
  

Entropy 2019, 21, 1190; doi:10.3390/e21121190 www.mdpi.com/journal/entropy 

Article 

Magnetotelluric Signal-Noise  
Separation UsingIE-LZC and MP 
Xian Zhang 1,2,3,4, Diquan Li 1,4,*, Jin Li 2,3,*, Yong Li 3, Jialin Wang 2,  
Shanshan Liu 2 and Zhimin Xu 5 

1 Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment, Monitoring 
Ministry of Education, School of Geoscience and Info-Physics, Central South University,  
Changsha 410083, China; zhangxian128@csu.edu.cn 

2 Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan 
Normal University, Changsha 410081, China; 201970293227@smail.hunnu.edu.cn (J.W.); 
201970293224@smail.hunnu.edu.cn (S.L.) 

3 Key Laboratory of Geophysical Electromagnetic Probing Technologies of Ministry of Natural Resources, 
Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Science,  
Langfang 065000, China; liyong@igge.cn 

4 Hunan Key Laboratory of Nonferrous Resources and Geological Hazard Exploration,  
Changsha 410083, China 

5 Hebei Instrument & Meter Engineering Technology Research Center, Chengde Petroleum College, 
Chengde 067000, China; xuzhimindx@126.com (Z.X.) 

* Correspondence: lidiquan@csu.edu.cn (D.L.); lijin@hunnu.edu.cn (J.L.);  
Tel.: +86-731-8883-6153 (D.L. & J.L.) 

Received: 29 October 2019; Accepted: 2 December 2019; Published: 4 December 2019 

Abstract: Eliminating noise signals of the magnetotelluric (MT) method is bound to improve the 
quality of MT data. However, existing de-noising methods are designed for use in whole MT data 
sets, causing the loss of low-frequency information and severe mutation of the apparent 
resistivity-phase curve in low-frequency bands. In this paper, we used information entropy (IE), 
the Lempel–Ziv complexity (LZC), and matching pursuit (MP) to distinguish and suppress MT 
noise signals. Firstly, we extracted IE and LZC characteristic parameters from each segment of the 
MT signal in the time-series. Then, the characteristic parameters were input into the FCM 
clustering to automatically distinguish between the signal and noise. Next, the MP de-noising 
algorithm was used independently to eliminate MT signal segments that were identified as 
interference. Finally, the identified useful signal segments were combined with the denoised data 
segments to reconstruct the signal. The proposed method was validated through clustering 
analysis based on the signal samples collected at the Qinghai test site and the measured sites, 
where the results were compared to those obtained using the remote reference method and 
independent use of the MP method. The findings show that strong interference is purposefully 
removed, and the apparent resistivity-phase curve is continuous and stable. Moreover, the 
processed data can accurately reflect the geoelectrical information and improve the level of 
geological interpretation. 

Keywords: magnetotelluric (MT); signal-noise separation; information entropy (IE); Lempel–Ziv 
complexity (LZC); matching pursuit (MP) 

 

1. Introduction 

The magnetotelluric (MT) method, an electromagnetic exploration method proposed in the 
early 1950s [1,2], measures the orthogonal electric-magnetic fields at the Earth’s surface to obtain the 
distribution of the underground geoelectric structure. The MT method has a series of characteristics 
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such as its utilization of the natural field source, its large exploration depth, simple-formed plane 
wave theoretical impedance, and simple geological interpretation [3–6]. Whether for research into 
deep geological structures or the exploration of deep concealed blind ore bodies, the MT sounding 
method is an effective means. However, the MT signal itself is extremely weak and random, making 
it impossible to avoid complicated electromagnetic interference environments, leading to data 
contamination from noise and low data collection reliability. Thus, useful MT signals can be 
extracted from the corrupted data, and strong interference is purposefully suppressed, which is 
essential for a reliable geophysical data interpretation. 

For nonlinear and non-stationary MT signals, scholars have proposed a large number of MT 
signal processing methods, such as the remote reference method [7], robust impedance estimation 
[8,9], wavelet transform [10], Hilbert–Huang transform [11], mathematical morphology filtering 
[12], variational mode decomposition [13], among others. All the above methods can filter the entire 
data set and improve the quality of MT data to some extent. However, some useful MT signals are 
also filtered out due to the lack of identification. The emerging developments in MT signal-noise 
identification over recent years have presented a new processing mode for MT signal-noise 
separation [14,15]. These methods distinguish whether the signal is contaminated by noise based on 
several characteristic parameters extracted from the signal. Although these methods have produced 
good results, it still takes a long time to extract the features during data processing. 

Thus, the main focus of this paper is still the analysis and application of the complexity index. 
Shannon first used the concept of entropy to evaluate the randomness information theory (IE); 
where entropy is a simple and efficient feature that characterizes the complexity of a system [16]. 
Low entropy of an MT time series indicates low complexity, whereas a higher value of entropy 
would imply higher complexity, that is, low entropy corresponds to an MT signal with interference, 
otherwise it is a useful MT signal. Kolmogorov proposed the significant concepts of system 
complexity in 1965s [17]. Given the incalculability of the Kolomogorov complexity, the Lempel–Ziv 
complexity (LZC) algorithm was designed to describe the complexity of the signal. Since the size of 
the value reflects the degree of chaos, the LZC is also applied to evaluate the nonlinear dynamics of 
the MT time series. Nowadays, IE and LZC are widely used as measures of dynamical complexity in 
several applications [18–20]. 

In this paper, a novel method was proposed for MT signal-noise separation using IE-LZC and 
matching pursuit (MP). The IE-LZC characteristics were developed to analyze the essential features 
of MT in combination with the fuzzy c-means (FCM) clustering algorithm for MT signal-noise 
identification or with the selective use of matching pursuit (MP) as the de-noising algorithm. The IE 
and LZC were extracted from each segment of the MT signal as characteristic parameters. The FCM 
clustering is a partition-based clustering algorithm [21] designed to identify the signal and noise 
automatically. The idea is to maximize the similarity between objects that are divided into the same 
cluster, and the similarity between different clusters is the smallest. The MP algorithm is a highly 
adaptive time-frequency signal decomposition and approximation method that is commonly used to 
suppress signals identified as strong interference. We applied the proposed method for the 
clustering analysis of signal samples collected from the Qinghai test site and the measured sites; 
where the results were compared to those obtained using the remote reference method and 
independent use of the MP method. According to the findings, the denoised data from the proposed 
method closely resembled the original undisturbed data in terms of the essential characteristics, and 
the geoelectric structure information of the measured site was accurately reflected in the results. 

2. Methods and Materials 

Based on the essential characteristics of the MT signal and noise, the collected MT data is often 
due to factors such as topographical structure and the human electromagnetic environment, and 
various electromagnetic noises inevitably interfere with it. However, the complex electromagnetic 
interference sources cause some disturbances to show robust features in the time-series and 
frequency spectrum, while other useful signals do not show any features in the time-series and 
frequency spectrum [22]. Therefore, the proposed method was processed for time-series and it was 
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composed of three steps: characteristic extraction (IE and LZC), clustering analysis (FCM), and the 
de-noising algorithm (MP). From the above steps, IE-LZC and MP are presented, respectively.  

2.1. Information Entropy (IE) 

Information entropy is a term describing the degree of uncertainty of the system [23,24], and 
therefore, it can be used to measure nonlinear and nonstationary MT signals. Lower entropy means 
less uncertainty of the information, that is, the MT signal with substantial interference in this paper. 
On the other hand, a useful MT signal contains more random and complex information. The 
information entropy is defined by Shannon as follows: 

( ) ( ) ( )−
1

= log ,
N

i iH X p x p x  (1) 

where X  is a discrete random variable with limited states, the probability of each state 

= , 1,2,...,iX x i N=  is denoted as ( ) ( )i ip x p X x= = . 

2.2. Lempel–Ziv Complexity (LZC) 

The Lempel–Ziv complexity is a nonlinear method for coarse-graining the original signal to 
form a symbol series, and also for parsing data to estimate the complexity caused by the emergence 
of new sub-sequences within the symbol series [25,26]. 

Given { }1 2 3= , , ...X x x x , denotes the original string sequence, among them, set 

( )( )a mean X i= ; if ( )X i a≥ , then ( )=0x i , or else 1. Let S  and Q  be two subsequences of 

sequence X , and SQ  is a concatenation of S  and Q , while the sequence SQπ  is derived 
from SQ  after its last character is deleted ( π  implying deletion of the last character in the 

sequence) and ( )v SQπ  denotes the vocabulary of all different subsequences of SQπ . 

(1) Initialization; complexity counter ( ) =1c N , 1=xS , 2=Q x , therefore, 1=SQ xπ . 

(2) Make 1 2= , , ..., rS x x x  and 1=xrQ + , then 1 2= , , ..., rSQ x x xπ , if Q  belongs to 

( )v SQπ , then Q  is a subsequence of SQπ , not a new sequence. 

(3) Change Q  to be 1 2,r rx x+ +  and judge whether Q  belongs to ( )v SQπ . Repeat 

above step until Q  does not belong to ( )v SQπ . 

(4) If not, 1 2= , ,...,r r r iQ x x x+ + +  is not a subsequence of 1 2 1= , , ..., r iSQ x x xπ + − , so 

increase ( )c N  by one. 

(5) After that, 1 2= , , ..., r iS x x x +  and 1= r iQ x + + . Repeat the previous steps until Q  is the 

last character. Therefore, the number of subsequences in X  is ( )c N , which is the 

measure of complexity. 

The complexity value is related to the sequence length N  and ( )c N  must be normalized. If 

the number of different symbols is α , it has been shown that the upper bound of ( )c N  is as 

follows: 

( ) ( ) ( )( )1 logNc N N Nαε< −  (2) 

where Nε  is a small quantity and ( )0N Nε → → ∞ , and ( )logN Nα  is the upper limit of 

( )c N , 
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( ) ( ) ( )lim log
N

c N b N N Nα→∞
= =  (3) 

For a binary conversion 2α = , ( ) ( )logb N N Nα= . ( )c N  can be normalized by ( )b N  

as: 

( ) ( ) ( )C N c N b N=  (4) 

( )C N  is the normalized LZC. The larger the value of the LZC, the more complex the sequence 

is; that is, the MT signal has no interference. 
In this paper, IE and LZC were used as robust characteristic parameters to distinguish MT 

signals from noise. Simultaneously, as the input of FCM clustering, it is used for signal-noise 
identification. 

2.3. Matching Pursuit (MP) 

The matching pursuit (MP) algorithm can be traced back to the overcomplete dictionary [27], 
that is, the signal is decomposed into a sparse representation coefficient on a non-orthogonal basis. 
The basic idea is to select the best atom to match the signal in each iteration and to constantly update 
the residual signal until iterative termination [28]. The MP algorithm is as follows: 

Let dictionary { }=D gγ γ∈Γ
, where gγ  refers to redundant atoms, and then, the signal f  can 

be decomposed into: 

0 0,f f g g Rfγ γ= +  (5) 

where 0 0,f g gγ γ  is the projection of the signal on the atoms, Rf  is the residual signal, and 0gγ  

is orthogonal to Rf , hence: 

22 2

0,f f g Rfγ= +  (6) 

To minimize the residual signal, we approximated the best atom chosen to maximize the inner 
product of the f  and 0gγ , and the residual signal. When iterating to 1n + , the residual after 

approximating by n  atoms can be expressed as: 

1,n n n
n nR f R f g g R fγ γ

+= +  (7) 

Through N  iterations, the signal f  can be decomposed into: 

1

0
,

N
n n

n n
n

f R f g g R fγ γ

−

=

= +  (8) 

Since the residual is exponentially decaying and thus ignored, the signal f  can be 
approximated as: 

1

0
,

N
n

n n
n

f R f g gγ γ

−

=

=  (9) 

Figure 1 shows the MP de-noising effect of the ‘heavy sine’ signal in MATLAB under different 
atoms, and the length of the ‘heavy sine’ signal was 1024. In the signal, we analyzed it by adding 
random noise. Among them, the dictionary in the MP algorithm only contains sine (sin) and discrete 
cosine (dct) atoms, as shown in Figure 1a, while Figure 1b displays the symlets (sym) and 
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daubechies (db) wavelet atoms. It can be seen from Figure 1a that in the part of the signal mutation, 
the sin/dct atoms cannot accurately match the signal’s detail component, resulting in residual 
interference in the reconstructed signal. Therefore, the sym/db wavelet atoms can match the abrupt 
part of the ‘heavy sine’ signal. 

  
(a)                                          (b) 

Figure 1. (Matching pursuit) MP de-noising effect of the ‘heavy sine’ signal under different atoms 
with (a) sin/dct atoms and (b) sym/db wavelet atoms. 

To evaluate the MP de-noising performance of different atoms, the normalized cross-correlation 
(NCC), signal-to-noise ratio (SNR), and mean square error (MSE) were used for the quantitative 
analysis. Definitions of these parameters are as follows: 

(1) NCC 

( ) ( )

( ) ( )
1

2 2

1 1

n

i

n n

i i

f i g i
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f i g i

=

= =

=
  
  
  



 
 (10) 

where ( )f i  and ( )g i  represent the ‘heavy sine’ signal and profile of the noise, respectively. 

(2) SNR 

( )

( ) ( )

2

1

2

1

10 lg

N

i
N

i

f i
SNR

f i g i

=

=

=
 − 




 (11) 

(3) MSE 

( ) ( )( )2

1

1 N

i
MSE f i g i

N =

= −  (12) 

Table 1 is the comparison between the de-noising performance of different atoms. 
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Table 1. MP de-noising performance of different atoms. 

 NCC SNR(dB) MSE 
sin/dct 0.9990 22.6268 0.0112 

sym/db wavelet 0.9996 23.6209 0.0061 
From Table 1 together with Figure 1, the sym/db wavelet atoms achieve a higher NCC and SNR, 

and a smaller MSE, which accurately matches the abrupt component signal, so that the reconstructed 
signal is more precisely preserved. To this end, the appropriate atoms were selected to match the 
stationary and abrupt signals effectively. 

3. Experiments and Results 

3.1. Step of the Proposed Method 

The steps of the proposed method are detailed as follows: 
1. Load the noisy MT data and equally divide it into the N segment of data. 
2. Extract the IE and LZC of each segment of the MT data, and input to FCM clustering as 

signal-noise identification, automatically distinguishing the signal and noise. 
3. The data segment identified as the MT signal is retained, and the MP technique eliminates 

the data segment identified as the MT noise, that is, the MP signal-noise separation. 
4. The retained signal is combined with the denoised signal to reconstruct the useful MT signal. 
5. Evaluate the apparent resistivity-phase curve and electromagnetic polarization direction. 

3.2. Clustering Analysis of the Sample Library 

In this research, a library of 200 data samples was used from field measurements [29]: where 50 
samples were MT signals without interference collected from a remote area with no man-made 
activities in the Qinghai province. The rest of the contaminated data (referred to as “square wave 
interference, triangle wave interference, and pulse wave interference”) were collected from the ore 
concentration area. 

The FCM clustering algorithm obtains the membership degree of each sample to all clustering 
centers by optimizing the objective function, thereby determining the category of the samples to 
achieve the purpose of automatic classification. 

Figure 2 is the fuzzy c-means (FCM) clustering of the sample library signals; among them, 
cluster 1 represents the MT signals with interference and cluster 2 represents the MT signals without 
interference. Characteristic parameters X and Y are the information entropy (IE) and Lempel–Ziv 
complexity (LZC), respectively. Extract the IE and LZC characteristic parameters from the signals of 
the sample library and then input them to FCM clustering; calculate the Euclidean distance from the 
characteristic value to the cluster center, and then use contour lines to distinguish between the two 
types. Specifically, the contour lines indicate the shortest and longest distance from the samples to 
the cluster center in the same type, which can effectively divide the sample signals into different 
groups, thereby accurately identifying the MT signals without or with interference. Thus, IE and 
LZC are suitable for distinguishing MT data, and this sample library proved the feasibility of using 
FCM clustering for MT signal-noise identification. 
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Figure 2. FCM clustering of sample library signals, where Cluster 1 represents MT signals with 
interference, and Cluster 2 represents MT signals without interference; Characteristic parameter X 
and Y are information entropy (IE) and the Lempel–Ziv complexity (LZC), respectively. 

3.3. Simulated Interference Analysis of the Qinghai Test Site Signal 

The test site (QH401504) data was collected from remote areas untouched by human activities 
in the Qinghai province. The duration of data collection was about 19 h; where the pseudo-random 
sequence transmitted by the wide-area electromagnetic transmitter was implanted into the MT data 
collected in the first 1.5 h. During the remaining 17.5 h, the wide-field electromagnetic transmitter 
was turned off, which meant that the MT data was unaffected by the strong interference. To this end, 
we only analyzed the data collected during the last 17.5 h for this test site. 

Figure 3 shows that large-scale interference was added to the undisturbed data for signal-noise 
separation analysis and comparison of the denoised apparent resistivity-phase curves. The triangle 
wave interference, charge-discharge triangle wave interference, and pulse wave interference were 
added into the Ex or Hx channel, respectively. Figures 3a and b can effectively identify the 
artificially-added interference types by extracting the characteristic parameters and the FCM 
clustering analysis, thereby eliminating large-scale abnormal waveforms while retaining as many 
details of the original signal as possible for the reconstructed signal. Further comparison of the 
apparent resistivity-phase curves is shown in Figure 3c, where the apparent resistivity-phase curve 
of the original data is smooth and continuous. However, noisy data causes the apparent 
resistivity-phase curve to mutate or fall severely in the low frequency band. The apparent 
resistivity-phase curve of the reconstructed data using the proposed method was consistent with 
that of the original data. Therefore, the proposed method could suppress the MT abnormal 
waveform in a targeted manner and provided an effective way to analyze the subsequent measured 
data of the measured sites. 
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Figure 3. The Qinghai test site (QH401504) is disturbed by a noisy signal with (a) triangle wave 
interference of Ex and (b) charge and discharge triangle wave and pulse wave interference of Hx; (c) 
is a comparison of the apparent resistivity-phase curves. 

3.4. Signal-Noise Separation Analysis of the Measured Data 

To verify the effectiveness of the proposed method, Figure 4 shows the signal-noise separation 
of the measured data using the IE-LZC and MP technique. The triangle wave and pulse wave 
interference were identified and highlighted in red. The result confirmed that the proposed method 
could distinguish between signals and interference. 

  
(a)                                                 (b) 

Figure 4. The signal-noise separation for the measured magnetotelluric (MT) data and comparison of 
using the MP method (a) triangle wave interference and (b) pulse wave interference. 
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Large-scale strong interference was suppressed using the MP method for de-noising. 
Nevertheless, this method lacked signal-noise identification, which could lead to improper filtration 
of abundantly useful information making it hard to reserve non-interfered MT signals. In contrast, 
the proposed method not only quantitatively identified the signals and interference but it also 
suppressed the identified interference purposefully, thereby avoiding the over-processing of the MP 
method and abundantly preserving the slow-change components at low frequencies. 

3.5. Apparent Resistivity-Phase Curve of the Measured Sites Analysis 

Figure 5 shows the comparison of the apparent resistivity-phase curves of the original data, 
remote reference (RR) method, matching pursuit (MP) method, and the proposed method. These 
measured sites (C41820, EL22175, and EL22211) analyses were subjected to the same type of 
interference (square, triangle, and pulse wave) in time domain waveforms. The sites were collected 
in the Luzong area, Anhui province, China. The collection time was 19 h for Figure 5a and 1 h for 
Figures 5b and c, respectively. The measured data were collected using a V5-2000 instrument 
(produced by Phoenix Company, Canada). As most geophysical information on these sites is 
concentrated in low-frequency bands, we only analyzed the low-frequency data in detail. 

In Figure 5a, the apparent resistivity curves of the original data of xyρ  and yxρ  component 

appear to rise severely at 10 Hz–0.1 Hz. However, the curves dropping in the frequency band below 
0.1 Hz, and the corresponding phase curve show severe mutation. Thus, the result belonged to the 
typical near-source effect, and its data reliability was completely unexplained. The sites on Figures 
5b and c were conducted on the same line. The apparent resistivity curves of the original data in 
Figures 5b and c were about 45° asymptote rising, and the corresponding phase curves were all close 
to 0° and 180°. Given these sites were similar in their response when affected by strong interference, 
the results could not reflect the underground inherent electrical structure information. 

Compared to the result obtained using the remote reference (RR) method, the apparent 
resistivity curve still kept rising, and the distortion data in the phase curve were not reduced. The 
result was because the RR method only eliminated noise by selecting between a reference site and 
the measured data distance. Under the influence of strong continuous interference, the RR method 
failed to produce the desired effect. Although the matching pursuit (MP) method could suppress 
large-scale strong interference in the time series, many low-frequency useful MT signals were 
filtered out. This caused an upward trend that did not ease, as in Figure 5a, and a downward trend 
in Figures 5b and c in the apparent resistivity curve in the low-frequency band. Meanwhile, the 
corresponding phase curve was more chaotic. Moreover, the result could not effectively reflect 
underground geoelectric information. According to the results, the proposed method can eliminate 
the section identified as MT interference and reconstruct a useful MT signal with high precision. The 
apparent resistivity-phase curve becomes stable and continuous, and its amplitude is also in the 
normal range. Thus, the result indicated that the denoised data was more reliable and reasonable. 
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(c) 

Figure 5. Comparison of apparent resistivity-phase curves of the measured sites (a) C41820, (b) 
EL22175, and (c) EL22211; red curve is for the original data, blue curve for the result obtained by the 
remote reference (RR) method, pink curve for the data filtered by the matching pursuit (MP) method, 
and the black curve for the result derived from the proposed method. 

3.6. Polarization Direction Analysis 

Polarization direction [30] of the electromagnet field is an indicator for evaluating MT data 
quality. Thus, it was introduced to verify the effectiveness of the proposed method further. Figure 6 
shows the comparison of electromagnetic polarization direction at a frequency of 0.3 Hz for the 
measured site EL22211 in the electric and magnetic fields, respectively. The left side of Figures 6a 
and b is the polarization direction of the original data, and the right side shows the polarization 
direction after it is denoised by the proposed method. 

 
(a) 
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Figure 6. Comparison of the polarization direction at 0.3 Hz for site EL22211, (a) electric field data, 
and (b) magnetic field data. 

The polarization direction of the original data in the electric field and magnetic field was 
concentrated between -20° and -60° at 0.3 Hz, as shown in Figure 6. The active source area and 
strong interference waveforms were flooded with the original data. The polarization direction of the 
proposed method showed that electric and magnetic field data were relatively scattered and 
random, which was consistent with the polarization characteristics of natural field data. This result 
indicated that the proposed method was quite effective and the strong interference of the measured 
data had been suppressed. 

4. Discussions 

Geophysical methods are undoubtedly a powerful means to search for deep concealed mineral 
resources [31-32]. MT sounding is a significant method and has an irreplaceable role in the 
exploration of deep structures and metal deposits. However, weak MT data is highly susceptible to 
noise. For this reason, the development of methods to eliminate MT noisy signals and improve the 
quality of MT data will be beneficial to subsequent geoelectric structure analysis. 

According to early literature on MT signal-noise separation, the MT data of time-frequency 
domain is analyzed and denoised [33–34]. These methods cannot distinguish between the signal and 
noise, and the useful data of low-frequencies are also filtered and blindly suppressed as noise, that 
is, the results cannot truly and reliably reflect the underground electrical structure. Further research 
in recent literature reveals that fractal, multifractal, entropy, and other ways of describing the 
characteristics of MT signal-noise are emerging. More robust characteristic parameters are used for 
the analyses, and good results have been obtained. However, this paper introduces only two 
characteristic parameters (IE-LZC), which are simple in an algorithm, fast in calculation, and easy to 
implement. The efficiency of MT signal-noise separation has improved with due consideration to 
data quality. For the mentioned measured site processing (Figure 5), the proposed method can be 
completed in a short time. 

In this study, the IE and LZC are combined with a cluster method to distinguish the MT signal 
from interference. To validate the results, we first used sample library signal analysis to calculate the 
IE and LZC characteristic parameters of the known sample signals, and then we input the outcomes 
into FCM clustering (Figure 2). Considering the simple principle of the IE and LZC algorithm, these 
results supported the hypothesis that the IE-LZC and cluster methods were able to distinguish 
between the MT signal and interference (Figure 4). The MP algorithm is a signal sparse 
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decomposition method, which primarily uses the linear operation of the atom vector to gradually 
approximate the signal vector, and it constantly iterates to achieve a given sparsity. The MP 
de-noising effect of two different atom types (Figure 1) indicates that the appropriate atom can be 
selected to match the corresponding signal for the mutation and stationary component of signals, 
where the mutation components are eliminated. Meanwhile, the useful signals are preserved. 

We verified the Qinghai test site (Figure 3) and compared the results to ones achieved using the 
RR method and MP method for the measured sites (Figure 5). The proposed method could avoid 
over-processing and preserve more useful MT signals with improved MT data quality. However, the 
limitation of the paper was that when the signal and noise were gradually blurred, the clustering 
precision would drop sharply. Moreover, the number of iterations and atomic types need to be 
preset in the MP algorithm. If the intelligent algorithm is used to learn the MT data characteristics to 
improve the identification accuracy and adaptive selection of the parameters in the MP algorithm, it 
will significantly enhance the level of data processing. 

5. Conclusions 

A novel MT signal-noise separation method using information entropy (IE), Lempel-Ziv 
complexity (LZC), and matching pursuit (MP) algorithms was proposed. To remedy the low 
efficiency and to improve the accuracy of MT data processing in the existing techniques, the 
proposed method was applied to distinguish between interference and useful MT signals by 
analyzing the data from the Qinghai test site and other measured sites. The experimental results 
showed that the characteristic parameters and cluster method could effectively identify MT strong 
interference in time series sequence, while the MP de-noising could suppress results identified as 
MT strong interference while retaining the slow-change components of low-frequencies. At the same 
time, the data quality and apparent resistivity-phase curves were improved. The results obtained 
using the proposed method reflected the inherent electrical structure information more realistically, 
providing more reliable data for inversion. 
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