of user communication,
the immediate reward rn(s, a, t) for nth jamming pattern is
obtained.
Step 3) Update user’s Q value table Qn for nth jamming
pattern;
End the loop

as follows:

r(t) =


rm, if a(t) = a(t − 1) and successful,
rm − c, if a(t) 6= a(t − 1) and successful,
0, if a(t) = a(t − 1) and failed,
−c, if a(t) 6= a(t − 1) and failed.

(12)

The agent achieves an ideal balance between system over-
head and payback. By adjusting the switching cost factor,
the desired balance between anti-jamming communication
and system overhead can be achieved more flexibly. From
the comparison between (a) and (b), (c) and (d) in Fig. 10,
we can clearly observe that the number of channel switching
is significantly reduced after introducing channel switching
factor. Furthermore, the simulation results also verify the
influence of channel switching factor.

VI. SIMULATION RESULTS AND ANALYSIS
A. SIMULATION SETTINGS
In the simulation, we assume that the number of available
channels in the system is 5. The user and the jammer are
confronted in 20MHz frequency band. It is assumed that
the frame length of each frame is 5ms, and the transmis-
sion information time of each frame is 4ms. The total time
of wide-band spectrum sensing (WBSS), ACK, intelligent
reinforcement learning and anti-jamming Policy information
transfer (PIT) is 1ms. The sliding window retains the spec-
trum data within 200ms. Hence, the thermal chart pixel of the
collected jamming information is 200×200. Each slot allows
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FIGURE 9. Algorithm flow chart.

FIGURE 10. Convergence contrast graph with switching factor added.

the user to perform channel switching every frame (5ms).
The user’s transmission bandwidth is 3.8MHz. Inspired by
work [40]–[42], the transmission signal is rising cosine wave-
forms. The demodulation threshold (th) is 10 dB. The jam-
ming power is 30dB, and the transmission power is −5dB.
The feedback (rm) of the set action is 1, and the system
switching factor (c) is set as 0.6. In addition, the greedy factor
is set as ε = 0.9, and the learning rate a is 0.1. Furthermore,
the discount factor η = 0.8. The number of channels is set
to 5, so there are 32 states and the number of alternative action
is 5. The input of CNN is 208× 208, the number of test data
volume (batch− size) is 25 (The amount of data entered each
time is 200kb), and the number of iterations (max − step )
is 10000. The initial learning rate of the convolutional neural
network is 0.8.
Simulation mainly consider two kinds of jamming sce-

narios: i). Dynamic jamming including two kinds jamming
patterns (Randomly switching between sweep jamming and
comb jamming). ii). Dynamic jamming including three kinds
jamming patterns (Randomly switching between sweep jam-
ming, comb jamming and double sweep jamming). In detail,

TABLE 1. Simulation parameters.

comb jamming is in three fixed frequency bands (0− 4MHz,
8−12MHz, 16−20MHz), sweep jamming and double sweep
jamming is set to sweep with rate 450MHz/s. The detailed
simulation parameters are described in Table. 1.

B. SIMULATION ANALYSIS
In this part, we mainly evaluate the effect of the algorithm
under two kinds of dynamic jamming patterns. Fig. 11, shows
the thermodynamic contrast diagram of the first jamming
scenario as illustrated in previous subsection. It indicates
that in the first interference scenario, the user successfully
avoids all jamming. Fig. 12 shows the thermodynamic com-
parison diagram of the second jamming scenario. In detail,
(a)-(f) shows the sliding window of double sweep jamming,
comb-sweep jamming and sweep-double sweep jamming
respectively, where (b) and (e), (c)and (f) are the case when
the user is in the jamming transition zone.

For the purpose of calculating throughput of user,
we define PN as the number of packets transmission per
updating. In the simulation, we define PN = 10, which
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FIGURE 11. Comparison diagram of algorithm (two kinds of jamming
patterns).

FIGURE 12. Comparison diagram of algorithm (three kinds of jamming
patterns).

indicates that the user’s maximal cumulative throughput for
each updating is 10 (Each update time is 50ms). The updating
number is set to be 500, and the average value of 50 monte
carlo experiments is taken as the experimental result.

As is shown in Fig. 13, it describes the performance com-
parison between our algorithm (SDRLA) and single rein-
forcement learning under single sweep jamming [34]. We can
conclude that the convergence speed and performance of the
SDRLA is similar to the single-mode reinforcement learning
algorithm.

Moreover, in Fig. 14, the cumulative throughput compar-
ison between our algorithm (SDRLA) and single reinforce-
ment learning under the first jamming scenario is illustrated.
This scenario including two kinds periodic jamming patterns,
and the jamming cycle switching time is 30 seconds. By com-
paring the two algorithms, it can be found that the proposed
algorithm needs to be re-converge in the early stage when
the jamming mode is switched. As a result, the simulation

FIGURE 13. Performance comparison under a kind of jamming pattern.

FIGURE 14. Performance comparison under period switching of two
kinds of jamming pattern.

curve of the proposed algorithm will have a large fluctuation
in the initial stage, but will realize convergence in the later
stage. At the later stage of the algorithm, different Q value
tables have been fitted, so the trained Q value table can be
directly invoked according to the current jamming mode.
In the single-mode reinforcement learning algorithm, the con-
vergence state only appears under specific jamming category,
which means it can only suits single jamming pattern. When
channel is randomly selected by the user, the throughput is
only 30%-50% of the maximum throughput.

As is shown in Fig. 15, it describes the the cumulative
throughput comparison between SDRLA algorithm and sin-
gle reinforcement learning under the second jamming sce-
nario. The duration of each jamming pattern in this scenario
is set to randomly switch from 2 seconds to 60 seconds. For
single mode reinforcement learning, it can hardly converge
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FIGURE 15. Performance comparison under random switching of three
kinds of jamming patterns.

FIGURE 16. Comparison of algorithm after introducing switch factor.

in a dynamic jamming environment, and the performance is
poor, which means it is difficult to converge in the dynamic
jamming environment. Moreover, the channel blocking prob-
ability of the three kinds of jamming patterns are 20%-40%
(Sweep jamming), 40%-80% (Double sweep jamming), and
60% (Comb jamming). Hence, the throughput of single-
mode reinforcement learning fluctuates between 4-7. The
algorithm proposed in this paper has slight fluctuations after
convergence, which means our approach can achieve good
channel selection performance. As the online learning time
gets longer, the simulation curve of the proposed algorithm
tends to be stable in the later stage. Moreover, the simulation
results demonstrate that the proposed algorithm converges
quickly and has a higher utility. It is also proved that the
proposed algorithm can effectively avoid malicious jamming
and achieve anti-jamming communication.

Fig. 16 shows the comparison between the SDRLA
algorithm with and without channel switching factor.
The simulation environment is the second jamming scenario,
and keep other setting parameters unchanged. 15 monte carlo
experiments are conducted, and the channel switching num-
ber in 5000 iterations are counted. As shown in the Fig. 16,
it is obvious that the switching frequency of the algorithm
which introduces the channel switching factor is significantly
lower than the original algorithm. The switching frequency
is reduced to 50%-70% of the original one. When channel
switching cost is introduced, the system overhead reduces
significantly.

VII. CONCLUSION
This paper studied the intelligent anti-jamming commu-
nication under dynamic jamming environment, and pro-
posed a sequential deep reinforcement learning algorithm
(SDRLA) without prior information. After conducting the
SDRLA algorithm, the user learned and decided the best anti-
jamming channel selection strategies when facing random-
ness or dynamic jamming scenarios. Furthermore, channel
switching factor was introduced to improve the utility of
anti-jamming channel selection. Simulation results verified
the effectiveness and practicability of the proposed anti-
jamming communicationmethod, showing that our algorithm
had strong environmental adaptability and wide application
range.
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